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Abstract. Frost and drought are key stress factors limiting the growth and distribution of tree species. Resistance to
stress involves energy costs that may result in trade-offs between different functional traits. Structures or mechanisms
that can help to withstand stress imply differences in the carbon economy of the species. Although adaptive responses
to frost and drought resistance are usually of a similar nature, they are rarely assessed simultaneously. We investigated
these resistance mechanisms in 10 canopy tree species coexisting in the semi-deciduous subtropical forests of northern
Argentina. We measured leaf lifespan, anatomical, photosynthetic and water relations traits and performed a thermal
analysis in leaves to determined ice nucleation and tissue damage temperatures. Our results showed that evergreen and
deciduous species have different adaptive responses to cope with freezing temperatures and water deficits. Evergreen
species exhibited cold tolerance, while deciduous species were more resistant to hydraulic dysfunction and showed
greater water transport efficiency. Further research is needed to elucidate resistance strategies to stress factors at the
whole tree- and stand level, and possible links with hydraulic safety and efficiency among different phenological
groups. This will allow us to predict the responses of subtropical forest species to changes in environmental conditions
under climate change scenarios.
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Introduction

Resistance of species to stress events is determined by the
interaction of multiple functional traits (Bartlett et al. 2016).
The interspecific variation of these traits can increase species
richness (Ben-Hur et al. 2012) and promote their coexistence
(Clark et al. 2010; Uriarte et al. 2010; Anderegg and
Hillerislambers 2016). Low temperatures and water
availability are two of the main stressors limiting the
growth and geographical distribution of tree species
growing beyond the tropical regions. Both stress factors
affect important plant physiological processes such as
photosynthesis, photoinhibition, and transpiration (Sakai and
Larcher 1987; Stuart et al. 2007; Charra-Vaskou et al. 2012).

The exchange of gases through stomata, and the fixation
of carbon in photosynthetic tissues are two important
physiological processes in leaves (Poorter et al. 2008;
Martínez-Vilalta et al. 2010; Wright et al. 2010; Iida et al.
2016). To operate optimally, these processes require a well-
balanced hydration status of the leaf. This water status is
associated with stomatal regulation as well as water
transport in leaves through inside and outside the xylem
pathway (Prado and Maurel 2013; Buckley et al. 2015;
Scoffoni et al. 2017). Small variations in the water flow
through leaves have important implications on the
water transport at plant level (Holbrook and Zwieniecki
2005), and could strongly limit productivity, competitive
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success, and ultimately species distribution (Sack and
Holbrook 2006).

Evergreen and deciduous species represent the opposite
extremes in the leaf economics spectrum from conservative
and slow-growing to acquisitive and fast-growing,
respectively, as suggested by correlations among
photosynthetic rate, leaf lifespan (LL), and specific leaf area
(SLA) (Wright et al. 2004; Bai et al. 2015). Further, the leaf
economics framework was extended to a more general plant
economic spectrum incorporating wood and hydraulic traits
(Reich 2014; Xu et al. 2017). Wood density (WD) is
functionally related to carbon gain, and regulation of leaf
water status (Santiago et al. 2004; Jacobsen et al. 2007;
Chave et al. 2009; Oliva Carrasco et al. 2015).

Adaptations to freezing and drought often share similar
physiological mechanisms (Atkin et al. 2005; Beck et al. 2007;
Costa e Silva et al. 2009). Tree species exhibit three strategies
to resist these stress factors: escape, avoidance, and tolerance
(Levitt 1980; Hódar et al. 2004; Körner 2012). Deciduous trees
usually escape the effect of freezing or drought by adjusting
leaf phenology to seasonal changes (Cavender-Bares et al.
2005; Pennington et al. 2009; Hasselquist et al. 2010; Wolfe
and Kursar 2015). Avoidance can be regarded as the
minimisation or the exclusion of the stress effect on a given
tissue (Vitasse et al. 2014). Examples of this include
supercooling (Goldstein et al. 1985; Wisniewski et al.
2015), rolling of leaves (Schwabe and Lionakis 1996) and
strongly lignified tissues (Richardson and Berlyn 2002).
Tolerance is achieved via morphological, anatomical, and
biochemical changes to allow osmotic and elastic
adjustment of tissues (Preston and Sandve 2013). Both
drought- and freezing-tolerant species resist cell dehydration
(Charra-Vaskou et al. 2012). Although frost and drought
resistances in leaves may be correlated (Medeiros and
Pockman 2011), simultaneous measurements and analysis
on these adaptive responses for a large number of species
are lacking.

The Atlantic Forest biome is located in South America,
covering a great extension of the Brazilian coast and
extending from up to 700 km to the continent to Argentina
and Paraguay. In its subtropical part, deciduous trees
comprise a substantial percentage (25–50%) of the species
(Leite and Klein 1990; Rezende et al. 2016). Despite the mild
seasonality in temperatures and rainfall, there is little
research examining plant strategies in subtropical forests
and, particularly, in the semi-deciduous Atlantic Forest.
The aim of the present study was to evaluate the
resistance mechanisms to drought and low temperatures in
relation to leaf habit, wood density, and leaf anatomical,
hydraulic, and photosynthetic traits in 10 canopy tree species
coexisting in the semi-deciduous Atlantic Forest in NE
Argentina. Mechanisms of stress resistance imply trade-
offs among different functional traits with high energy
costs (Xu et al. 2009; Onoda et al. 2011). According to
the leaf economic spectrum framework we expected that
species with long leaf lifespan have traits that allow them
to avoid or tolerate frost and drought stress. Species with
short leaf lifespan, which escape subzero temperatures, have
leaf traits associated with maximising carbon assimilation

and water transport efficiency during the growing season at
the expense of drought resistance.

