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Abstract
An extensive microglial-astrocyte-monocyte-neuronal cross 
talk seems to be crucial for normal brain function, develop-
ment, and recovery. However, under certain conditions neu-
roinflammatory interactions between brain cells and neuro-
immune cells influence disease outcome and brain pathol-
ogy. Microglial cells express a range of functional states with 
dynamically pleomorphic profiles from a surveilling status of 
synaptic transmission to an active player in major events of 
development such as synaptic elimination, regeneration, 
and repair. Also, inflammation mediates a series of neuro-
toxic roles in neuropsychiatric conditions and neurodegen-
erative diseases. The present review discusses data on the 
involvement of neuroinflammatory conditions that alter 

neuroimmune interactions in four different pathologies. In 
the first section of this review, we discuss the ability of the 
early developing brain to respond to a focal lesion with a 
rapid compensatory plasticity of intact axons and the role of 
microglial activation and proinflammatory cytokines in brain 
repair. In the second section, we present data of neuroin-
flammation and neurodegenerative disorders and discuss 
the role of reactive astrocytes in motor neuron toxicity and 
the progression of amyotrophic lateral sclerosis. In the third 
section, we discuss major depressive disorders as the conse-
quence of dysfunctional interactions between neural and 
immune signals that result in increased peripheral immune 
responses and increase proinflammatory cytokines. In the 
last section, we discuss autism spectrum disorders and al-
tered brain circuitries that emerge from abnormal long-term 
responses of innate inflammatory cytokines and microglial 
phenotypic dysfunctions. © 2018 S. Karger AG, Basel
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Introduction: Cellular and Molecular Basis of 
Neuroinflammation in the Brain

Disturbances of the central nervous system (CNS) ho-
meostasis (e.g., infection, trauma, ischemia, neurodegen-
erative diseases, and neurodevelopmental and psychiatric 
disorders), evoke neuroinflammatory responses in the 
brain. Microglial cells are designed to interpose the insult 
effect with the secondary activation of astrocytes that can 
modulate the recruitment and activation of other immu-
nocompetent cells to the injury site. However, a persistent 
activation, associated with an increase of inflammatory 
cytokines and chemokines, followed by the recruitment 
of peripheral phagocytes can be deleterious to neurons 
and brain function [1–5]. 

Based on the activation stimuli and (micro)environ-
mental factors, surveying microglia (M0) may change 
into two phenotypes: the proinflammatory “M1” pheno-
type, activated by lipopolysaccharides (LPS) and inter-
feron-γ, corresponding to the “classical” pathway of mac-
rophage activation; and the anti-inflammatory “M2” phe-
notype, activated by interleukin (IL)-4 and IL-13 through 
the “alternative” pathway of macrophage activation [6, 7]. 
Thus, the microglial population responds with a rapid 
morphological shift from a surveilling, ramified pheno-
type, to an amoeboid phenotype associated with changes 
in gene expression, ultimately leading to an activation 
state [8]. In a resting state, microglia are constantly scan-
ning the neuropil through their highly motile processes 
acting on synapse maintenance, neurogenesis and growth 
factors secretion to keep CNS homeostasis. Under insult 
signals, microglia is converted into an activated mode. A 
short or moderate signal directs microglia toward a neu-
roprotective, M2 phenotype, whereas an intensive acute 
or chronic activation renders an M1 microglia phenotype 
which is potentially neurotoxic. Under such conditions, 
microglia fail to acquire a neuroprotective phenotype, 
producing reactive oxygen species, nitric oxide, proteas-
es, and proinflammatory cytokines such as IL-1β, IL-6, 
and tumor necrosis factor-α (TNF-α), all of which, may 
endanger neuronal population. Under severe conditions, 
however, M1 microglia may also recruit monocyte-de-
rived macrophages that secrete anti-inflammatory cyto-
kines such as IL-10 and TGF-β to restore neuroprotection 
and cell renewal [9]. Also, under mild microglial activa-
tion, TNF-α can stimulate the release of trophic factors 
related to neuroplasticity and repair [10] and increase the 
production of glial cell line-derived neurotrophic factor 
(GDNF) and nerve growth factor (NGF) by astrocytes 
[11]. In this way, microglial cells express a range of func-

tional states with dynamically pleomorphic profiles [12]. 
Therefore, a microglial to monocyte-derived macrophage 
cross talk seems to be instrumental under severe lesion 
conditions [9]. Microglia also activates astrocytes that can 
modulate the recruitment and activation of additional 
microglial and other immunocompetent cells to the in-
jury site closing the circle of a reactive positive feedback 
[13, 14]. Microglial cells express a variety of receptors for 
a plethora of molecules that allow them to sense environ-
mental changes over a time scale of minutes and respond 
in a way that might lead to either beneficial or harmful 
results, according to the context [15, 16]. Two major sig-
naling cascades, the Ca2+/calcineurin/NFAT and NFκB 
pathways seem to be involved in microglial activation. 
Once in the nucleus, NFAT and NFκB interact with dis-
tinct DNA-binding elements to drive the expression of 
multiple cytokines [17, 18].

Several studies have shown the bidirectional interplay 
between the immune system activation and neuronal 
function. Whole-cell patch clamp experiments revealed 
that activation of dendritic glutamate NMDA receptors 
on single neurons was sufficient to trigger microglia pro-
cess outgrowth [19], thereby demonstrating a direct link 
between neuronal activity and the dynamics of microglia 
dendritic-like processes. In the zebrafish larvae, neuronal 
activity was reduced by microglia contact while, con-
versely, preventing microglial processes from spontane-
ously contacting active neurons significantly enhanced 
neuronal activity, suggesting that neuronal activity itself 
can be altered by microglial interaction [20]. Also, mi-
croglial activation is associated with altered long-term 
potentiation (LTP) [21], the synaptic correlate of memo-
ry. Furthermore, calcineurin, a Ca2+/calmodulin-depen-
dent phosphatase, not only induces microglia reactivity 
but modulates synaptic activity through dephosphoryla-
tion of several targets required for LTP/LTD, including 
the modulation of NMDA receptor activity [22] and the 
suppression of glutamate release [23]. Microglia also re-
sponds to high concentrations of extracellular ATP 
through P2X7 receptors (P2X7R) [24]. Neuroinflamma-
tion and abnormal microglial activation may also play a 
mechanistic role in synaptopathies affecting cognition 
and function [25–27].

An extensive microglial-astrocyte-monocyte-neuro-
nal cross talk seems to be crucial not only for normal 
brain development and function but also for the injured, 
severely dysfunctional, brain.

Surprisingly, in recent years, cumulative evidence has 
demonstrated the relevance of inflammatory mediators, 
immune cells, and related molecules in the development 
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of CNS pathologies of very diverse origin and etiologies. 
With the aim of highlighting differences and common-
alities, we will analyze the involvement of neuroimmune 
interactions in four different pathologies: (a) the injured 
brain and its associated plasticity adaptations, (b) the 
brain of amyotrophic lateral sclerosis (ALS) patients as an 
example of neurodegenerative diseases, (c) major depres-
sion disorder (MDD), an emotional alteration of a still 
unknown though probably multifactorial mechanistic 
bases, and (d) autistic spectrum disorders (ASD) as an 
example of neurodevelopmental disorders.

Inflammation and Lesion-Induced Plasticity in the 
CNS

Brain plasticity in response to lesions is rapid and usu-
ally leads to functional recovery in the neonatal brain. 
However, in adults, various forms of lesions usually result 
in a lower recovery ratio. Inflammatory mechanisms have 
been involved in the modulation of reactive plasticity of 
intact neuronal populations in various forms of brain in-
jury, as well as the involvement of microglial and astro-
cytic activation in recovery and repair of neural circuits. 
Then, why is the CNS so plastic during early develop-
ment? Why does plasticity decrease in adulthood? Does 
the rapid plasticity found in infants relate to the profile 
and time course of glial activation? Strategies seeking the 
modulation of the different profiles of reactive microglia 
and astrocytes during early brain development may 
emerge as potential mechanisms to allow a more permis-
sive milieu to plasticity and recovery in the adult brain.

