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Abstract

Consider a symplectic manifold M , a Hamiltonian vector field X and a fibration Π : M → N . Related to these

data we have a generalized version of the (time-independent) Hamilton-Jacobi equation: the Π-HJE for X, whose

unknown is a section σ : N → M of Π. The standard HJE is obtained when the phase space M is a cotangent bundle

T ∗Q (with its canonical symplectic form), Π is the canonical projection πQ : T ∗Q → Q and the unknown is a closed

1-form dW : Q → T ∗Q. The function W is called Hamilton’s characteristic function. Coming back to the generalized

version, among the solutions of the Π-HJE, a central role is played by the so-called isotropic complete solutions. This

is because, if a solution of this kind is known for a given Hamiltonian system, then such a system can be integrated

up to quadratures. The purpose of the present paper is to prove that, under mild conditions, an isotropic complete

solution exists around almost every point of M . Restricted to the standard case, this gives rise to an alternative proof

for the local existence of a complete family of Hamilton’s characteristic functions.

1 Introduction

In the recent few years, several extensions of the Hamilton-Jacobi Theory have been developed. See for instance [4, 6, 7,

9, 10]. In Ref. [12], it was presented an extension to general dynamical systems (on fibered phase spaces), which contains

as particular cases the previuos ones. Let us briefly review it in the restricted context of Hamiltonian systems. Consider

a symplectic manifold (M,ω) of dimension d = 2s, a second manifold N of dimension k and a surjective submersion

Π : M → N . Consider also a Hamiltonian system with phase space M and a Hamiltonian function H . According to Ref.

[12], a (global) complete solution of the so-called Π-HJE (Π-Hamilton-Jacobi Equation), for the Hamiltonian vector

field XH , is a surjective local diffeomorphism Σ : N × Λ → M such that

iXΣ
H
Σ∗ω = Σ∗

dH and Π ◦Σ = pN , (1.1)

where Λ is a third manifold of dimension d− k, the vector field XΣ
H ∈ X (N × Λ) is given by

XΣ
H (n, λ) = (Π∗ (XH (Σ (n, λ))) , 0) ,

and pN : N × Λ → N is the canonical projection onto the first factor. Naturally, a local complete solution of the

Π-HJE for XH , along an open subset U , is a complete solution of the Π|U -HJE for XH |U . (Here, we are seeing Π|U

as a fibration onto Π (U) and XH |U as a vector field on U). For each λ ∈ Λ, the function

σλ : N → M : n 7→ Σ (n, λ)
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is a section of Π and it is called a partial solution (or simply a solution) of the Π-HJE. On the other hand, Σ is said to

be isotropic if

σ∗

λω = 0, ∀λ ∈ Λ,

or, equivalently, if each vector subspace

Σ∗ (TnN × {0}λ) ⊆ TΣ(n,λ)M (1.2)

is isotropic with respect to ω. Note that, in such a case, we must have s ≥ k. When k = s, above linear spaces are

Lagrangian, and consequently Σ is said to be Lagrangian.

The standard Hamilton-Jacobi Theory (see for instance [1] and [6]) corresponds to the case in which:

• M is a cotangent bundle T ∗Q,

• ω is the canonical symplectic form ωQ of T ∗Q,

• Π is the canonical projection πQ : T ∗Q → Q,

and its complete solutions are precisely the Lagrangian complete solutions of the πQ-HJE. More precisely (see Ref. [12]),

in this case the complete solutions are locally given by the formula Σ (q, λ) = dWλ (q), where each function Wλ, called

Hamilton’s characteristic function, satisfies the standard (time-independent) Hamilton-Jacobi equation:

d (H ◦ dWλ) = 0. (1.3)

We shall say that the functions Wλ’s give a complete family of Hamilton’s characteristic functions.

The importance of the isotropic complete solutions, as proven in [11, 12] (generalizing a well-known result of the

standard theory), lies in that fact that if we know one of them for a given Hamiltonian system, then such a system is

exactly solvable. Actually, in order to ensure exact solvability, it is enough to know a local solution (instead of a global

one) around every point of the phase space.