Materials and methods
Study site
The present study was conducted in the semi-deciduous
Atlantic Forest at Iguazú National Park, Misiones province,
Argentina (25�410–25�420S, 54�280–54�290W). This forest has
mature canopy trees ranging from 20 to 45 m in height, with
abundant lianas and epiphytic species (Srur et al. 2007). This
subtropical forest contains more than 70 tree species (Galindo-
Leal and Gusmão Câmara 2003) including evergreen, and
winter deciduous and brevideciduous species (Pennington
et al. 2009). The mean annual rainfall is 2000 mm, evenly
distributed throughout the year. Exceptionally intense and
short-lived droughts may occur during the year, where soil
water potentials can attain values as low as �2MPa
(Campanello et al. 2009). The annual mean air temperature
is 21�C. Additionally, freezing temperatures (frosts) of
2–9 days per year occur during autumn–winter (Srur et al.
2007; Gatti et al. 2008).

In order to evaluate the traits associated with resistance to
low temperatures and water deficits, thermal analyses and
measurements of hydraulic, anatomical, and photosynthetic
leaf traits were carried out in 10 tree canopy species of the
semi-deciduous Atlantic Forest: Ceiba speciosa (A.St.-Hil., A.
Juss. & Cambess.) Ravenna, Cedrela fissilis Vell., Cordia
trichotoma (Vell.) Arráb. Ex Steud., Cabralea canjerana
(Vell.) Mart., Ocotea diospyrifolia (Meisn.) Mez.,
Chrysophyllum gonocarpum (Mart. & Eichler) Engl,
Balfourodendron riedelianum (Engl.) Engl., Lonchocarpus
muehlbergianus Hassl, Parapiptadenia rigida (Benth.)
Brenan, and Holocalyx balansae Micheli. Values of WD
employed in this study were obtained according to Oliva
Carrasco et al. (2015). Species selection was based
according to their relatively high abundance, which
additionally covered a wide range of WD values, and
represented different leaf habits characteristic of the semi-
deciduous Atlantic Forest (Zuloaga et al. 2008; Jardim
Botânico do Rio de Janeiro 2018; see di Francescantonio
et al. 2018 for details).

Monthly precipitation and temperature data for the study
period (see Fig. S1, available as Supplementary Material to
this paper) were obtained from the nearest (8 km)
meteorological station (Puerto Iguazú-Aero, Servicio
Meteorológico Nacional, Argentina, 25�4304800S–
54�2801200W).

Leaf lifespan
In 2012, two trees per species were selected to measure
LL. Depending on the species, two to three branches between
13 and 18mhighwere selected, where aminimumof 20 recently
expanded leaves with unique identifiers was marked. The
presence of tagged leaves was monthly recorded. Survival
time and LL for each species at the time from full leaf
expansion to abscission were estimated with the
Kaplan–Meier method (Kitajima et al. 2013; Russo and
Kitajima 2016), which accounts for censored leaves (leaves
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removed from the study before their death or alive at the last
survival census).

Anatomical and photosynthetic leaf traits
The methodologies described in Pérez-Harguindeguy et al.
(2013) were used for determining specific leaf area (SLA) and
venation traits in 10 and three leaves per species, respectively.
The leaves were cleared to quantify venations traits. For this
purpose, leaveswereboiled in96%alcohol, and then in a solution
of 5% NaOH and 96% ethanol, 1 : 1 (v/v). The time of boiling
varied according to the hardness of leaves tissue. Then, leaves
were washed in distilled water and transferred into a sodium
hypochlorite solution, until they were transparent. Finally, the
tissues rich in lignin were stained with a solution of 2% safranin
in ethanol, and scanned at 600 dpi. Whole cleared leaf images
were measured to estimate leaf area, and density of 1st and 2nd
veins. Vein density (VD) was measured as the total length of the
1st and the 2nd order leaf venations per leaf area using ImageJ
(NIH Image) by manually drawing and counting all veins in the
leaf area. The leaves used to study venation were also used to
determine the stomatal density (SD). Clear nail polish was
applied onto the middle of the abaxial and adaxial leaf surface
(avoiding the major vein). After they were dried, they were
peeled off and mounted onto a glass slide to obtain images that
were captured using a light microscopewith 40�magnifications
(Leica Lietz DMRB; Leica Microsystems, with Nikon Coolpix
4500 digital) (Russo et al. 2010).

