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Nanopowder of ferromagnetic La0.5Sr0.5CoO3 (LSCO) and multiferroic BiFeO3 (BFO) were

synthesized by spray pyrolysis method. Different compositions of multiferroic xLSCO-(1�x)BFO

composites were synthesized at 800 �C for 2 h. Scanning electron microscopy and energy dispersive

spectroscopy elemental mapping were performed to study the morphology of composites. Ferri/

ferromagnetic responses above TC (LSCO) are observed, which are associated with the interfaces

LSCO/BFO. This interface presents a different behavior compared to the original perovskites, and

the magnitude of the magnetization depends on x. Electrical DC conductivity as a function of

temperature for LSCO nanopowder (x¼ 1) presents a different behavior than that reported in bulk

material. For x¼ 1 and 0.9, the model by Glazman and Matveev [Zh. Eksp. Teor. Fiz. 94, 332

(1988)] is proposed to describe the electrical conductivity. On the other hand, x¼ 0, 0.1, and 0.5

present a variable range hopping behavior. Complex impedance spectroscopy as a function of

frequency indicates a pure resistive behavior for x� 0.5 compositions, while a complex resistive-

capacitive behavior is observed for low x values (0, 0.1). In these samples, low values of magneto-

electric coupling were measured with an AC lock-in technique. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960697]

I. INTRODUCTION

The synthesis and study of new multiferroic materials

with coexistence of at least two ferroic orders as ferromag-

netic (FM) and ferroelectric (FE) have increased strongly in

the last few years.1 In particular, the search of magnetoelec-

tric (ME) materials, where a dielectric polarization is

induced with magnetic field or a magnetic polarization is

driven by an electric field, is a matter of study in a new area

for developing devices as memories. Its results are interest-

ing because it would allow to combine ferroelectric data stor-

age with magnetic reading.2 Several applications are quickly

developing: magnetic field sensor (AC and DC), ME trans-

formers, or gyrators as voltage gain devices and current sen-

sors. ME effect is also useful in microwave devices like

resonators, filters, and phase shifters.3

Single-phase multiferroic materials are rare. The coexis-

tence between ferroelectricity and ferromagnetism can be

uncoupled or coincident when magnetic order is developed.

To increase the number of multiferroic materials, several fab-

rication alternatives have been performed as ferromagnetic/

ferroelectric superlattices4 or via simple solid solution routes

as the synthesis of nanostructured composites or multiphase

materials.5,6 Usually, in the composites formed by ferroelec-

tric and ferromagnetic materials, the magnetoelectric coupling

mechanisms can be based either on an interplay of

piezoelectricity and magnetostriction or on a charge carrier

density modulation in the ferromagnetic phase that can induce

a field effect. These two mechanisms can be superposed and it

is indeed observed.7

In order to achieve that, it is convenient to use a ferro-

electric (FE) material, like BiFeO3 (BFO) or BaTiO3 com-

bined with a ferromagnetic (FM) material, similar to a

colossal magnetoresistance (CMR) ferromagnet material or

any ferro/ferrimagnetic oxide.8 Different magnetoelectric

composite systems like CoFe2O4-BaTiO3 (CFO-BTO),9,10 (1-y)

BiFeO3-yNi0.5Cu0.05Zn0.45Fe2O4,
11 xLa0.625Sr0.375MnO3–(1-x)

LuMnO3,12 xLa0.7Sr0.3MnO3–(1�x)ErMnO3,13 and bilayers

La0.7Sr0.3MnO3/BaTiO3 (LSMO/BTO),14 PbZr0.52Ti0.48O3/

La0.67Sr0.33MnO3
15 have been reported in the literature.

Recently, the polarization study of BiFeO3/La0.5Sr0.5CoO3

films was reported. Using piezoresponse force microscopy

(PFM) technique, the authors conclude that defect formation at

the grain boundaries is responsible for the pinning centers that

inhibit domain wall motion implying an asymmetric polariza-

tion-switching.16 Nonetheless, no study has been reported to

date on xLa0.5Sr0.5CoO3–(1�x)BiFeO3 solid nanocomposite.

BiFeO3 is an auspicious single phase multiferroic compound.

