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We study the effects produced by interactions among neutrinos upon extra-galactic
neutrino-fluxes. We have assumed a separable type of pair interactions and performed

a transformation to a quasi-particle mean field followed by a Tamm-Damcoff diagonal-

ization. In doing so, we have adopted techniques originated in the quantum many-body
problem, and adapted them to this specific case. The solutions of the associated eigen-

value problem provide us with energies and amplitudes which are then used to construct
the neutrino response functions at finite density and temperature. The formalism is

applied to the description of neutrinos produced in a SN environment.
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1. Introduction

Neutrinos play an important role in the collapse and explosion of massive stars. They

carry information from the heart of the explosion, which we couldn’t acquire through

photons or other particles [1]. Besides, due to their weakly interacting nature, they

can provide us with insights into the dynamics and thermodynamics at the center of

a supernova (SN) [2]. Neutrinos are generated in a variety of astrophysical scenarios

[3]. Core-collapse SN are among the most powerful sources of neutrinos in our

Universe. During a SN explosion, 99% of the emitted energy (∼ 1049 − 1053 erg) is

released by neutrinos (ν) and antineutrinos (ν̄) that are formed from neutrons and

protons through β-decay. These astrophysical messengers pass straight through the

collapsing star before the explosion takes place. Their detection provides an early

warning prior to the arrival of the electromagnetic signal [4]. Other extragalactic

progenitors include gamma-ray bursts (GRB), which may originate from binary

systems [5] such as two neutron stars (NS) or a NS and a black hole (BH), some

active galactic nuclei (AGN), especially blazars and, last but not least, the Big Bang

[6].

Extragalactic neutrinos (and antineutrinos) are created through different mech-

anisms according to the characteristics of their progenitors. There are no charged

current interactions of ν with the medium. Instead, there is a variety of neutral

current interactions, e.g.:
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• e− − e+ pair annihilation:

e− + e+ → νe + ν̄e.

This mechanism typically occurs in the first stages of a collapsar GRB

explosion. Due to vacuum polarization, e−−e+ pairs are created. A fraction

of the pairs annihilate to photons, while another fraction gives rise to ν− ν̄
pairs.

• β-decay:

n→ p+ e− + ν̄e.

This usually occurs in neutron rich systems, such as NS.

• Inverse β-decay:

p→ n+ e+ + νe.

• p-p interaction: this consists in the interaction of a relativistic proton from

a GRB jet with a cold proton from the outermost shells of the expanding

star. Charged pions are produced as a result of the interaction, which later

decay giving neutrinos (antineutrinos)

π+ → µ+ + νµ,

π− → µ+ν̄µ.

• p-γ interaction: a relativistic proton from the GRB jet interacts with a less

energetic photon, i.e. a synchrotron photon. This again produces charged

mesons that decay into ν and ν̄ through the channels just mentioned above.

There are also other neutrino production mechanisms such as plasmon decay,

photoannihilation, bremsstrahlung, neutronization, etc [7, 8].

Although the exact value of the neutrino mass is still unknown, it is clear that

neutrino mass is many orders of magnitude smaller than the mass of their leptonic

partners. This makes it possible for neutrino oscillations to take place. When a

beam of neutrinos travels through space, the proportion of each flavor (e, µ and τ)

changes, and so the amount of neutrinos arriving at the detectors on Earth in each

flavor state is different from the one at the source.

Concerning neutrino detection, there are several technologies, some currently

running and others planned for the future. Water Cherenkov detectors employ water

(liquid or solid) as the detection material. When neutrinos pass through a water

tank they produce Cherenkov light that is collected by photomultiplier tubes. Super-

Kamiokande (SK) [9] is a typical detector of this kind. Recently, Gd was introduced

in the detector in order to enhance neutron-tagging efficiency and try to achieve the

first observation of SN relic neutrinos (SRN) or diffuse SN neutrino background.

[10]. Hyper-Kamiokande (HK) [11] is to be the next generation of large-scale water

Cherenkov detectors. It is planned to be an order of magnitude bigger than SK. Ice

Cube [12], located in the South Pole, is another kind of Cherenkov detector that
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works in the sub-TeV to EeV energy range. It is continuously monitoring the full sky

to detect astrophysical neutrinos, and it regularly alerts other experiments in near

real-time about interesting neutrino observations in order to enable electromagnetic

follow-up observations.

