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ABSTRACT 

The conodont biofacies from the San Juan Formation at the Cerro Viejo of Huaco, Central 

Precordillera of Argentina, are analyzed for the identification of faunal dynamics and sea-

level changes. The Prioniodus elegans and Oepikodus evae zones, Floian in age (Lower 

Ordovician), are identified in the lower San Juan Formation at the inner part of the Huaco 

anticline. In the western flank of the anticline the succession of the carbonate stratigraphic 

unit extends from the Floian/Dapingian boundary (Lower-Middle Ordovician) up to the 

lower Darriwilian (Middle Ordovician) Lenodus variabilis Zone. For the interpretation of 

conodont biofacies through the Los Gatos Creek section, 5,044 conodonts from rock 

samples of the Floian to the lower Darriwilian are studied. Conodont abundance and 

generic diversity graphs, and cluster analysis, reveal the following biofacies. The 

Juanognathus-Bergstroemognathus, Protopanderodus-Reutterodus-Drepanodus, 
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Protopanderodus-Oepikodus, Juanognathus-Semiacontiodus and Rossodus-Periodon-

Protopanderodus biofacies are determined, which indicate various deposits stacking from 

inner to middle and outer carbonate ramp environments of the San Juan Formation. The 

associated analysis of biofacies and lithology allow for the recognition of two transgressive 

events in the San Juan Formation at the Los Gatos creek section, which could be related to 

transgressive systems tracts (TST) that occurred during the Lower and Middle Ordovician. 

The recovered conodonts have a CAI that varies from 2 to 2.5, indicating a burial 

paleotemperature between 60 and 155°C. Furthermore, the variation of CAI in conodonts 

of the same sample, the presence of conodonts with corroded surface lamella, 

recrystallization and crystal overgrowths, and the presence of stylolites in limestone beds of 

the San Juan Formation indicate the circulation of hydrothermal fluids. 

 

Keywords: cluster analysis, conodont biofacies, sea-level changes, San Juan Formation, 

Ordovician, Precordillera. 

 

1. Introduction 

    Following Ludvigsen et al. (1986), a biofacies refers to an association of fossil taxa that 

are recorded together in a rock and whose presence has paleoenvironmental connotation. 

Because the composition of a biocenosis is indirectly related to the water depth, a 

relationship between the species communities and the water depth can be stable only if the 

environmental conditions recorded in previous temporal stages are maintained. 
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    A lithofacies drift would produce changes in biofacies and fossil abundance even if the 

deposition is continuous, i.e. without depositional hiatus and without changes in 

sedimentation rate. These changes in abundance are the result of changes in lithofacies and 

some ecological gradient (community structure), and they do not require any special 

explanation in terms of disturbance of the faunal environment or ecological replacements 

(Rollins et al., 1979; Brett et al., 2007). 

    Regarding conodont ecology, several models were proposed to explain their distribution 

during the Ordovician; for instance, Seddon and Sweet (1971) proposes that the conodonts 

would have been pelagic organisms, with separate species groupings in strata of the marine 

water column. This model successfully explains the distribution of cosmopolitan and other 

widely distributed species. The model proposed by Barnes and Fåhraeus (1975) suggests 

that most of the Ordovician conodonts would have a nectobenthic life habit, and only 

genera with multielemental apparatus that consist of coniform morphotypes represent 

pelagic forms. This model emphasizes the lateral segregation of conodonts, taking into 

account controlling factors such as temperature, salinity, circulation, energy and substrate 

as the major for their spatial distribution. Zhen and Percival (2003) propose an alternative 

model, which combines the two referred models. 

    According to the model proposed by Seddon and Sweet (1971), the conodont records 

could be used to establish sea- level curves. This methodology is based on the following 

principles: 1) the same community maintains a preference for an environment and depth, 2) 

changes in sea- level result in rapid vertical and lateral communities replacement, 3) during 

periods of relatively stable sea- level, communities are maintained with stable development 

(Zhang and Barnes, 2002). 
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     The study area is located to the west of the Huaco town, in the San Juan Province, 

involving the limestones of the San Juan Formation that conform the Huaco anticline, with 

a highest peak named to as Cerro Viejo of Huaco (Figs. 1 and 2) of the Central 

Precordillera or oriental tectofacies (sensu Astini, 1992). The limestones of the San Juan 

Formation conforms the Huaco anticline, which is the object of investigation in the Los 

Gatos creek (Fig. 3) located on the western flank of Cerro Viejo of Huaco, 2.5 to 3 km 

south of La Ciénaga; this creek is a tributary channel of the Zanja Honda ravine, with 

drainage to the Huaco River. At this creek, the San Juan Formation is well exposed and 

allows for detailed stratigraphic studies and rock sampling for conodonts.  

    The conodonts from the San Juan Formation exposed in the Cerro Viejo of Huaco are 

known after the biostratigraphic studies by Ortega (1987), Hünicken and Ortega (1987), 

Ottone et al. (1999), Ortega et al. (2007), Mestre et al. (2013), and Mango and Albanesi 

(2018). The detailed conodont biostratigraphy of the San Juan Formation, including the 

conodont biofacies analysis for this unit, motivated this work after a reference 

biostratigraphic scheme for the Precordillera published recently (Albanesi and Ortega, 

2016). 