It shows an antiferromagnetic transition above room tempera-

ture, with a N�eel temperature TN� 640 K, and a ferroelectric

transition with a Curie temperature TC� 1100 K.17 The mag-

netoelectric coupling in BFO is weak, which means that the

multiferroics property is not technological attractive in the sin-

gle phase form, but it could be enhanced by preparing compo-

sites. On the other hand, a similar CMR material is related to

La1�xSrxCoO3 perovskite, which would be another interesting
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candidate for FE field-effect tuning. In the x¼ 0 composition,

the Co3þ cations are in the low-spin and nonmagnetic configu-

ration at low temperature. For intermediate doping (LSCO:

x¼ 0.5), this cobalt perovskite has mix-valence and presents a

metal behavior as the manganite; however, it is not a half

metal as LSMO.18 In particular, bulk LSCO presents a ferro-

magnetic transition at TC� 250 K, and below this temperature,

the material presents a metallic behavior and itinerant ferro-

magnetism. Due to the Sr2þ doping, it presents different oxida-

tion states of Co ions, 50% Co3þ and 50% Co4þ.19

The nanostructuration of the materials can improve its

magnetoelectric coupling due to the increment of the number

of interfaces; with this idea, we synthesized the nanocompo-

site xLa0.5Sr0.5CoO3–(1�x)BiFeO3.

Samples were characterized by transmission electron

microscopy (TEM) and scanning electron microscopy (SEM)

micrographs and energy dispersive spectroscopy (EDS), local-

ized or elemental mapping. Magnetic, electric, and dielectric

properties, as well as magnetoelectric coupling measurements,

are presented and discussed in this work.

II. EXPERIMENTAL

BFO and LSCO powders have been prepared by spray

pyrolysis method.20,21 The samples were deposited in a home-

made spray-pyrolysis equipment described in Ref. 22. The

acid solution used for the synthesis of BFO includes ferric

nitrate (Fe(NO3)3�9H2O) and bismuth nitrate (Bi(NO3)3�5H2O)

in appropriate molar proportions dissolved in a nitric acid/

water solution. The spray deposition has been made at 700 �C.

The obtained powder has been annealed for 2 h at 800 �C in

air atmosphere. The LSCO powders have been prepared by the

same method but using an acid solution of cobalt nitrate

(Co(NO3)2�6H2O), strontium carbonate (SrCO3), and lantha-

num nitrate (La(NO3)3�6H2O). In this case, the spray deposi-

tion has been made at 800 �C and the collected powder has

been annealed at the same temperature under O2 atmosphere at

atmospheric pressure. Nanocomposites of xLa0.5Sr0.5CoO3–

(1�x)BiFeO3 have been prepared from LSCO and BFO nano-

powders. Different amounts of powder have been mechani-

cally mixed in an agate mortar in stoichiometric ratios in order

to obtain different samples (x¼ 0.1, 0.2, 0.5, 0.8, and 0.9).

Afterwards, pellets were made for the different composites and

annealed at 800 �C under O2 flow for 2 h. Structural characteri-

zation of samples was carried out by X-ray powder diffraction

(XRD) using a Philips PW1700 diffractometer (Cu Ka radia-

tion). Images of scanning electron microscopy (SEM) were

collected with a FEI Nova Nano SEM 230 to observe morphol-

ogy and perform a mapping of the atomic elements present in

the samples. Transmission electron microscopy images were

collected with a TEM Philips CM 200 (LaB6 filament and

acceleration voltage 200 kV), equipped with an ultratwin lens.

The sample was milled in a mortar, and the particles obtained

were dispersed in isopropyl alcohol. Drops of the colloidal sus-

pension were placed on a grid of Cu.

In order to characterize the electric and magnetic proper-

ties in these composites, we carried out different experiments.

Magnetization–temperature dependence was measured in a

commercial vibrating sample magnetometer (VSM) LakeShore

7300 between 100 K and 900 K, as well as hysteresis magneti-

zation loops at different temperatures. At T¼ 5 K, a Quantum

Design MPMS 5XS SQUID magnetometer was used. The elec-

trical resistivity was measured in a four-probe homemade

device in the temperature range 5 K<T< 300 K. The experi-

mental device includes a Hewlett Packard 34420A nanovolt-

meter, a Keithley 6221 DC current source, and a Lakeshore

330 temperature controller. For these DC transport measure-

ments, composite pellets samples were cut in rectangular bars

and the electrical contacts were made using silver paint.