It was shown in [12] (see Theorem 4.15 there) that a local complete solution of the Π-HJE always exists around every

point m ∈ M such that XH (m) /∈ KerΠ∗,m. However, nothing has been said about the existence of isotropic complete

solutions. In this paper we fill in this gap, showing that a local isotropic complete solution does exist around every point

m ∈ M such that, besides the condition XH (m) /∈ KerΠ∗,m, the subspace KerΠ∗,m ⊆ TmM is co-isotropic with respect to

ω. Moreover, if no fibration is previously fixed, we show that around every point m such that XH (m) 6= 0 there always

exist a fibration π and a local isotropic complete solution of the π-HJE for XH .

It is worth mentioning that our results do not mean that every Hamiltonian system is exactly solvable around such

points, because in order to solve its equations of motion is not enough to ensure the existence of an isotropic complete

solution, but we need to have a concrete expression of one of it. Thus, such results are mainly of a theoretical nature,

and can be interpreted as follows: every Hamiltonian system is “potentially” exactly solvable with the aid of an isotropic

complete solution (following the procedure described in Refs. [11, 12]).

The organization of the paper is as follows. In Section 2 we recall the duality between complete solutions and first

integrals, because we shall use it to prove our main results. In Section 3.1 we prove the annunciated existence theorem

and, as an immediate corollary, we give in Section 3.2 a novel proof for the local existence of a complete family of

Hamilton’s characteristic functions. As another corollary, and only for completeness, we show in Section 3.3 that every

Hamiltonian system has a set of first integrals as those appearing in the definition of a non-commutative or Mischenko-

Fomenko integrable system [17] (see also [13] for a review on the subject), defined around every non-critical point of

the Hamiltonian function. In other words, we prove, as a corollary of our main result, that every Hamiltonian system

is “potentially” non-commutative integrable around almost every point of its phase space. (It is worth mentioning that
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this fact can also be proven as a direct consequence of the Carathéodory-Jacobi-Lie theorem [15]). Finally, in Section 3.4,

using again the above mentioned duality, we show that around every non-critical point of a Hamiltonian system there

always exist a fibration and a local isotropic complete solution related to it.

We assume that the reader is familiar with the basic concepts of Differential Geometry (see [5, 14]), and with the

basic ideas related to Hamiltonian systems in the context of Symplectic Geometry (see [1, 15, 16]). We shall work in the

smooth (i.e. C∞) category, focusing exclusively on finite-dimensional smooth manifolds.

2 The complete solutions - first integrals duality

To show our main result, we shall use the duality between (isotropic) complete solutions and (isotropic) first integrals

stablished in [12]. Let us recall such a duality for the case of Hamiltonian systems. Following the same notation as in

the Introduction, consider a symplectic manifold (M,ω) of dimension d = 2s, a function H : M → R and a fibration

Π : M → N (i.e. a surjective submersion), with dimN = k.

We shall say that a submersion F : M → Λ is a first integrals submersion if

ImXH ⊆ KerF∗. (2.1)

We adopt the following convention for defining XH :

iXH
ω = dH. (2.2)

Remark. Note that, if Λ = R
l, the components f1, ..., fl : M → R of F define a set of l (functionally) independent first

integrals, in the usual sense, for the Hamiltonian system defined by H .

Also, we shall say that F is transverse to Π if

TM = KerΠ∗ ⊕ KerF∗. (2.3)

Finally, the map F is said to be isotropic if

KerF∗ ⊆ (KerF∗)
⊥
, (2.4)

where “⊥” indicates the symplectic orthogonal w.r.t. ω. Of course, in such a case l ≥ s. When l = s, above inclusion

reduces to an equality and the map F is say to be Lagrangian.

For later convenience, we shall say that an isotropic submersion F is symplectically complete if (KerF∗)
⊥

is an

integrable distribution.

It was shown in [12] that, given an isotropic complete solution Σ : N ×Λ → M of the Π-HJE for H [see the Eqs. (1.1)

and (1.2)], we can construct around every point of M a neighborhood U and a submersion F : U → Λ such that

• Im XH |U ⊂ KerF∗ (first integrals),

• TU = Ker (Π|U )∗ ⊕ KerF∗ (transversality),

• KerF∗ ⊆ (KerF∗)
⊥

(isotropy).