Most current detectors are sensitive primarily to ν̄e. The reason is that the main

detector materials for large underground detectors are rich in free protons, which

have a rather large (and well known) cross section for interaction with ν̄e via inverse

β-decay, with a threshold of Eνthr
= 1.8 MeV [13].

SN neutrino spectra have a rich structure, since different energy groups emerge

from different depths in the proto-NS atmosphere. However, on a rough level of ap-

proximation, the overall spectrum follows a thermal distribution. The mean energy

of the distribution ranges from a few to tens of MeV [14].

So far, neutrinos have been treated as a gas, but since the neutrino density is

of the order of nuclear matter density (ρ0 = 2.8 × 1014 g/cm3) [15], interactions

among them may take place [16, 17] and collective phenomena may arise. In this

work we are considering neutrino-pair interactions to study possible observational

consequences.

The work of Birol et al [18] explored some features of the neutrino system by ap-

plying quantum many-body techniques. Working with an effective two-flavor mixing

scenario under the single-angle approximation, they presented a solution based on

the Richardson-Gaudin diagonalization scheme [19]. It was a crucial step towards

the understanding of the role of ν-ν interactions beyond the independent-particle

approach.

Concerning the many body aspects of the present calculations, in addition to

[18], the work of Ref. [20] treats ν-ν interactions in the context of the RPA, applying

the Bethe Ansatz. The obtained eigenstates and eigenvalues were then used to build

the neutrino linear response. The interaction used in [20] is of the schematic form.

This formulation has the advantage of separability, and it allows to distinguish

effects due to mean-field (BCS-type) and residual two-body correlations.

Concerning the astrophysical aspects of the system which we are addressing

here, namely, the study of the effects due to ν-ν interactions in the interior of a

supernova upon the spectral function of the neutrino, we shall refer to the work of

Y. Pehlivan et al [21]. There, the effects of the neutrino interactions both in the

superfluid (BCS) and condensed (BEC) regimes were considered. The authors of

Ref. [21] gave a clear picture about the density dependence of the effects attributed

to neutrino interactions, since they took into account the density variations between

the inner and outer shells of the supernova. In Ref. [21], the suitability of the many-

body concepts applied to the neutrino interactions was based in the analogy with

other many-body systems, like the atomic nucleus and hadrons in QCD.

A major difficulty found when applying many-body techniques to the neutrino

interactions is related to dimensionality. The Bethe Ansatz method used in Ref.

[20] show numerical instabilities for large dimensions. A way out to circunvent this

problem has been explored in Ref. [22]. It consists in implementing a variational
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approach and expressing the Bethe Ansatz equations in a differential form, yielding

a set of algebraic equations. The procedure used in Ref. [22] illustrates clearly the

differences between the mean-field and exact solutions for extended systems of spin-
1
2 particles. It represents a nice step forward towards a deeper understanding of the

role of ν-ν interactions in astrophysical scenarios.

The work of C. Volpe [23] reviews some of the methods which are currently

employed to treat ν-ν interactions in astrophysical systems. Particular emphasis

is placed on the discussion of the mean-field method, its extensions, and the use

of Boltzmann equations. As stated in Ref. [23], since the equations of motion are

non-linear, the inclusion of corrections due to pairing and spin correlations requires

some care. The author presents as well a path integral approach to the neutrino

many-body problem.

To summarise the main points of Refs. [20–23] in connection with our work,

we shall emphasize the role of the many-body degrees of freedom in dealing with

the neutrino system, and the plausibility of the application of common techniques

from other branches of Physics to assess the competition between mean-field and

collective effects.

Following the ideas of the references cited above, we have developed a description

of collective effects resulting from neutrino-pair interactions. As a first step, we per-

form a transformation to a quasi-particle basis. The particle degrees of freedom in

the superfluid basis are then the neutrino-equivalent to the standard quasi-particles,

e.g. quasi-neutrinos. Pairs of neutrinos in the superfluid regime are treated in the

framework of the Tamm-Dancoff approximation (TDA) [24]. With the correspond-

ing response function evaluated at finite density and temperature we investigate the

changes in the flux of neutrinos due to ν-ν interactions.

The paper is organised as follows: in Section 2 we introduce the formalism, which

is then applied to a system of SN-neutrinos. The results of the calculations are

presented and discussed in Section 3. Finally, in Section 4, we draw our conclusions.