Insert Fig. 1 

 

2. Geological setting 

    The Precordillera is located in the central-western sector of the Argentina territory, 

between 28° 30ʹ and 33° S and 68° 15ʹ and 69° 45ʹ W. This geological province is 
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subdivided into three morphostructural units on the basis of their stratigraphic and 

structural characteristics. These units are known as Oriental (Ortiz and Zambrano, 1981), 

Central (Baldis and Chebli, 1969) and Occidental Precordillera (Baldis et al., 1982). 

    The Central Precordillera is composed mainly of carbonate platform deposits (Cerro 

Totora, La Laja, Zonda, La Flecha, La Silla, San Juan and Las Chacritas formations) 

extending for about 2,500 meters in thickness, in an apparently continuous cycle (Baldis 

and Bordonaro, 1982, 1984, 1985). The carbonate sedimentation occurred under warm to 

temperate environmental conditions, begining in the Cambrian and continuing up to the 

Darriwilian. During the middle- late Darriwilian there were few areas with carbonate 

sedimentation, such as those represented by the Las Aguaditas Formation (Baldis et al., 

1982), interpreted as a carbonate slope (Cabaleri, 1989; Keller et al., 1993; Astini, 1995), 

cropping out in the Sierra de Los Blanquitos, southwest of the Jáchal town. 

Insert Fig. 2 

     The carbonate sequence of the San Juan Formation (Keller et al., 1994), over 330 meters 

thick, is made up by skeletal micritic limestones deposited from later Tremadocian on a 

ramp topography (Cañas, 1995, 1999). This limestone succession begins with a 

transgressive sequence, at whose base develops a reef horizon that consists of 

calcimicrobials and sponges (Cañas and Carrera, 2003). 

    Subsequently, sediments accumulate as high sea- level deposits (mostly bioturbated 

skeleton wackestones) in a framework of environmental stability, which allows the 

development of rich subtidal communities dominated by suspension-feeding organisms 

(Cech and Carrera, 2002). 
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    A second reef horizon formed by microbialites, receptaculitids (Calathium) and mainly 

by stromatoporoids (Zondarella) develops near the base of the Middle Ordovician. 

    During the Darriwilian, the carbonate production is suffocated as a consequence of a 

relative increase in sea-level that led to the drowning of the platform below the photic zone. 

This event culminates the carbonate cycle and the subsequent deposition of transitional 

calcareous-shale facies towards predominantly pelitic sequences (Baldis and Beresi, 1981; 

Baldis et al., 1984, 1989) known as Gualcamayo and Los Azules formations in diverse 

localities of the Precordillera. This change represents the passage to more restricted 

environmental conditions in terms of water circulation and oxygenation, affecting the 

normal development of the biota, with the consequent replacement of biofacies (Benedetto 

et al., 1995; Sánchez et al., 1996). 

    Several authors recognize an open, abundant and diverse marine fauna for the San Juan 

Formation (Serpagli, 1974; Beresi, 1986; Sarmiento, 1987; Herrera and Benedetto, 1991; 

Beresi and Rigby, 1993; Vaccari, 1994; Lehnert, 1995; Carrera, 1997 ; Albanesi, 1998), 

which contains diverse communities of sponges, brachiopods, bryozoans, trilobites, 

gastropods, nautiloids, conodonts and ostracods, among others. 

Insert Fig. 3 
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3. Materials and methods 

    For the processing and search of conodonts of the San Juan Formation, Cerro Viejo of 

Huaco, 50 micropaleontological limestone samples were taken with a variable weight 

between 2 and 4 kg from the levels of interest for this work. 

    The laboratory work involved the processing of the rocks for the recovery of the  

microfossils, following the method of Stone (1987) (acetic acid or formic acid, 

concentrated at 10%). For each processed sample, an insoluble material with a variable 

weight between 20 g and 300 g was recovered, depending on the composition of the 

limestone, allowing through the picking method of all insoluble material, the recovery of 

5,044 conodonts and other associated microfossils (see Appendix, Tables A.1-A.5). 

    The recovered conodonts were taxonomically determined and later illustrated by 

conventional optical microphotography, allowing to recognize the biozones of the lower 

San Juan Formation and make an adjustment of its upper succession. 

    For the biofacies analysis, the taxonomically identified specimens were counted and a 

database of absolute abundance of fossils per taxon, per sample, was made. In order to 

carry out the different analyses, the conodonts were identified at a specific level. 

    From this database, the total abundance (total conodont elements per sample) and generic 

diversity graphs (amount of genera per sample) were made using Microsoft Excel. 

Together, the data were treated using the average linkage method (UPGMA) and similarity 

was quantified using the Morisita index (Morisita, 1959) because it is particularly 

insensitive to sample size (Hammer and Harper, 2006). This last procedure was carried out 

at a specific level to recognize possible variations in biofac ies linked to multi-species 
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genera. Multivariate analysis is carried out using the PAST program (Hammer et al., 2001; 

Hammer and Harper, 2006). The fossils are housed at the Museo de Paleontología, 

Universidad Nacional de Córdoba under the repository code CORD-MP. 

 

4. Conodont biostratigraphy 

    This work will follow the biostratigraphic scheme of conodonts proposed by Albanesi et 

al. (1998) with successive updatings, including the last one by Albanesi and Ortega (2016). 