In other words, from Σ we have, around every point of M , a first integrals submersion, transverse to Π and isotropic [see

Eqs. (2.1), (2.3) and (2.4)]. U and F are given by the formulae

U := Σ (V ) and F := pΛ ◦ (Σ|V )
−1

, (2.5)
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where V ⊆ N×Λ is an open subset for which Σ|V is a diffeomorphism with its image and pΛ : N×Λ → Λ is the canonical

projection onto the second factor.

Reciprocally (see also [12]), from a submersion F : M → Λ satisfying (2.1), (2.3) and (2.4), we can construct, around

every point of M , a neighborhood U and a local isotropic complete solution Σ of the Π-HJE. The involved subset U is

one for which (Π, F )|U is a diffeomorphism with its image, and Σ is given by

Σ = [(Π, F )|U ]
−1

: Π (U)× F (U) → U. (2.6)

Summarizing, an isotropic complete solution gives rise to local isotropic first integrals via the Eq. (2.5), and isotropic

first integrals give rise to a local isotropic complete solution via the Eq. (2.6).

3 The existence theorems

Let us continue with a symplectic manifold (M,ω) of dimension d = 2s, a function H : M → R and a fibration Π : M → N

with dimN = k ≥ 1. Now let us assume that, for a given m ∈ M ,

i. XH (m) /∈ KerΠ∗,m (in particular, XH (m) 6= 0);

ii. KerΠ∗,m is co-isotropic, i.e. (KerΠ∗,m)⊥ ⊆ KerΠ∗,m.

Note that, defining l := dimKerΠ∗,m = d− k, condition (ii) implies the inequalities

1 ≤ k ≤ s ≤ l ≤ d.

The next proposition constitutes the central result of the paper. From it, we shall derive almost all the other results.

Proposition 1. Under above assumptions, the following assertions hold:

1. There exists an open neighborhood U of m and a distribution D along U such that:

(a) Im XH |U ⊂ D,

(b) TU = Ker (Π|U )∗ ⊕D,

(c) D ⊆ D⊥,

(d) D is integrable. In particular, there exists a submersion F : U → R
l such that D = KerF∗.

2. D can be chosen such that D⊥ is also integrable.

In other words, a first integrals submersion, transverse to Π, isotropic and symplectically complete, can be defined

around m.

Proof. Let us begin with the first assertion. To do that, given r ∈ N, consider the property Pr: there exists

a neighborhood Ur of m and Hamiltonian vector fields X1, ..., Xr ∈ X (Ur) which are linearly independent, mutually

orthogonal w.r.t. ω (and consequently [Xi, Xj ] = 0 for all i, j),1 with one of them equal to XH |Ur
, and such that the

distribution Dr := 〈X1, ..., Xr〉 satisfies

Dr|p ∩ KerΠ∗,p = {0} , ∀p ∈ Ur. (3.1)

1Recall that, given to functions f, g, for their Hamiltonian vector fields [using convention (2.2)] we have that

[

Xf ,Xg

]

= −X
ω(Xf ,Xg).

Then, if ω
(

Xf ,Xg

)

= 0, it follows that
[

Xf ,Xg

]

= 0.
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We shall show by induction the property Pr for all r ≤ k. From the validity of Pk, it is clear that there exists a

distribution Dk satisfying the points (a) to (d) above.

If r = 1, we can take

U1 := {p ∈ M : XH (p) /∈ KerΠ∗,p}

and define X1 := XH |U1
. Suppose that k > 1 and that Pr is true for some r < k, and let us show that, as a consequence,

Pr+1 is also true. (Note that r + 1 ≤ k). Fix a subset Ur and Hamiltonian vector fields X1, ..., Xr ∈ X (Ur) ensured by

the property Pr. Assume for simplicity that X1 = XH |Ur
. Since the given vector fields satisfy [Xi, Xj ] = 0 for all i, j

(see the last footnote), there exists a coordinate chart (Ur+1, (y1, ..., yd)) such that m ∈ Ur+1 ⊆ Ur and

X1 (p) =
∂

∂y1

∣

∣

∣

∣

p

, . . . , Xr (p) =
∂

∂yr

∣

∣

∣

∣

p

, ∀p ∈ Ur+1.

Assume for simplicity that Ur = Ur+1. Then we can write

X1 =
∂

∂y1
, . . . , Xr =

∂

∂yr
. (3.2)

Note that, for the submersion Fr := (yr+1, ..., yd) : Ur → R
d−r, we have that [see the point (d)]

Ker (Fr)∗ =

〈

∂

∂y1
, ...,

∂

∂yr

〉

= 〈X1, ..., Xr〉 = Dr.

