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We evaluate one-loop effects for QED4+1 compactified to R4
× S1, in a non-trivial vacuum for

the gauge field, such that a non-vanishing magnetic flux is encircled along the extra dimension. We
obtain the vacuum polarization tensor and evaluate the exact parity breaking term, presenting the
results from the point of view of the effective 3 + 1 dimensional theory.
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I. INTRODUCTION

Quantum field theory models with compactified di-
mensions have been used to describe different physical
situations, ranging from finite size effects in critical phe-
nomena [1–3], to the unification of fundamental interac-
tions [4–6]. These ideas have recently attracted renewed
interest; for instance, results about the electroweak phase
transition has been presented in [7], in the context of a
4+ 1-dimensional theory with a compactified dimension.

The presence of extra compactified dimensions may
give rise to effects at different scales, not just those in
high energy physics realm; in particular on low energy
phenomena, like atomic physics. Following this idea, we
evaluate, within a specific domain of physics, namely
Quantum Electrodynamics, the effects that would fol-
low if our world were 5-dimensional. In particular, we
investigate at one-loop order some effects due to the as-
sumption of a non-trivial vacuum with a non-vanishing
magnetic flux along the compactified dimension.

Effects on the anomalous magnetic moment of the
muon associated with extra-dimensional excitations of
the photon and of the W and Z bosons, have been stud-
ied in [8], in a space whose extra dimensions have large
compactification radii. Those authors have shown that,
when the extra-dimensional corrections to the Fermi con-
stant are included, their effects on (gµ − 2) become too
small to be observable. They discuss a model which
avoids the extra-dimensional corrections to the muon de-
cay µ → eν̄eνµ without suppression of their effects on
(gµ − 2). Eventual extra-dimensions effects on (gµ − 2)
would be very interesting. We know, since the g − 2
experiment at Brookhaven National Laboratory (USA)
in 2004, and subsequent experiments, that the expected
value from standard theoretical calculations, that pre-
dicts g = 2, could not be confirmed, since both theo-
retical prediction and experimental results have a large
amount of uncertainty. Although a conclusive response
is not available, a value of g 6= 2 is not excluded by
experimentalists [9]. Indeed, in the experimental frame-
work of QED a recent experiment for the electron mag-
netic moment, gives a much more precise value for ge

(the claimed uncertainty is nearly 6 times lower than in
the past). These authors still find a deviation from the
value g = 2 [10]. In atomic physics, very accurate mea-
surements of the asymptotic quantum effects on Rydberg
excitations have also been carried out [11].

Another interesting consequence of the possible ex-
istence of extra dimensions is explored in [12]. This
study shows that they would imply that electric charge
might not be exactly conserved, what has been a sub-
ject of discussion for a long time [13–15]. As mentioned
in [12], in four-dimensional theories, a tiny deviation
from electric charge conservation would lead to contra-
dictions with low-energy tests of QED. These could, in
turn, be cured by the introduction of hyphotetical mil-
licharged particles [15]. However, as argued in [12], if
our world were considered as a submanifold of a higher-
dimensional space, this artifact would not be necessary.
Indeed in this case, particles initially confined to our 4-
dimensional subspace could, under some circumstances
migrate to the extra dimensions. The idea presented
in [12] is that if they are electrically charged, their mi-
gration from our world into extra dimensions would ap-
pear for us as non-conservation of electric charge. Charge
non-conservation and other possible effects of extra di-
mensions could perhaps be investigated in experiments
similar to those in [10, 11].

In [16] a U(1) gauge field theory with fermion or scalar
fields defined on a space with extra compactified dimen-
sions has been considered. These authors compute the
fermion-induced quantum energy in the presence of a con-
stant magnetic field directed towards the z-axis. They
study the effect of extra dimensions on the asymptotic
behavior of the quantum energy in the strong field limit,
and find that the weak logarithmic growth of the quan-
tum energy in four dimensions is modified by a rapid
power growth in a space-time with extra dimensions.