    Mango and Albanesi (2018) studied the conodont biostratigraphy of the middle-upper 

San Juan Formation in the study section, recorded the Oepikodus evae, Oepikodus 

intermedius, Baltoniodus triangularis-Tripodus laevis and Lenodus variabilis zones 

(samples LG 0 to LG 42). In this publication, the conodont biostratigraphy of the lower San 

Juan Formation is analyzed (samples LG -20 to LG 0), completing the biostratigraphic 

succession. 

4.1. Prioniodus elegans Zone 

    The index fossil Prioniodus elegans Pander is found from the oldest sample (LG -18) to 

the sample LG -12.4 (Fig. 4) without being associated with Oepikodus evae (Lindström). In 

this way, the Prioniodus elegans Zone is recognized from the profile baseline (sample LG -

20) to the sample LG -12, where the Oepikodus evae lowest record occurs. The appearance 

of Oepikodus communis (Ethington and Clark) from the sample LG-20 would make it 

possible to recognize that this section corresponds to the upper subzone or Prioniodus 

elegans-Oepikodus communis Subzone. 
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    In this interval, the species diversity and the abundance increases towards its top, 

including frequent Bergstroemognathus extensus Serpagli, Drepanodus arcuatus Pander, 

Protopanderodus leonardii Serpagli, P. rectus (Lindström), P. gradatus Serpagli, P. 

elongatus Serpagli, Reutterodus andinus Serpagli and Tropodus sweeti (Serpagli). 

4.2. Oepikodus evae Zone 

    This conodont zone is recognized from the sample LG -12 to the sample LG 6.8 by the 

occurrence of Oepikodus evae (Fig. 4) ending in the sample LG 7.3, where Oepikodus 

intermedius (Serpagli) is recorded. During this interval Juanognathus variabilis Serpagli 

and Scolopodus oldstockensis Stouge are recognized, so according to the reference scheme 

they would correspond to the upper subzone or Oepikodus evae-Scolopodus oldstockensis 

Subzone, but the lower subzone was not detected, so the assignment of this interval to a 

subzone will be revised. 

    At these levels the first occurrences of Juanognathus variabilis, Paroistodus cf. P. 

proteus, Periodon flabellum (Lindström), Oistodus striolatus Serpagli, Semiacontiodus 

potrerillensis Albanesi, Ansella jemtlandica (Löfgren), Paltodus? jemtlandicus Löfgren, 

Oepikodus intermedius and Pteracontiodus cryptodens (Mound) are recorded together with 

the youngest records of Tropodus comptus (Branson and Mehl) and Oepikodus communis. 

In addition, the only records of Erraticodon patu Cooper, Oepikodus evae, Oistodus 

multicorrugatus Harris and Cooperignathus aranda (Cooper) are found. 

    At the Cerro Viejo of Huaco, the division of the Oepikodus evae Zone according to its 

original definition is not applicable due to the distribution of the species record. At the 

Portezuelo Yanso section, Scolopodus oldstockensis firstly occurs in a middle level of the 
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Oepikodus evae Zone (Albanesi et al., 1998); instead, at the Cerro Viejo of Huaco section, 

Oepikodus intermedius presents its first occurrence towards the middle Oepikodus evae 

Zone, while S. oldstockensis meets its first appearance in older strata at the base of the 

mentioned zone. The absence of S. oldstockensis at the Portezuelo Yanso section could be 

related to a facies control or a bias in the laboratory procedure. 

Insert Fig. 4 

 

5. Biofacies 

    The biofacial determination is accomplished at a generic level according to Ludvigsen et 

al. (1986) and Patskowsky (1995) who consider that the identification of genera, instead of 

species, provides more reliable results. Since it represents a longer time interval, it allows 

the identification of a taxonomic environmental association more clearly. On the other hand, 

it allows for considering the specimens that can only be determined at a generic level due to 

deficient preservation. 

    The analysis of the abundance and generic diversity of conodonts (Figs. 5 and 6) reveal 

four pulses of abundance and high diversity alternated with three pulses of low abundance 

and diversity, which were observed in samples of coarser granulometry particularly. 

Insert Fig. 5 

Insert Fig. 6 
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    From the cluster analysis (Fig. 7) five biofacies are recognized, Juanognathus-

Bergstroemognathus, Protopanderodus-Reutterodus-Drepanodus, Protopanderodus-

Oepikodus, Juanognathus-Semiacontiodus and Rossodus-Periodon-Protopanderodus. 

5.1. Juanognathus-Bergstroemognathus biofacies 

    The genus Protopanderodus is represented by four species with abundant elements on 

this biofacies, whereas Juanognathus has three species and Bergstroemognathus has one 

species, the latter two being more significant for the definition of the biofacies. This is 

found in two intervals, a lower interval is at the base of the stratigraphic column comprising 

from the sample LG -20 to the sample LG -17 (Fig. 8), where part of the Prioniodus 

elegans Zone is recognized. The record of Fahraeusodus adentatus (Mc Tavish) is 

restricted to this interval. In addition, the first record of several species is verified, which 

may be due to the arbitrary bias represented at a level does not represent the beginning of 

the stratigraphic sequence. The specimens abundance is variable (37-122 conodont 

elements) (Fig. 5) and the generic diversity is moderate (11-12 genera) (Fig. 6). 

Juanognathus variabilis is the species with the highest number of elements followed by 

Bergstroemognathus extensus, being the nominal genera for the biofacies.  