Critical Periods of Development and Lesion-Induced 
Plasticity in the CNS
The use-dependent development of functionally orga-

nized connections in the mammalian CNS occurs over a 
time window known as the critical period [28]. The criti-
cal period represents a stage of development where envi-
ronmental signals promote fast use-dependent rear-
rangements of neuronal networks, required for the acqui-
sition of proper sensory, motor, and cognitive skills [29]. 
The closure of critical period affects the plasticity of the 
primary sensory areas of the brain, slowing down use-
dependent changes of sensory-motor, as well as cognitive 
systems [28, 29]. However, as the critical period closes, 
plasticity continues, albeit at a lower speed, for both cor-
tical and subcortical structures [30, 31]. In adults, neocor-
tical plasticity can be reactivated by modifications of sen-
sory inputs or sensory-motor interactions, which alter the 

overall level of activity in cortical circuits [29]. Therefore, 
brain plasticity is not uniform throughout life: plastic re-
covery after a brain lesion usually peaks in infancy and 
declines over the years [28].

Lesion-Induced Plasticity and Models
During the critical period, lesions such as contralat-

eral eye monocular enucleation or restricted lesion to the 
contralateral retina trigger a series of adaptive responses 
of the visual system [31, 32]. In rodents, monocular enu-
cleation leads to a massive deafferentation of subcortical 
visual targets of retinal axons, the dorsal lateral geniculate 
nucleus and superior colliculus, resulting in a remarkable 
plastic response of intact axons originating in the remain-
ing eye with extensive sprouting over denervated territo-
ries [33] (Fig. 1). The plasticity of intact pathways is an 
important model for other forms of CNS trauma, such as 
traumatic brain injury, spinal cord lesions, and stroke. 
The functional recovery expected in those conditions re-
lies on strategies minimizing neuronal lesion and opti-
mizing neuronal plasticity, most of it on the regrowth of 
intact axonal pathways [34, 35]. Thus, uncovering the cel-
lular and biochemical mechanisms related to plastic re-
modeling after CNS injury during early development 
might be a necessary step to improve functional recovery 
after brain lesions in adult individuals.

Role for Glial Cells in CNS Injury
Lesions triggered by trauma, ischemia, or infections 

can induce a heterogeneous and stimulus-dependent gli-
al response known as reactive gliosis. The cross talk be-
tween microglia and astrocytes in the context of CNS in-
jury is critical to determine intensity and time length of 
such glial response. During reactive gliosis, these cell 
types present distinct temporal activation patterns, so 
that while microglia is the first cell population to detect 
and respond to CNS homeostatic disturbances by secret-
ing inflammatory cytokines and chemokines, astrocytes 
are sequentially activated by these signals [14]. On the 
other hand, once activated, astrocytes can modulate the 
recruitment and activation of microglial and other im-
munocompetent cells to the injury site and, later on, form 
a glial scar which encapsulates the lesion core from the 
healthy CNS areas [13].

Following a monocular enucleation in rodents, mi-
croglia activation occurs quickly after denervation and 
precedes astrogliosis mainly in contra- but also in ipsilat-
eral subcortical structures, including the lateral genicu-
late nucleus and superior colliculus [36, 37]. Both microg-
lial cells and astrocytes are known to clean up axonal de-
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bris, restore tissue homeostasis and release growth factors 
and cytokines to stimulate neuronal sprouting [38]. Al-
though, many studies have focused on a role of microg-
lial cells in the mechanisms associated with a normal de-
velopmental plasticity, such as synaptic pruning [39, 40], 
little is still known on the influence of activated cells and 
the critical mechanisms mediating a reactive plasticity of 
nonlesioned neurons and its axonal pathways. 

Microglia and Lesion-Induced Plasticity
A role for microglial cells in axonal sprouting follow-

ing CNS lesions was suggested by Ngu et al. [41], in a 
study where they provided evidence that a full accumula-
tion of microglia is necessary for the usual sprouting and 
regeneration of severed axons in the leech CNS. In the 
mammalian visual system, we are currently demonstrat-
ing that microglial activation plays a role in the reactive 
sprouting of intact axons of the retinocollicular pathway 
in response to a lesion in the contralateral eye. Our cur-

rent data suggest that, during early postnatal develop-
ment, there is a strong temporal correlation between axo-
nal plasticity and microglial activation 24 h after a mon-
ocular enucleation in rats [Chagas et al., manuscript in 
preparation] (Fig. 1). Moreover, we prevented an axonal 
reactive sprouting with an acute systemic administration 
of different microglial inhibitors, cyclosporine A and mi-
nocycline. Accordingly, Bechmann and Nitsch [38] also 
correlate microglial activation with circuit reorganization 
in the hippocampus following a lesion to the entorhinal 
cortex. Sprouting and synaptogenesis of denervated den-
drites were observed in hippocampal terminals, in such a 
way that both degeneration and reorganization were ini-
tially accompanied by alterations in morphology and mi-
croglial function, followed by astrocytic modifications.

Several studies correlate the role of microglia in injury-
induced plasticity with the release of trophic factors. In an 
experimental model of acute corticospinal tract injury, 
immunosuppressed animals did not present a plastic re-

Superior colliculus

Ipsilateral axons Contralateral axons

Retina

Activated microglia (M1)

Ramified microglia

• Trophic factors
• Proinflammatory cytokines
(TNF-α; IL-6; IL-1β)
• Matrix metalloproteinases
• Matrix phagocytosis

Monocular
enucleation
at PND 10

Fig. 1. Microglial activation and plasticity of the ipsilateral retino-
collicular projection in a monocular enucleation model. During 
early postnatal development, the intact rat visual system displays a 
population of ramified M0 microglial cells at the time of circuitry 
refinement (left panel). Microglial activation is induced by a mon-
ocular enucleation at postnatal day 10 (PND10). The appearance 

of an M1-like phenotypic profile is co-temporal with a rapid 
growth of intact retinal axons from the remaining eye (right panel) 
[Chagas et al., manuscript in preparation]. Activated microglia 
seems to be necessary for neuroplastic adaptation of axons from 
the intact eye. Retinogeniculate projections are not displayed. Eye 
opening at PND14.
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sponse as effective as immunocompetent animals, whose 
axonal growth was associated with neurotrophin-3 over-
expression [42]. Similarly, Batchelor et al. [43] showed 
that neuronal sprouting of serotonergic and dopaminer-
gic fibers coincides with the presence of activated microg-
lia expressing mRNA for brain-derived neurotrophic fac-
tor (BDNF) and GDNF. In accordance, it has been dem-
onstrated that microglia is capable of secreting trophic 
factors involved in neuritogenesis and, in activated state, 
seems to support axonal sprouting via insulin-like growth 
factor 1 [44].

Several lines of evidence have been ascribing a role for 
proinflammatory cytokines in lesion-induced plasticity. 
Acute lesions in the CNS promote the release of a variety 
of proinflammatory cytokines by microglia and astrocytes, 
like TNF-α, IL-1β, and IL-6. In traumatic brain injury 
models, some studies point to TNF-α as an important fac-
tor in its pathophysiology, while other studies demonstrate 
a neuroprotective role in this same model of injury [45]. 
TNF-α can assume opposing roles that may vary according 
to the region of the brain and the context of the lesion or 
disease, among other factors. Oshima et al. [46] observed 
that TNF-α contributes to axonal sprouting and function-
al recovery after traumatic brain injury, since in TNF-α KO 
animals, no regeneration in the corticospinal tract could be 
observed. Moreover, Kreutz et al. [47] used TNF-α neutral-
izing antibody to abolish axonal regrowth after optic nerve 
crush experiments. In addition to this, TNF-α also stimu-
lates the release of trophic factors associated with neuro-
plasticity by microglia [10] and upregulates the levels of 
GDNF and BDNF factors in astrocyte primary cultures 
[11]. Indeed neurotrophic factors play a role in both nor-
mal and abnormal conditions as it has been shown that an 
impoverished environment delays maturation of the visu-
al cortex [48]. On the other hand, an environmental en-
richment promotes visual acuity recovery in amblyopic 
adult mice, and both phenomena are related to BDNF and 
GABAergic function [49]. Furthermore, it has been shown 
that either microglial depletion or a Cre-dependent re-
moval of BDNF from microglia resulted in deficits in mul-
tiple learning tasks and a significant reduction in motor-
learning-dependent synapse formation [50].

In a model of Schaffer collateral transection in organo-
typic hippocampal slice cultures, IL-6 induced sprouting 
and promoted synaptic response recovery [51]. Also, ad-
renergic sprouting was attenuated in IL-6 KO mice in a 
model of spinal nerve lesion [52]. In the monocular enu-
cleation model, Vasques et al. [32], brought evidence that 
α-secretase activity is important for the axonal sprouting 
of ipsilateral retinocollicular projections from the intact 

eye, by favoring the production of sAPPα. Furthermore, 
it has been described that the proinflammatory cytokine 
IL-1β enhances α-cleavage of APP, upregulating sAPPα 
content in vitro [53]. Therefore, it seems that inflamma-
tion modulates extracellular proteolytic activity that in 
turn regulates plasticity. Indeed, it has been shown that 
axonal sprouting in response to a lesion in the visual sys-
tem depends on the activity of MMP-9 [54].