Because of the reasons described above, we believe that
the study of effects due to extra dimensions in electro-
magnetic phenomena is a subject of actual interest. We
present here new results about that topic; they corre-
spond to quantum effects in QED with an extra dimen-
sion, in a magnetic flux background. In particular, we
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consider the modifications that the extra dimension pro-
duces on the vacuum polarization phenomenon.
This paper is organized as follows: in section II we

introduce the model and study its more important fea-
tures, mostly related to the realization of gauge invari-
ance within the context of a theory with a compacti-
fied dimension, having an extra dimensional-like mode
expansion in mind. Section III deals with the effective
action, which is derived including both parity-conserving
and parity-violating parts. In IV, we apply the general
results of III to the exact calculation of the parity con-
serving part of the vacuum polarization tensor. In V, we
consider parity-breaking effects. Section VI contains our
conclusions.

II. THEORETICAL FRAMEWORK

From a general point of view one can consider a simply
or non simply-connected D-dimensional manifold with a
topology R

D
d = R

D−d×Sl1 ×Sl2 · · ·× Sld , with l1 corre-
sponding to the inverse temperature and l2 , · · · ld to the
compactification of d − 1 spatial dimensions (this case
has been considered, within the context of spontaneous
symmetry breaking, in [17]). An interesting yet sim-
ple example of this, corresponds to the compactification
of one dimension in an R

D Euclidean spacetime, such
that the topology of the resulting manifold M is that
of RD−1 × S1, i.e., ‘circular compactification’. Although
the compelling features that emerge in this situation have
been studied using several different techniques in the lit-
erature, one can take advantage of a (formal) common
feature; indeed, they share many properties with the
imaginary-time formulation of quantum field theory at
finite temperature [18, 19]. This allows one, for example,
to take advantage of the many well-known methods and
results developed in this context, such as Feynman dia-
grams and renormalization techniques, to import them
to the case under consideration.
For just one compactified dimension (imaginary time

or a spatial dimension) the Feynman rules are modified,
the most characteristic new feature is the Matsubara pre-
scription for momentum integrals,

∫
dks
2π

→ 1

ξ

+∞∑

n=−∞

; ks →
2nπ

ξ
, (1)

where ks amounts to the momentum component corre-
sponding to the compactified dimension, while ξ equals β
or L, for the finite temperature and compactified spatial
dimension cases, respectively.
Within the previous general framework, we here inves-

tigate one-loop effects for QED3+1 with an extra com-
pactified dimension, in a non-trivial vacuum for the gauge
field, defined by a non-vanishing component along the ex-
tra dimension.
The system we shall deal with may be conveniently

defined in terms of an Euclidean action, S, which has

the structure:

S(A; Ψ̄,Ψ) = Sg(A) + Sf (A; Ψ̄,Ψ) , (2)

where Sg and Sf denote the U(1) gauge field and
fermionic actions, respectively. The former is assumed
to have a standard Maxwell form, namely:

Sg(A) =
1

4

∫
d5xFαβFαβ , (3)

with Fαβ ≡ ∂αAβ−∂βAα, where we adopted the conven-
tion that indices from the beginning of the Greek alpha-
bet (α, β, . . . ) label all the coordinates of the spacetime
manifold, and therefore run from 0 to 4. Since we will be
specially interested in the model as it is seen from a 3+1
dimensional point of view, we shall also use another con-
vention: indices from the middle of the Greek alphabet
(µ, ν, . . . ) are reserved for the 3 + 1-dimensional space-
time coordinates while, when this notation is used, the
extra dimension coordinate shall be denoted by s. Then:

α = 0, 1, 2, 3, 4 , µ = 0, 1, 2, 3 ,

d5x ≡ d3+1x dx4 = d3+1x ds , (4)

and x will be assumed to denote the 3 + 1 coordinates
xµ, unless explicit indication on the contrary. The extra
dimension is assumed to be compactified with a radius
R, so that s ∼ s+ L, L = 2πR.
On the other hand, the Dirac action, Sf , is given by

Sf (Ψ̄,Ψ;A) =

∫
d3+1x ds Ψ̄(x, s)