Complex electrical permittivity measurements were performed

in a homemade device, the principal equipment being an

Andeen Hagerling 2500A ultra precision capacitance bridge at

1 kHz. Samples were prepared like a parallel disc plate capaci-

tor with approximately 1 mm of thickness. Complex impedance

spectroscopy measurements in a range of frequency of

40 Hz–10 MHz were carried out using an Agilent 4294A

impedance analyzer. The transversal magneto-electric coeffi-

cient (aME) measurements were carried out at room temperature

in a homemade device employing a lock-in technique,23 with

20 Oe of AC magnetic field excitation at 1 kHz and static mag-

netic field bias between 67 kOe.

III. RESULTS AND DISCUSSION

A. Structural and morphological characterization

Figure 1 shows the X-ray diffraction patterns of

xLa0.5Sr0.5CoO3–(1�x)BiFeO3 powder for x¼ 1, 0.9, 0.5,

and 0. The XRD patterns, in particular, those x¼ 0 and 1,

confirm that the synthesis method was successful. All XRD

peaks could be clearly identified as of La0.5Sr0.5CoO3

(JCPDS Card No 00-048-0122) and BiFeO3 (JCPDS Card

No 01-071-2494) along with some impurity peak of

Bi25FeO40 (JCPDS Card No 00-046-0416). The Bi25FeO40 is

FIG. 1. X-ray diffraction patterns of xLa0.5Sr0.5CoO3-(1�x)BiFeO3. (*),

(�), and (þ) indicate the La0.5Sr0.5CoO3, BiFeO3, and Bi25FeO40 expected

diffraction peaks, respectively.
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a common spurious formed in BFO synthesis, but being a

paramagnetic oxide,24,25 it should not interfere with the

strong ferromagnetic response of the composite. The data in

Fig. 1 show that the intensity of BFO peaks increases as x
decreases as expected.

Scanning electron microscopy (SEM) was used to

observe the morphology of the samples. For the x¼ 0.5 sam-

ple, a SEM image is presented in Fig. 2. Two groups of par-

ticles can be observed, one has small grain sizes, between

20 nm< ds< 100 nm (see inset), and the other group of par-

ticles presents sizes of ds� 1–10 lm. We collected data for

EDS on different windows focusing on the different groups

of particles. The EDS quantification shows that small par-

ticles are formed mainly by LSCO, while on the other hand

large particles are mostly formed by BFO. EDS elemental

mapping is presented in Fig. 3. The image in Fig. 3(a) is the

visual SEM reference. In Fig. 3(b), violet colour represents

rich regions associated with the x-ray emission from the K

shell energy level of Co element, which surround the large

grain observed in the previous SEM image (Fig. 3(a)).

Similar EDS mapping, due to the same amount of each ion,

is obtained from the L shell energy levels of Sr and La ele-

ments, see Figs. 3(c) (red) and 3(d) (blue), respectively. On

the contrary, the patterns observed in Figs. 3(e) (green) and

3(f) (yellow), which correspond to Bi (L) and Fe (K), respec-

tively, show that these elements are located in the large

grain. According to the information of EDS mapping of ele-

ments distribution, we conclude that the large grains with

ds> 1 lm are formed by BFO, while the smaller grains

(ds< 100 nm) correspond to the LSCO phase.

TEM images of the BFO were collected with different

magnifications. Fig. 4(a) shows that the sample is constituted

by grains with the size of tens of nanometers. The grains are

crystalline as observed in the selected area electron diffrac-

tion (SAED) pattern. In Fig. 4(b), we indexed a SAED pat-

tern of BFO in the expected space group with the cell

parameters in agreement with the bibliography.26

Nanoparticles of BFO are observed in the image of Fig. 4(c).

Crystalline planes can be observed in some particles.