The M1 microglia phenotype has a central role in host 
defense against pathogens and tumor cells but also trig-
gers damage to healthy neurons [55]. Despite that, in the 
range of molecules produced and secreted by M1-type 
microglia, we find the necessary machinery to support the 
mechanisms by which activated cells can mediate lesion-
induced plasticity of intact circuitry, described above. 
These cells produce TNF-α, IL-1β, IL-6, proinflammato-
ry cytokines that act on the regulation of specific axonal 
reorganization as growth factors. In parallel, the M1 type 
not only produces matrix metalloproteinases but also 
phagocyte axonal debris and extracellular matrix that can 
act as barriers for the sprouting fibers in the CNS [6, 38].

Reactive Astrocytes and Lesion-Induced Plasticity
A hallmark of astrocyte activation is the upregulation 

of the intermediate filaments glial fibrillary acid protein 
(GFAP) and vimentin, and the early activation of the 
transcription factor STAT3. Mice deficient for these fila-
ments (GFAP–/Vim–) or under conditional deletion of 
STAT3 from astrocytes (STAT3-CKO) present reduced 
reactive gliosis and glial scar formation induced by le-
sions. Experiments using STAT3-CKO mice have shown 
pronounced functional impairment after spinal cord in-
jury, accompanied by an increased number of reactive 
microglia at the lesion core and a general spread of in-
flammation [56, 57]. Therefore, activation of astrocytes 
seems to be important to gradually suppress microglia 
and other inflammatory players by constraining the le-
sion size [58]. However, a persistent astrocyte activation 
followed by glial scarring is consistently associated with 
inhibition of structural plasticity [59, 60]. Reactive astro-
cytes overexpress molecules like chondroitin sulfate and 
ephrin-A5 which block axon regeneration and outgrowth, 
respectively [61, 62]. In fact, GFAP–/Vim– mice exhibit 
improved axon regeneration after optic nerve crush [63] 
and functional recovery after spinal cord trauma [64]. 
Thus, in a broad perspective, reactive astrocytes may play 
a beneficial role in the acute phase of trauma by modulat-
ing the inflammatory response. A long-term astrocytic 
activation, however, restricts the regenerative potential 
by secreting inhibitory molecules.
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It has been shown that reactive astrocytes can exhibit 
different phenotypes depending on the nature of injury. 
A comparison between ischemic stroke and LPS-depen-
dent inflammation models in mice has shown that the 
gene expression pattern in reactive astrocytes was stimu-
li-specific [65]. Based on those findings, it was recently 
proposed that reactive astrocytes can be classified as A1 
astrocytes, which secrete proinflammatory signals that 
are harmful to neurons, or A2 astrocytes, which, in turn, 
secrete neurotrophic factors that can promote survival 
and modulate inflammatory response. In fact, A1 astro-
cytes were induced in vivo by LPS-dependent microglia 
activation [66]. This activation profile leads these cells to 
secrete toxic factors as well as losing major trophic func-
tions like synapse support and phagocytic capacity. Inter-
estingly, A1 astrocytes seem to be specifically induced by 
three simultaneous microglia-derived signals: TNF-α, IL-
1α, and C1q [66]. Thus, a possibility arises that different 
pools of cytokines secreted from activated microglia can 
potentially drive distinct astroglial responses, which in 
turn can affect the extension and phenotype of the lesion 
and also of the glial scar. 

Data from the literature have evidenced the role for 
reactive astrocytes in facilitating synaptogenesis and neu-
rite outgrowth in a lesion environment through the re-
lease of trophic factors [67]. However, once activated, as-
trocytes form a glial scar which encapsulates the lesion 
core from the healthy CNS areas [13]. The chondroitin 
sulfate proteoglycan NG2, a component of the glial scar 
was correlated with the postlesional sprouting response 
in the rat fascia dentata following unilateral entorhinal 
deafferentation that could define boundaries for growing 
axons [68]. Furthermore, ablation of scar-forming astro-
cytes in a forebrain stab injury model resulted in increased 
local neurite outgrowth, revealing their role in restricting 
nerve fiber growth after injury [69].

Strategies seeking the modulation of the different pro-
files of reactive microglia and astrocytes during reactive 
gliosis may emerge as a potential alternative to allow a 
more permissive milieu to plasticity events in adulthood. 
The correct timing of glial activation and molecular sig-
naling pathways must be considered as targets for CNS 
plasticity and repair. 

Neuroinflammation in Neurodegenerative Diseases 

The current increase in life expectancy results in an 
increase in neurodegenerative diseases including Alz-
heimer’s disease, Parkinson’s disease, ALS, and Hunting-

ton’s disease, among others. Neurodegeneration is asso-
ciated with age with an estimated prevalence oscillating 
between 1.5 and 2.5% of the general population but rises 
to 50% in people with more than 85 years [70–72]. It is 
well accepted that the pathogenesis of neurodegenerative 
diseases is associated with an underlying inflammatory 
process in the affected areas of the CNS, which is known 
as “neuroinflammation” [73, 74]. Primary neuron dam-
age likely triggers local neuroinflammation through the 
release of trophic factors and inflammatory mediators 
[75]. Damage neurons express a large variety of inflam-
matory mediators such as CSF1, TGF-β, IFNγ, and Fas/
FasL, with the potential to elicit a localized inflammatory 
response [76–80]. Innate and adaptive immune respons-
es underlie neuroinflammation, involving the complex 
participation of microglia, as the resident immune cell of 
the CNS as well as astrocytes and oligodendrocytes, which 
actively interact with other immune cells including T 
cells, monocytes, and mast cells [81–86].

When regulated and properly resolved, neuroinflamma-
tory mechanisms can be considered as a regenerative re-
sponse against damage, with glial and immune cells playing 
a critical adaptive role in maintaining tissue homeostasis 
[87]. However, if neuroinflammation is not adequately shut 
down, its chronic, unregulated activation becomes deleteri-
ous having the potential to be neurotoxic, compromising 
neuronal and progenitor survival. In addition, the blood 
brain barrier (BBB) and the blood spinal cord barrier make 
the CNS an immunologically privileged area, with limited 
capacity to recruit immune cells from the circulation [4, 
88]. Moreover, the CNS displays a low immune surveillance 
and absence of specialized antigen-presenting cells, which 
further limit the local immune responses. Despite this im-
munologically privileged status, T lymphocytes and mono-
cytes can be trafficked into the CNS parenchyma to instru-
ment specific inflammatory responses in regions of the 
CNS undergoing tissue damage (Fig. 2) [89–92].

Pathogenic Role of Glial Cells in ALS
Histopathological, immunological, and biochemical 

evidence indicates that neuroinflammation greatly influ-
ences the progression of neurodegenerative diseases. 
Among them, ALS is a paradigmatic disease where in-
flammation develops along the motor pathway, into both 
the CNS and the peripheral nervous system (PNS) [81, 93, 
94]. Moreover, therapeutic compounds targeting inflam-
mation are currently being tested in a clinical trial with 
the aim to reduce the upper and lower motor neuron de-
generation in ALS, thus delaying progressive muscle 
weakness [95–97].
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Astrocytes contribute to orchestrate chronic neuroin-
flammation in ALS, displaying a variety of phenotypic 
changes, with the potential to induce motor neuron apop-
tosis [66, 82, 98, 99]. Astrocytes are in direct contact with 
neurons, providing structural, metabolic, and trophic 
support, while actively participating in the modulation of 
neuronal excitability and neurotransmission [100]. How-
ever, in pathological conditions astrocytes become hyper-

trophic and overexpress a number of cytoskeletal and in-
flammatory markers. In ALS patients and murine models 
expressing SOD1 mutations, astrocyte activation posi-
tively correlates with the degree of motor neuron loss, 
vacuolization of mitochondria, and focal loss of the GLT-
1 glutamate transporter in the ventral horn of the spinal 
cord [101–104]. Inflammatory mediators released by 
damaged motor neurons are able to trigger an inflamma-