(
D +m

)
Ψ(x, s) (5)

where D is the 4 + 1 dimensional Dirac operator,
D = γαDα. The covariant derivative Dα ≡ ∂α + igAα

includes a coupling constant g with the dimensions of
(mass)−

1
2 . For Dirac’s γ-matrices, we assume that γs ≡

γ5, where the latter is the γ5 matrix for the 3 + 1 world.
To proceed, we discuss now the mode expansion and its

relation to gauge invariance. To that end, we follow [2],
where this issue is discussed at length, albeit in the finite
temperature theory context, in the Matsubara formula-
tion of thermal field theory. Due to the formal analogy
with this situation, a quite straightforward procedure al-
lows us to adapt the results derived there to our case.
The necessary changes that follow from the fact that our
compactified dimension is spatial rather than temporal
are taken into account by using (1). In that analogy, the
length L plays the same role of the inverse temperature
in [2]: L ∼ β, β = T−1.
What follows is a brief review of some of those proper-

ties (the ones which are relevant to our study), adapted
to our case and conventions. To begin with, the gauge
field configuration Aα(x, s) may be decomposed into its
zero (Aα) and non-zero (Qα) mode components:

Aα(x, s) = L− 1
2 Aα(x) + Qα(x, s) , (6)
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where the two terms in this decomposition may be de-
fined by:

Aα(x) = L− 1
2

∫ L

0

dsAα(x, s) , (7)

and

Qα(x, s) = Aα(x, s) − L− 1
2 Aα(x) , (8)

so that
∫ L

0
dsQα(x, s) = 0. An L− 1

2 factor has been in-
cluded in the zero mode term in order to make this field
have the usual mass dimensions in 3+1 spacetime dimen-
sions; this property will become useful after dimensional
reduction.
The decomposition above finds a natural interpretation

when one considers the Fourier expansion of the gauge
field along the extra dimension:

Aα(x, s) = L− 1
2

∞∑

n=−∞

eiωns Ãα(x, n) , (9)

with ωn ≡ 2πn
L , where one identifies:

Aα(x) = Ãα(x, 0) , Qα(x, s) = L− 1
2

∑

n6=0

eiωns Ãα(x, n) .

(10)
Then we dimensionally reduce the theory, what, for

the gauge field action, amounts to keeping just the zero
mode component of the gauge field. Thus:

Sg(A) → Sg(A) = Sg(Aµ, As) , (11)

where:

Sg(Aµ, As) =

∫
d3+1x

[1
2
∂µAs∂µAs+

1

4
Fµν(A)Fµν (A)

]
,

(12)
with Fµν(A) ≡ ∂νAν − ∂νAµ.
Regarding the fermionic action Sf , the reduction

amounts to:

Sf (A; Ψ̄,Ψ) → Sf (Aµ, As; Ψ̄,Ψ) . (13)

The fermionic field is not dimensionally reduced by the
simple reason that, in the calculation of the effective
gauge field action, its only contribution comes from the
fermion loop. That loop may be represented as a series
of 3 + 1 loops, each one with a different mass. Although
the contributions of heavier modes may be relatively sup-
pressed, the very fact that there is an infinite number of
them forbids us to truncate that series (even if there were
a zero mode).
Thus, the following explicit expression for the

fermionic action shall be used after dimensional reduc-
tion:

Sf =

∫
d3+1x

∫ L

0

ds Ψ̄(x, s)
(
6D + γsDs +m

)
Ψ(x, s)

(14)

where

6D = γµ(∂µ + ieAµ) Ds = ∂s + ieAs . (15)

We have introduced a new, dimensionless coupling con-
stant e ≡ gL− 1

2 , which shall play the role of the electric
charge in 3 + 1 dimensions.
As explained in [2], when considering the form of the

gauge transformations in terms of the decomposition into
zero and non-zero modes, one finds that it Aµ transforms
as a standard gauge field (in 3 + 1 dimensions):

δAµ(x) = ∂µα(x) (16)

while its extra dimensional component As, a scalar from
the 3 + 1-dimensional point of view, is shifted by a con-
stant:

δAs(x) = Ω . (17)

The constant Ω has to be of the form Ω = 2πk
Le , where k is

an integer, since the gauge field is coupled to a (charged)
fermionic field, whose transformation law under simulta-
neous action of the previous gauge transformations is:

Ψ(x, s) → e−ie[α(x)+Ωs] Ψ(x, s)

Ψ̄(x, s) → eie[α(x)+Ωs] Ψ̄(x, s) . (18)

III. EFFECTIVE ACTION

We now define the part of the effective action that
only depends on the (dimensionally reduced) gauge field,
Γ(A),