B. Magnetic properties

Magnetization (M) versus temperature (T) curves at

H¼ 100 Oe, after zero-field cooling (ZFC) condition, are

shown in Fig. 5. In general, in all samples with x> 0, M
increases to reach a maximum close to 230–250 K, tempera-

ture depending on x. At high temperatures (T> 260 K), an

apparent paramagnetic behavior is observed. The critical

temperature of the ferromagnetic order (TC) has been deter-

mined as the minimum in dM/dT vs T. This ferromagnetic

transition temperature diminishes when the BFO fraction

increases (see inset Fig. 5). This shift in the TC can be associ-

ated with a hole doping effect where the charges are moved

from the LSCO phase to BFO regions. Hysteresis loops were

measured out at different temperatures. Fig. 6 presents the

isothermal magnetization at T¼ 5 K for different x values.

For x¼ 1, the magnetic saturation value MS � 0.8 lB/Co

(22 emu/g) is lower than the reported for bulk samples

(1.7 lB/Co).19 Usually, this fact associated with a magnetic

dead layer presents in the shell of the nanoparticles.27,28 The

inset in Fig. 6 presents the magnetic saturation at 5 K nor-

malized for the LSCO mass in each sample, for which a con-

stant value is expected. Nevertheless, in all cases the

normalized MS values are higher than the corresponding sat-

uration for the LSCO composite end (x¼ 1), which may be

attributable to another ferro/ferrimagnetic contribution.

On the other hand, isothermal magnetic curves at

T¼ 300 K (above LSCO’s TC) show an unexpected FM sig-

nal for intermediate compositions (Fig. 7). For clearness, we
FIG. 2. SEM image of the x¼ 0.5 sample: the inset shows in detail the

region around a large grain.

FIG. 3. EDS elemental mapping of the x¼ 0.5 sample. (a) SEM reference

image; atom mappings show different atom distributions: (b) Co-K line tun-

ing (violet on-line); (c) Sr-L line (red on-line); (d) La-L line (blue on-line);

(e) Bi-L line (green on-line); and (f) Fe-K line (yellow on-line),

respectively.

074103-3 Lohr et al. J. Appl. Phys. 120, 074103 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  200.0.233.51 On: Tue, 18 Oct 2016

19:10:02



show only three x values at 300 K. A linear behavior is

observed in all the complete H range measured for both

ends, x¼ 0 and 1, respectively. In the BFO case, this is due

to the AFM response (TN� 640 K), whereas for LSCO

(TC� 250 K), the linearity is associated with the PM behav-

ior. For intermediate x values at 300 K, the linear magnetic

contribution of each phase (LSCO, BFO) is observed

together with a FM loop. This linear behavior was fitted at

high magnetic fields and subtracted to obtain the hysteresis

loop. The magnetic saturation of this ferro/ferrimagnetic

contribution (MS 300 K) is plotted in the inset of Fig. 7(a). It is

interesting to remark that the magnetization saturation

increases with x. In order to explain the origin of this addi-

tional contribution, we performed M vs. T experiments from

room to high temperature (T¼ 900 K). In Fig. 7(b), we pre-

sent the magnetization as a function of temperature for the

x¼ 0.8 composite. A change in slope is easily visible and

associated to the AFM transition that occurs close to TN �
640 K in the BFO material. In addition, a second transition is

observed at higher temperatures, at T � 700 K. The ferro/fer-

rimagnetic contribution observed at room temperature

together with this transition at 700 K is both associated with

an additional magnetic phase, which is a product of the com-

posite formation. This new phase should be formed and

FIG. 4. (a) Low magnification image of BFO where particles of tens of

nanometers are observed. (b) SAED pattern of BFO. The spots were indexed

according to bibliographic information. (c) Image of particles with size

under the tens nanometres. The separation of the planes of the box (1) is

consistent with the separation of the planes of the family (012), of the hexag-

onal setting. Also, it is presented the FFT of the particle of the box (2).

FIG. 5. Magnetization, after a ZFC process, as a function of temperature for

an applied magnetic field of 100 Oe. The inset shows the variation of TC

(LSCO) with x.

FIG. 6. Magnetic hysteresis loops at 5 K for xLSCO-(1�x)BFO (x¼ 1, 0.9,

0.8, 0.5, and 0.1) composites. The inset shows MS (at 5 K) normalized by the

corresponding mass of LSCO at each value of x.