Now, consider the Hamiltonian vector fields Xy1
, ..., Xyd

∈ X (Ur+1). Using the orthogonality property ω (Xi, Xj) = 0,

for all 1 ≤ i, j ≤ r, and the fact that

ω (Xya
, Xj) =

〈

dya,
∂

∂yj

〉

= δaj , 1 ≤ a ≤ d, 1 ≤ j ≤ r, (3.3)

if we write Xi as a linear combination of the Xya
’s, i.e. Xi =

∑d
a=1 c

a
i Xya

, we have that cji = 0 for all 1 ≤ i, j ≤ r. That

is to say,

Xi =

d
∑

a=r+1

cai Xya
. (3.4)

Note that, since r < k ≤ d/2, we have that d− r > r. Then, since the matrix with coefficients cai ’s (with i = 1, ..., r and

a = r + 1, ..., d) must have maximal rank r (because the Xi’s are l.i.), we can reorder the d − r coordinates ya’s (with a

between r + 1 and d) to ensure that the last r columns define an invertible matrix. For this new order, it is easy to see

that the set of vector fields
{

X1, ..., Xr, Xy1
, ..., Xyr

, Xyr+1
, ..., Xyd−r

}

(3.5)

gives a basis for TUr+1. Let us focus on the fields above evaluated at m. We shall see that there exists a natural number

b between r + 1 and d− r such that

{X1 (m) , ..., Xr (m) , Xyb
(m)} ∩ KerΠ∗,m = {0} . (3.6)

This would say that the Hamiltonian vector fields X1, ..., Xr, Xr+1, with Xr+1 = Xyb
, are independent, mutually or-

thogonal, with one of them equal to XH |Ur+1
, and such that the distribution generated by them Dr+1 := 〈X1, ..., Xr+1〉

satisfies

Dr+1|p ∩ KerΠ∗,p = {0} , ∀p ∈ Ur+1,

shrinking Ur+1 if necessary [since (3.6) is an open condition]. In other words, we would prove that Pr+1 is true.
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In order to show the validity of (3.6), we shall proceed by reductio ad absurdum. Suppose first that r < k/2. If (3.6)

does not hold for any b between r + 1 and d− r, then there exist numbers Aj
b, αb ∈ R such that

0 6= ub :=

r
∑

j=1

Aj
b Xj (m) + αb Xyb

(m) ∈ KerΠ∗,m, b = r + 1, ..., d− r. (3.7)

If
∑r

j=1 A
j
b Xj (m) = 0, then αb 6= 0 (to ensure that ub 6= 0), and if

∑r
j=1 A

j
b Xj (m) 6= 0, the inductive hypothesis ensures

that
∑r

j=1 A
j
b Xj (m) is outside KerΠ∗,m, what forces again to have αb 6= 0. Hence, the vectors ub’s define a set of

(d− r) − (r + 1) + 1 = d− 2r

linearly independent vectors inside de KerΠ∗,m. But

d− 2r > d− k = l = dimKerΠ∗,m

(because we are assuming that 2r < k), which is a contradiction. Now, let us consider the complementary case: k/2 ≤ r <

k. Again, if (3.6) does not hold for any b between r + 1 and d− r, we have the d− 2r independent vectors ub ∈ KerΠ∗,m

as above [see (3.7)]. Since now

d− 2r ≤ d− k = l,

to complete a basis for KerΠ∗,m we can add l − (d− 2r) = 2r − k additional vectors to the ub’s. If we call them

{v1, ..., v2r−k}, the set

{ur+1, ..., ud−r, v1, ..., v2r−k}

is a basis for KerΠ∗,m. Note that, since r < k, then

2r − k < r. (3.8)

Let us show that there exists a non-null vector v ∈ Dr|m such that

ω (v, va) = 0, 1 ≤ a ≤ 2r − k. (3.9)

Writing v =
∑r

i=1 xi Xi (m) and, using Eq. (3.5),

va =

r
∑

i=1

yiXi (m) +

d−r
∑

j=1

Bj
a Xyj

(m) ,

Eq. (3.9) translates to [see Eq. (3.3) and recall that d− r > r]

B ·















x1

x2

...

xr















= 0.

