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A systematic experimental analysis based on an assessment of the mean martensite plate size (hplate)

in sub-grain domains was implemented to characterize the martensite morphology in polycrystalline

Cu-based shape memory alloys. In the grain size range below 100 lm, a linear relationship between

the average width of the martensite plates and the mean grain size was obtained for a thermal-

induced martensitic transformation. This evaluation allows us to perform an analysis of how micro-

structural length scales affect the martensitic transformation. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922195]

In shape memory alloys (SMA), the grain size (d) can

be reduced in order to improve the mechanical properties.1

This is effective, for instance, in enhancing fracture tough-

ness in Cu-based SMA, although the grain size reduction

yields a change in the transformation temperatures. This

effect has been noted by a large number of authors. It has

been shown that for d greater than 100 lm, the start tempera-

ture of the martensitic transformation (Ms) is generally inde-

pendent of d. However, the Ms decreases when d is reduced

below 100 lm. This behavior was observed for different

shape memory polycrystalline alloys: Fe-Pd,2 Cu-Zn-Al,3

and Cu-Al-Ni.4

There are other phenomena related to grain size, which

can affect the transformation and material properties. When

a phase transformation occurs, the austenite grain-size reduc-

tion yields a smaller martensite plate size.5 In the seventies,

this phenomenon had some impact in the scientific commu-

nity because a Hall-Petch relation between the yield stress

and the martensitic plate width was discovered.6 Therefore,

the material yield stress is increased through the decrease of

the martensitic plate size, and the relation hplate / d1=3

between plate and grain size was determined by fitting exper-

imental data over a limited range of the grain size.7

Also, in the last ten years, the community has concen-

trated its efforts in the study of “size effects.”8–11 They are a

consequence of a reduction in the different macro or micro-

structure characteristic parameters of the material, like grain

size, micro-wire diameter, thin film thickness, or particle

size. The implications that these effects have on the supere-

lasticity and shape memory behavior has gained importance

due to the potential use of these materials in small scale

devices.9,12,13

Size effects on characteristic features of the martensitic

transformation, such as Ms, hysteresis, or the critical trans-

formation stress, are related to energy barriers that obstruct

or delay the progress of the martensitic transformation.

Various size related contributions have been considered to

explain variations in Ms, hysteresis, or transformation/

reverse transformation stresses. Such size related contribu-

tions include sample geometry, grain size, and whether the

transformation takes place in constrained structures (as

nanocrystalline materials) or unconstrained ones (as nano

pillars with free surfaces).10 For example, in nanopillars, size

effects appear to be mainly related to the relief of elastic

transformation stresses at free surfaces, a nearly instantane-

ous dissipation of the heat generated in the transformation,

and frictional work spent in overcoming resistance to

interface motion dominated by pinning defects at the pillar

surface.9,11 In polycrystals with small grains, where the mar-

tensitic transformation can be constrained by the grain boun-

daries, the interphase energy between martensite and

austenite and the interfacial energy between martensite var-

iants become important. In non-thermoelastic transforma-

tions, the surface energy related to the austenite-martensite

habit planes plays a substantial role in the suppression of

transformation at smaller grain sizes.14 In thermoelastic mar-

tensitic transformations, the number of phase boundaries is

reduced to zero after a full transformation, while the density

of martensite-martensite boundaries increases. If this later

phenomenon were dominant it would suppress the marten-

sitic transformation. For instance, in nanostructured Ni-Ti,
the grain size effect on the thermal-induced martensitic

transformation has been investigated.15 It was found that the

martensitic transformation is completely suppressed when

the grain size is less than 50 nm. This effect was attributed

mainly to the presence of an energy barrier related to the

martensite-martensite (m-m) interface energy and the

authors used a relation hplate / d1=2 to assess the m-m inter-

face energy change with decreasing values of d.

