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Photo-electrons unveil topological 
transitions in graphene-like systems
Lucila Peralta Gavensky1, Gonzalo Usaj1,2 & C. A. Balseiro1,2

The topological structure of the wavefunctions of particles in periodic potentials is characterized by the 
Berry curvature Ωkn whose integral on the Brillouin zone is a topological invariant known as the Chern 
number. The bulk-boundary correspondence states that these numbers define the number of edge or 
surface topologically protected states. It is then of primary interest to find experimental techniques 
able to measure the Berry curvature. However, up to now, there are no spectroscopic experiments that 
proved to be capable to obtain information on Ωkn to distinguish different topological structures of the 
bulk wavefunctions of semiconducting materials. Based on experimental results of the dipolar matrix 
elements for graphene, here we show that ARPES experiments with the appropriate x-ray energies and 
polarization can unambiguously detect changes of the Chern numbers in dynamically driven graphene 
and graphene-like materials opening new routes towards the experimental study of topological 
properties of condensed matter systems.

Topology plays a central role in defining the structure of the ground state of condensed matter systems, the nature 
of the excitations and their response to external probes1–4. For particles in periodic potentials, like electrons in 
solids, cold atoms systems or photonic crystals, the topology of the Bloch wavefunctions is related to the geomet-
ric or Berry phase acquired by the particle as it moves along a closed path in reciprocal space5. Within a given 
energy band, these phases are characterized by the Berry curvature (Ωkn) whose integral over the Brillouin zone 
(BZ) is a topological invariant, the Chern number.

According to the bulk-boundary correspondence principle, the Chern numbers determine the unbalance in 
the number of chiral edge (or surface) states1. Experimentally, it has been easier to study the effects of a non-trivial 
topology, i.e. the emergence of such chiral edge states, rather than its origin: the structure of the Bloch wavefunc-
tions across the whole BZ. In fact, transport and spectroscopic experiments provide direct evidence on the exist-
ence of the edge states6–9. Extracting information on Ωkn and its integral in the BZ as a measure of topology in 
condensed matter systems has been more elusive.

Since it is Ωkn what encodes all the information on topology and non-local effects it is natural to look for 
ways of obtaining direct information about this quantity—even in systems with trivial topology Ωkn is associated 
with anomalous velocities5,10,11 and may lead to non-local conductances and unconventional (valley) Hall effects. 
Ultra-cold atoms in optical lattices offer a unique playground for the study of topological band structures12 and 
during the last years a number of experiments focused on the study of different structures, including hexagonal 
lattices with bosonic and fermionic atoms. In particular, recent experiments were able to obtain a complete tomo-
graphic image of the Berry curvature of a Bloch band13. No such experiments, that require a fast switching off of 
the confining (lattice) potentials, are possible in solids.

The question then arises as to what experiments could give direct information on the topological structure of 
the Bloch wavefunctions in condensed matter systems. The high resolution angle resolved photoemission spec-
troscopy (ARPES) has proven to be a powerful tool to measure the dispersion relation of low energy bands7, the 
band structure of dynamically driven systems (Floquet spectrum)14,15, quasiparticle lifetimes and even the chiral 
nature of the electronic states in graphene systems16. In the latter case, ARPES experiments show that the intensity 
patterns have an angular dependence that give direct information of the Berry’s phase. This is due to the fact that 
graphene’s wavefunctions are spinors corresponding to the pseudo-spin associated with the two sublattices of the 
hexagonal structure. Then, close to the Dirac points, the pseudo-spin is parallel to the crystal momentum leading 
to a nontrivial Berry phase of π. Similar results are obtained in bilayer graphene where the winding angle is 2π. 
However, neither the band structure nor the Berry phase around the Dirac cones provide enough information to 
fully characterize the topological structure of the bands.
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In what follows we show that using a pump and probe setup in graphene and graphene-like systems, 
photo-electrons can unveil topological phase transitions, i.e. they can unambiguously detect changes in the Chern 
numbers. On the one hand this is possible due to the structure of the dipole matrix elements linked to the excita-
tion of the electrons at the π-bands of graphene. On the other hand, although Chern numbers involve the Berry 
curvature of all k-points in the BZ, the largest contribution comes from two hot spots—the Dirac points. As we 
show below, detailed analysis of the intensity of photo-electrons coming from the corners of the BZ gives the 
required information to identify topological transitions.