To estimate leaf photosynthetic capacity a chlorophyll
fluorescence analyser with a pulse-amplitude modulated yield
(Mini-PAM Walz) was used. Three to four individuals per
species were selected during spring. Leaves used had similar
size and sun exposure. Electron transport rate (ETR) was
calculated based on chlorophyll fluorescence data using the
following equation:

ETR ¼FPSII� PFD� 0:5� a;

where ETR is electron transport rate, PSII is the effective
quantum yield ofFPSII measured during a 0.8-s saturating flash
(2000–3000 mmol m–2 s–1), and the coefficient of 0.5 factor
assumes an even distribution of absorbed quanta between PSII
and PSI so that two photons are required for each electron passed
through (Maxwell and Johnson 2000). The a parameter was
assumed to be 0.84 as a mean value for a wide variety of leaves
(Björkman and Demmig 1987; Stemke and Santiago 2011).
Photosynthetic capacity, expressed as the maximum electron
transport rate (ETRmax; mmol m2 s–1), was calculated from the
light curves as described by Rascher et al. (2000):

y¼ ðETRmaxÞð1�e�bxÞ;
where y is photosynthetic rate, x is irradiance, and b is the

instantaneous fractional growth rate of the exponential function.

Thermal analysis and tissue damage
Ice nucleation temperatures of leaves
Thermal analyses of mature leaves were conducted to

determine the ice nucleation temperature (INT). During
the months of April and May 2016, sun-exposed branches

from three individuals of each species were collected early
in the morning and immediately covered by black plastic bags
and transported to the laboratory. Leaves were placed in a
temperature controlled freezer in contact with copper-
constantan thermocouples in order to determine tissue
temperature. One thermocouple was attached with surgical
tape (Transpore, 3M) against the underside of each leaf and
was positioned in a tube within the freezer. The thermocouples
were connected to an automatic data acquisition system
(CR10X, Campbell Scientific), and temperatures were
recorded at 4-s intervals. Freezer temperature was lowered
at a rate of 5�C h�1 from ambient (20�C) to –10�C. This rate
was similar to those used in other studies (e.g. Lipp et al. 1994;
Arias et al. 2015). Foliar INT was obtained from the tissue
temperature kinetics. A rapid increase in temperature indicated
heat release from water during extracellular ice nucleation.

Leaf tissue damage
The electrolyte leakage method was used to assess the impact
of low temperatures on leaf tissue damage (Wilner 1960; Lipp
et al. 1994). Leaves samples from the same branches used in
thermal analysis were placed into sealed tubes (16 leaf discs
per tube, 11 tubes per individual, three individuals per species)
and incubated in a freezer. The freezer was then cooled down
at a rate of 5�C h–1 to reach different target temperatures (20,
10, 7, 5, 2, 0, –2, –4, –6, –8 and –10�C). After maintaining the
samples at the target temperature for 15 min (Lipp et al. 1994),
3 tubes per species (one of each individual) were removed
from the freezer and thawed at ambient-temperature (20�C) for
2 h, and then 20 mL of deionised water was added to each tube.
The tubes were held at 20�C for 24 h with occasional mixing
and shaking, and then the electrical conductivity (EC) of the
solution was measured with an electrical conductance/
resistance meter (Lutron WA-2015). The samples were
frozen at –20�C for 24 h to achieve a complete electrolyte
leakage, and then the EC of the solution was measured once
again. The relative EC was calculated as a percentage:

relative EC ¼ ðEC after the temperature treatment=EC

at� 20�CÞ � 100:

The % EC was plotted as a function of the incubation
temperature. The temperature at 50% relative EC was defined
as the leaf lethal temperature of the species (LT50)which couldbe
associated with membrane structural transitions (Rajashekar
et al. 1979).

The thermal safety margin (TSM) was defined for each
species as:

TSM ¼ INT� LT50:

Species that exhibitedLT50within the rangeof INT (TSM=0)
were categorised as freezing-avoidant species (FAS), in cases
where LT50 was greater than INT (TSM <0) the species were
considered sensitive to extracellular ice formation (freezing
sensitive species, FSS), whereas species with LT50 being
sustainably lower than INT (TSM >0) were categorised as
freezing-tolerant species (FTS) (Squeo et al. 1991; Zhang
et al. 2016).
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Leaf water relations
Leaf water potentials at predawn (Ypd) and midday (Ymd) were
measured in 4–5 leaves in three individuals per species with a
pressure chamber (PMS1000) during a 30-day dry spell on
January 2012. The Ymd values obtained in these conditions
reflect the minimum leaf water potential for these species
under natural conditions (Bhaskar and Ackerly 2006). The
Ypd and Ymd were determined at 05:30–07:00 hours and
12:30–14:00 hours respectively.

Pressure–volume analyses were obtained using the
dehydration technique (Tyree and Hammel 1972; Koide et al.
1989).Branchesof three individuals per specieswere collectedat
predawn and transferred immediately to the laboratory in sealed
plastic bags. Volumetric bulk modulus of elasticity (e) was
calculated over the full range of positive turgor as described
by (Evans et al. 1990):

"¼ ðDFP=DRWCÞ;
where DYP is the change in turgor pressure and DRWC is the
change in relative water content and FS is the symplastic water
fraction.

Leaf hydraulic conductance (Kleaf; mmol m–2 s–1MPa–1) was
determined according to the partial rehydration method
(Brodribb and Holbrook 2003). The Kleaf was calculated as:

Kleaf ¼ C lnðYiYf Þ=t;
whereC is leaf capacitance,Yi is the foliarwater potential before
rehydration andYf is the foliar water potential after rehydration
for t seconds. Foliar capacitance was determined from the P–V
relationships. Leaf vulnerabilitywas determinedbyplottingKleaf

againstYi. Thewater potential atwhich lossof50 and88%of leaf
hydraulic conductance occurs (P50 and P88 respectively) and
Kleaf_max was estimated from a four- parameter logistic function
fitted to the data.