Insert Fig. 7 

    An upper interval is verified between the samples LG -12 and LG 8, which corresponds 

to the Oepikodus evae Zone and lower Oepikodus intermedius Zone. At this interval, the 

first record of Scolopodus oldstockensis, Erraticodon patu, Oepikodus intermedius, 

Periodon flabellum, Paltodus n. sp. A, Paroistodus cf. P. proteus, Tropodus australis 

(Serpagli), Oistodus striolatus, Paltodus? jemtlandicus, Semiacontiodus potrerillensis, 
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Ansella jemtlandica, Pteracontiodus cryptodens, Prioniodus adami Stouge and Bagnoli, 

and Stolodus stola (Lindström) is verified. It has the latest records of Paroistodus proteus 

(Lindström), Oepikodus communis, Bergstroemognathus extensus, Tropodus sweeti, 

Prioniodus elegans, Acodus deltatus (Lindström), Colaptoconus quadraplicatus (Branson 

and Mehl), Tropodus comptus, Lundodus gladiatus (Lindström) and Periodon selenopsis 

(Serpagli). In addition, this interval presents the only records of Oepikodus evae and 

Cooperignathus aranda. The abundance is variable (0-687 conodont elements) as well as 

the generic diversity (0-22 genera), and the species with the highest number of elements per 

sample are Juanognathus variabilis and Bergstroemognathus extensus, followed by 

Oepikodus evae, Scolopodus krummi (Lehnert), and Tropodus sweeti. 

    From the study section in western Newfoundland, Pohler (1994) describes the presence 

of Juanognagthus, Tropodus and Bergstroemognathus from inner to outer platform facies, 

and the record of Oepikodus in facies of different depth, with a high frequency of 

appearance in the platform, while Scolopodus is found in facies from inner to outer 

platform. Stouge (1984) interprets that Scolopodus would have inhabited nearby carbonate 

shoals in western Newfoundland. The genera Juanognathus, Reutterodus, 

Bergstroemognathus, and Diaphorodus would be typical of temperate waters (Albanesi and 

Bergström, 2004; Bagnoli and Stouge, 1991). Wu et al. (2014) report Tropodus as more 

abundant in shallow facies and warmer environments in the southern China platform. In 

turn, the lithology of correlative levels from the study section is very variable, from 

mudstones-wackestones, wackestones-packstones, to packstones and grainstones. The 

comparison of biofacies and lithology of these strata corresponds to middle to outer ramp 

deposits. 
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5.2. Protopanderodus-Reutterodus-Drepanodus biofacies 

    This biofacies extends from the sample LG -17 to the LG -12 and corresponds to part of 

the Prioniodus elegans Zone (Fig. 8). It presents the first record of Acodus deltatus, 

Paroistodus parallelus (Pander), Drepanoistodus forceps (Lindström), Protoprioniodus 

simplicissimus McTavish, P. cowheadensis Stouge and Bagnoli, Diaphorodus russoi 

(Serpagli), Oelandodus elongatus (Lindström), Anodontus longus Stouge and Bagnoli, 

Protopanderodus rectus, Colaptoconus quadraplicatus, Tropodus comptus, Scolopodus 

krummi, Juanognathus n. sp. A, Paltodus perrii Stouge and Bagnoli, Oistodus lanceolatus 

Pander, O. multicorrugatus, Lundodus gladiatus, Periodon primus Stouge and Bagnoli, and 

P. selenopsis. The records of Drepanoistodus lucidus Stouge and Bagnoli, Paracordylodus 

gracilis Lindström, Paltodus sp., Parapanderodus striatus (Graves and Ellison), 

Histiodella donnae Repetski, Kallidontus princeps Pyle and Barnes, Parapaltodus 

flexuosus (Barnes and Poplawski), Diaphorodus tovei Stouge and Bagnoli, and Scandodus 

furnishi Lindström, are restricted to this biofacies. 

    The abundance varies between 25 and 375 conodont elements (Fig. 5) and the generic 

diversity is moderate to high (9-23 genera) (Fig. 6), while the species with more elements 

per sample are Protopanderodus leonardii, Reutterodus andinus, and Drepanodus arcuatus, 

whose genera are adopted to name the biofacies. These taxa are followed by Prioniodus 

elegans, Tropodus comptus, Paroistodus proteus, Diaphoradus russoi, Protopanderodus 

rectus and Oepikodus communis, the latter being the most abundant in the sample LG-14. 

    The pelagic genus Drepanodus is found in deposits of variable depth, and Tropodus is 

found in deposits of inner to outer platform in Newfoundland (Pohler, 1994); a similar 
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distribution is interpreted in this contribution for Reutterodus. At the same time, 

Protopanderodus is recovered from outer platform and slope facies in western 

Newfoundland (Pohler, 1994). Rasmussen and Stouge (2018) argue that it would be typical 

from distal platform facies of cold-waters in the Balto-Scandinavian Region. The genus 

Prioniodus is found in deposits of variable depth in Newfoundland, but is more abundant in 

outer platform facies (Pohler, 1994), whereas Paroistodus is found in inner platform, outer 

platform and slope deposits, although Stouge (1984) indicates that the latter is typical of 

cold or deep waters, being found in deposits of outer platform. Wu et al. (2014) record an 

association of the genera Oepikodus, Paroistodus, Drepanoistodus, Protopanderodus, 

Juanognathus, Bergstroemognathus and Diaphorodus in facies that represent a 

transgressive event in China. The strata representing this biofacies consist of wackestones 

and are interpreted as middle ramp deposits through the comparison between the biofacies 

and the lithology. 