Non-trivial topologies may be generated by external magnetic fields, spin-orbit coupling or by dynamically 
driving a system with external time dependent fields17–22. The latter creates a new class of topological insulators 
known as Floquet Topological Insulators (FTI). In what follows we consider such a case.

Pump and probe experiments consist in coupling the system to an electromagnetic pump pulse followed by 
a short photo-exciting ARPES pulse. We consider spatially homogeneous pump pulses of circularly polarized 
light of frequency Ω. Typical duration of the pump pulse is δtpump ~ 250 fs. The photo-excitation due to the probe 
pulse occurs during the pumping time, being its duration 1/Ω <​ δtprobe ~ δtpump and its polarization either linear 
or circular.

It is instructive to start our analysis with a simple model of a gaped graphene-like system with a mass term. 
The pump pulse is described by a vector potential A(t) so that, for the crystal momentum k close to the K or K′​ 
points of the BZ, the Hamiltonian reads

σ σΠ= ⋅ + ∆τ τv , (1)k f zK

where  τΠ = + +τ ( )k eA t k eA t[ ( )], ( )x x y yk , τ =​ ±​ corresponds to the K or K′​ Dirac points, respectively, and 
the components of σ are the Pauli matrices—in our notation the up (down) pseudo-spin corresponds to the A (B) 
sublattice. This model describes the band structure of graphene (with Δ​ =​ 0) and of silicene or germanene where 
the mass gap Δ​ can be induced by an external electric field23 as well as a variety of 2D materials and artificial 
structures24.

Before including the full time dependence of the pump pulse, we consider a circularly polarized monochro-
matic radiation described by A(t) =​ Re(A0 eiΩt) with = −ˆ ˆA iA x y( )0 0 . The time dependent Schrödinger equation 
can be solved in the frame of the Floquet theory25–28. For states with wavevector close to the Dirac points, and to 
the lowest order in the field amplitude A0, the system can be described by the following Floquet Hamiltonian
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2 2 . This solution shows that at the K point (τ =​ +​) the gap 

decreases as the field amplitude increases, it closes at a critical value = ∆ Ω − ∆A ev( ) /c f  and increases again 
for A0 >​ Ac. On the other hand, the gap at K′​ increases monotonously29. Reversing the sense of rotation of the 
electromagnetic field changes the Dirac point at which the gap closes. This phenomena, known as band inversion, 
is accompanied by a change of the nature of the Floquet wavefunctions at the corners of the BZ. While for A0 <​ Ac 
the wavefunctions of the conduction band for both cones at k =​ 0 are localized on the A sublattice (i.e. their 
pseudo-spin is up), for A0 >​ Ac the wavefunction at K lies on sublattice B (down pseudo-spin) as shown in Fig. 1.

The band inversion with the closing of the gap at the critical field amplitude signals a topological phase transi-
tion29,30. Indeed the Berry curvature of the Floquet states around K and K′​ is given by
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and gives a contribution to the Chern number of the (Floquet) valence band τ= − ∆
∼

τ τsign( )/2 5. Hence, to this 
order in the field amplitude, ++ −   changes from 0 for A0 <​ Ac to 1 for A0 >​ Ac. When considering the full 
tight-binding Hamiltonian of graphene, it can be shown that in undoped nanoribbons the phase having 
 + =+ − 0 behaves as a (normal) insulator. In this phase the gap is preserved with non protected edge states 
laying close to the bottom and top of the energy gap. Conversely, in the phase where  + =+ − 1 the gap is 
bridged by topologicaly protected chiral edge states and the system becomes a TI31.