Γ(A) ≡ Γ(A; Ψ̄,Ψ)
∣∣∣
Ψ̄=Ψ=0

, (19)

where Γ(A; Ψ̄,Ψ) is the full effective action. The func-
tional Γ(A) allows one to derive 1PI functions containing
only Aµ, As external lines. The former have an imme-
diate 3 + 1 dimensional interpretation, while the latter
shall be assumed to have a constant (but otherwise ar-
bitrary) value, which is determined by a condition which
is external to the model.
On the other hand, at the one-loop order, the only

non-trivial term comes from the fermionic loop:

Γ(A) = Γ(0)(A) + Γ(1)(A) + . . . (20)

where Γ(0)(A) = Sg(A) and

e−Γ(1)(A) =

∫
DΨDΨ̄e−Sf(A;Ψ̄,Ψ) . (21)

We shall focus on the effective action for the gauge
field components Aµ that have a direct physical interpre-
tation from a 3 + 1-dimensional perspective. Regarding
the scalar component, As, as we have said above, it will
be assumed to yield a non-vanishing flux:

e

∫ L

0

dsAs = θ (22)
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where θ is a constant. This condition may be conve-
niently solved by means of a constant As:

As =
θ

eL
, (23)

which is the gauge fixing that we shall assume. Note
that, since the gauge transformations shift As by an in-
teger multiple of 2π

eL , we may fix the value of θ to the
fundamental region:

0 ≤ θ < 2π , (24)

which we shall assume in what follows.
It is worth noting that this kind of gauge field config-

uration may be interpreted as ‘topological’, in the sense
that it corresponds locally (althougth not globally) to
a ‘pure gauge’ field configuration. Indeed, it cannot be
gauged away, since the corresponding gauge transforma-
tion would be multivalued (when the extra dimension is
encircled). Charged fields feel this kind of configuration
when they encircle the extra coordinate, in a fashion that
resembles the Aharonov-Bohm effect. The field configu-
ration may be realized in a similar way to this effect: a
singular field strength pointing in a direction orthogonal
to the plane of the circle. Besides, as in the Aharonov-
Bohm effect, the region of space where the field strength
is non-vanishing, cannot be reached by the charged fields.
The situation can be easily visualized in a lower dimen-
sional example, namely, the case of a 2 + 1 dimensional
theory, if one assumes x2 to be the extra, compactified
dimension. Here, space is a cylinder, and the gauge field
configuration corresponding to the vacuum field would be
a singular flux string along the cylinder axis. This means
that it is outside of the assumed cylindrical space, since
it needs a third coordinate to be realized. In a similar
way, the kind of configuration we consider could be real-
ized by singular, monopole-like field strengths in a higher
(more than 4 + 1) dimensional manifold.
We then proceed to Fourier expand the fermionic fields

along the s coordinate:

Ψ(x, s) = L− 1
2

∞∑

n=−∞

eiωnsψn(x)

Ψ̄(x, s) = L− 1
2

∞∑

n=−∞

e−iωnsψ̄n(x) , (25)

and insert this into the functional expression for Γ(1)(A),
to obtain:

Sf =

n=+∞∑

n=−∞

∫
d3+1x ψ̄n(x)

(
6D+iγs(ωn+

θ

L
)+m

)
ψn(x) .

(26)
Under the same expansion, the fermionic measure factor-
izes:

DΨDΨ̄ =

n=+∞∏

n=−∞

Dψn(x)Dψ̄n(x), (27)

and, finally, the Euclidean action corresponding to each
mode n may be equivalently written as follows

∫
d3+1x ψ̄n(x)

(
6D + iγs(ωn +

θ

L
) +m

)
ψn(x)

=

∫
d3+1x ψ̄n(x)(6D +Mn e

−iϕnγ5)ψn(x) (28)

with

Mn ≡
√
m2 + (ωn + θ/L)2 , ϕn = arctan(

ωn + θ/L

m
) .