FIG. 7. Magnetization as a function of H at 300 K, above TC of LSCO, for

x¼ 1, 0.9, and 0. Insets: (a) magnetic saturation after subtracting lineal con-

tribution at high magnetic field. (b) Magnetization as a function of tempera-

ture at 5 kOe for 0.8LSCO-0.2BFO. The temperatures TN of BFO, TC of the

interface BFO/LSCO and TC of CoFe2O4 are indicated for references.
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located in the LSCO/BFO interface region. Considering the

atomic elements that form the composites, one reasonable

possibility could be the presence of an impurity of ferrimag-

netic cubic spinel Fe3O4 (TC � 850 K). This phase is usually

responsible for higher saturation magnetization values in

many cases. However, in our case and considering the

observed Curie temperature observed, the presence of such

phase is not consistent with our data. A second possibility

can be the formation of CoFe2O4 in the interface. This spinel

is ferrimagnetic with a TC¼ 793 K and Ms¼ 80 emu/g in

bulk.29 Using the bulk saturation magnetization and the satu-

ration values obtained at room temperature, we have esti-

mated the amounts of the spinel phase for each composite

composition. We obtained between 0.1% and 0.8% of mass,

which are undetectable for the XRD technique. By consider-

ing the value of the transition temperature, observed close to

700 K, further possibility can be the formation in the inter-

face of Bi1�xLaxFeO3. In this solid solution, the Neel tem-

perature for a canted antiferromagnetic order goes from

TN¼ 640 K for x¼ 0 to 740 K for x¼ 1.30

C. Electrical properties

The composites DC conductivity response, normalized

to 280 K value (r/r280K), is shown in Fig. 8 for different

compositions. In all samples, the conductivity increases with

the temperature in semiconductor materials. Nevertheless,

when the data are plotted as ln(r/r280K) vs 1/T, the data do

not follow a linear behavior for any value of x expected for a

thermal activation model. Alternatively, the data plotted as

ln(r/r280K) vs (1/T)1/4 show a linear behavior for x¼ 0 – 0.5

(see inset in Fig. 8). This temperature dependence indicates a

possible conduction mechanism associated with disorder,

where the electronic carriers are hopping under a variable

and random potential between the cationic sites (variable

range hopping or VRH). LSCO bulk is a ferromagnetic and

metallic compound, presenting a typical itinerant ferromag-

net electrical conductivity. The electrical resistivity presents

quadratic temperature dependence below TC and a linear

behavior in the paramagnetic region as any normal metal. In

our composites, and for high content of LSCO (x¼ 0.9, 1), the

conductivity is different from the expected bulk behavior due

to the grain boundaries. The LSCO nanostructured sample

temperature behavior is opposite to the metallic bulk sam-

ple.19 Also, the absolute value of the conductivity at

T¼ 280 K for nanostructured sample is two or three magni-

tude orders smaller than the bulk and metallic sample, rnano/

rBulk� 10�2–10�3. In similar nanostructured cases, other

models have been proposed such as the Glazman and

Matveev (GM) model,31 where the conductivity is mediated

by intermediate localized states in the isolated barrier phase

(shell of the particles27). This model is commonly used to

describe metal-insulator-metal tunnel junctions.32 Excellent

accord is found between the experimental conductivity and

the GM model fit presented in Fig. 9. Resistance measure-

ments with the magnetic field up to 9 T were performed for

nanostructured LSCO. The inset of Fig. 9 shows the MR %

(100 [R(H)-R(0)]/R(0)) at different temperatures; the MR

value for 9 T at 4.2 K is three times higher than the bulk mate-

rial value.19

Figure 10 presents the conductivity values at 280 K for

different molar fractions (x). Two r regimens are observed.