Insert Fig. 8 

5.3. Protopanderodus-Oepikodus biofacies 

    This biofacies comprises the samples LG 8 to the LG 12 (Fig. 8), which correspond to 

the Oepikodus intermedius Zone. The referred interval presents the lowest record of 

Parapanderodus paracornuformis (Ethington and Clark), and the last occurrences of 

Oelandodus costatus van Wamel, Texania heligma Pohler, Oepikodus intermedius, 

Tropodus australis, and Prioniodus adami. 

    The abundance is moderate to high (67-279 conodont elements) (Fig. 5) and the generic 

diversity is on an average (13-17 genera) (Fig. 6); while the species with higher conodont 
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elements per sample are Oepikodus intermedius, Protopanderodus gradatus and P. rectus, 

whose genera give name to the biofacies. 

    According to Pohler (1994), Protopanderodus occurs in outer platform and slope facies, 

whereas for Rasmussen and Stouge (2018) regard it typically dwells in cold-waters of distal 

platform facies. While Oepikodus is found in all mentioned facies from western 

Newfoundland, being more abundant in the platform (Pohler, 1994), this particular 

difference is also reported when comparing the Balto-Scandinavian Region biofacies with 

the one found in shallower-water facies of the Precordillera (Albanesi and Bergström, 

2004). Stouge and Bagnoli (1990) consider that in correlative lithological succession of 

Sweden a high abundance Oepikodus and Protopanderodus would be typical of deep-

waters corresponding to slope deposits of paleocontinental margins.  In the study area, the 

strata with this biofacies consist of mudstones-wackestones and brecciated grainstones 

interpreted as tempestites, whose comparison with the biofacies allows them to be 

interpreted as middle to outer ramp deposits. 

5.4. Juanognathus-Semiacontiodus biofacies 

    This biofacies extends between the samples LG 14.7 and LG 34.1 (Fig. 8), where the 

genera Juanognathus and Semiacontiodus are the most abundant. This interval corresponds 

to the Baltoniodus triangularis-Tripodus laevis Zone. 

    The first records of Drepanoistodus basiovalis (Sergeeva), Fahraeusodus jachalensis 

Feltes and Albanesi, Drepanodus reclinatus (Lindström), and Costiconus costatus (Dzik) 

are recorded in this interval. The species Colaptoconus cf. C. quadraplicatus, 

Coelocerodontus bicostatus van Wamel, Juanognathus serratus (Xiang and Zhang), 
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Tripodus laevis Bradshaw and Scalpellodus gracilis (Sergeeva) are just present in this 

interval. It shall be noted that in this interval a number of species have their last 

occurrences, such as Protopanderodus leonardii, P. elongatus, Reutterodus andinus, 

Periodon primus, Drepanoistodus forceps, Protoprioniodus simplicissimus, P. 

cowheadensis, Diaphorodus russoi, Oelandodus elongatus, Anodontus longus, Scolopodus 

krummi, Juanognathus jaanussoni Serpagli, Juanognathus n. sp. A, Paltodus? jemtlandicus, 

Paltodus subaequalis Pander, P. perrii, Paltodus n. sp. A, Oistodus multicorrugatus, 

Kallidontus corbatoi (Serpagli), Erraticodon patu, Paroistodus cf. P. proteus, 

Semiacontiodus potrerillensis, Ansella jemtlandica, Stolodus stola, Parapanderodus 

paracornuformis, and Triangulodus brevibasis (Sergeeva). 

    The abundance is variable (0-254 conodont elements) (Fig. 5) as well as the generic 

diversity (0-21 genera) (Fig. 6); meanwhile, the species with the higher number of elements 

per sample are Juanognathus jaanussoni and Semiacontiodus potrerillensis, followed by 

Tripodus laevis, Paroistodus originalis (Sergeeva), and Drepanoistodus basiovalis. 

    Semiacontiodus is typical of shallow to moderate depth environments in various parts of 

the world (Pohler, 1994; Löfgren, 1999; Carlorosi et al., 2019), whereas Juanognathus is 

found in inner and outer platform facies (Pohler, 1994). Zeballo and Albanesi (2013) 

interpret Semiacontiodus as a pelagic genus with tolerance and/or preference for low 

oxygenation conditions. At the same time, Drepanoistodus is found in inner platform to 

slope facies, with a more frequent record on the platform (Pohler, 1994), and it may be a 

pelagic habit genus (Zeballo and Albanesi, 2013; Serra et al., 2017), while Tripodus laevis 

is typical of shallow facies at moderate depths in Newfoundland (Pohler, 1994). In the 

study area, these strata are made up of wackestones-packstones and grainstones, whose 
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relation with the biofacies allows these levels to be interpreted as inner to middle ramp 

deposits. 

5.5. Rossodus-Periodon-Protopanderodus biofacies 

    Between the samples LG 35.9 and LG 40.1 the conodont records are scarce (Fig. 4) with 

low abundance (0-1 conodont element) (Fig. 5), as well as the generic diversity (0-1 genus) 

(Fig. 6). From the sample LG 41 it presents some conodonts (18 elements, 8 genera), 

although they are not sufficient to determine a biofacies. 