We are now in position to address the problem of how the intensity and angular dependence of the ARPES 
distinguishes the two different topological phases. The photo-excitation process is described by the Hamiltonian

 ∑= +
α

α α α α
† ⁎ †t w t M a c M c a( ) ( ) ( ),

(5)p
p p pw P

where w(t) describes the time profile of the probe pulse, †ap creates a photo-electron with total momentum p and 
cα annihilates an electron at the sample with quantum numbers α. Assuming that the probe pulse w(t) acts in the 
time interval [t0, t1], the total photo-electron distribution obtained after the probe is given by16,32,33
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here εp is the energy of the photo-electron, ψp
m  is a state of the system in equilibrium with energy  

Em, −∞′t( , )p  is the time evolution operator including the effect of the pump pulse and f (E) is the Fermi-Dirac 
distribution. Only the evolution of the bulk states due to the pump perturbation is taken into account, neglecting 
effects of coupling of the radiation field with the final high-energy states. This effect has already been addressed in 
recent work15, giving rise to Volkov states. It has been pointed out that the dressing of the free-electron states can 
be neglected if the polarization of the pumping field is on the plane of the surface of the irradiated material. Since 
in our case we only consider normal incidence for the pumping field, it is correct to ignore it. The structure of the 
dipolar matrix elements Mpα has been discussed in ref. 16 for a probe pulse described by a vector potential with a 
polarization vector given by χ χ= −ˆ ˆP x yicos sinA . Using as a complete basis the eigenstates of the unper-
turbed system (α =​ k, τ, ±​ where ±​ indicate the valence and conduction bands, respectively) and setting 
= +p K k( )  or  ′= +p K k( ) we have ψ ψ≡ = ⋅α τ τ

± ±ˆP pM Mp k f A k  with ψf the wavefunction of the final 
photo-electron state and = − ∇p̂ i —the choice of parametrization for the probe polarization allows for the use 
of symmetry arguments to determine ψf

16. These matrix elements are given in terms of the dipole transition 
matrix elements ζ ψ ψ= =ˆ ˆp k p kA Bx f x f x  and ζ ψ ψ= = −ˆ ˆp k p kA By f y f y  for the x and y com-
ponents of the probe pulse respectively (see Supplementary Information). In the expressions above, |kA〉​ and |kB〉​ 
are the Bloch wavefunctions of the A and B sublattices, respectively.

Recent experiments16 showed that for graphene the ratio ζy/ζx =​ λeiβ depends on the frequency of the 
photo-emitting probe pulse: λ is on the order of one and β  0 while for high energies (~30 eV) while β π /2 
for lower energies (~20 eV). It is worth to emphasize that these particular values of β depend on the final state ψf 
and hence on the choice of symmetry of the polarization of the probe pulse, whose principal axes are always along 
the x and y directions. In the former case the momentum distribution of the photo-electrons gives valuable infor-
mation on the Berry phase and has been analyzed in detail in ref. 16 and in subsequent works in the absence of the 
pump perturbation34,35. In this case a simple calculation gives the following photo-electron distribution due to 
electrons with quantum numbers k, τ, ±​,

Figure 1.  The hexagonal lattice with two sites (A and B) of the unit cell (a) and the corresponding Brillouin 
zone (b). In (c) the Floquet band structure near a Dirac point with the amplitude of the vector potential A0 =​ 0, 
Ac and A0 >​ Ac are shown; the color of the conduction and valence bands indicate the orientation of the pseudo-
spin at the Dirac points. (d) The photoemission intensities at constant energy without the pump pulse (left) and 
with a high energy (β =​ 0, see text) linearly polarized probe pulse (right) show a dichroism characteristic of the 
chiral states; the only effect of the radiation in this configuration is to reveal the change of the constant energy 
surface at the K and K′​ points and the appearance of Floquet replicas.
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with θk =​ arctan(ky/kx).
Photons with different polarization selectively excite electrons in the BZ generating a marked dichroism. This 

is reflected in the angular dependence of constant energy maps of τ
±Ik  close to the K point. The angular depend-

ence of the photo-electron distribution highlights the chiral nature of the initial states and gives direct informa-
tion of the winding phase θk. Similar results are obtained with a pump pulse as shown in Fig. 1(d). To lowest order 
in the pump amplitude, the photo-electron intensities are given by Eq. (7) where now Δ​ is to be replaced by ∆∼τ. 
Then the pump changes the band structure as suggested by the lowest order Floquet Hamiltonian [cf. Eq. (2)] and 
the closing of the mass gap at K can be observed. However, under these conditions (β  0) the ARPES spectrum 
cannot distinguish the two different topological phases. In fact, the β =​ 0 photo-electron distribution τ

±Ik  is inde-
pendent of the sign of the mass term, which means that the intensity pattern remains invariant under a change in 
the orientation of the pseudo-spin along the z axis. In this case, although the ARPES can detect the closing and 
reopening of the gap at one of the Dirac points as the amplitude of the pump pulse increases, this cannot be 
unambiguously assigned to a band inversion. In particular, in graphene where Δ​ =​ 0 the gaps at the two Dirac 
point are identical and the photo-electron intensities are insensitive to the sign of ∆∼τ.