The hydraulic safety margin (HSM), which reflects the
preservation of hydraulic integrity, was calculated as follows:

HSMP50 ¼ Ymd�P50;

HSMP88 ¼ Ymd�P88;

whereYmd is minimum leaf water potential, P50 and P88 are the
leaf water potential inducing a 50 and 88% loss in the leaf
hydraulic conductance respectively.

Statistical analysis
Sigmoid curves were fitted to the relationship between relative
EC and temperature for all the species. Then, LT50 were
derived from the regression equations. P50, P88 and Kleaf_max

were estimated from a four-parameter sigmoid function fitted
to the data. The relationship between INT, and LT50 with
leaf habits (deciduous, brevideciduous and evergreen) were
analysed using two independent linear mixed-effects models.
Leaf habit was considered as a fixed effect and species a
random effect. A model with a normal distribution and an
identity link function was fitted to the data using the lme
function (package nlme) (Pinheiro et al. 2017) in the R
statistical and programming environment (R Development
Core Team 2016). The significance of fixed effects was
assessed using Fisher’s test and post-hoc comparisons were
carried out using Tukey’s test in the multcomp R package
(Hothorn et al. 2016). Finally, to evaluate trait coordination
between deciduous-brevideciduous and evergreen species,
statistically significant correlations among traits (with
r >0.6, and P < 0.05) were graphically represented using
trait covariation networks. Traits were represented as nodes
and their correlation as the edges linking them. Two indicators
of network centrality were calculated for each trait: the degree
(D), defined as the number of edges of a node and the weighted
degree (Dw), defined as the sum of all significant coefficients
of correlation of a node. Pearson correlations and
Kaplan–Meier method were performed with InfoStat
software (Di Rienzo et al. 2017).

Results

Leaf lifespan

Evergreen species, with leaves always present, showed LL
from 438 to 479 days; brevideciduous species, with leaves
absent for 1 month or less of the year, presented LL of
269–354 days; and deciduous species, with leaves absent
for more than 1 month, presented LL of 208 and 329 days
(Table 1; Fig. S2).

Anatomical traits and specific leaf area

No relationship was found between leaf habits and stomatal
density (F2,27 = 0.63, P = 0.54), or density of major veins
(F2,27 = 1.58, P = 0.22). There were considerable differences

Table 1. Family, species, leaf habit, leaf anatomical traits and wood density
Stomatal density (SD, stomatal mm–2), vein density, (VD, mm mm–2), maximum leaf lifespan (LLmax, days), specific leaf area (SLA, cm

2 g–1), wood density
(WD, g cm–3). D, deciduous; B, brevideciduous; E, evergreen. Values are means � s.e. (n = 3 for SD and VD; n = 20 for LLmax; n = 6–10 for SLA and WD)

Family Species Leaf habit SD VD LLmax SLA WD

Meliaceae Cedrela fissilis D 142.8 ± 3.0 2.3 ± 0.4 329 97.6 ± 9.2 0.49 ± 0.01
Boraginaceae Cordia trichotoma D 33.6 ± 5.2 1.2 ± 0.02 208 66.7 ± 5.3 0.59 ± 0.02
Malvaceae Ceiba speciosa D 36.2 ± 1.0 3.2 ± 0.3 210 105.2 ± 7.4 0.41 ± 0.02
Rutaceae Balfourodendron riedelianum B 38.8 ± 2.0 2.2 ± 0.1 319 115.1 ± 12.7 0.66 ± 0.02
Fabaceae Parapiptadenia rigida B 90.2 ± 7.5 12.6 ± 1.3 269 114.5 ± 11.8 0.78 ± 0.02
Fabaceae Lonchocarpus muehlbergianus B - 2.1 ± 0.1 354 143.1 ± 12.3 0.76 ± 0.03
Meliaceae Cabralea canjerana E 23.0 ± 3.0 1.6 ± 0.1 438 116.7 ± 14.0 0.56 ± 0.02
Lauraceae Ocotea diospyrifolia E 39.4 ± 2.4 1.6 ± 0.1 442 112.7 ± 2.5 0.56 ± 0.01
Fabaceae Holocalyx balansae E 61.2 ± 0.5 11.9 ± 0.1 479 113.9 ± 7.6 0.83 ± 0.01
Sapotaceae Chrysophyllum gonocarpum E 85.9 ± 7.5 2.4 ± 0.5 468 118.1 ± 26.4 0.66 ± 0.02
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among species. Stomatal density ranged between 23.0 � 3.0
stomata mm–2 in C. canjerana to 142.8 � 3.0 stomata mm–2 in
C. fissilis; whereas major vein density ranged between
1.2 � 0.02 mm mm–2 in C. trichotoma to 12.6 � 1.3 mm
mm–2 in P. rigida (Table 1). Species with trichomes on the leaf
surface (C. fissilis and C. trichotoma) showed the lower
values in SLA (Table 1).