Since B is a rectangular (2r − k)× r matrix, with more columns than rows [recall Eq. (3.8)], the above linear system has

a non-trivial solution, as we wanted to show. Since in addition [see (3.3) and (3.7)]

ω (v, ua) = 0, r + 1 ≤ a ≤ d− r,

it follows that v belongs to (KerΠ∗,m)
⊥
. But KerΠ∗,m is co-isotropic, what implies that v ∈ KerΠ∗,m. So, v 6= 0 and

v ∈ Dr|m ∩ KerΠ∗,m, which is a contradiction. As a consequence, for any r < k, there always exists b fulfilling Eq. (3.6),

as claimed.
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Summarizing, if r + 1 = k, calculations above show that the neighborhood U := Uk of m and the distribution

D := 〈X1, ..., Xk〉 along U satisfy the points a, b, c and d. It rests to show the last assertion. To do that, fix a coordinate

chart (U, (y1, ..., yd)) (shrinking U if needed) for which (3.2) holds (for r = k). Note that, according to (3.3),

X1, ..., Xk, Xyk+1
, ..., Xyd−k

∈ D⊥,

and according to Eq. (3.4) and the discussion below, we can reorder the coordinates such that above d − k vector fields

are linearly independent. Finally, since dimD⊥ = d− k, it follows that

〈

X1, ..., Xk, Xyk+1
, ..., Xyd−k

〉

= D⊥.

So, we just need to show for the vector fields Xya
, Xyb

∈ D⊥ that [Xya
, Xyb

] ∈ D⊥ (because for the other pairs of vector

fields this follows from orthogonality). On the one hand, we have that

ω ([Xya
, Xyb

] , Xi) = −{{ya, yb} , fi} = {{fi, ya} , yb}+ {{yb, fi} , ya} ,

being fi the Hamiltonian of Xi and {·, ·} the Poisson bracket associated to ω. On the other hand, using (3.3), {fi, ya} =

ω (Xi, Xya
) = 0 (for 1 ≤ i ≤ k and k + 1 ≤ a ≤ d − k). Consequently [Xya

, Xyb
] ∈ D⊥, which implies that D⊥ is

integrable. △

3.1 Isotropic complete solutions of the Π-HJE

Using above proposition and the duality between first integrals and complete solutions, the main result of this paper

immediately follows.

Theorem 1. Consider a symplectic manifold (M,ω), a Hamiltonian vector field XH ∈ X (M) and a fibration Π : M → N .

Assume that XH (m) /∈ KerΠ∗,m and KerΠ∗,m is co-isotropic for some point m ∈ M . Then, there exists a neighborhood

U of m and a local isotropic complete solution of the Π-HJE for XH along U .

Proof. From proposition above we know that there exists a neighborhood U of m and a submersion F : U → R
l

satisfying (2.1), (2.3) (replacing M by U and Π by Π|U ) and (2.4). It is clear from the transversality property (2.3) that

U can be taken such that (Π|U , F ) is a diffeomorphism. Then, as we said in Section 2 [see Eq. (2.6)], the inverse of

(Π|U , F ) : U → Π(U)× F (U) is a local isotropic complete solution of the Π-HJE for XH along U . △

Remark. Note that the second point of Proposition 1 is not used in above theorem. It will be used in Section 3.3.

In the following, we shall present some other consequences of Proposition (1). For instance, if no fibration is fixed

beforehand, we shall see in Section 3.4 that an isotropic complete solution exists around m for some fibration π, with the

only condition that XH (m) 6= 0 (i.e. m is not a critical point for XH).

3.2 Standard complete solutions

Suppose that we are in the standard situation, i.e. M = T ∗Q, ω = ωQ, N = Q and Π = πQ. Observe that, following above

notation, we have that dimQ = s = k. It is well-known that Ker (πQ)∗,m ⊆ TmT ∗Q is Lagrangian for all m ∈ T ∗Q (and

consequently co-isotropic) with respect to ωQ. In fact, fixing a Darboux coordinates chart
(

U,ϕ =
(

q1, ..., qs, p1, ..., ps
))

around m, since

Ker (πQ)∗,m =

〈

∂

∂p1

∣

∣

∣

∣

m

, ...,
∂

∂ps

∣

∣

∣

∣

m

〉

,

the identity

Ker (πQ)∗ =
(

Ker (πQ)∗
)⊥
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is immediate. Then, if XH (m) /∈ Ker (πQ)∗,m, above theorem ensures that a local isotropic complete solution exists

around m. But, since k = s, such a solution is actually Lagrangian. As explained in the Introduction (see [12] for more

details), the Lagrangian complete solutions of the πQ-HJE for H are locally given by the expression

Σ (q, λ) = dWλ (q) ,

with each function Wλ satisfying (1.3). All that can be condensed in the next result.