(29)
The existence of a γ5 term means that parity symmetry
will generally be broken; to study that phenomenon more
clearly, we perform a change in the fermionic variables
that gets rid of the dependence in γ5,

ψn(x) → e−iγ5ϕn/2ψn(x) , ψ̄n(x) → ψ̄n(x)e
−iγ5ϕn/2 ,

(30)
after which the mode labelled by n has the action:

∫
d3+1x ψ̄n(x)(6D +Mn e

−iϕnγ5)ψn(x) . (31)

This chiral rotation in the 3+1 Euclidean fermionic vari-
ables induces, however an anomalous Jacobian Jn for
each mode. Then, Γ(1) may be written as follows:

e−Γ(1)(A) =

+∞∏

n=−∞

[
Jn e

−Γ
(1)
3+1

(A,Mn)
]
, (32)

where

Jn = exp
( ie2

16π2
ϕn

∫
d3+1xF̃µνFµν

)
, (33)

with F̃µν = 1
2ǫµνρλFρλ, and Γ

(1)
3+1(A,Mn) is the one-

loop fermionic contribution to the effective action, for
a fermion whose mass is Mn, in 3 + 1 dimensions. Of
course, it may be expressed as a fermionic determinant:

e−Γ
(1)
3+1

(A,Mn) = det(6D +Mn) . (34)

Then, we arrive to a general expression for the one loop
effective action,

Γ(1)(A) = Γ(1)
e (A) + Γ(1)

o (A) (35)

where the e and o subscripts stand for the even an odd
components (regarding parity transformations) and are
given by

Γ(1)
e (A) =

∞∑

n=−∞

Γ
(1)
3+1(A,Mn) (36)

and

Γ(1)
o (A) = −

∞∑

n=−∞

lnJn , (37)

respectively.
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IV. PARITY CONSERVING TERM

The parity conserving part of the effective action may
be obtained by performing the sum of the required
QED3+1 object, with an n-dependent mass, Mn. We

shall focus on that part of Γ
(1)
e that contributes to the

vacuum polarization tensor for the Aµ gauge field compo-
nents. Since we are not interested in response functions
which involve the s component of the currents, it is useful
to define:

Γ(1)
e (Aµ) ≡ Γ(1)

e (Aµ, As) − Γ(1)
e (0, As) . (38)

Note that Γ
(1)
e (0, As) ≡ Γs(As) does not contribute to

response functions involving Aµ, although it can be used
to study the fermion-loop corrections to an As effective
potential. The explicit form of this function is [2]:

Γs(As) = −2L

∫
d3+1x

∫
d4k

(2π)4
ln
[
cosh(Lk) + cos θ

]
.

(39)
The vacuum polarization tensor Πµν is obtained from

the quadratic term in a functional expansion in the gauge
field:

Γ(1)
e (Aµ) =

1

2

∫
d3+1x

∫
d3+1yAµ(x)Πµν (x, y)Aν(y)+. . .

(40)
It is then sufficient to resort to the analogous expansion

for the 3 + 1 dimensional effective action,

Γ
(1)
3+1(A,Mn) =

1

2

∫
d3+1x

∫
d3+1y

×
[
Aµ(x)Π

(n)
µν (x, y)Aν(y)

]
+ . . . (41)

(which is even) so that the vacuum polarization receives
contributions from all the modes:

Πe
µν =

∑

n

Π(n)
µν , (42)

where Π
(n)
µν = Π(n)(k2) δTµν(k), with:

Π(n)(k2) =
2 e2

π

∫ 1

0

dβ β(1−β) ln

[
1 + β(1− β)

k2

M2
n

]
,

(43)
which is formally identical to the renormalized scalar part
of the vacuum polarization tensor for a 3 + 1 dimen-
sional theory, and the transverse projector is defined by:

δTµν(k) ≡ δµν − kµkν/k
2. Note that the renormalization

performed for Π(n)(k2) should in fact be interpreted as a
subtraction for the 4 + 1 dimensional theory, which (see
below) yields a logarithmically divergent vacuum polar-
ization, as in 3 + 1 dimensions, once all the symmetries
have been taken into account. The subtraction already
performed in 3 + 1 dimensions does not yet fulfill the
renormalization conditions for the 4+1 dimensional the-
ory: the zero of Π(n) is at k2 = 0 for each term, but
the limit k2 → 0 does not necessarily commute with the
(infinite) sum over modes. Indeed, that commutativity is
not guaranteed, since the series in (42) does not converge
uniformly.