Thermal analysis and tissue damage

The relationship between membrane damage (EC), and the leaf
tissue temperature was described by a sigmoid function for all
species (Fig. S3). INT as well as the temperature at which 50%

membrane electrolyte leakage occurred (i.e. leaf lethal
temperature, LT50) varied across species and was different
between leaf habits (F2,27 = 12.10, P < 0.001; F2.27 = 7.05,
P < 0.01 respectively; Fig. 1a, b; Table 2), whereas TSM did
not show significant differences (F2,27 = 2.86, P = 0.07;
Fig. 1c). Deciduous species had higher nucleation
temperatures and LT50 than the evergreen species. FTS was
observed in the evergreen species and in one of the
brevideciduous species studied, with LT50 substantially
lower than the INT values. FAS was observed in the
deciduous and in one brevideciduous species. In these
cases, LT50 was within the range of the INT
(Table 2). Two species (L. muehlbergianus and
H. balansae) were FSS, their LT50 was greater than INT.

The INTandLT50werenegatively related toLLmax (r=–0.51,
P = 0.03 and r = –0.77, P < 0.001 respectively). Species with
longer LLmax showed lower values of INT and LT50 (Fig. 2a, b;
Table 2). WD showed a significant negative relationship with
INT (r = –0.67, P = 0.001), but there was no relationship
between WD and LT50 (r = –0.27, P = 0.17) (Fig. 2c, d).

Leaf water relations and photosynthetic leaf traits

The isohydricity (daily DY) of the 10 species studied showed a
continuum of responses, not depending on their leaf habit
(Fig. S4; Table 3). The Kleaf decreased as Yleaf became more
negative (Fig. S5). In general, Kleaf_max was higher in
deciduous than in evergreens species (Table 3). Also,
Kleaf_max varied widely among species, being six times
greater in C. speciosa than in C. gonocarpum
(Table 3). Ymd did not vary across the different leaf habits
(F2,27 = 0.59, P = 0.56; Fig. 3a), whereas significant
differences were found in P50 and P88 (F2,27 = 21.7, P <
0.001; F2.27 = 12.7, P < 0.001, respectively, Fig. 3b, c).
Deciduous species lost hydraulic conductivity at more
negative water potentials than evergreens. The HSMP88 also
varied with leaf habit (F2,27 = 19.55, P < 0.001). These safety
margins were positive or near zero in deciduous and
brevideciduous species and negative in evergreen species
(Fig. 3d).

The ETRmax was negatively related to LL (r = –0.6,
P = 0.03), while no relationship was found with wood
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Fig. 1. Ice nucleation temperature (a), leaf lethal temperature (b), and
thermal safety margin (c) for leaf habits. D, deciduous species (Cedrela
fissilis, Cordia trichotoma, Ceiba speciosa); B, brevideciduous species
(Balfourodendron riedelianum, Parapiptadenia rigida, Lonchocarpus
muelhlbergianus); E, evergreen species (Cabralea canjerana, Ocotea
diospyrifolia, Holocalyx balansae, Chrysophyllum gonocarpum).
Different letters indicate significant differences at P < 0.05.

Table 2. Extracellular ice nucleation temperature (INT, 8C), leaf lethal temperature (LT50; the temperature at which
50% membrane leakage electrolyte occurred, 8C), thermal safety margin (TSM, 8C) and frost resistance adaptations
Abbreviations: FAS, freezing avoidant species; FTS, freezing tolerant species; FSS, freezing sensitive species. Values aremeans

� s.e. (n = 3). Significant differences are indicated: *, P < 0.05; **, P < 0.001

Species INT LT50 TSM Frost resistance

Cedrela fissilis –1.45 ± 0.13 –5.41 ± 1.20 3.96 ± 2.28 FAS
Cordia trichotoma –2.27 ± 0.38 –3.88 ± 1.57 1.61 ± 0.85 FAS
Ceiba speciosa –2.60 ± 0.62 –1.21 ± 0.76 –1.39 ± 1.25 FAS
Balfourodendron riedelianum –3.53 ± 0.52 –6.24 ± 0.12 2.71 ± 0.45 FTS*
Parapiptadenia rigida –7.01 ± 0.93 –5.62 ± 0.40 –1.39 ± 0.79 FAS
Lonchocarpus muehlbergianus –5.50 ± 0.28 6.79 ± 1.38 –12.30 ± 1.10 FSS**
Cabralea canjerana –3.78 ± 0.22 –7.29 ± 1.04 3.51 ± 0.85 FTS*
Ocotea diospyrifolia –6.92 ± 0.12 –9.68 ± 0.01 2.76 ± 0.11 FTS**
Hlocalyx balansae –9.27 ± 0.68 –6.14 ± 0.12 –3.13 ± 0.59 FSS*
Chrysophyllum gonocarpum –4.12 ± 0.38 –8.42 ± 0.69 4.30 ± 0.71 FTS*
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density (r = –0.3, P = 0.08) (Fig. 4a, d). Evergreen species,
with longer LL, showed lower ETRmax, whereas deciduous-
brevideciduous species (with lower LL) the higher ETRmax

values. The Kleaf_max was negatively related to LL (r = –0.6,
P = 0.002), and with WD (r = –0.5, P = 0.01). Species with
longer LL and higher WD showed the lower values of Kleaf_max

(Fig. 4b, e). The bulk elastic modulus (e) was positively related
with LL (r = 0.5, P = 0.01), but not with WD (r = 0.3, P = 0.07,
Fig. 4f). Species with higher e (higher cell wall rigidity) had a
longer LL (Fig. 4c).