Fig. 2. Neuroinflammatory mechanisms influencing lower motor 
neuron degeneration in ALS. A, B Representative drawing showing 
how neuroinflammation orchestrates a neurodegenerative micro-
environment along the motor pathway during disease progression 
in ALS. In the ventral spinal cord, glial cells, astrocytes, and mi-
croglia proliferate and surround degenerating motor neurons after 
disease onset. Such neuroinflammatory scenario promotes the 
emergence of a subpopulation of aberrant glial cells that actively 
proliferate and likely are highly toxic to motor neurons. The con-
stitution of this neurodegenerative microenvironment contributes 
to the acceleration of paralysis progression. Dying motor neurons 
can release several factors that stimulate glial cell proliferation and 
activation, including FGF-1 and MCSF. FGF-1 stimulates sur-
rounding astrocytes to express and release NGF which in turn can 
induce motor neuron death through p75NTR. MCSF is an agonist 
of CSF-1R, thus stimulating microglia proliferation and activation. 
Other immune cells such as monocytes, mast cells, and lympho-

cytes infiltrate the spinal cord of ALS during the symptomatic 
phase of the disease. C, D The degeneration of peripheral motor 
axons in ALS also triggers a potent inflammatory response, both 
in peripheral motor axons and in skeletal muscles. Motor axon 
degeneration is characterized by Schwann cell proliferation and 
immune cell infiltration such as macrophages, monocytes, lym-
phocytes, and mast cells. C Degenerating motor axons can express 
and release MCSF, which induces macrophage infiltration through 
CSF-1R activation. Neuromuscular junction (NMJ) denervation 
constitutes one of the first pathological events of ALS, taking place 
even before spinal cord and peripheral nerves become compro-
mised and symptoms appear. NMJ denervation and terminal 
Schwann cell dissociation from the motor end-plates is accompa-
nied by significant mast cell infiltration and degranulation after 
disease onset. Macrophages also infiltrate skeletal muscle during 
disease progression.



Neuroimmune and Inflammatory Signals 
in Complex Disorders of the CNS

253Neuroimmunomodulation 2018;25:246–270
DOI: 10.1159/000494761

tory phenotype in surrounding astrocytes [105, 106]. For 
example, FGF-1 is strongly upregulated in motor neurons 
after sublethal damage and, once released, induces the ac-
tivation of astrocyte through activation of its cognate re-
ceptor FGF-1R [105]. FGF-1R activation in astrocytes 
strongly induces transcription factor nuclear factor ery-
throid 2-related factor-2 (Nrf2), which likely mediates cy-
toprotective effects [107, 108]. In addition, FGF-1 strong-
ly induces nerve NGF expression in astrocytes, which 
upon secretion can activate the proapoptotic neurotroph-
in receptor p75NTR [109]. Because postnatal motor neu-
rons can express p75NTR following nerve injury or dur-
ing neurodegeneration [110–112], the NGF/p75NTR 
pathway might modulate the elimination of neurons in 
ALS. Such NGF-mediated motor neuron apoptosis is fur-
ther stimulated by nitric oxide and peroxynitrite, a mech-
anism linking oxidative stress and mitochondria failure 
in astrocytes to motor neuron cell death [98]. The finding 
that astrocytes from ALS patients and animal models are 
neurotoxic to motor neurons, suggests a pathogenic path-
way based on a defective function of glial cells that sur-
round the motor neuron cell bodies, implying loss- and 
gain-of-function mechanisms associated with inflamma-
tion [113–115].

Activated microglia also drive neuroinflammation in 
ALS, being a fundamental part of the innate immune re-
sponse in the CNS [116]. Pathological microglia can pre-
sent diverse states of activation depending on the induc-
tion trigger by the microenvironment [117, 118]. During 
the symptomatic phase of ALS, microglia are character-
ized by proliferation and transformation into phagocytic 
cells, displaying a morphology similar to that of macro-
phages in the periphery [118, 119]. They can form clusters 
of proliferating microglia adjacent to the damaged motor 
neurons [120, 121], thus playing a preponderant patho-
genic role during the progression of ALS [122, 123]. In a 
mouse model of ALS expressing mutant SOD1, genetic 
excision of the mutated protein only in myeloid cells and 
microglia results in a slower paralysis progression as 
compared with mice expressing the mutant protein in 
microglia [124]. Microglia from mice expressing ALS-
linked SOD1 mutations cause neurotoxicity to motor 
neurons in culture conditions [122, 125]. These results 
suggest activated microglia actively contribute to motor 
neuron damage through the induction of local detrimen-
tal inflammation.

Relevant for the understanding of the pathogenic role of 
microglia in ALS is the fact that following activation, mi-
croglia display different phenotypes depending on the in-
duction exerted by the microenvironment [117, 118]. While 

some phenotypes can be deleterious for neuronal survival, 
other coexisting phenotypes can be neuroprotective. There-
fore, pharmacological targeting of microglia could only 
have beneficial effects if restricted to those pathological 
phenotypes. For example, in ALS mouse models, the drug 
minocycline is able to inhibit microgliosis and decrease in-
flammation in the CNS, delaying paralysis onset and pro-
gression of symptoms [126]. However, minocycline failed 
to improve survival when tested in ALS patients [127].

In ALS paralytic rats expressing the SOD1G93A muta-
tion, overactivated microglia in the spinal cord originate 
an aberrant cell phenotype displaying both microglia and 
astrocyte markers in the ventral horn of the spinal cord 
[120, 128]. Moreover, such aberrant glial cells actively 
proliferate after the onset of paralysis and make intimate 
contact with degenerating motor neurons, suggesting 
they contribute to spread motor neuron pathology [120, 
128]. Accordingly, aberrant glial cells isolated in culture 
are highly toxic to motor neurons, suggesting they are key 
neurotoxic effectors in ALS [128]. Based upon these ob-
servations, Trias et al. [129] investigated whether ALS 
progression might be ameliorated by masitinib, a drug 
that potently targets aberrant glial cells through the inhi-
bition of the tyrosine kinase receptor CSF-1R. ALS rats 
treated with masitinib after paralysis onset displayed de-
creased inflammation in the CNS and PNS [129], and in 
parallel the treatment prevented motor neuron loss and 
denervation of neuromuscular junctions [81, 129]. 

Inflammation along the Peripheral Motor Pathway in 
ALS
Neuroinflammation in ALS also involves the partici-

pation of blood-borne immune cells such as lymphocytes, 
monocytes, mast cells, and neutrophils, among others 
[92, 130–132]. These cells are known to permeate the BBB 
in specific regions and actively interact with the degen-
erative cellular microenvironment surrounding motor 
neurons and motor axons [81, 131, 133, 134]. It is also 
possible that chronic neuroinflammation restricted to the 
CNS can extend to skeletal muscles and then to other or-
gans, becoming a systemic inflammation [135, 136]. Evi-
dence indicates that these cells can exert both neuropro-
tective and neurotoxic influence on motor pathways 
[137]. Thus, proinflammatory Ly6ChiCCR2+ monocytes 
from the blood have been shown to infiltrate mice spinal 
cord, contributing to the death of the motor neurons. The 
genetic attenuation of these neurotoxic monocytes is suf-
ficient to significantly slow the course of the disease [130].

Along this line, ALS patients display higher levels of 
circulating monocytes, neutrophils, and CD4 lympho-
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cytes, with the increased number positively correlating 
with a more rapid progression of the disease [132, 138]. 
Mouse models as well as ALS patients also have high lev-
els of cytotoxic CD8 lymphocytes and circulating natural 
killer cells [133, 139, 140]. Patients also show dysfunc-
tional regulatory T cells (Treg), which correlate with the 
progression and severity of symptoms [135, 141, 142]. 
This finding is currently under evaluation as a potential 
therapeutic strategy in ALS [135]. Finally, it has been 
shown that mast cells can infiltrate the spinal cord of pa-
tients with ALS during the symptomatic phase of the dis-
ease, and through dialogue with the microglia, they could 
contribute to the degeneration of motor neurons [131, 
133].

Using a transgenic rat model of ALS, Trias et al. [81] 
reported histopathological evidence for mast cells favor-
ing neuromuscular junctions (NMJs) pathology and pa-
ralysis progression in ALS, representing a previously un-
known and significant inflammatory pathogenic mecha-
nism. Interestingly, massive mast cell infiltration into 
skeletal muscle correlates with paralysis progression, with 
a clustering of inflammatory cells around denervated 
NMJs. Downregulation of infiltrating mast cells by thera-
peutic doses of the tyrosine kinase inhibitor drug masi-
tinib that inhibit the c-Kit receptor resulted in a signifi-
cant delay of muscle denervation [81]. This study further 
supports a role of inflammation in the PNS. The deeper 
understanding of the inflammatory mechanisms that un-
derlie this fulminant neurodegenerative disease, will al-
low a more specific search for novel therapeutic strategies 
that seek to slow its progression.