However, when β π /2, a situation experimentally observed for ω ~ 20eV , the ARPES spectrum changes 
at the critical amplitude of the pump pulse allowing for a clear identification of the topology of the Floquet bands. 
Before presenting the numerical results we may get some insight into the problem by evaluating the 
photo-electron distribution using again the lowest order Floquet Hamiltonian. For λ =​ 1 and β =​ π/2 this 
approach gives

φ θ χ φ χ∝ ± +τ τ τ
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2 2 . This simple result makes apparent 
that the ARPES spectrum for non-linear polarization of the probe (χ ≠​ 0 or π/2) depends on the sign of the mass 
term. Consequently, the topological transition is manifested as a change in the amplitude of the photo-electron 
intensities showing different behaviors at the K and K′​ cones. Under this choice of parameters it is possible to 
generate a photo-electron distribution with purely A or B character, i.e. to selectively photo-emit states with dif-
ferent pseudo-spin polarization along the z axis. Equation (8) also shows that the dichroism depends on the 
helicity of the probe. Defining the dichroism factor D as the normalized maximum angular variation of the pho-
toemission intensity along a constant energy curve we obtain φ χ φ χ= ±τ τ

±
 D sin( )cos(2 )/(1 cos( )sin(2 ))k k . For 

a circularly polarized probe pulse (χ =​ π/4) we have that D± =​ 0 and the information on the Berry phase is  
lost—the constant energy cuts of the photo-electron distribution are angle independent. However, the intensity 
of the photocurrent coming from the valence and conduction bands clearly shows the topological structure of the 
wavefunctions,
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This is shown in Fig. 2 where the numerical simulation with the full time dependence of the pump and probe 
pulses are presented. The figure was obtained by fixing the chemical potential at a high energy (high doping) in 
order to show the photo-electron intensities corresponding to the valence and conduction bands in a wide energy 
range. The circularly polarized probe pulse acts at the centre of the pump pulse and its width in the time domain 
was chosen to be δtprobe =​ 50 fs to have a good energy resolution of the Floquet bands. The results clearly show that 
near the K point, the maximum intensity of the photo-electron distribution changes from the conduction to the 
valence band at the critical amplitude Ac. This change is a consequence of the sign change of ∆∼τ=+ and is linked 
to a change of ++ −  .

To be more specific, we now present results for the case of graphene with realistic parameters. We used the 
experimentally observed value of the phase β =​ 0.4π, the chemical potential is set either at μ =​ 100 meV or 
μ =​ 0 meV, the frequency of the pump pulse is ħΩ =​ 400 meV and the probe pulse is circularly polarized. These 
conditions generate small dichroism although its symmetry is different from that observed with β =​ 0: note that 
in cuts along ky and in the absence of the pump pulse the lines with negative velocity in Fig. 3(a) are more intense 
around both the K and K′​ points. The circularly polarized pump pulse with frequency Ω also opens gaps at the 
Floquet zone boundary (ħΩ/2) that are detected by the ARPES spectrum14. The second order gap at the zone 
centre (zero energy) is not clearly observed due to the moderate amplitude of the pump and the width of the 
ARPES lines. However, the intensities of the lines corresponding to the conduction band show a marked differ-
ent behavior at the two Dirac points as illustrated in Fig. 3(c). This behavior shows that the Berry curvature Ωkτ 
defined above has the same sign for the two cones leading to a non-zero Chern number. This effect is also present 
when the chemical potential is fixed at μ =​ 0 eV as shown in Fig. 3(d), where the photoemission spectrum is 
presented along the kx direction in order to disregard asymmetries due to the dichroism generated by the probe 
polarization.