Leaf traits correlations network

Trait coordination was different between deciduous-
brevideciduous and evergreen species (Fig. 5; Table S1).

Evergreens showed a more complex correlation network,
with more and different connections than deciduous-
brevideciduous species (Table S2). In deciduous-
brevideciduous species, P50, P88, and Kleaf-max were the
traits showing the highest values of centrality (Fig. 5a;
Table S2). Kleaf_max, P50, and P88 were positively related,
indicating that species with higher water transport efficiency
were more vulnerable to hydraulic dysfunction. These three
traits were positively related to LT50, higher Kleaf-max was
associated with lower resistance to low-temperature damage
(LT50), whereas to lower cavitation resistance (i.e. more
positive P50 and P88) implies lower resistance to low-
temperature damage (LT50). In addition, P50, P88, and
Kleaf_max were negatively related to leaf tissue elasticity (e),

0
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Fig. 2. Relationship between ice nucleation temperature (INT), and lethal leaf temperature (LT50) with the
maximum leaf lifespan (a, b), and with wood density (c, d). Each point represents a species average and error
bars represent � s.e. Lonchocarpus muehlbergianum was excluded from the correlation in (b) because this
species has the capacity of rolling leaves in responding to environmental stressors. The methodology used to
evaluate leaf tissue damage does not allow the leaves to curl up and prevent damage from low temperatures.

Table 3. Leaf hydraulics traits
Abbreviations: TLP, turgor loss point (MPa); Ymd, leaf water potential at midday (MPa); Ypre-dawn – Ymd, daily DY; Kleaf_max, maximum leaf hydraulic

conductance (mmol m–2 s–1 MPa–1), P50, hydraulic safety margin at P50 (HSMP50, MPa); P88, hydraulic safety margin at P88 (HSMP88, MPa)

Species TLP Ymd DY Kleaf_max P50 P88 HSMP50 HSMP88

Cedrela fissilis –1.18 ± 0.02 –1.45 ± 0.09 1.12 ± 0.09 35.64 ± 3.4 –1.13 –2.46 –0.32 1.01
Cordia trichotoma –2.48 ± 0.32 –2.65 ± 0.39 2.22 ± 0.32 45.00 ± 2.8 –0.86 –1.55 –1.79 –1.1
Ceiba speciosa –1.6 ± 0.05 –1.10 ± 0.03 0.92 ± 0.1 48.46 ± 4.6 –0.66 –1.52 –0.44 0.42
Balfourodendron riedelianum –2.12 ± 0.04 –2.42 ± 0.24 1.53 ± 0.33 13.4 ± 1.2 –2.4 –3.43 –0.02 1.01
Parapiptadenia rigida –2.24 ± 0.07 –2.68 ± 0.09 1.4 ± 0.05 8.86 ± 0.9 –1.86 –3 -0.82 0.32
Lonchocarpus muehlbergianus –1.68 ± 0.04 –0.4 ± 0.03 0.15 ± 0.03 39.14 ± 3.2 –0.42 –0.55 0.02 0.11
Cabralea canjerana –1.42 ± 0.09 –1.45 ± 0.55 1.55 ± 0.56 27.06 ± 4.1 –0.49 –1.55 –0.96 0.1
Ocotea diospyrifolia –2.69 ± 0.13 –2.36 ± 0.09 2.03 ± 0.14 8.34 ± 0.8 –0.52 –0.75 –1.84 –1.61
Holocalyx balansae –1.87 ± 0.11 –2.54 ± 0.08 1.43 ± 0.23 18.49 ± 1.3 –0.38 –0.9 –2.16 –1.64
Chrysophyllum gonocarpum –2.47 ± 0.29 –2.25 ± 0.03 2.02 ± 0.03 7.51 ± 0.8 –0.56 –0.98 –1.71 –1.29
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so more elastic leaf tissue (lower e) were related to lower
cavitation resistance (more positive P50 and P88), and lower
water transport efficiency (Fig. 5a).

In traits correlation network of evergreens species, e and
turgor loss point (TLP) were the traits showing the highest
values of centrality (Fig. 5b; Table S2). The e and TLP were
negatively related. The e was negatively associated with LT50,
ETRmax, HSMP88 and Kleaf_max (i.e. plants with more rigid leaf
tissue have also lower resistance to cold damage, lower
maximum electron transport rate, hydraulic safety margin,
and water transport efficiency), and positively to P88 (more
rigid leaf tissue implies a larger vulnerability to hydraulic
dysfunction). The TLP was negatively related to P88 and
positively related with LT50, ETRmax, HSMP88 and
Kleaf_max. Evergreens showed negative relationships between
P50, P88 and INT, and a positive relationship with LT50, so
higher vulnerability to hydraulic dysfunction imply higher
temperatures of ice nucleation but also higher resistance to
low-temperature damage. Also, evergreens showed a negative
correlation between INT and P50 and a positive correlation
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Fig. 3. (a) Leaf water potential at midday (Ymd), (b) water potential at
50% (P50), and (c) 88% (P88) loss of leaf hydraulic conductance, and
(d) safety margin hydraulic safety margin (HSM)P88 for leaf habits. D,
deciduous species; B, brevideciduous species; E, evergreen species.
Different letters indicate significant differences between leaf habits at
P < 0.05.
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Fig. 4. Relationship between maximum electron transport rate (ETRmax), leaf
hydraulic conductance (Kleaf_max), and volumetric bulk modulus of elasticity (e),
with the maximum leaf lifespan (a–c), and with wood density (d–f). White
symbols, deciduous species; light grey symbols, brevideciduous species; dark
grey symbols, evergreen species. Different symbol shapes represent different
species. See Fig. 2.
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between INT and HSMP88, whereas such correlations were not
found in deciduous and brevideciduous trees (Table S1). In
both networks, SLA was weakly or not related to other traits.