Corollary 1. Given an s-manifold Q and a Hamiltonian function H : T ∗Q → R, around every point m ∈ T ∗Q such

that XH (m) /∈ Ker (πQ)∗,m there exists a neighborhood U ⊆ T ∗Q of m, another s-manifold Λ and a family of functions

Wλ : πQ (U) → R such that

d (H ◦ dWλ) = 0, ∀λ ∈ Λ,

and

(q, λ) ∈ πQ (U)× Λ 7−→ dWλ (q) ∈ U

is a diffeomorphism. In other terms, under above conditions, a complete family of Hamilton’s characteristic functions

exists around m.

Just to analyze a particular situation, but a very common one, suppose that H is of the form

H =
1

2
H+ h ◦ πQ,

where H : T ∗Q → R is a quadratic form defined by a Riemannian metric φ : TQ×Q TQ → R on Q, i.e.

H (m) = φ
(

φ♯ (m) , φ♯ (m)
)

,

and h ∈ C∞ (Q). In other words, suppose that H is simple. Then, as it is easy to show,

(πQ)∗ (XH (m)) = φ♯ (m) ,

what implies that XH (m) ∈ Ker (πQ)∗,m if and only if m = 0 (i.e. m belongs to the null subbundle of T ∗Q). As a

consequence, we have the following corollary.

Corollary 2. Consider a manifold Q and a simple Hamiltonian function H : T ∗Q → R. Then, if m 6= 0, a complete

family of Hamilton’s characteristic functions exists around m.

3.3 Non-commutative integrability

This section is included just for completeness. Let us fix again a symplectic manifold (M,ω) with dimM = 2s = d.

Definition. Consider a function H ∈ C∞ (M) and a submersion F : M → Λ. We shall say that the pair (H,F ) is a

non-commutative or Mischenko-Fomenko integrable system [17] if F is a first integrals submersion, isotropic and

symplectically complete. And we shall say that (H,F ) is a commutative or Arnold-Liouville integrable system [2]

if in addition F is Lagrangian.

As it is well-known, if (H,F ) is a non-commutative integrable system, then the Hamiltonian system defined by H can

be integrated up to quadratures.

Remark. Usually, additional conditions are asked to F , as the compactness and connectedness of their level submanifolds.

In such a case, beside the integrability up to quadratures, we can ensure (without any calculation) that the trajectories

of the system will be given by quasi-periodic orbits (see [13] for a review on the subject). But we shall not consider in

this paper these additional conditions.
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We shall show in this section that, around every non-critical point of H , a local submersion F : U → R
l always exists

such that (H |U , F ) is non-commutative integrable. We could do it by following a similar procedure to that applied in the

proof of the Proposition 1. Since now no fibration is involved, we can consider properties like Pr, but where condition

(3.1) is not asked. Also, as in the Appendix of Ref. [11], to prove that result we can use the Carathéodory-Jacobi-Lie

theorem [15] (see also the extension given in [8]). Nevertheless, to take advantage of Proposition (1), in this paper we

choose to prove it as a corollary of such a proposition, with the aid of the result below.

Proposition 2. Given a (non-necessarily Hamiltonian) vector field X, a point m such that X (m) 6= 0, and a natural

number k ≤ s, there exist an open neighborhood U of m and a submersion π : U → R
k such that X (m) /∈ Kerπ∗,m and

(Kerπ∗,m)
⊥
⊆ Kerπ∗,m.

Proof. Let
(

U,
(

q1, ..., qs, p1, ..., ps
))

be a Darboux coordinate chart around m, and let us write X(m) as a linear

combination of the related coordinate vector fields, i.e.

X (m) =

s
∑

i=1

ai
∂

∂qi

∣

∣

∣

∣

m

+

s
∑

j=1

bj
∂

∂pj

∣

∣

∣

∣

m

.