    The top stratum of the San Juan Formation (sample LG 42, Lenodus variabilis Zone) 

(Fig. 8) presents a more diverse record, with abundant conodont elements of  Periodon 

macrodentatus (Graves and Ellison), Protopanderodus gradatus, P. robustus (Hadding), 

Drepanodus reclinatus, Paroistodus horridus primus Albanesi, Rossodus barnesi Albanesi, 

and Parapaltodus simplicissimus Stouge. Herein, the first records of Histiodella sinuosa 

Graves and Ellison, H. serrata Harris, Erraticodon alternans (Hadding), Spinodus spinatus 

(Hadding), Protopanderodus robustus, Lenodus variabilis (Sergeeva), Periodon 

macrodentatus, and Paroistodus horridus primus are recorded. The abundance is high (664 

conodont elements) and the generic diversity is moderate (16 genera). 

    Regarding the environmental preference of the genera recorded, Periodon is found in 

slope and outer platform deposits. Although this genus is more frequent in the latter 

environments (Pohler, 1994; Albanesi, 1998; Serra et al., 2017), it presents isolated 

occurrences in shallower environments (Stouge, 1984). Protopanderodus is typical of outer 

platform to slope facies and Paroistodus is found in deposits of the inner platform, outer 

platform and slope (Pohler, 1994). Regarding Paroistodus, Stouge (1984) considers it as 
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typical of cold or deep waters, since it is found in outer platform facies. According to 

Rasmussen and Stouge (2018), in the Balto-Scandinavian Region the Protopanderodus 

biofacies dominated the open platform areas or cold waters, while the Periodon biofacies 

characterized the platform margin or relatively warmer waters. Parapaltodus is considered 

by Stouge (1984) with a necto-benthic habit in open platform environments, while 

Histiodella is frequent in deep subtidal environments of North America (Ethington and 

Repetski, 1984). Albanesi and Bergström (2004) indicate that Rossodus would have 

preferred relatively deeper waters. In the study section, the sample LG 42 is composed of 

grainstone, whose relation with the biofacies allows this level to be interpreted as a middle 

ramp deposit. 

 

6. Sea-level changes 

    The conodont biofacies recorded in  this study have similar characteristics to those found 

in successions of the same age in different parts of the world (Ethington and Repetski, 1984; 

Stouge, 1984; Stouge and Bagnoli, 1990; Bagnoli and Stouge, 1991; Pohler, 1994; Löfgren, 

1999; Albanesi and Bergström, 2004; Zeballo and Albanesi, 2013; Wu et al., 2014; Serra et 

al., 2017; Rasmussen and Stouge, 2018; Carlorosi et al., 2019), allowing their comparison 

and analysis to recognize sea- level changes that occurred during the Lower and Middle 

Ordovician. 

    With the passage from the Juanognathus-Bergstroemognathus (samples LG 20 to the LG 

-17) to the Protopanderodus-Reutterodus-Drepanodus biofacies (samples LG -17 to the LG 

-12) an increase in abundance and generic diversity is recorded. Protopanderodus, 
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Reutterodus and Drepanodus become more abundant upwards (Fig. 9), which produces the 

respective biofacies variation, accompanied by the transition from packstones to 

wackestones, what is interpreted as an increase in depth within a middle ramp configuration. 

Towards the sample LG -12 there appears a recurrent change of biofacies deriving to 

wackestones-packstones and grainstones, which modify the abundance of the dominant 

genera. Juanognathus and Bergstroemognathus become abundant again (Fig. 9); 

consequently, this event is interpreted as a decrease in depth within the middle ramp. 

    The Juanognathus-Bergstroemognathus biofacies show a decrease in specimens 

abundance and generic diversity in the sample LG -4, increasing from the sample LG 1 

where the lithology turn to mudstones-wackestones, then reaching its maximum peak in the 

sample LG 6. With the lithological modification, the composition of the biofacies shows 

genera typical of deep-water, such as Oepikodus and Protopanderodus (Fig. 9). For this 

interval, a transitional environment from middle ramp to outer ramp is interpreted. 

    From the sample LG 8, the genus Bergstroemognathus has no records and Juanognathus 

continues its presence but in less abundance, while Oepikodus and Protopanderodus 

becoming the most abundant forms until the sample LG 12 (Fig. 9). It represents the 

Oepikodus-Protopanderodus biofacies, with isolated levels of brecciated grainstones 

interpreted as tempestites. From the sample LG 8 to the LG 12, a transitional environment 

from outer ramp to middle ramp is interpreted. 

    Abundance and diversity decrease towards the sample LG 14 where a lithological change 

turns to grainstones and the succeeding wackestones-packstones. From the level LG 14.7, 

an increase in generic diversity is reported for the Juanognathus-Semiacontiodus biofacies, 
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mainly due to the abundance of the species Juanognathus jaanussoni, which is appreciated 

up to the sample LG 34.1. In this interval, the abundance is usually low and the generic 

diversity moderate to high. The genera Periodon and Protopanderodus, which are usually 

associated with deep-waters, have a few records, while the genera related to shallow waters 

such as Semiacontiodus are abundant (Fig. 9), although a decrease of their abundance 

occurs towards the top, which suggest a preference for inner to middle ramp environments. 