On the other hand, the martensitic plate size and the m-

m interface energy are very important parameters for theoret-

ical models, which describe the SMA behavior in the pres-

ence of size effects.15–17 The analysis of this particular point

constitutes the scope of the present work, where a systematic

experimental study of the relation between d and hplate is pre-

sented for values of d ranging from 500 nm to 6 mm. Thisa)malarria@ifir-conicet.gov.ar
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relation allows us to evaluate the change of martensitic inter-

face energy per unit volume as d is reduced and to analyze

how d influences the martensitic transformations.

In order to perform a study over a wide range of grain

sizes, different production techniques and thermal treatments

were used. Rapid solidification techniques allow us to obtain

polycrystalline materials with a grain size less than that pro-

duced by conventional techniques. For example, Melt

Spinning (MS) and Twin Roll Casting (TRC) were success-

fully applied to Cu-based SMA to develop samples with

grain size less than 500 nm.18–20 Then, ribbons (50 lm in

thickness) and strips (300 lm in thickness) were produced by

MS and TRC, respectively. Processing parameters, alloy

chemical composition, and sample mean grain size are pre-

sented in Table I. In order to modify the as-cast grain size,

different samples were annealed at 700 �C, 800 �C, and

900 �C for 30 min, and then water quenched. A second ther-

mal treatment was performed at 200 �C for 15 min followed

by air cooling, to release stress, promote order, and remove

excess vacancies. In this manner, samples with a wide range

of d, between 1 lm and 100 lm, were obtained.

In addition to these rapid solidification samples, different

pieces of a Cu-13 Al-5 Ni-ð0:5 Ti–0:1 Cr) at.% wire were re-

melted and solidified at various cooling rates to produce a

microstructure with grain sizes between 100 lm and 1 mm

(samples called T11). In order to extend our study to grain

sizes grater than 1 mm, single-crystals of Cu-13 Al-5 Ni pro-

duced by the Bridgman method were machined into cylinders

of 2, 4, and 6 mm in diameter (see Table II).

Due to alloy compositions, all samples have transforma-

tion temperatures above room temperature. Thus, all of them

are in the 18R martensitic phase at this temperature.

The microstructures of the samples with d > 10 lm were

studied with an Olympus PM3 optical microscope using

Nomarski interference contrast. These samples were electropol-

ished with 20 %H2SO4-47%H3PO4-H2O for 30 s at 8 V and

5 �C. The samples with smaller grain sizes were analyzed with

a Philips EM300 transmission electron microscope (TEM). In

this case, the thin foils were prepared with a twin-jet electropo-

lisher using a 30%HNO3-methanol solution at �10 �C.

To perform proper measurements of hplate and d (reliable

statistical results), it was necessary to take a large number of

sample images in different grains using TEM and optical

techniques. In particular, the d value was calculated averag-

ing the maximum (dM) and the minimum diameters (dm),

that is, d ¼ ðdM þ dmÞ=2. In most of the grains, multiple par-

allel plate domains were observed in the martensitic structure

and even in the self-accommodation structure (see Figure

1(a)). It is interesting to note that in most of the grains

smaller than 10 lm there was only one domain of parallel

plates (see Figure 1(b)). This is similar to what was found in

NiTi nano-grains, where the “herringbone” type of marten-

sitic morphologies was observed.8 Thus, it was necessary to

develop a measurement method to determine hplate.

This method consists in drawing a line normal to the

parallel plates in each domain (see Figure 1(c)). The line

length (Si) was taken as the characteristic dimension of the

martensitic domain and the number of intersections (Ni) was

determined. Then, the hplate of a given grain was calculated

averaging the mean values of the martensitic plate size of

each domain, weighted by Si. That is,

hplate ¼
1

Stot

Xn

i¼1

Si
Si

Ni þ 1ð Þ

� �
; (1)

Stot ¼
Xn

i¼1

Si: (2)

These measurements were performed in more than 300

grains of different sizes. The relation between d and hplate is

plotted in Figure 2 on a log-log scale. Each point represents

the average sizes measured for a grain of a given sample.