To do have the proper pole in the propagator, we
shall need to perform also a finite renormalization. In-
deed, the sum in (42) may be explicitly evaluated using
zeta-function regularization techniques [20]; we can write
Π(k2) =

∑
n Π

(n)(k2), with

Π(k2) =
2 e2

π

∫ 1

0

dβ β(1 − β)Π(k2, β), (44)

and

Π(k2, β) =
+∞∑

n=−∞

ln

[
(bn+ θ

L)
2 +m2 + β(1 − β)k2

(bn+ θ
L )

2 +m2

]

(45)
where b = 2π/L. Then it can be readily seen that,

Π(k2, β) = lim
s→0

−

[
d

ds

(
Zm2

1 (s, b2,
θ

L
)

)]

− lim
s→0

−

[
d

ds

(
Z

m2+β(1−β)k2

1 (s, b2,
θ

L
)

)]
,

(46)

where Z1(s, ...) are generalized inhomogeneous zeta-
functions,

ZM2

1 (s, b2,
θ

L
) =

∞∑

n=−∞

[
(bn+

θ

L
)2 +m2

]−s

, (47)

with M2 = m2 or M2 = m2 + β(1 − β)k2;

The generalized inhomogeneous zeta-function can be
written in the whole complex s-plane in the form [20],

ZM2

1 (s, b2,
θ

L
) =

√
π

Γ(s)

[
Γ(s− 1

2
)M1−2s +

∞∑

n=1

( πn
Mb

)s− 1
2

cos(nθ)Ks− 1
2

(
2πmn

b

)]
; (48)

using explicit formulas for K± 1
2
(z) =

√
π
2z e

−z and
∑∞

n=1
e−a

n = − ln (1− e−a), we get from Eq. (46) after
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some manipulations, remembering b = 2π/L,

Π(k2, β)−Π(0, β) = ln



cosh

(
mL

√
1 + β(1−β)k2

m2

)
− cos θ

cosh (mL)− cos θ


 . (49)

This leads directly to the result

Πe
R(k

2) = Πe(k
2) − Πe(0)

=
2 e2

π

∫ 1

0

dβ β(1− β) ln[1 + F (k2)] ,

(50)

with

F (k2) =
cosh

[
mL

√
1 + β(1 − β) k2

m2

]
− cosh(mL)

cosh(mL)− cos(θ)
.

(51)
It is interesting to note that, even though the theory is

5 dimensional, the vacuum polarization tensor requires,
to be renormalized, just fixing the position and residue
of one pole, as in 4 dimensions. Indeed, the superficial
degree of divergence, δ(γ), for an 1PI Feynman graph γ
in QED5 is

δ(γ) = 5− 3

2
EG − 2EF +

1

2
V (52)

where EG and EF are the number of external gauge and
fermion lines, respectively, and V is the number of ver-
tices. For the one-loop vacuum polarization tensor, we
then have δ(γ) = 3, which, taking into account gauge
invariance is reduced to 1. Moreover, since the divergent
terms can only be even polynomials in the momentum,
we are left with a zero degree divergence: this is the log-
arithmic divergence already tamed in (44).
Let us now study some immediate properties and con-

sequences that follow from expressions (50) and (51)
above. The natural approach is perhaps to look at its
predictions for different momentum regimes. Let us thus
begin by considering the low momentum regime, namely,
k2 << m2. The leading term, k2/m2 → 0 has already
been considered, to impose the renormalization condition
Πe

R → 0, which is not actually a prediction, but rather
the fact that the model contains Coulomb’s law at long
distances.
The next-to-leading term already contains a non trivial

effect. Indeed, a simple effect that will be sensible to the
presence of the flux can be seen by expanding the renor-
malized tensor to ( k

m )2 order in a momentum expansion:

ΠR(k
2) ∼ − e2

30π

[ mL sinh(mL)

cos(θ)− cosh(mL)

] k2
m2

, k2 ∼ 0 .

(53)

The corresponding modification in the photon’s effective
action produces, for example, a correction in the electro-
static potential due to a point charge. For the Hydrogen
atom, the corrected potential energy becomes:

Veff (r) = − e2

4πr
− e4

120π2m2

[ mL sinh(mL)

cosh(mL)− cos θ

]
δ(3)(r) .