The beginning of these levels correlate with the second reef level of the San Juan 

Formation exposed in the Niquivil and Cerro La Silla sections, Central Precordillera of San 

Juan (Mango and Albanesi, in press). 

    From the sample LG 35.9 to the top stratum of the San Juan Formation the samples were 

almost barren, so the abundance and generic diversity is very low, not favourable for 

biofacial determination. However, the sample LG 42 shows an increase in abundance and 

generic diversity, since there are several genera that are abundant; among them, Rossodus, 

Periodon, Protopanderodus, Drepanodus, Parapaltodus, and Paroistodus, that can be 

assigned to a middle-ramp deposit. Overlying this stratigraphic sequence, the transitional 

facies to the shales of the Los Azules Formation reveal the consequent drowning of the 

carbonate ramp. 

   In this way, two transgressive events are recognized in the limestone succession of the 

San Juan Formation at the Los Gatos creek section, the first one from the sample LG -20 to 

the LG 6, where there is a well-differentiated peak of abundance, and the second one from 

the sample LG 14 to the top stratum of the San Juan Formation, which could be related to a 

transgressive systems tract (TST) as recognized by Cañas (1999) for other sections of the 

Central Precordillera of San Juan. 
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Insert Fig. 9 

 

7. Preservation of conodont elements 

    In the present study, the conodonts recovered from the San Juan Formation present a 

color alteration index (CAI) varying from 2 to 2.5, which refers to burial paleotemperatures 

of 60-155°C (Epstein et al., 1977). These values correspond to the Niquivil tectonic thrust, 

which is the easternmost one of the Central Precordillera (Voldman et al., 2010), as part of 

an orogenic belt that continues in the Cerro Potrerillo exposure (Albanesi et al., 1998), the 

Cerro Viejo of Huaco (Ottone et al., 1999; Ortega et al., 2007; Mango and Albanesi, 2018), 

the Las Chacritas (Serra et al., 2015), and the Cerro La Chilca sections (Serra et al., in 

press). 

    According to Rejebian et al. (1987), who analyzed the conodont color and textural 

alterations through experimental and field data, the variation of the conodont CAI (2 to 2.5) 

among specimens from the same sample, the presence of conodonts with corroded surface 

lamella, recrystallization and crystal overgrowths, and the presence of stylolites in the 

bearer rocks, indicate the circulation of hydrothermal fluids within the overburdened strata 

(Fig. 10).  This interpretation is supported according to the referred features as well as the 

low CAI values recorded in the conodonts of the studied collection. 

     The conodont elements determined in this study present isolated anhedral to subhedral 

quartz crystals on the surfuces, such as those ones described by Nöth (1998). The latter 

author indicates that rosettes of anhedral to subhedral microgranule crystallites occur on the 
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surfaces of conodonts with low CAI values (<3.5), whereas euhedral apatite crystals are 

clearly dominant at higher CAI values.  

    More recently, Blanco-Ferrera et al. (2010) consider that the textures of conodont 

elements under low CAI values show great variety and are mainly originated by diagenetic 

processes of apatite dissolution and precipitation, remarking that a clear relation between 

texture or microtexture types and CAI values of the conodonts is not recognized.  

    In our study, two microtexture types are recognized; large columnar and blocky crystal 

microtextures, as described by Ferretti et al. (2017) for conodonts from the Ordovician of 

Normandy, Northern France. Large columnar microtexture is formed of long prismatic sub-

isometric crystals that are approximately aligned with the main axis of the conodont 

element. Blocky crystal microtexture is formed of isometric crystals developed along the 

margins or costae. Both microtextures can be found in the same conodont. According to 

Medici et al. (in press), primary bioapatite appears to imprint a key signature on fossil 

crystal-chemistry (crystal structure and major chemical element contents), while the 

contribution of fossilization and diagenetic processes seems less relevant. 

Insert Fig. 10 

 

8. Conclusions 

   At  the  Los  Gatos  creek  section in  the  Cerro  Viejo  of  Huaco,  the  Prioniodus 

elegans and Oepikodus evae zones are recorded for the lower San Juan Formation. This 

completes the biostratigraphic succession, following previous studies that comprise from 
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the Prioniodus elegans Zone to the Lenodus variabilis Zone (Paroistodus horridus 

Subzone) of the Ordovician (Floian- lower Darriwilian) for the San Juan Formation, 

Precordillera. The Prioniodus elegans Zone (lower Floian) is documented in the anticline 

core of Huaco, at the Los Gatos creek. 

    The subdivision of the Oepikodus evae Zone into the O. evae-Juanognathus variabilis 

and O. evae-Scolopodus oldstockensis subzones, as originally defined, does not apply to the 

study section, where the record of Scolopodus oldstockensis is lower than that recorded in 

the section where the subzones were originally defined, since the species is recorded from 

the base of the Oepikodus evae Zone. 

    At the Los Gatos creek in the Cerro Viejo of Huaco, the conodont biofacies of 

Juanognathus-Bergstroemognathus, Protopanderodus-Reutterodus-Drepanodus, 

Protopanderodus-Oepikodus, Juanognathus-Semiacontiodus and Rossodus-Periodon-

Protopanderodus biofacies are recorded for the San Juan Formation, representing inner, 

middle and outer ramp environments. 