For x¼ 0 (BFO), the system is completely insulator and sud-

denly its conductivity increases seven orders of magnitude

when small amounts of LSCO phase are introduced

(0< x< 0.2). From x¼ 0.2 to x¼ 1, the electrical conductiv-

ity increases five orders of magnitude to reach the conductiv-

ity of the pure LSCO. Considering the presence of these two

different phases (BFO and LSCO) with very different con-

ductivities, we propose a single conductance (or resistance)

arrays. To describe x< 0.2 compositions, we propose a par-

allel conductance array (or two resistances in series) and for

the other regime, x> 0.2, conductances in series are pro-

posed (or two parallel resistances). By applying the

effective-medium approximation (EMA) model, considering

two phases with different conductivities, an homogeneous

distribution and 3D system, the volume fraction percolation

FIG. 8. DC conductivity normalized to the 280 K value (r/r280K) as a function

of temperature for xLSCO-(1�x)BFO nanocomposite. The inset shows the agree-

ment with a ln(r/r280K) vs. T�1/4 VRH model for x¼ 0, 0.1, and 0.5.

FIG. 9. DC conductivity as a function of temperature for LSCO nanostruc-

tured sample (x¼ 1). The line (red online) shows the fit with the Glazman-

Matveev model which describes inelastic hopping via chains of two and

three localized states.
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threshold is predicted to be fp
*¼ 1/3.33 For a particular case

under study, taking the unit cell volume of the each end

member (Vcell (BFO)¼ 374.3 Å3 and Vcell (LSCO)¼ 338.4

Å3) and taking the different molecular weights between the

compounds W(LSCO)/W(BFO) � 0.7, the expected percola-

tion threshold expressed as molar fraction is xp
* � 0.36. This

value is somewhat higher than the observed cross-over (xp �
0.2) in Fig. 10. One possible reason to explain this shift can

be the different sizes of the LSCO particles with respect to

the large BFO. In other words, it can be a consequence of

nanostructuration, where the high conductivity nanograins of

LSCO surround the BFO insulator micrograins (see Fig. 3)

and form percolation paths with a low molar fraction. This

value is approximately half the estimated value for a homo-

geneous two-phase (metallic and insulator) distribution.

Complex electrical permittivity measurements could

only be performed in samples with small losses as the insu-

lating samples x¼ 0 and x¼ 0.1, whose data are shown in

Fig. 11. For BiFeO3 (x¼ 0), we measured a low temperature

intrinsic value of e0 � 50 which is in concordance with that

reported in literature.34 With the incorporation of the LSCO

phase, a loss increment (e00) is expected and experimentally

observed (see comparison between x¼ 0.1 and x¼ 0 in Fig.

11). Any anomaly associated with a ferroelectric transition

or to the magnetic transition of LSCO was not observed.

Complex impedance spectroscopy measurements (Z)

were carried out for different composites x¼ 0, 0.1, 0.5, and

0.9 at room temperature within a frequency range of

40 Hz–10 MHz (Fig. 12). Composites with x¼ 0.9 and 0.5

show a pure resistive behavior (phase¼ 0) in the studied

range. For the low resistance end, x� 0.9, an inductive con-

tribution appears at high frequencies, which we attribute to

our experimental limitations. The x¼ 0.1 sample presents an

interesting “steps-likes” dependence in the phase parameter,

a behavior that is also observed in other oxides.35,36 At low

frequencies, the sample presents a resistive plateau behavior

(phase¼ 0) and when the frequency is increased, beyond

200 Hz, the phase parameter increases its negative values,

showing a step-like or capacitive contribution. A second step

is observed due to a second capacitive contribution around

200 kHz. In the BFO (x¼ 0), the capacitive contribution at

low frequencies is more prominent and other contributions

are observed at high frequencies.

The expected complex Cole-Cole plot, Re[Z] vs –Im[Z],

for the x¼ 0.1 sample should consist of two superimposed

semicircles. In this kind of plots, a semicircle describes a

parallel resistance-capacitor electrical circuit. The experi-

mental data and their fit are presented in Fig. 13, where we

show that there are two characteristic times in the system

coming from each set of the RC circuits. The possible expla-

nation about the physical origin of these two characteristic

times is that one is associated with the grain boundaries and

other one is related to the bulk behavior. The inset in Fig. 13

shows the complex diagram for x¼ 0 and also presents two

characteristic times like the x¼ 0.1 sample; however, the

extremely high resistance values prevent the observation of

the complete semicircle.