Figure 2 shows that hplate is independent of d for

d> 100 lm. However, a strong decrease of hplate is observed

as d falls below 100 lm. This behavior is due to the difficulty

of developing the transformation in reduced domains. So, the

mean plate size decreases to generate more geometric possi-

bilities to accommodate the transformation strain and match

to the structure at the grain boundaries.

It is interesting to note that the break-point of this

behavior, which is plotted in Figure 2, occurs at d¼ 100 lm.

This is consistent with the fact that the Ms decreases, when d
is less than 100 lm.3,4,18 This agreement supports the idea

that the size effect on the martensitic transformation appears

below this value of grain size.

TABLE I. List of samples produced by rapid solidification techniques with

their casting parameters and mean grain size in as cast state.

Sample Alloys (at. %) Tech. Speed (m/s) d (lm)

MS1 Cu-13 Al-5 Ni MS 19 3

MS2 Cu-13 Al-5:5 Ni-1 Ti MS 19 1–2

TR1 Cu-13 Al-5 Ni TRC 0.6 24

TR2 Cu-13 Al-5:5 Ni- 1 Ti TRC 0.84 5

TABLE II. Coarse grain samples and single crystals.

Sample Alloys (at. %) Tech. Crystal size-d ðlmÞ

T11 Cu-13Al-5Ni-ð0:5Ti� 0:1CrÞ SDCS 100–1000

C2 Cu-Al-Ni BM 2000

C4 Cu-Al-Ni BM 4000

C6 Cu-Al-Ni BM 6000

FIG. 1. Optical micrography of a large grain diameter microstructure (a),

TEM bright field image of a small grain diameter microstructure (b) and the

measurement method of hplate (c).
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In order to find a functional relation between these pa-

rameters, the experimental data was fitted, over the range of d
below 100 lm, by the power law hplateðdÞ ¼ AdB, where A
and B are the fitting parameters. The function was fitted using

least-square method on the logarithmic values of the measured

points, giving A ¼ ð0:03660:002Þ and B ¼ ð0:9960:02Þ. It

is interesting to note that B is very close to 1, so it can be

assumed that there is a linear relation between hplate and d.

Therefore, it can be concluded that the relation between these

two characteristic sizes is

hplateðdÞ ¼ 0:036 d: (3)

It is interesting to note that the linear relation given by

Eq. (3) corresponds to the model used by Turteltaub and

Suiker14 for a TRIP steel, where the aspect ratio c (relation

between thickness of a martensitic plate and the grain diame-

ter) was estimated to be 0.05. This value is close to the value

of 0.036 found in the current experimental study. On the other

hand, a linear relationship disagrees with the potential func-

tions reported by Khan7 and Waitz et al.15 Nevertheless, in the

former work, the potential relationship was determined fitting

experimental data over a limited range of d between 250 and

5000lm. Whereas, the latter work obtained a relation hplate

� d1=2 based on a theoretical energy minimization criterion,

which agrees with an experimental measure of these magni-

tudes on a nanograin length scale (d¼ 50 nm and hplate

¼ 2:060:5 nm). It is interesting to note that this experimental

measure of the nano-grains morphology is consistent with Eq.

(3). Also, a linear relation between hplate and d was previously

suggested by Perkins,21 who observed the same grain plate

size relationship in two images with very different grain sizes.

The experimental results2–4 show that if the grain size is

reduced below 100 lm, an additional overcooling is neces-

sary to produce the phase transformation (Ms decrease). This

means that the sample is overcooled to increase the driving

force to overcome the energy barrier generated by different

mechanisms, such as elastic accommodation, interface

energy, and dissipative processes (e.g., interaction with

defects, interfaces friction, etc.).

The experimental relation between d and hplate presented

in Eq. (3) allows us to evaluate the change of the m-m inter-

face area per unit volume as d is reduced. Thus, the interface

energy density per unit volume behavior can be analyzed.