(54)
The usual correction is obtained when θ → 0 and mL→
0:

Veff (r) → − e2

4πr
− e4

60π2m2
δ(3)(r) . (55)

It is interesting to study the shape of the ratio between
the corrected and usual strengths of the respective terms:

ξ(mL, θ) ≡
mL
2 sinh(mL)

cosh(mL)− cos θ
. (56)

The case of a vanishing flux yields simply

ξ(mL, 0) =
mL
2

tanh(mL
2 )

,

which for small values of mL approaches 1, and grows
linearly with mL when mL >> 1.
The opposite regime, when the effect of the flux is max-

imum, corresponds to θ = π/2:

ξ(mL,
π

2
) =

mL

2
tanh(mL) . (57)

The behaviour in this case is quite different; it tends to
zero quadratically for small mL, and also grows linearly
in the opposite case, albeit with a different slope.
It is noteworthy that, from eq.(56) one can obtain a

crude estimate for the length L. To that end, we need
some assumptions, we consider that we are within the
vanishing flux aproximation, also as the typical contri-
bution of the vacuum polarization term for the energy
shift in muonic atoms is of the order of 0.5% [21] we may
then take ξ(mL, 0) <∼ 1.0001; such a choice implies that
a correction due to an extra dimension does not signifi-
cantly changes the values from present data. Having this
in mind, we obtain through this simple reasoning that
L <∼ 0.03 [m]−1 which in natural units can be translated
to L <∼ 10−14 meters. In order to get a more stringent
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bound, one should take into account other effects, which
may show up different dependences on the physics of the
extra dimensions. That investigation is, however, outside
the scope of the present paper.
Let us now consider the would be large-momentum re-

gion for the vacuum polarization. This regime will be de-
fined by the condition that k2 >> m2, although k (and
m), will be assumed to be much smaller than L−1. The
latter is enforced in order to say that the mass of the
Kaluza-Klein modes is much larger than the photon mo-
mentum. Under this assumption, one gets the expression:

Πe
R(k

2) ∼ 2 e2

π

∫ 1

0

dβ β(1− β) ln
[
1 + β(1− β)

k2

m2
eff

]
,

(58)
where

meff ≡ 2| sin θ
2 |

L
. (59)

We conclude that, as a consequence of the existence of the
non-vanishing flux, the large-momentum behaviour dif-
fers from the one that one has in standard QED, by the
emergence of an effective mass meff . This mass should,
in order not to spoil the known anti-screening effect at
short distances, be very small. Since L is assumed to be
very small, that can only be achieved with an extremely
small θ, namely θ << 1. Hence,

meff ≡ 2| sin θ
2 |

L
∼ |θ|

L
<<

1

L
. (60)

In natural units, if L−1 ≡ Λ is the large momentum scale
set by the Kaluza-Klein modes, and we want meff to
be much smaller than the electron mass, since only in
that situation we recover the expected behaviour for the
effective charge at small distances. Then we should have:

|θ| << m

Λ
. (61)

V. PARITY BREAKING TERM

The parity breaking term, Γo is simply obtained by
taking into account (37) and (33):

Γo = − ie2

16π2
Φ

∫
d3+1xF̃µνFµν , (62)

where we introduced the factor:

Φ =

∞∑

n=−∞

ϕn ; (63)

the sum of this series is well-known [22], the result being:

Φ = arctan
[
tanh(

mL

2
) tan(θ/2)

]
. (64)

The possible effects due to this term are more difficult
to elucidate, since they would require the existence of
non-trivial Abelian gauge field background to manifest
themselves. Within the present model, there is no room
to accommodate them, except if singular configurations
were included by hand.

VI. CONCLUSIONS

To conclude, we summarize the main points we have
explored this paper: The vacuum polarization function
exhibits physical effects due to the extra dimension and
flux. Among those, the strongest one is due to the non-
vanishing flux, parametrized by θ, and manifests itself in
the large momentum behaviour of the effective charge.
Indeed, θ should be much smaller than the ratio between
the electron mass and the (momentum) scale induced by
the inverse of the compactification radius for this effect
to be supressed. Besides, the effect of the non-vanishing
flux is maximum when it reaches π. This is to be ex-
pected, since in that case there is no massless mode, and
hence there is no natural way to dimensionally reduce the
theory at the level of the fermionic field. That is, on the
other hand, the case when θ = 0, since it means that the
n = 0 mode finds a natural 3 + 1 dimensional interpre-
tation and there is a smooth limit when L→ 0. We find
that Finally, parity breaking effects might be expected
only if there were a compelling reason to know that the
gauge field itself adopts a topologically non-trivial con-
figuration; this cannot be done within the context of the
present model.
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