In finite systems, the Floquet zone boundary gaps are also bridged by topologically protected edge states. 
In k-space, these edge states are confined arround the K and K′​ points and their existence can be inferred by 
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evaluating the Chern numbers with the Floquet bands20,22,36. The wavefunctions in the time domain clearly 
show that for those states bridging the zone-boundary gap the pseudospin oscillates with frequency Ω with its 
time average value on the xy-plane. The topological structure of these states, described by the above mentioned 
Chern numbers, is a real dynamical effect37. As the ARPES probe pulse averages on a time scale of the order of 
δtprobe ≫​ 1/Ω, the photo-electrons can hardly carry some information on the topological nature of states at the 
zone-boundary gap.

It is worth mentioning that, as recently shown in ref. 38, the Chern number of a pure state (Slater determi-
nant) cannot be changed by a unitary transformation. That is, the Chern of an initial state remains unaltered 
during the pump pulse. This fact of course does not prevent modifications of the band structure, the Floquet 
spectrum, and in particular the presence of the band inversion phenomena. In ARPES experiments with the 
appropriate energy and polarization, the interference of the dipole transitions allows for a clear identification of 
the different topological phases as revealed by the band inversion effect. With the help of a band structure model, 
that for graphene is well established, the ARPES intensity profiles allows to determine amplitude and phases of 
the wavefunctions for states close to the K and K′​ points of the BZ and to reconstruct the Berry curvature around 
these hot spots.

The case of bilayer graphene, with a rather different band structure, is also interesting. The system has four 
π-bands, two of them, with parabolic dispersions, touch each other at the Dirac points and a gap can be opened 
and controlled by a perpendicular electric field. The other two bands lie at about 0.3 eV from the Dirac points. 
In the presence of the pump pulse these extra bands generate Floquet replicas that partially cover up the low 
energy ARPES spectrum making it much more intricate. Nevertheless, as the pump amplitude increases the 
topological transition evidenced by the band inversion phenomena can be clearly observed (see Supplementary 
Information).

In summary, we have shown that ARPES can give clear information on the topology of Floquet bands of 
graphene and graphene-like structures. This information is given by the intensity of the ARPES profiles of 
the bands close to the K and K′​ points of the BZ. While in the topological trivial phase the intensities due to 
photo-electrons from the valence or conduction bands are similar at the two Dirac points, in the non-trivial phase 
the intensities of the valence and conduction bands are different and opposite at K and K′​. This change signals 
a modification of the Berry curvature around these points with a consequent variation of the Chern numbers. 
To observe the effect the dipole transition matrix elements ζx and ζy should have a different phase β. It has been 

Figure 2.  (a) ARPES intensity from states close to the K′​ (left column) and K (right column) cones; the 
radiation intensity increases from top to bottom (field strength (evFA0) at the peak of the pump pulse of 0 meV, 
60 meV, 130 meV and 200 meV). These results correspond to a circularly polarized pump and probe pulses 
with β =​ π/2, the temporal duration of the former being of 350 fs and the latter of δtprobe =​ 50 fs. The chemical 
potential has been taken at 0.5 eV to appreciate the intensity changes of photo-electrons from both the valence 
and the conduction bands. The pump energy is ħΩ =​ 400 meV. In (b) we show the intensities, from states with 
wavevector k slightly shifted from the Dirac points, as function of the radiation intensity. At the critical value of 
evFA0 =​ 130 meV the ARPES intensity around K is transferred from the conduction to the valence band.
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experimentally shown that in graphene β can be controlled with the photon energy of the probe pulse. This 
observation opens the road for a spectroscopic study of the topological properties of the bulk wavefunctions of 
these 2D materials.
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I. THE TIME EVOLUTION OPERATOR

The total Hamiltonian is written as H(t) = ∑kτHkτ(t) with

Hkτ(t) = vfΠ
x
kτ(t)σx + vfΠ

y
kτ(t)σy +∆σz = dkτ(t) ⋅σ (1)

here dkτ(t) = (τvf(̵hkx+eAx(t)), ̵hvfky+evfAy(t),∆), where the pump vector potentialA(t) =

R[A0(t)eiΩt] has been introduced via minimal coupling (Πν
kτ =

̵hkν + eAν(t)) with an envelope

functionA0(t) and σ = (σx, σy, σz).