For this purpose, it is necessary to develop a theoretical

model of the grains, which takes into account the change of

total surface area of the m-m interface. It can be assumed

that the grains are spherical with a simple arrangement of

parallel martensitic plates, as shown in Figure 3 (inset). The

m-m interfaces are equidistant and separated by hplate, which

is defined by Eq. (3). This model represents the microstruc-

tural parameter averages, and although this may seem very

rough, it usefully captures size effects.

The total surface area of the m-m interfaces inside the

grain (Am�m
tot ) is calculated using the expression15

Am�m
tot d;Nð Þ ¼ p

2
d2 N2 � 1

3N

� �
; (4)

where N is the number of m-m interfaces. From Eq. (3), it is

clear that N ¼ d=hplate ¼ 28. It follows that Am�m
tot depends

only on d. The assessment of the interface energy density per

unit volume is made using the following expression:

Em�m ¼ cm�m Am�m
tot dð Þ
V dð Þ

¼ N2 � 1

N

� �
cm�m

d
; (5)

where V(d) is the volume of the spherical grain and cm�m is

the m-m interface energy per unit area. Values of cm�m

between 0.02 J/m2 and 0.5 J/m2 were calculated for Cu-Al-Ni
in the 18 R martensitic structure, depending on the crystallo-

graphic compatibility between the different martensitic var-

iants.22 Moreover, when Shilo et al.23 determined the

thickness and energy of type-I twin boundaries in Cu-Al-Ni
single crystals by fitting simulated displacement fields to

AFM surface topography measurements, they obtained a

value of cm�m ¼ 0:07 J/m2.

Figure 3 shows Em�m as a function of d for the different

values of cm�m. It is observed that Em�m is significant for the

d lower than 10 lm. It is interesting to note that over this

range, a reasonable correspondence was verified between the

rough grain model (grains with a simple arrangement of par-

allel martensitic plates) and the experimental observations

(Figure 1(b)). It must be stressed that the linear relation

between the hplate and d yields a scaling behavior between

the m-m interface energy and grain size of Em�m � 1=d.

To understand size effects, it is interesting to assess the

transformation hardening produced by the m-m interface-

FIG. 2. Experimental measurements of the hplate as a function of the d.

FIG. 3. Grain model (inset), interface energy density per unit volume

(Em�m) and overcooling (DTm�m) to overcome the energy barrier imposed

by the m-m interfaces as a function of d.
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energy increase, which is yielded through the martensitic

plate refinement. The driving force DFm�m to overcome the

energy barrier imposed by this mechanism is given by

DFm�m ¼ DS ðDTm�mðdÞÞ ¼ Em�m; (6)

where DS ¼ �2� 105 J/m3K is the entropy change between

the two phases24 and DTm�m is the overcooling to produce

the DFm�m increase. The value of DTm�m needed to over-

come the energy barrier imposed by the m-m interfaces is

plotted in the right axis of Figure 3.

As already noted, the energy Em�m is appreciable only

when d is less than 10 lm. Although, it is possible to analyze

the austenitic stabilization in nanograins. For instance, in a

Cu-Al-Ni grain of d¼ 10 nm, the overcooling to overcome

the energy barrier generated by the m-m interface energy

was 280 K (using the smaller value of cm�m ¼ 0:02 J/M2).

Therefore, this high energy barrier will stabilize the austen-

itic phase of Cu-Al-Ni nano-size grains.

Summarizing, a linear relationship between the average

plate width and grain size was obtained (hplateðdÞ ¼ 0:036 d),

through a systematic experimental method based on evaluation

of the plate size in domains. This experimental relationship is a

useful input parameter for theoretical models that study size

effects in martensitic transformations. Using a rough grain

model, the energy barrier (produced by the martensitic-

martensitic interface energy) as a function of the grain size was

assessed. Also, the overcooling required to overcome the

energy barrier was calculated. The energy barrier is appreciable

in grains smaller than 10 lm and it is large enough to stabilize

the austenitic phase in materials with nanograins.
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