Neuroimmune Basis of the Mechanisms of 
Depression

Depression, an Epidemiological Burden with Elusive 
Causal Mechanisms
MDD is a main contributor to the global burden of 

disease with a lifetime prevalence of 14.6 and 11% in high-
income and low/middle-income countries, respectively 
[143]. Along this line, MDD and anxiety are the leading 
cause of years lived with disability [144], and approxi-
mately 30–50% of these patients are not responsive to 
standard antidepressant medication [145, 146]. Despite 
the cost for the national systems of health, the epidemio-
logical relevance, and the billionaire investments in R&D 
both in the academy and industry, the underlying basis of 
MDD remains unknown. Although genetic signatures 
impose some heritable risk for developing depressive 

symptoms, it seems so far evident that depression is a 
rather syndromic, multifactorial disorder that involves 
the interplay of genetic predispositions and environmen-
tal factors out of which maladaptive responses to trau-
matic or psychosocial chronic-stress arguably are amongst 
the most frequent [147–150]. Over the past 35 years, nu-
merous studies revealed the existence of a complex but 
robust bidirectional communication between immune, 
endocrine, and neural systems [151–157]. In this context, 
a multiplicity of studies have been reported suggesting a 
role of immune and inflammatory signals in MDD [158–
160].

MDD: The Consequence of a Dysfunctional 
Interaction between Neural and Immune Signals?
One of the most indicative clinical suggestions of the 

association of inflammation and MDD is the elevated 
prevalence of depression comorbidity with inflammato-
ry-related diseases such as diabetes, metabolic syndrome, 
asthma, multiple sclerosis, and rheumatoid arthritis [159, 
161]. More specifically, a series of clinical correlative 
studies carried out by Maes et al. [162–164] in the early 
1990s revealed the association between depressive symp-
toms and increased peripheral immune responses and in-
flammatory biomarkers including acute-phase proteins 
as well as inflammatory cells and cytokines. In the follow-
ing years, these results have been vastly replicated and 
extended [159], and further meta-analyses have shown 
that while natural killer and T-activity are moderately re-
duced, several hallmarks of inflammation such as IL-6, 
TNF-α, IL-1β, and the acute-phase C-reactive protein 
(CRP) are the markers most reliably associated with de-
pression [165–167]. 

Recently, a study conducted by Felger et al. [79] using 
resting-state functional magnetic resonance imaging in 
MDD unmedicated patients, showed a negative associa-
tion between blood levels of CRP and inflammatory 
markers (IL-1β, IL-6, and IL-1RA) and connectivity of 
reward-related brain circuits such as ventral striatum and 
ventromedial prefrontal cortex. These findings suggest 
that inflammatory mediators might directly target reward 
circuits in depression.

Interestingly, the link between inflammation and de-
pressive symptoms might also have predictive value since 
patients with lower baseline inflammatory markers are 
more likely to respond to antidepressant treatment [168–
170]. Other studies however, reported no changes in the 
plasma levels of IL-1β, IL-6, and transferrin receptor in 
fluoxetine-treated patients [171, 172]. These contradic-
tory findings may be attributable to differences in age, 
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gender, and treatment duration but could also be indica-
tive that the influence of inflammation in MDD occurs 
only in a subset of so far poorly defined patients. In any 
case, when analyzing association studies in humans, it is 
always relevant to underline that correlative phenomena 
do not imply causation but co-occurrence. Even though 
many studies on animal models suggest a causal relation-
ship between immune-related molecules and depressive-
like behaviors, this causality has not been proven beyond 
doubt in humans yet. Future studies in preclinical animal 
models and humans will help understand whether de-
pression and chronic inflammatory diseases are mecha-
nistically linked or if chronic peripheral inflammation in-
fluences the course of MDD via independent mechanisti-
cally unrelated events.

Peripheral Immune Cells and Cytokines in Chronic 
Stress and Depression
Both environmental and systemic stress rapidly acti-

vates hypothalamic pituitary adrenal axis (HPA) and the 
efferent autonomic pathways [173–175]. Noradrenaline 
is directly released on peripheral organs by sympathetic 
terminals and the endocrine release of adrenaline in-
creases heart rate and blood pressure and favors glucose 
availability. At the immunological level, these catechol-
amine mediators lead to the expansion and mobilization 
of hematopoietic phagocytes in the bone marrow [176, 
177]. In parallel, the synthesis and release of glucocorti-
coid (GC) by the adrenal cortex first promote immune 
cell mobilization to injured tissues and primes immune 
cells for subsequent inflammatory challenges [107, 178, 
179]. Later on, if the stress challenge persists, the sus-
tained elevation of GC homeostatically suppresses in-
flammation and acquired immunity, thus preventing 
overactivity of innate inflammatory responses and pre-
serving the specificity of immune reactions [180–182]. In 
his original description, Tausk [183] actually assigned to 
GC a broad shutdown function in the general stress re-
sponse and exemplified stress to a fire and the role of GC 
to that of preventing water damage caused by the fire-
fighters.

At the central level, chronic or repetitive stress induc-
es a desensitization of corticosteroid receptor-mediated 
feedback mechanisms that result in high and-long lasting 
production of corticotropin-releasing factor and vaso-
pressin, and this dysregulation sustains a higher basal ac-
tivation of the HPA axis and favors stress vulnerability to 
new traumatic episodes [147, 184–187]. The GC receptor 
(GR) desensitization seems to be pleiotropic and takes 
place in peripheral immune cells too. Multiple and even-

tually coincident mechanisms such as epigenetics marks, 
increased expression of GRβ isoforms, microRNA-medi-
ated instability, or posttranslational modifications might 
help explain the long-lasting changes in GR feedback sen-
sitivity [188–190]. Recent findings suggest that epige-
netics mechanisms might be particularly relevant to un-
derstand the dysregulation of stress-related pathways.

In rats, low levels of maternal care induce a long-last-
ing decrease in central GR transcription, a phenomenon 
mediated by increased levels of histone 3 lysine 9 acetyla-
tion (H3K9) and decreased DNA methylation of exon I7 
of the GR promoter [191]. Interestingly, similar epi-
genetics marks have been found in the human ortholo-
gous site of the GR promoter (GR 1F) in the hippocampus 
of suicide victims with early exposition to child abuse 
[192]. These environmental effects on the epigenetic reg-
ulation of gene expression might be influenced by genet-
ic variation giving rise to the concept of gene × environ-
ment interaction. Klengel et al. [193] showed for the first 
time a significant gene × early trauma interaction based 
on the epigenetic regulation of an MDD-associated poly-
morphism of FKBP5, a GR-induced co-chaperone that 
restricts GR transactivation in an ultrashort feedback 
[194, 195]. Risk-allele carriers show an increased GR-me-
diated induction of FKBP5 which would lead to GR resis-
tance and HPA hyperactivation. Prolonged high-cortisol 
levels and GR activation as a result of chronic abuse or 
maltreatment during childhood induces a long-lasting 
demethylation of GC response elements and further tran-
scriptional depression of FKBP5 [18] perpetuating the 
GR resistance and stress dysregulation specially in risk 
allele carriers with a history of childhood trauma. The 
dysregulation of the negative feedback mechanism favors 
an increase in the basal proinflammatory status, which 
additionally contributes with the GR resistance (Fig. 3). 
Mechanistically, cytokine-induced repression of GR 
might be mediated by the activation of NF-κB and AP-1 
transcription factors that reduce GR transactivation ei-
ther by inhibiting GR nuclear translocation or by block-
ing accessibility to chromatin remodelers or transcrip-
tional cofactors [157, 196–199]. Along this line, chronic 
stress or prolonged exposure to GCs in rodents reduces 
the sensitivity of immune cells to the anti-inflammatory 
feedback of this hormone and increases production of 
bone marrow-derived phagocytes that display GC resis-
tance (Fig. 3) [200, 201]. This is consistent with the fact 
that the elevated blood levels of GCs induce a general ex-
pansion of the granulocyte lineages in the bone marrow 
[202]. Likewise, in humans, genome-wide expression mi-
croarrays of peripheral blood monocytes from chronical-
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Fig. 3. The role of glucocorticoids and the microglia-neuron-astro-
cyte interactions in the chronic stressed brain. Stressful stimuli ac-
tivate the adrenal cortex to release glucocorticoids (GCs). With 
prolonged exposure, GC release increases, leading to GC resis-
tance that triggers an increase in the inflammatory status. Acti-
vated monocytes and cytokines traffic to the brain where they af-
fect neuronal plasticity. Changes in neuronal synapsis such as the 
inhibition of CX3CL1 (fractalkine) expression are detected by mi-
croglia favoring cytokine release and monocyte recruitment. In 
turn, monocytes can acquire microglial properties. Sustained in-
creased levels of cytokines cross the blood brain barrier (BBB) and 
activate microglia cells inducing persistent synaptic remodeling. 
Microglial activation and proinflammatory cytokine release con-
tribute to the inhibition of astrocyte activity. Psychosocial stress 
also leads to the switch of microglia to a proinflammatory pheno-
type, which releases CC-chemokine ligand 2 (CCL2) that in turn 
attracts activated myeloid cells to the brain. Perturbations of the 
microglia/neuron interaction, have been reported in animal mod-
els of depression. These include the reduction in CX3CL1 and its 
receptor CX3CR1, and induction of high-mobility group box 1 