The time evolution operator from an initial time ti to time t acting on a state with quantum

numbers k and τ is

Ukτ(t, ti) = T [e
− i
h̵ ∫

t
ti
dkτ (t

′)⋅σdt′
], (2)

where T is the time ordering operator. Using small time intervals δt the above integral is approxi-

mated as a sum

Ukτ(t, ti) = T [e
− i
h̵ ∑

N
n=1 dkτ (tn)⋅σδt] ≈ T [∏

n

e−
i
h̵
dkτ (tn)⋅σδt

], (3)

with tn = ti+ 2n−1
2 δt. The last term in the above equation is obtained asuming that [Hk(tn),Hk(tn+

δt)] ≈ 0 for small enough δt. Using [σ ⋅ d̂kτ(tn)]2n
= 1 and [σ ⋅ d̂kτ(tn)]2n+1

= σ ⋅ d̂kτ(tn), with

d̂kτ = dkτ/∣dkτ ∣, the time evolution operator can be written as

Ukτ(t, ti) = T [∏
n

{ cos (∣dkτ(tn)∣
δt
̵h
)1 − i sin (∣dkτ(tn)∣

δt
̵h
)σ ⋅ d̂kτ(tn)}]. (4)

To illustrate the effect of the pump pulse on an unperturbed graphene wavefunction ∣Φγ
kτ ⟩ where

γ = ± stands for a state in the valence and conduction band respectively, we calculate the proba-

bility Pk(t) = ∣⟨Φγ′

kτ ∣Ukτ(t, ti)∣Φ
γ
kτ ⟩∣

2 of finding a final state ∣Φγ′

kτ ⟩ at time t with an initial time ti

preceding the pumping.

According to the Floquet theorem when the system is perturbed by circularly polarized radia-

tion of frequency Ω, the Floquet spectrum shows gaps at the Floquet zone centre, with zero energy,

and at the Floquet zone-boundary of energy ̵hΩ/2. These energies correspond to wavectors k = 0

and k = k0 = Ω/2vf . Fig. 1 shows that even for very short pump pulses, the evolution of the wave

functions with k = 0 and k = k0 considerably differs from those with other values of k away from

any anticrossing of the spectrum. In fact for k = 0, k0 the system is in a resonant condition, with

the pseudospin oscillating between the up and down states with a dominant frequency ω given by

the corresponding Floquet gap. For other values of k, an out of resonance condition, the amplitude

of the oscillations decreases and its main frequency is the frequency Ω of the pump.
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II. DIPOLAR MATRIX ELEMENTS

The eigenfunctions of the Hamiltonian given by Eq. (1) with ∆ ≠ 0 are given by

∣Ψ+
kτ ⟩ = cos (

φkτ
2

)∣k,A⟩ + sin (

φkτ
2

)eiτθk ∣k,B⟩

∣Ψ−
kτ ⟩ = sin (

φkτ
2

)∣k,A⟩ − cos (
φkτ
2

)eiτθk ∣k,B⟩,

(5)

where ∣k,A⟩ and ∣k,B⟩ are the Bloch wavefunctions of the A and B sublattice respectively and

the ± index refers to the conduction and valence bands, θk is the angle formed by k and the x-axis,

cos (φkτ2 ) = τ ̵hvf ∣k∣/
√

(
̵hvfk)2

+ (ε+ −∆)
2 and sin (

φkτ
2 ) = (ε+ −∆)/

√

(
̵hvfk)2

+ (ε+ −∆)
2

with ε+ =
√

∆2
+ (

̵hvfk)2.