   The analysis of biofacial and lithological relationships allow us to recognize two 

transgressive events through the San Juan Formation at the study succession, which could 

be related to transgressive systems tracts (TST) that occurred during the Lower and Middle 

Ordovician as documented by Cañas (1999) for other sections of the Central Precordillera 

of San Juan. 

    The conodont elements recovered from the San Juan Formation show a CAI from 2 to 

2.5, indicating overburden paleotemperature between 60 and 155 °C in the easternmost 

tectonic belt of the Central Precordillera. Furthermore, the CAI variation in elements of the 
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same sample and the presence of conodonts with altered surface lamella indicate the 

circulation of hydrothermal fluids. 
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Insert Table A.5 

 

Fig. 1. A. Satellite image with the geographical location of the study area. B. Location of 

the Los Gatos creek, Cerro Viejo of Huaco. The asterisk indicates the top stratum of the 

San Juan Formation. 

 

Fig. 2. Geological map of the study area and location of the stratigraphic section. *A: Los 

Gatos creek (modified from Ortega et al., 2007). 

 

Fig. 3. Photographs of the Los Gatos creek, Cerro Viejo of Huaco. A.  Profile at the lower 

San Juan Formation (view to the N). B, C. Tectonic folds in the lower San Juan Formation 

(between the levels LG -18 and LG -17, and between the levels LG 26 y LG 28, 

respectively) (views to the NE). D. Wackestones-packstones of the level LG 36 (graphic 

scale: 20 cm) (view to the S). E. Nodular stratification of the level LG 39.9 (view to the S). 

F. Upper San Juan Formation, the light blue line indicates the contact with the overlying 

Los Azules Formation (view to the NW). G. Ferruginous hardground from the top stratum 

of the San Juan Formation (view to the NE). H. Detail of the Los Gatos creek, view to the 

S. 
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Fig. 4. Stratigraphic column of the San Juan Formation at the Los Gatos creek, and the 

conodont species ranges. (D.: Darriwilian; O.i.: Oepikodus intermedius; B. t.- T. l.: 

Baltoniodus triangularis-Tripodus laevis; L. v.: Lenodus variabilis). 

 

Fig. 5. Total abundance of conodonts per sample from the San Juan Formation, Los Gatos 

creek, Cerro Viejo of Huaco. 

 

Fig. 6. Generic diversity of conodonts per sample from the San Juan Formation, Los Gatos 

creek, Cerro Viejo of Huaco. 

 

Fig. 7. Results of Q- and R-mode cluster analysis of 51 conodont-bearing samples of the 

San Juan Formation, Los Gatos creek, Cerro Viejo of Huaco. Limestone samples are in Q-

mode clustering order and conodont species are in R-mode clustering order. Species 

abundance is expressed as a graded series of dots. Green: Juanognathus-

Bergstroemognathus biofacies; orange: Protopanderodus-Reutterodus-Drepanodus 

biofacies, light blue: Protopanderodus-Oepikodus biofacies; yellow: Juanognathus-

Semiacontiodus biofacies; red: Rossodus-Periodon-Protopanderodus biofacies. 

 

Fig. 8. Stratigraphic column of the San Juan Formation at the Los Gatos creek, with the 

conodont biofacies ranges and the paleoenvironment (D.: Darriwilian; O.i.: Oepikodus 
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intermedius; B. t.- T. l.: Baltoniodus triangularis-Tripodus laevis; L. v.: Lenodus 

variabilis). 

Fig. 9. Total abundance of the most significant genera between the samples LG -20 and LG 

34.1. J.-B.: Juanognathus-Bergstroemognathus biofacies; P.-R.-D.: Protopanderodus-

Reutterodus-Drepanodus biofacies; P.-O.: Protopanderodus-Oepikodus biofacies; J.-S.: 

Juanognathus-Semiacontiodus biofacies. 

 

Fig. 10. Conodonts from the San Juan Formation: 1-4. Triangulodus brevibasis 

(Sergeeva); 1. Sa element, CORD-MP 56611, LG 28, graphic scale: 100 m; 2-3. Details 

of the cusp showing striae, graphic scales: 10 m (2) and 5 m (3); 4. Sb element, CORD-

MP 56612, LG 28, graphic scale: 50 m. 5-6. Oepikodus intermedius (Serpagli); 5. Pa 

element, CORD-MP 56613, LG 4, graphic scale: 50 m; 6. Detail of the cusp showing 

striae, graphic scale: 10 m. 

 

Table A.1. Absolute frequency of conodont species from the San Juan Formation (samples 

LG -20 to LG -8), Los Gatos creek section, Cerro Viejo of Huaco. 

 

Table A.2. Absolute frequency of conodont species from the San Juan Formation (samples 

LG -6 to LG 7.3), Los Gatos creek section, Cerro Viejo of Huaco. 

 

Table A.3. Absolute frequency of conodont species from the San Juan Formation (samples 

LG 8 to LG 20), Los Gatos creek section, Cerro Viejo of Huaco. 
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Table A.4. Absolute frequency of conodont species from the San Juan Formation (samples 

LG 22 to LG 34.1), Los Gatos creek section, Cerro Viejo of Huaco. 

 

Table A.5. Absolute frequency of conodont species from the San Juan Formation (samples 

LG 36 to LG 42), Los Gatos creek section, Cerro Viejo of Huaco. 
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