2. Formalism

2.1. Non-interacting neutrinos: energy distribution

The SN neutrinosphere may be considered as a blackbody emitter in which neutrinos

are in equilibrium at temperature T. If neutrinos are taken as free particles, their

number distribution is given by the Fermi-Dirac statistics:

f(ε, T ) =
1

e(ε−µ)/T + 1
, (1)

where ε is the neutrino energy in the relativistic (ε =
√
p2c2 +m2c4) or ultrarela-

tivistic (ε = pc) regime, µ is the chemical potential and the temperature T is given

in units of energy (kB = 1).

Taking continuous momentum eigenvalues and an ultrarelativistic dispersion
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relation, their density and total energy per unit volume are given by

ρ =
gs

2π2 (~c)3

∫ ∞
0

dε ε2f (ε, T ) (2)

and

E =
gs

2π2 (~c)3

∫ ∞
0

dε ε3f (ε, T ) , (3)

respectively, where gs = 2 is the spin degeneracy factor. From the above equations

we write the neutrino number distribution per unit energy

dN(ε, T ) =
1

ρ

dρ

dε
(4)

and the number of neutrinos per unit energy

dΦ(ε, T ) =
1

E

dE

dε
, (5)

both at a fixed T.

2.2. Neutrino-pair interactions

When neutrino densities reach those of nuclear matter, ν-ν interactions become

relevant. To model this interactions in the simplest way, we add to the free Hamil-

tonian a number constraint (λN) and a contact interaction of the monopole pairing

type:

H = Hfree − λN + Vpair =
∑
k

(εk − λ)a†kak −G
∑
k,l>0

a†ka
†
k̄
al̄al. (6)

Here the indices k and l stand for the quantum numbers needed to specify a neutrino

state, the operators a†k (ak) create (annihilate) a neutrino in the state k, while a†
k̄

(ak̄) create (annihilate) a neutrino in the time-reversed state k̄. G is the state-

independent strength of the interaction (G > 0).

The Hamiltonian (6) can be diagonalized by applying the Bogoliubov transfor-

mations to the quasi-particle basis:

α†k = Uka
†
k − Vkak̄

αk̄ = Ukak̄ + Vka
†
k

αk = Ukak − Vka†k̄
α†
k̄

= Uka
†
k̄

+ Vkak,

(7)

where α†k (αk) create (annihilate) a quasi-particle state, Uk and Vk are occupation

factors to be determined variationally, and since we are dealing with fermions, U2
k +

V 2
k = 1.

The Hamiltonian (6) is transformed to the quasi-particle basis (7), and normal-

ordered with respect to the quasi-particle vacuum |BCS〉 (α|BCS〉 = 0), yielding
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H00 = −∆2

2G
+
∑
k

(εk − λ)V 2
k

H11 =
∑
k

[
2∆UkVk + (εk − λ)

(
U2
k − V 2

k

)]
α†kαk

H20+02 =
1

2

∑
k

[
−∆

(
U2
k − V 2

k

)
+ 2 (εk − λ)UkVk

] (
αk̄αk + α†kα

†
k̄

)
H22 = −G

2

∑
kl

(
U2
kU

2
l + V 2

k V
2
l

) (
α†kα

†
k̄
αl̄αl + α†lα

†
l̄
αk̄αk

)
H40+04 =

G

4

∑
kl

(
U2
kV

2
l + U2

l V
2
k

) (
α†kα

†
k̄
α†lα

†
l̄

+ αk̄αlαk̄αl

)
, (8)

and terms which are proportional to the product of three creation and one annihila-

tion operators, or viceversa. Such terms are irrelevant for the purpose of the present

discussion. In the above equations, The energy gap ∆ is given by

∆ = G
∑
k

UkVk. (9)

To determine the quantities Uk, Vk and ∆, we follow the BCS method [25] and

impose the conditions:

H11 =
∑
k

Ekα
†
kαk (10)

H20+02 = 0 (11)

to diagonalize our Hamiltonian, at variance with the work by Birol et al. [18] in

which the Richardson diagonalization was used instead. The BCS method leads to

the expressions:

U2
k =

1

2

(
1 +

εk − λ
Ek

)
(12a)

V 2
k =

1

2

(
1− εk − λ

Ek

)
, (12b)

with the quasi-particle energy

Ek =
√

(εk − λ)2 + ∆2. (13)

The one-quasi-particle Hamiltonian is then written:

Hqp =
∑
k

Ekα
†
kαk. (14)