The dipolar matrix elements ⟨f ∣PA ⋅ p∣Ψ±
kτ ⟩ are given in terms of ζx = ⟨f ∣px∣kA⟩ = ⟨f ∣px∣kB⟩

and ζy = ⟨f ∣py ∣kA⟩ = −⟨f ∣py ∣kB⟩, where the relative signs are due to the symmetries of

the graphene lattice. The vector potential describing the probe (ARPES) pulse is Apr(t) =

Apr(t)R[eiωtPA] where PA = cos(χ)x̂ − i sin(χ)ŷ and defining ζy/ζx = λeiβ the matrix elements

are

M+
kτ ∝ cos(χ){ cos (

φkτ
2

) + sin (

φkτ
2

)eiτθk} − i sin(χ)λeiβ{ cos (
φkτ
2

) − sin (

φkτ
2

)eiτθk}

M−
kτ ∝ cos(χ){ sin (

φkτ
2

) − cos (
φkτ
2

)eiτθk} − i sin(χ)λeiβ{ sin (

φkτ
2

) + cos (
φkτ
2

)eiτθk},

(6)

The ratio ζy/ζx = λeiβ depends on the x-ray energies of the ARPES excitation, experimental

values for λ and β are given in Ref. [1]. It is important to note that for β =
π
2 and λ = 1,

admitting the possibility of photoemitting electrons with a probe pulse with circular polarization

(χ = ±
π
4 ), a selective projection of the pseudospin along the z axis is achievable. This means

that it is plausible to generate a photoelectron current with entirely A or B character, depending

on whether the probe polarization is right or left, respectively. These matrix elements are used

for the numerical calculation of the photoelectron intensity. The numerical results with the full

time dependence of the driving pump near the Dirac cones can be interpreted in terms of the

approximate expression

I±k ∝ ∣M±
kτ ∣

2
= cos2

(χ) + λ2 sin2
(χ) ± { sin(̃φkτ) cos(θk)[cos2

(χ) − λ2 sin2
(χ)]

+λ sin(2χ)[sin(β) cos(̃φkτ) − cos(β) sin(̃φkτ) sin(τθk)]},
(7)

here cos(̃φkτ) = ∆̃/

√

∆̃2
+ (

̵hvfk)2 and sin(̃φkτ) = τ ̵hvf ∣k∣/
√

∆̃2
+ (

̵hvfk)2. The mass term ∆̃

is renormalized by the presence of the circular electromagnetic driving.
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The dichroism factorD±(k) is defined asD±(k) = {Max[I±k(θk)]−Min[I±k(θk)]}/{Max[I±k(θk)]+

Min[I±k(θk)]} . For β = π/2 this gives

D±
(k) = sin(φkτ) cos(2χ)/(1 ± cos(φkτ) sin(2χ)) (8)

III. ARPES IN BILAYER GRAPHENE

In the Bernal structure the unit cell of the Bilayer Graphene has four C atoms. Consequently

there are four π-bands, two of them with opposite parabolic dispersions touch each other at the

Dirac points. The other two bands are shifted by ≈ 0.3eV . These four low energy bands are

described by the Hamiltonian H = H1 +H2 +H12 where the first terms describes the electronic

structure of two isolated graphene sheets and the last term the interplane coupling

Hi = V (−1)i−1
∑

k,σ

[a†
i,k,σai,k,σ + b

†
i,k,σbi,k,σ

−t(φ(k)a†
i,k,σbi,k,σ + φ

∗
(k)b†

i,k,σai,k,σ)]

(9)

with i = 1,2, ai,k,σ and bi,k,σ destroy electrons with wavector k and spin σ in sublattices A and B

of the ith plane respectively and we have included an electric field perpendicular to the BLG plane

described by V . The matrix element t corresponds to the intraplane hopping and

φ(k) = eiaky [1 + 2e−i
3a
2
ky cos (

a
√

3

2
kx)] (10)

with a = 1.42 Å the carbon-carbon distance.

The interplane coupling is described by:

H12 = ∑

k,σ

t⊥(a
†
1k,σb2,k,σ + b

†
2,k,σa1,k,σ) (11)

For each value of the wave-number k we have a 4X4 Hamiltonian Hk given by

Hk =

RRRRRRRRRRRRRRRRRRRRRRRRRRR

V −tφ(k) 0 t⊥

−tφ∗(k) V 0 0

0 0 −V −tφ(k)

t⊥ 0 −tφ∗(k) −V

RRRRRRRRRRRRRRRRRRRRRRRRRRR

(12)

with wavector [umA1(k), u
m
B1(k), u

m
A2(k), u

m
B2(k)]