Discussion

Our results show that evergreen and deciduous–
brevideciduous species have different adaptations to cope
with the consequences of subzero temperatures and water
deficits. Deciduous species in our study had shorter leaf
lifespan and were more efficient in leaf water transport
(higher Kleaf_max), and showed higher photosynthetic
capacity (ETR) than evergreens. These traits are linked to
an acquisitive strategy, which implicate fast assimilation of
CO2 during the favourable season and, consequently,
exhibition of a strong seasonal pattern of growth (di
Francescantonio et al. 2018). Evergreen species, on the
other hand, had the opposite behaviour, with a longer leaf
lifespan, lower ETR and Kleaf_max, and denser wood. These
traits have been associated with a conservative strategy in the
use of resources (Wright et al. 2004; Chave et al. 2009; Reich
2014), reflected in a less pronounced seasonal growth patterns
throughout the year (di Francescantonio et al. 2018).

SLA was of minor importance in the present study.
Contrary to relationships among SLA, and TLP, P50 or Kleaf

found by other authors (e.g. Nardini et al. 2012; Simonin et al.
2012; Villagra et al. 2013), we found no significant
correlations between SLA and other physiological traits.
Similarly, veins density was not related to phenological

patterns or stress resistance as found in other studies (Sack
and Frole 2006; Nardini et al. 2012; Sack and Scoffoni 2013).
This trait was very variable among species. For example,
members of the Fabaceae family, such as P. rigida and
H. balansae, have bipinnately compound leaves with a
comparatively high density of veins that complicate the
interspecific functional relationships (Fig. S6).

Contrary to our expectations, deciduous and
brevideciduous species were less vulnerable to water stress
events (higher HSMP88) than evergreen species. However, this
margin was very small. Considering that air saturation deficits
occurring in the region during summer can be as high as 4.0
kPa (di Francescantonio et al. 2018), more resistant leaves
could help deciduous species to sustain high carbon
assimilation and growth rates even under the least
favourable conditions. We also found that deciduous and
brevideciduous species show a positive relationship between
leaf P50, P88 and Kleaf_max, (i.e. less drought-resistant species
transport water more efficiently), suggesting the existence of a
trade-off between the investments in construction of foliar
tissues specialised in water transport and traits that provide
resistance to water deficit in these groups of species. This
trade-off was not observed in evergreen species. In this case,
species with higher hydraulic conductance tended to have
more negative P88 values (i.e. were more resistant). This
could be due to the low values of hydraulic conductance of
evergreens, particularly for three of the four species studied,
which are consistent with other trait values typical of a
conservative strategy (e.g. low photosynthetic capacity).

(a)
Deciduous & Brevideciduous

(b)
Evergreens

Fig. 5. Correlation networks for (a) deciduous-brevideciduous and (b) evergreen species leaf traits.
Hydraulic traits: DY, daily difference in water potential; TLP, turgor loss point; e, modulus of
elasticity; Ymd, midday water potential; Kleaf, hydraulic conductance; HSMP88, hydraulic safety margin
at P88; P88, water potential at 88% loss of conductivity; P50, water potential at 50% loss of conductivity.
Anatomical and photosynthetic traits: SLA, specific leaf area; ETRmax, photosynthetic capacity measured as
maximum electron transport rate. Low temperature resistance traits: INT, ice nucleation temperature; LT50,
leaf lethal temperature; TSM, thermal safety margin. Grey and black lines indicate positive and negative
correlations respectively. Correlation strength is represented by lines thickness. Only significant correlations
with r > 0.6 are shown. Traits identified by black circles show the highest centrality value in terms of
weighted degree (the sum of all the significant coefficients of correlation of a node). For correlation
coefficients, see Table S1, available as Supplementary Material to this paper. Values of INT, LT50 and TSM
for Lonchocarpus muehlbergianum species were excluded from the correlation network (a).
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Oliva Carrasco et al. (2015) showed that for the same pool
of species that the safety margins calculated as the difference
between minimum leaf water potential and the stem xylem
pressure at the catastrophic hydraulic dysfunction level (P88
branch) were related to sapwood capacitance in an asymptotic
way. In their study, all species except the brevideciduous
P. rigida and L. muehlbergianum had positive safety
margins for branches. In the present study, we obtained
positive safety margins for leaves of most deciduous and
brevideciduous species, but for evergreens the values were
negative. Evergreen species could significantly lose hydraulic
conductance on a daily basis, especially during dry spells.
Negative values in leaf safety margins should be relatively
common (Johnson et al. 2016), and consistent with the
hydraulic vulnerability segmentation hypothesis. For species
with high wood density (i.e. with high construction costs) and
low sapwood capacitance, such as evergreens in the present
study, it would be reasonable to expect disposable leaves
(negative leaf safety margins) to protect expensive stems
from hydraulic failure.