In order to complete the characterization of the insulator

samples, we performed polarization vs. electric field experi-

ments using a homemade Sawyer-Tower circuit. Unfortunately,

FIG. 10. DC conductivity at T¼ 280 K for xLSCO-(1�x)BFO nanocompo-

site with different x values. The solid lines are only guides to the eye, indi-

cating the different regimes.

FIG. 11. Electric permittivity (e0) and electrical loss (e00) constants at 1 kHz

as a function of temperature for x¼ 0 and 0.1. No anomalies are detected in

the measured temperature range.

FIG. 12. Modulus Z and phase of complex impedance as a function of fre-

quency for different xLSCO-(1�x)BFO composites.
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we have not detected a feasible ferroelectric hysteresis curve at

room temperature. The principal reason is due to the loss cur-

rents by the high AC conductivity (rac� 10�8 X�1cm�1) of

the samples. For this particular case, we applied 1.5 kV between

1 mm of thickness, which gives a maximum electric field of

15 kV cm�1 as our experimental limit (see supplementary

material Fig. S1 for x¼ 0 sample). Other authors, e.g., Lu

et al.,34 have obtained ferroelectrics loops of BFO single crys-

tals, below 200 K and applying electric field of 20 kV cm�1.

Finally, the magnetoelectric (ME) characterization of

the most insulating composite sample (x¼ 0.1) has been per-

formed. In order to compare the ME response with a typical

composite, we also synthesized a ceramic composite of

0.5CoFe2O4–0.5BaTiO3 via Solid State Reaction Method

(SSRM). The magnetoelectric transversal coefficient (aME)

of both samples is presented in Fig. 14. The aME value for

0.1LSCO-0.9BFO is 0.7 10�3 mV cm�1 Oe�1, which is three

orders of magnitude less than the reference composite used.

In order to compare with the data of the bibliography, differ-

ent materials that include films and ceramic composites

fabricated by solid state reaction or by sol-gel routes forming

nanopowders are discussed. According to the magnetoelec-

tric response, the samples can be divided in three groups

classified by the strength of coupling. In the first group, we

include high strength ME coupling materials as the Terfenol-

D/PVDF (polyvinylidenedifluoride) composite, which has

aME¼ 1430 mV cm�1 Oe�1.37 Other composite that may be

included in this group is the Bi4Ti3O12/Bi5Ti3FeO15 films

with aME¼ 78 mV cm�1 Oe�1.38 Ferromagnetic/ferroelectric

composite materials are formed by two kinds of single

phases, which can be independently or ME coupled between

them. The ME effect is a new functionality originated by the

interaction between the phases. The accepted coupling pic-

ture is the combination of piezoelectric effect of ferroelectric

phase/layer (composite/film) with magnetostriction effect of

ferromagnetic phase/layer. A strong coupling between ferro-

electric and ferromagnetic phases/layers can helpful to

obtain greater magnetoelectric signal. A second consider-

ation is the formation of intermediate interface between the

contact of both phases/layers, which can perform an excel-

lent ME coupling.

The second group associates with moderate ME cou-

pling strength materials. Composites like xBa0.95Sr0.05TiO3–

(1�x)BiFe0.9Gd0.1O3, prepared by SSRM, give aME¼ 1.67 mV

cm�1Oe�1.39 In this group, we also include our 0.5CoFe2O4–

0.5BaTiO3 reference composite (SSRM) with aME¼ 1.1 mV

cm�1 Oe�1 and the previously published aME¼ 0.52 mV

cm�1 Oe�1 about the same composite formed by nanopow-

ders.40 It is interesting to note how aME decreases when the

grain size is reduced. To have a realistic picture in this com-

plex scenario, other factors should also take into account such

as anisotropy, domain structure, interface defects, grain

boundaries, and/or charge pooling capacity that can affect

notably the ME coupling. For example, in the laminate com-

posite La0.7Ba0.3MnO3–BaTiO3 (aME¼ 0.65 mV cm�1 Oe�1),

the moderate ME coupling is attributed to the low density,

caused by differences in thermal expansion, as well as the

grain size effect which can be controlled by the synthesis

method.41 Diffusion process directly affects the internal resid-

ual stresses and chemically inhomogeneous regions.