Since X (m) 6= 0, then

1. ai 6= 0 for some i or

2. bj 6= 0 for some j.

It is clear that the second case reduces to the first one if we make the canonical transformation

(

q1, ..., qs, p1, ..., ps
)

7→
(

−p1, ...,−ps, q
1, ..., qs

)

.

So, we can assume that we are in the first case. In such a case, reordering the coordinates qi’s, if needed (and making

the same reordering for the coordinates pi’s), we can always assume that a1 6= 0. This means that

{

X (m) ,
∂

∂q2

∣

∣

∣

∣

m

, ...,
∂

∂qs

∣

∣

∣

∣

m

,
∂

∂p1

∣

∣

∣

∣

m

, ...,
∂

∂ps

∣

∣

∣

∣

m

}

is a basis for TmM . Consider now the submersion π := (q1, ..., qk) : U → R
k. Since

Kerπ∗ =

〈

∂

∂qk+1
, ...,

∂

∂qs
,

∂

∂p1
, ...,

∂

∂ps

〉

and

(Kerπ∗)
⊥
=

〈

∂

∂p1
, ...,

∂

∂pk

〉

,

it is clear that X (m) /∈ Kerπ∗,m and Kerπ∗ is co-isotropic. Thus, π is the submersion we are looking for. △

Combining Propositions 1 and 2, we have the wanted result.

Theorem 2. Consider a 2s-dimensional symplectic manifold (M,ω) and a function H ∈ C∞ (M). Assume that, for a

given point m ∈ M , dH (m) 6= 0. Then, for every l such that 2s > l ≥ s, there exists a neighborhood U of m and a

submersion F : U → R
l such that the pair (H |U , F ) is a non-commutative integrable system. In particular, choosing

l = s, we have that (H |U , F ) is a commutative integrable system.

Proof. If dH (m) 6= 0, then XH (m) 6= 0, and consequently, using Proposition 2, for each k ≤ s there exists a fibration

π : U → π (U) ⊆ R
k such that XH (m) /∈ Kerπ∗,m and Kerπ∗,m is co-isotropic. In this situation, given l such that

2s > l ≥ s, and taking k = 2s− l, Proposition 1 ensures the existence of a submersion F : U → R
l (shrinking U if needed)

satisfying precisely the conditions of the non-commutative integrability (see 1. (d) and then 1. (a), 1. (c) and 2). △
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3.4 Isotropic complete solutions for some fibration

If no fibration is fixed beforehand, we have the next result.

Theorem 3. Consider a 2s-dimensional symplectic manifold (M,ω) and a function H ∈ C∞ (M). Assume that, for a

given point m ∈ M , dH (m) 6= 0. Then, for every k ≤ s, there exists a neighborhood U of m, a fibration π : U → π (U) ⊆

R
k and an isotropic complete solution of the π-HJE for XH |U .

Proof. According to Proposition 2, there exist an open neighborhood U and fibration a π : U → π (U) ⊆ R
k such

that XH (m) /∈ Kerπ∗,m and (Kerπ∗,m)
⊥
⊆ Kerπ∗,m. On the other hand, Proposition 1 ensures the existence of another

fibration F : U → F (U) ⊆ R
l (shrinking U if needed), with l = d− k, such that:

• Im XH |U ⊂ KerF∗,

• TU = Kerπ∗ ⊕ KerF∗,

• KerF∗ ⊆ (KerF∗)
⊥.

Then, by duality, assuming for simplicity that (π, F ) : U → π (U)× F (U) is a diffeomorphism (otherwise it is enough to

change U by a smaller open set), we know that Σ := (π, F )
−1

is an isotropic complete solution of the π-HJE for XH |U .

△

Concluding, around every non-critical point of a Hamiltonian system there exists:

• a submersion F : U → R
l such that (H |U , F ) is non-commutative integrable (see Theorem 2);

• an isotropic complete solution Σ of the π-HJE for some fibration π : U → π (U) (see Theorem 3).

As we said at the beginning of the paper, above existence results do not mean that, around a non-critical point, every

Hamiltonian system is exactly solvable. The point is that, in order to ensure exact solvability, it is not enough to know

that the mentioned objects exist, but we need to have an explicit expression of them.
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