Differences in the modulus of elasticity (e) could also
explain differences between phenological groups. This trait
represents the elasticity – or its inverse, rigidity – of the leaf
tissues (Bartlett et al. 2012). Thus, e is regarded as a key leaf
trait because it is functionally related to the capacity of the leaf
tissue to resist drought events through cell water conservation
(Salleo et al. 1997; Niinemets 2001), tolerate subzero
temperatures (Scholz et al. 2012; Zhang et al. 2016), and,
more recently, has been related to the rate of CO2 assimilation
(Nadal et al. 2018). We found that deciduous species had more
elastic leaf tissues than evergreen species, and that the
elasticity of the tissues was related to the capacity of water
transport in the leaves. Further, we observed that deciduous
species with more elastic leaf tissues (lower e) were those with
lower resistance to hydraulic dysfunction (higher P88 and P50).
In evergreen species, in contrast, an inverse relationship
between e and P88 was found, and as observed in global
datasets, a negative relationship was found between TLP
and e (Bartlett et al. 2012), proving its close association
with a species’ level of drought tolerance. Evergreens also
showed a negative correlation between cold damage (LT50)
and e. This could be because more rigid cell walls increase
resistance to ice formation on leaves since they confer greater
mechanical resistance to the pressure exerted by ice in
extracellular spaces (Yamada et al. 2002; Scholz et al.
2012; Arias et al. 2015).

Deciduous and only one brevideciduous species exhibited
freezing avoidance (INT ~ LT50), whereas evergreen species
were freezing tolerant (INT < LT50). Evasion mechanisms,
unlike tolerance, can only be effective for a few hours
(Goldstein et al. 1985; Rada et al. 1987; Sierra-Almeida et al.
2009). For Atlantic Forest species, both mechanisms are
probably equally effective because low temperatures and
freezing periods are relatively short in duration. We found a
strong negative correlation between wood density and INT. A
possible explanation is that denser woods have less water
content than light woods and thus less favourable
conditions to ice formation that could propagates into
leaves through vascular tissues (Hacker and Neuner 2007).

In contrast, denser wood have small diameter xylem vessels
that are more resistant to embolism formation due to freezing-
thaw cycles compared with lighter wood species (Lintunen
et al. 2013). This relationship between wood density and ice
nucleation temperature indirectly reflect the life history
strategies of the species aimed at stress tolerance, meaning
that species with higher wood density and longer LL are less
frost susceptible species.

Within this group of evergreen species, a negative
correlation between INT and P50 and a positive correlation
between INT and HSMP88 suggest that there is trade-off in
frost and drought tolerance. As previously mentioned, within
evergreens, hydraulic conductance was higher in less drought
susceptible species. The higher water content in leaf tissues
could make them more susceptible to ice nucleation resulting
indirectly in the observed trade-off between drought and frost
resistance. A greater number of species need to be studied to
further understand these trait associations and trade-offs within
phenological groups.

The semi-deciduous Atlantic Forest constitutes the
southern range limit of many species, which is reflected by
the decline of tree species diversity at a regional scale from
north to south (Oliveira-Filho et al. 2015). In this context, low
temperatures may act as an evolutionary selective factor for
some of the most frost-sensitive species limiting its
distribution as occurs, for example, to the tropical palm
Euterpe edulis (Gatti et al. 2008). If the occurrence of
episodic spring or late frost events increases in intensity
and duration as predicted for the area (Pizarro et al. 2013;
Scarano and Ceotto 2015), this could have considerable
ecological implications, and species with avoidance
mechanisms, such as the deciduous and brevideciduous
species in the present study, would be the most affected.

In summary, deciduous species presented relatively high
values of safety margins, allowing them to sustain
photosynthetic activity during the growing season. These
species did not have hydraulic segmentation (Oliva
Carrasco et al. 2015) and avoid low temperatures, both
mechanisms consistent with their winter deciduousness. The
absence of a dry season is likely to promote greater
phenological diversity, increasing the possibility of
intermediate iso- or anisohydric behaviour (Braga et al.
2016) and probably explains the weak relationship between
leaf phenology and isohydricity (Fig S4). Thus,
brevideciduous species exhibited hydraulic segmentation as
evergreens, but also other hydraulic traits such as the safety
margin that were similar to the deciduous species. Strategies
for resistance to subzero temperatures were shared by both leaf
habits. In contrast, species with evergreen leaves were damaged
and frozen at more negative temperatures, so were more
susceptible to water deficit than deciduous species. The
significant loss of leaf hydraulic conductance observed in
evergreens may facilitate the reduction of freezable water in
tissues, and thus delay freezing under cold conditions (Arias
et al. 2017). Considering all this, even though resistance to
freezing and drought may share similar physiological
mechanisms, adaptations must be studied within each leaf habit.

Further research is needed to elucidate resistance strategies
to stress factors at whole-tree and stand levels. Resistance
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strategies, possible links between hydraulic safety and
efficiencies, and carbon economy among the different
phenological groups (including more species), and
especially the adaptive role of wood density and elasticity
within the complex of drought-frost tolerance traits require
further investigation. In a climate change scenario, this will
lead to a better understanding of the mechanisms of adaptation
and enable prediction of interspecific variation in species’
responses to future changes in environmental conditions or
extreme abiotic events in the subtropical Atlantic Forest.
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