(HMGB1) and ATP from reactive astrocytes. Many of these mi-
croglial activation pathways converge on the nucleotide-binding 
domain, leucine-rich-containing family, pyrin domain-contain-
ing-3 (NLRP3) inflammasome. The release of the proinflamma-
tory cytokines IL-1β and TNF-α also elicits molecular changes in 
neurons. Astrocytes engulf synapses regulating synapse transmis-
sion, but at the same time they control BBB permeability and in-
tegrity. Upon activation, astrocytes express high levels of the che-
mokine CCL2 which, acting on its receptor (CCR2) on peripheral 
phagocytes, promotes the extravasation and infiltration of mono-
cytes into the brain. A main activator of CCL2 expression is the 
P2X7 receptor which is activated upon ATP release. P2X7R activa-
tion also promotes IL-1β release and inflammasome activation to 
trigger depression-like behavior. Exposure to chronic stress reduc-
es the expression of CX3CL1 and CX3CR1. Another important 
effector molecule is the C3 complement protein, which triggers 
synaptic pruning by tagging targeted synapses to be phagocytosed 
by microglia. RAGE, receptor for advanced glycation end prod-
ucts.
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ly stressed individuals show increased stress-induced 
proinflammatory markers and diminished expression of 
transcripts bearing response elements for GCs [203].

Adult neurogenesis has also been hypothesized as a 
relevant mechanism in depression. It is clear that in ro-
dents, chronic stress decreases proliferation and matura-
tion of newborn neurons, and antidepressants exert op-
posite effects [204]. Seemingly, adult hippocampal neu-
rogenesis would not be a major contributor to the 
development of depression but might contribute in a 
more restricted manner to specific anxiety-related symp-
toms [205]. On the other hand, ongoing adult neurogen-
esis in the hippocampus is necessary for the behavioral 
effects of antidepressant drugs in rodents [206]. However, 
its relevance and even its actual occurrence in the human 
brain have recently been put under debate [207–209], and 
therefore the actual potential role of the newborn neurons 
in the dentate gyrus in depression and antidepressant 
mechanism of action remain unclear. 

In addition to the influence on adult neurogenesis, 
chronic stress paradigms also reduce dendritic arboriza-
tion of CA1 pyramidal cells in the hippocampus, a phe-
nomenon plausibly associated to a reduction in local 
BDNF levels [210–212]. Interestingly, early maternal sep-
aration paradigms also trigger long-lasting reduction in 
BDNF levels in the rat hippocampus [213].

Several studies have found that hippocampal BDNF 
expression is directly downregulated by GCs [214, 215] 
and antidepressant treatments can prevent stress-in-
duced reduction of BDNF [216] as well as corticosterone-
mediated decrease in BDNF expression [217]. Mechanis-
tically, antidepressants may exert their function by induc-
ing acetylation of histone subunits around the BDNF 
gene promoter, thus leading to an increase in BDNF ex-
pression and production [216]. BDNF function is medi-
ated by its binding to high-affinity receptor TrkB (tyro-
sine kinase B). However, a deficiency of BDNF or the Trk 
receptor does not induce depressed-like behaviors, sug-
gesting that BDNF reduction per se is not sufficient to 
alter mood and that other concurrent factors are neces-
sary to trigger depression [218, 219]. Nevertheless, the 
antidepressant response does require an increase in 
BDNF activity and the associated structural recovery of 
the neuronal network [220–222]. 

Several in vivo studies demonstrated that inflamma-
tion causes a reduction of BDNF gene expression [223–
225]. These findings support the possibility that a cross 
talk between inflammatory mediators and neurotrophins 
contributes to the development of mood disorders by re-
ducing BDNF-related neuroplasticity.

The stress response can influence peripheral immune 
responses not only by means of humoral pathways but 
also through the fast actions of the autonomic nervous 
system. Sympathetic terminals profusely innervate pri-
mary and secondary lymphoid organs, and many im-
mune cells express adrenergic receptors [157, 226]. In-
creased catecholamine release leads to the proliferation 
and mobilization of hematopoietic cells in the bone mar-
row, and therefore regulating the influx of myeloid lin-
eage immune cells [176, 177]. When chronic social stress 
models are applied in rodents, this process contributes to 
an increase in circulating immature proinflammatory 
monocytes and granulocytes [227, 228] (Fig. 3).

Early life traumatic experiences in humans strongly 
influence the appearance of depressive symptoms later 
in life [148, 229]. Interestingly these long-lasting chang-
es have also been verified at immune level suggesting 
that chronic stress-induced dysregulation of immuno-
logical parameters might be instrumental in the devel-
opment of depression. Clinical studies have revealed 
that proinflammatory profile states are typically associ-
ated with low socioeconomic status but, remarkably,  
human individuals who experienced high levels of ma-
ternal warmth were protected from these long-lasting 
immunological changes [230]. Moreover, maltreated 
children showed a significant clinically relevant increase 
in plasma CRP levels 20 years later [231], and MDD pa-
tients with antecedents of early life stress show tran-
scriptional changes in peripheral mononuclear cells that 
underlie susceptibility to hyperinflammatory responses 
[232]. Remarkably, a recent report from Khandaker et 
al. [233] described that high levels of IL-6 in childhood 
are associated with 10% higher risks of developing de-
pression by 18 years in young adults. This longitudinal 
study shows for the first time that peripheral inflamma-
tion precedes depressive symptoms in at least a subpop-
ulation of patients.

A still open but relevant question is as to how periph-
eral inflammation can impact brain circuits. A series of 
preclinical studies have addressed this relevant question. 
Different reports from Sheridan’s group indicate that 
chronic social stress-induced anxiety is promoted by a 
direct recruitment of mononuclear cells to the brain 
mostly mediated by β-adrenergic inputs and facilitated by 
an IL-1-mediated leakage of the BBB [234–236]. On the 
other hand, blood-borne IL-1β, IL-6, and TNF-α have 
been shown to cross the BBB via saturable transporters to 
enter cerebrospinal fluid and interstitial spaces of the 
brain [1] (Fig. 3). In a recent report, Hodes and coworkers 
[159] showed that irradiated mice transplanted with he-
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matopoietic stem cells from mice previously subjected to 
repeated social defeat stress (RSCD) model displayed in-
creased susceptibility to RSCD, whereas IL-6 KO bone 
marrow chimaeras remain resistant to stress. Interesting-
ly from the clinical perspective, increased macrophage re-
cruitment to the brain has been described in depressive 
suicides compared to controls [237].

Hence, both direct actions of cytokines and innate im-
mune cells might help explain the detrimental influence 
of abnormal activation of peripheral immune cells on 
brain circuits and emotional behavior. 

Central Immune Signals in MDD and Animal Models 
of Depression
Glial cells exert a multiplicity of functions in the 

healthy and diseased brain defining key developmental 
brain steps, and are involved in neuronal metabolism, 
synaptic transmission, repair, and survival [2]. Astro-
cytes, which actively respond to cytokines, engulf syn-
apses sustaining and regulating synapse transmission, 
but at the same time their end feet control BBB permea-
bility and integrity. Upon activation, astrocytes express 
and release high levels of the chemokine CCL2 which, 
acting on its receptor (CCR2) on peripheral phagocytes, 
promotes the extravasation and infiltration of mono-
cytes into the brain [238]. Likewise increased CCL2 ex-
pression has been found in the anterior cingular cortex 
of postmortem samples of MDD patients who commit-
ted suicide [237].