T and eigenvalues εm(k). Linearizing around

the Dirac cones Kτ and coupling the crystal momentum with radiation via Peierls substitution one
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can readily obtain a time dependent Hkτ(t). The complete evolution of the wavefunction during

the driving pulse is obtained numerically by means of the evolution operator. In this case, this time

dependent propagator is computed by an exact diagonalization of the hamiltonian at each instant

of time:

Ukτ = T [∏
n
∑

m

e−iεkm(tn)
δt
h̵ ∣Ψm

kτ(tn)⟩⟨Ψ
m
kτ(tn)∣] = T [∏

n

Pkτ(tn)], (13)

where Pkτ(tn) = ∑m e−iεkm(tn)
δt
h̵ ∣Ψm

kτ(tn)⟩⟨Ψ
m
kτ(tn)∣ and m is the band index. The dipolar matrix

elements at each valley take the form

M τ
km ∝ cos(χ)[umA1(k)+u

m
B1(k)+u

m
A2(k)+u

m
B2(k)]−i sin(χ)λe

iβ
[umA1(k)−u

m
B1(k)+u

m
A2(k)−u

m
B2(k)].

(14)

Taking the limit of β =
π
2 , λ = 1 and circular polarization χ =

π
4 the generated photocurrent

has only A1 and A2 character. By changing the quirality of the probe polarization to χ =
7π
4 the

radiation field couples with B1 and B2 sublattices.

The low energy excitations with crystal momentum arround the K and K ′ points of the BZ

can be described by an effective two band Hamitonian, obtained by eliminating the bands that are

shifted from the Fermi energy by t⊥ by means of a canonical transformation. In the base of the A2

and B1 orbitals, the effective Hamiltonian for a given wavevector k takes the form:

Hkτ = hτ(k) ⋅σ (15)

where σ are the Pauli matrices and

hx = α (k2
x − k

2
y) ,

hy = 2ατkxky,

hz = −V,

(16)

with α =
9
4
(ta)2

t⊥
=
(h̵vf )

2

t⊥
. This two band effective problem is similar to the graphene with mass

model, with the advantage of having the possibility to regulate at will the electric field in order to

change the parameter V . The quadratic (instead of linear) dispersion of these low energy bands is

responsable for a coupling of higher order with Floquet replicas, with a lowest order modification

of the bias given by

Ṽτ = V + τ
(evfA0)

4

t2⊥(2̵hΩ + τV )

. (17)
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The effect of a renormalization of V when the system is irradiated generates a closing gap in

the cuasi-energy spectrum at one Dirac point and a corresponding opening at the other, making it

plausible to detect the band inversion phenomena, as shown in Fig. 2. The frequency of the pump

pulse was set at ̵hΩ = 0.5 eV in order to neglect the influence of replicas from the high energy

bands near the Dirac cones. The ARPES instensity of the effective bilayer two band model is also

shown in Fig. 3 for each valley. In this case the incident photon radiation was set at ̵hΩ = 0.2 eV.

[1] Y. Liu, G. Bian, T. Miller, and T.-C. Chiang, “Visualizing electronic chirality and berry phases in

graphene systems using photoemission with circularly polarized light,” Phys. Rev. Lett. 107 (2011),

10.1103/physrevlett.107.166803.
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FIG. 1. Probability Pk(t) = ∣⟨Φ+
kτ ∣Ukτ(t, ti)∣Φ

−
kτ ⟩∣

2 of finding a final state ∣Φ+
kτ ⟩ at the conduction band at

time t with an initial state ∣Φ−
kτ ⟩ at the valence band at time ti preceding the pumping for crystal momen-

tum (left pannels) (a) at the Dirac cone K, (b) away from any anticrossing and (c) at k0 = Ω
2vf

with their

corresponding fourier transform (right pannels).

7



FIG. 2. ARPES intensity of bilayer graphene from states close to K (left column) and K ′ (right column)

Dirac cones; the radiation intensity increases from top to bottom. These results correspond to a circularly

polarized pump and probe pulses with β = π/2. The chemical potential has been taken at 0.3 eV.
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FIG. 3. ARPES intensity of the effective bilayer two band model from states close to K (left column)

and K ′ (right column) Dirac cones; the radiation intensity increases from top to bottom. These results

correspond to a circularly polarized pump and probe pulses with β = π/2. The chemical potential has been

taken at 0.3 eV.
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