Finally, the III group (low ME coupling strength values) are

formed by composites as 0.85Bi0.95Dy0.05FeO3–0.15BaTiO3
42

that presents extremely low values (aME¼ 1.8 10�3 mV

cm�1 Oe�1). The nanocomposite samples studied in this

work are included in this group. The low ME coupling

observed can be due to different possibilities. One of them is

the diminution of piezoelectric effect when the grain size is

reduced. It has been observed by Lei et al.43 in the nano-

structured and polycrystalline BFO films. The piezoelectric

coefficient is reduced ten times when the grain size is

reduced from 150 to 85 nm. Other explanation might be the

high electrical leakages in polycrystalline composite samples

due to the presence of a high conductivity phase. The high

voltage source used in these kinds of experiments is limited

by the current compliance, limit that is easily reached with

the high electric leakages and consequently avoid to apply

high electric field and to reach the saturation of the polariza-

tion to reach a complete parallel orientation of the ferroelec-

tric domains.

FIG. 13. Real vs. imaginary component of complex electric impedance from

a measurement in the range of frequency 40 Hz–10 MHz for the sample with

x¼ 0.1. The red line is a fit to the 2RC parallel model. Dashed lines indicate

two contributions to the impedance. The inset shows the BFO results for the

same experiment.

FIG. 14. Magneto-electric coefficient as a function of DC magnetic field.

Circles correspond to the x¼ 0.1 composite and triangles to a reference com-

pound 0.5CoFe2O4-0.5BaTiO3.
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IV. CONCLUSIONS

We prepared different compositions of multiferroic

xLa0.5Sr0.5CoO3–(1�x)BiFeO3 (xLSCO-(1�x)BFO) compo-

sites. The starting materials were ferromagnetic LSCO and

multiferroic BFO nano powders, which were synthesized by

spray pyrolysis method at 800 �C. X-ray diffraction and

EDS-SEM techniques confirmed the desired phases and the

expected ratio compositions. The SEM morphology and

EDS elemental mapping evidenced larger BFO grains (com-

posed by nanocrystals observed by TEM) surrounded by

LSCO nanocrystals.

The LSCO Curie temperature smoothly decreases when

the BFO ratio increases. A magnetic impurity phase, undetect-

able by XRD, was observed in magnetization experiments.

We assume that this ferri/ferromagnetic phase is located in the

interface of LSCO/BFO and it is formed during the annealing

process. The chemical composition of this new phase can be

close to the spinel CoFe2O4. Note that this additional phase is

not present in the composite ends (LSCO or BFO).

Electrical conductivity showed that a variable range hop-

ping mechanism dominates for small x compositions, whereas

for large x (rich in LSCO), the conductivity is described by a

Glazman-Matveev mechanism, due to the nanostructure of the

LSCO phase. Also, for these compositions, an important cou-

pling between the conductivity and the magnetic field was

observed which is larger than the one for bulk LSCO. A phe-

nomenological description of parallel and series resistances can

be used to describe the conductivity at room temperature with

the change of the LSCO/BFO phase ratio. A percolation thresh-

old was determined close to x � 0.2. No anomalies have been

observed in the electrical permittivity, but important changes in

its magnitude and temperature dependence are observed when

10 mol. % of LSCO is added to the BFO phase. The complex

electric impedance measurements at room temperature indicate

that composites with x¼ 0.9 and 0.5 have an ohmic resistive

behavior, whereas on the other hand, x¼ 0.1 and 0 present a

resistive-capacitive parallel behavior. A model with two RC par-

allel circuits was proposed, which are associated with the bulk

and grain boundary contributions. We associate the low ME

coupling observed in this nanocomposite to the weak ferroelec-

tric polarization. It may be due to the high electrical leakages,

which limit the experimental applied electric field, or by defects

that pinning the ferroelectric domains avoiding their parallel ori-

entation. Finally, we have shown that the low-temperature of

the spray-pyrolysis synthesis provides an alternative route for

novel integrated nanocomposite materials and devices.

SUPPLEMENTARY MATERIAL

See supplementary material Figure S1 for ferroelectric

hysteresis loop at room temperature for BiFeO3 (pressed

nanoparticles sample) with 1 mm of thickness. Maximum

electric field: 15 kV cm�1. The loop was measured using a

homemade Sawyer-Tower circuit.
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