The strategic location of astrocytes lining on brain 
capillaries and the high expression levels of the chemo-
kine CCL2 help explain its role in stress-induced re-
cruitment of peripheral phagocytes. A main activator of 
CCL2 expression is the purinergic multimeric P2X7R 
channel which is activated upon ATP release [239]. In-
terestingly, recent studies showed that the heterozygous 
expression of the genetic variant P2X7R-Gln460Arg is 
associated with mood disorders [240, 241], and only the 
coexpression of both WT and 460 variants compromis-
es the receptor function [242]. Recently, a humanized 
mouse model of this mutation has been developed [243], 
and mice that harbor both P2X7R variants showed al-
terations in their sleep quality resembling signs of a pro-
dromal stage of depression. Besides CCL2, P2X7R acti-
vation also promotes IL-1β release and inflammasome 
activation to trigger depression-like behavior (Fig.  3) 
[244].

Plausibly, a mechanistic convergence between ATP/
P2X7R and CCL2-mediated monocyte recruitment might 
also take part in the development of MDD. 

Reduced numbers of astrocytes have been found in 
brain regions controlling emotion in suicide victims 
[245], and both reduced number of astrocytes as well as 
decreased expression of GFAP have been found in rodent 
chronic stress models [245–247]. This suggests that after 
a first wave of astroglial activation, probably due to pe-
ripheral cytokines, chronic activation might impair astro-
cytic function, further affecting BBB permeability and 
support of neuronal metabolism.

Microglial cells are also reactive to psychological stress, 
and rodents subjected to chronic stress models display an 
increased number of activated microglial cells in limbic 
brain regions [234, 248]. Interestingly, HPA axis activa-
tion prime microglial proinflammatory response and 
both GC and glutamate signaling promote microglia pro-
liferation upon restraint stress [179, 249]. Employing an 
inescapable stress model in rats, Weber et al. [250] re-
cently showed that stress increases the high-mobility 
group box 1 (HMGB1) protein which further triggers 
proinflammatory cytokine secretion in microglia upon 
membrane-bound RAGE (receptor for advanced glyca-
tion end products).

Recent preclinical studies also provide evidence for a 
causal role of microglial activation in depressive states. 
The administration of minocycline, a well-known inhibi-
tor of microglial activation, rescues the stress-induced 
depression-like behaviors [251]. On the other hand, re-
cent studies suggest that the chemokine system CX3CL1-
CX3CR1 might also play a role in depressive-like behav-
ior. Exposure to chronic social defeat stress reduces the 
expression of CX3CL1 and CX3CR1 [236]. Most impor-
tantly, mice lacking CX3CR1 are resilient to chronic un-
predictable stress-induced anhedonia [252] and do not 
develop social stress-induced anxiety-like behaviors 
[236]. Another important effector molecule in microglial 
cells is the C3 complement protein, which triggers synap-
tic pruning during development by tagging targeted syn-
apses to be further phagocytosed by microglia [253]. Fur-
ther studies will surely address this issue in order to define 
the participation of this interesting mechanism in the de-
velopment of mood disorders and depression.

Finally, postmortem analyses of brains from depres-
sive patients show morphological changes compatible 
with microglial activation [254], and a recent positron 
emission tomography-based study shows greater microg-
lial activation in prefrontal, insular, and anterior cingu-
late cortices [255].



Neuroimmune and Inflammatory Signals 
in Complex Disorders of the CNS

259Neuroimmunomodulation 2018;25:246–270
DOI: 10.1159/000494761

Towards a Neuroimmune-Based Therapeutics of 
MDD
Modern antidepressants have not substantially im-

proved their efficacy compared to old drugs: they still re-
quire several weeks to exert their effects, side effects are 
still a significant problem, and a substantial proportion of 
patients respond only partially or remain completely re-
sistant to medication [145, 147, 148]. The therapeutic role 
of anti-inflammatory drugs is still a matter of debate with 
studies showing either beneficial or detrimental effects of 
nonsteroidal anti-inflammatory drugs (NSAID) in pa-
tients treated with antidepressants [256, 257]. A large me-
ta-analysis concludes that NSAID, but particularly the 
Cox-2 inhibitor celecoxib, have clinically relevant antide-
pressant effects with and without concomitant antide-
pressant medication [258], although the authors claim 
that conclusions should be taken with caution due to the 
high risk of bias and high heterogeneity of the studies. A 
large and ideally prospective study with a more homo-
genous group of patients will be necessary to solve this 
still open question.

Strategies directly targeting cytokines are under inves-
tigation. A double-blind placebo-controlled clinical trial 
showed that infliximab, a chimeric monoclonal anti-
TNF-α antibody, improves depressive symptoms in pa-
tients with high basal levels of inflammation [259]. Be-
sides, two clinical trials will investigate the antidepressant 
actions of two different antibodies targeting IL-6, siruku-
mab (NCT02473289), and tocilizumab (NCT02660528) 
(www.clinicaltrials.gov).

Finally, new therapeutic opportunities might be relat-
ed to P2X7R antagonists. Several compounds blocking 
these receptors have been patented in recent years [260] 
and might be interesting candidates to be tested in future 
clinical trials.

Neural and Immune Networks Underlying Autism

ASD are a group of neurological conditions in which 
affected individuals have compromised cognition related 
to social and communication skills, restriction or rigidity 
of interests, and present obsessive and repetitive behav-
iors. Clinically, immune comorbidities are commonly de-
scribed in these disorders, while immune events during 
development increase autism incidence pointing both to 
an environmental component of ASD, as well as to a neu-
roimmune cross talk (Fig. 4). Evidence suggests that im-
mune deregulation at prenatal or early postnatal develop-
ment may result in specific brain circuitries that typify 

autistic behavior as well as a characteristic immunological 
profile. Finally, a corollary of the fact that ASD is estab-
lished during development is that immune cells and mol-
ecules are probably involved in CNS ontogenesis and 
functioning since, for example, IL-6 and its receptor 
mRNAs were described in neonatal rat brain neurons 
[261]. Neuronal expression of MHC molecules seem to 
affect regulation of synaptic densities and neural connec-
tivity during development [262, 263], sensory and social 
cognition [264, 265], and, together with TNF-α, affect ho-
meostatic synaptic plasticity, a phenomenon by which 
neurons avoid neural network damage caused by chronic 
inactivity or hyperactivity [266].

Social interaction emerges in postnatal life and relies 
on a morphological scaffold that is structured in early in-
trauterine developmental stages and depends on intrinsic 
and extrinsic factors that properly form brain structure to 
function normally [267–274]. Mutations or biological 
imbalance disrupts this morphological assembly and pro-
duces mild or severe cognitive impairments [275, 276]. In 
this sense, genetic [277–279] and environmental [280, 
281] risk factors are described for ASD, and it is possible 
that they interact in some cases or at some level [262, 263, 
282] to generate the heterogeneous spectrum of disorders 
that comprise ASD. This interaction constitutes a third 
etiology that arises from two aspects: (1) autism risk genes 
establish a complex canonical network in which a muta-
tion of a single component could disrupt many other re-
lated molecular pathways; (2) immune activation events 
during brain development are known to be a relevant en-
vironmental factor that induces gene expression changes 
in the developing brain and later CNS disorders [243].

The fetal and maternal organism interaction is vital 
but opens a vulnerability window for the developing fetus 
[266]. An increased frequency of autism cases after the 
rubella outbreak in the 1960s was the first clue that ASD 
and the immune system might be connected [283]. Still 
today, several studies have been unraveling this correla-
tion with 3 perspectives: (1) outcomes of maternal immu-
nological perturbation in offspring immunity, brain mor-
phology, function, and behavior; (2) the abnormal hu-
moral and cellular innate immune responses in autistic 
patients; (3) the participation of immune cells and mol-
ecules in CNS ontogenesis [284–287]. Here, we update 
clinical and research data that correlate immune system 
with ASD and brain development (Fig. 4).

Evidence of Immunological ASD Etiology
Experimental maternal immune activation (MIA) by 

viral, bacterial or proinflammatory insults showed that all 
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these immunogens could change immune system gene 
transcripts in embryonic and postnatal brain, as well as 
brain and serum immune responses, with common and 
different features, but with specificity for CNS regions 
and developmental stages [288, 289]. Garbett et al. [289] 
suggested that MIA-elicited neuroprotective mecha-
nisms lead to defective neural morphologies.

New data describe that MIA also deregulates, directly 
or indirectly, genes for general cell processes that have 
related functions or constitute a genetic cascade, and 
present high penetrance in ASD, such as the PTEN, Tsc2-
mTor-Eif4e, and FMRP genes [290]. MIA transient inter-
ference on the expression of each of these genes would be 

small, but the co-occurrence of multiple MIA-induced 
gene expression regulatory events associated with the 
higher frequency of MIA itself could cause a devastating 
effect comparable to their permanent individual muta-
tions. These results speak in favor of the ASD genetic and 
environmental etiological crossway.

The autistic-like behaviors generated following im-
mune activation in pregnant women and neonates are 
important clues to understanding immune etiology. In 
non-human primates, poly I:C-LC treatment of pregnant 
macaques induced long-term high responses of innate in-
flammatory cytokines and associated autistic behaviors 
with abnormal immune profile in offspring [291]. An-

Fig. 4. Cross talk between the CNS and immune system in ASD. In 
the center, main ontogenic events of CNS development susceptible 
to immunological modulation. Immune system components nor-
mally participate in these processes in healthy gestation leading to 
a normal brain; therefore, immunological responses in maternal 
immune activation (MIA) can also interfere with neural develop-

mental events which would lead to an ASD brain. IFN, interferon; 
CNV, copy number variation; SNP, single nucleotide polymor-
phism; TNF-α, tumor necrosis factor-α; CCL-2, chemokine (C-
Cmotif) ligand 2; IL, interleukin; MHC-I, major histocompatibil-
ity factor-I.
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other recent work demonstrated that a LPS challenge in 
rodent neonates compromised immunity and neuro-
chemical aspects of the prefrontal cortex, hippocampus, 
and hypothalamus in adolescent and adult animals [292]. 
Myeloperoxidase activity and IL-4 were higher, while 
IL-6 presented reduced levels in the LPS-challenged 
group. The alterations generated were not homogeneous 
between males and females for the 3 brain regions men-
tioned above in the different developmental stages evalu-
ated since there were differences for the interactions of 
these 3 factors (IL-4, IL-6, and myeloperoxidase activity). 
Hippocampus also had higher BDNF levels in adults of 
both sexes and higher nitrite levels and lower parvalbu-
min expression in males. Depressive- and anxiety-like, 
repetitive and risk-taking behaviors and working memo-
ry impairments were also altered with specific sex- and 
age-related patterns congruent with these features in hu-
man ASD [293, 294]. The study also explored the critical 
aspect of the developmental time window susceptibility 
considering the nervous, immune, and brain-blood bar-
rier ontogeny periods.

Immune System in Autism
The second aspect explored is the distinct immune 

profile detected in autistic patients and found in the dif-
ferent animal paradigms [291, 295]. Serum IL-1β and 
IL-4 at birth, is associated with higher risk of ASD diag-
nosis in children and symptom stringency [296]. Anti-
bodies, monocytes, T cell responses, and natural killer 
cells of autistic children were also found to be altered 
[291].

In the CNS, there is evidence that microglial cells are 
also implicated in autism [284, 297–299]. An experimen-
tal genetic autism paradigm revealed a transient reduc-
tion, during the first postnatal week, of the microglial 
marker Iba1 in the basolateral amygdala, one of main ce-
rebral regions executing behaviors impaired in ASD 
[300]. The administration of the microglial modulator 
minocycline reverted this morphological phenotype 
without an effect on the high anxiety behaviors such as 
the increased maternal separation-induced ultrasonic vo-
calizations in the mutants [301].

Another experimental cue comes from data of im-
mune therapy attenuating ASD behaviors in rodents of an 
environmental paradigm of the disorder [302]. In this 
work, the disorder was induced by the gestational treat-
ment with the antiepileptic, anticonvulsant, and mood 
stabilizer drug valproic acid (VPA), known to raise the 
risk of treated pregnant women to generate autistic chil-
dren [302, 303]. The therapeutic target was histamine, a 

molecule that is active both in the immune and nervous 
systems [304, 305]. The therapy consisted in the applica-
tion of an acute dose of ciproxifan (CPX), an antagonist 
of the histamine receptor 3 (H3R), 30 min before behav-
ioral tests with young mice from mothers treated or not 
with VPA during gestation. CPX reduced social impair-
ments and repetitive behavior in VPA animals [306], sug-
gesting a potential role of the histamine-H3R system in 
the expression of ASD-like behaviors in rodents.

The Immune System during CNS Ontogeny
During development, neurons express class I MHC 

molecules which regulate synaptic density and neural 
connectivity [307, 308] and use other immune-related 
molecules to avoid neural network damage caused by 
chronic inactivity or hyperactivity [309]. A clear evidence 
that immune system directly takes part in CNS ontogen-
esis is the MIA putative effect in impairing microglia to 
properly execute its protective function in mature CNS 
[310].

Microglial developmental time window and novel 
functions described for these cells in CNS ontogenesis in-
dicate they may also play a relevant role in triggering ASD 
[311–313]. Microglial cells enter the developing brain be-
fore midgestation and spread out regulating early axon 
guidance events, for example; although they are known to 
have a prominent role in later stages mainly in refinement 
processes [310, 314]. When present in postnatal neuro-
genic niches, they adopt more immature morphologies, 
and their detection is illusive since they do not display 
their typical markers [12]. In the adult brain, microglia 
regulates neural progenitor cell proliferation and survival 
after induction of neuroinflammation through the IL-1β 
and p53 pathway, affecting cell cycle and programmed 
cell death [315]. When analyzed in postmortem temporal 
cortex samples from typically developing and autistic in-
dividuals, the function-related morphologies of these 
cells showed that the primed phenotype, associated with 
synaptic plasticity, presented reduced density, while the 
ramified morphology, associated with the immune re-
sponse, was increased, despite the comparable number of 
Iba-1-positive cells. These changes can be related to loss-
es in sensory processing and social cognition as well as 
regional immunological weakening that increases dys-
function [316].

Future Perspectives
There is a vast body of clinical and experimental evi-

dence strongly corroborating the immune system in-
volvement in the etiology of ASD solely as an environ-
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mental factor as well as in genetic cases. The variability in 
specific aspects matches the heterogeneous symptom-
atology but is a difficulty for data collection. Therefore, 
despite their higher frequency compared with rare point 
mutations, the definition of an etiological mechanism is 
still a challenge. The complete comprehension of neuro-
immune interactions in ASD is far from being achieved, 
and we expect convergent data will shorten this distance.

General Conclusion

In recent years, it has become more and more evident 
that a multiplicity of molecules originally found in cells 
of the immune system are expressed in the CNS not only 
in astrocytes and microglial cells but even in the neurons 
themselves [307, 308]. It seems obvious that these mole-
cules have been “acquired” by neurons throughout evolu-
tion to be used in new cell-specific processes unrelated to 
the immune response. Similar phenomena can be found 
in the case of proteins from other intracellular machiner-
ies, such as molecules related to DNA replication or cell 
cycle controllers such as cyclins [317–319] that perform 
new molecular functions in the context of neuronal phys-
iology. Thus, it is likely that the CNS has not only co-opt-
ed immune molecules to carry out new functions but also 
employ similar strategies to interact with microglia and 
astrocytes, cells that resemble peripheral phagocytes in 
many ways. 

It is following that logic that we could probably under-
stand why similar, or even sometimes the very same, cells, 
cytokines, neurohormones, or inflammatory mediators, 
exert critical pathophysiological roles in such a diversity 
of complex brain diseases with completely divergent etio-
logical bases.

Since fluent communication occurs between the endo-
crine, immune, and central nervous systems, an activa-
tion of the inflammatory response can influence neuro-/
endocrine processes, and vice versa. Under physiological 
conditions, this cross talk operates as negative feedbacks 
to counterbalance potential overshooting of the respons-
es and thus keeping homeostasis. It seems clear, however, 
that in pathological states these cross talks became mis-
balanced either reaching new “pathological” set points or 
even becoming feedbacks of positive and iterative va-
lence.

If immune and inflammatory responses are the cause 
or consequence of these pathologies is a “chicken and 
egg” question that remains unsolved. However, it seems 
plausible that altered iterative loops more directly or in-

directly involving immune signals lead to brain disorders 
upon chronicity. Under this scope, a general misbalance 
of these integrative communication systems per se, rather 
than the dysfunction of one specific molecular compo-
nent, would stem on the mechanistic bases of complex 
brain disorders once the disease is installed. Thus, im-
mune-based therapies might represent new avenues for 
pharmacological interventions that might exert both ef-
fects on direct cellular effectors and/or contribute to nor-
malize altered neuro-endocrine-immune communica-
tion.

Probably, we have underestimated the relevance of 
these immune-related mechanisms in different brain dis-
orders. From the basic research perspective, the advent of 
new “omics” technologies at single cell level will surely 
provide new insights on this topic. On the other hand, it 
is expected that new pharmacological studies are initiated 
in order to select promising compounds from the large 
list of drugs already designed for immunological purpos-
es and incorporate them into new clinical trials aimed to 
evaluate the potential roles of these drugs on a variety of 
brain disorders and pathologies.
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