The BCS formalism can also be used to describe neutrino-pair interactions at

finite temperature. Following the rules of statistical mechanics we introduce the
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thermal averages by taking traces with the statistical operator e−Hqp/T , where Hqp

is the one given in (14). Therefore, the quasi-particle occupation numbers fk(T ) =

〈α†kαk〉 are defined by:

〈α†kαk〉 =
Tr(e−Hqp/Tα†kαk)

Tr(e−Hqp/T)
, (15)

from where we get

fk(T ) =
1

eEk/T + 1
. (16)

Proceeding analogously and taking traces with the transformed Hamiltonian (8),

one gets the temperature-dependent version of the BCS quantities Uk, Vk, Ek and

∆ [26]. The expression for the temperature-dependent gap is:

∆(T ) = G
∑
k

UkVk(1− 2fk(T )). (17)

Because of the temperature dependence of the gap ∆, the superfluid regime is

restricted to the temperature range 0 ≤ T ≤ Tc, where Tc is the critical temperature.

For temperatures larger than Tc, the normal regime (∆ = 0) is recovered. For

T < Tc, and taking the limit in the continuum, the quasi-particle energy density

per unit volume is written:

dΦqp =
gs

2π2(~c)3

E3

(eE/T + 1)
, (18)

where E =
√

(ε− λ)2 + ∆2(T ).

2.3. Collective excitations of neutrino pairs

The next step in the treatment of neutrino-pair interactions consists of the diago-

nalization of the remaining terms of the Hamiltonian (8), namely H22 +H40+04. We

shall start with the Tamm-Dancoff approximation (TDA) applied to the Hamilto-

nian

H ′ = Hqp +H22. (19)

In order to do so, we introduce linear combinations of the quasi-neutrino pairs

Γ†n =
∑
k

X
(n)
k α†kα

†
k̄
. (20)

The one-phonon operator Γ†n acts upon the quasi-particle vacuum creating a state

|n〉 of energy ωn

Γ†n|BCS〉 = ωn|n〉
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The amplitudes X
(n)
k and the energies ωn are determined by solving the TDA equa-

tion of motion [27]

[H ′, Γ†n] = ωnΓ†n. (21)

The vacuum state in the TDA approach coincides with the BCS vacuum, the ener-

gies ωn are the solutions of the dispersion relation

X
(n)
k =

A
(n)
k

2Ek − ωn
, (22)

where

A
(n)
k = G

∑
k′

Fkk′

2Ek′ − ωn
A

(n)
k′ (23)

and

Fkk′ = U2
kU

2
k′ + V 2

k V
2
k′ . (24)

The energies are then solution to

Det(1− F(ωn)) = 0, (25)

where F (ωn) is the matrix whose elements are

[F (ωn)]kk′ = G
Fkk′

2Ek′ − ωn
. (26)

The extension of the formalism to finite temperatures is straightforward and it

amounts to the replacements [26, 27]

Fkk′ → Fkk′(1− 2fk′(T )), (27)

due to the fact that

[αk̄αk, α
†
k′α
†
k̄′

] = δkk′(1− 2fk(T )). (28)

The inclusion of the term H40+04 would imply to adopt the Random-Phase Ap-

proximation (RPA) method, for which there will be a new vacuum |RPA〉 different

from the |TDA〉 one and, consequently, the one-phonon operator takes the form

Γ†n =
∑
k

X
(n)
k α†kα

†
k̄
− Y (n)

k αk̄αk, (29)

being

Y
(n)
k =

B
(n)
k

2Ek + ωn
. (30)

The quantities A
(n)
k and B

(n)
k are solutions of the new system of equations[
A(n)

B(n)

]
=

[
F (ωn) S(ωn)

R(ωn) Z(ωn)

] [
A(n)

B(n)

]
(31)
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where the matrices S, R and Z have the following elements:

[F (ωn)]kk′ = G
Fkk′

2Ek′ − ωn
,

[S(ωn)]kk′ = −G Lkk′

2Ek′ + ωn
,

[R(ωn)]kk′ = −G Lkk′

2Ek′ − ωn
,

[Z(ωn)]kk′ = G
Fkk′

2Ek′ + ωn

(32)

and

Lkk′ = U2
kV

2
k′ + V 2

k U
2
k′ . (33)

The extension of the formalism to finite temperatures requires, as before, Fkk′ →
Fkk′(1−2f(T )) and Lkk′ → Lkk′(1−2f(T )). The energies ωn are now the solutions

of the equation

Det

[
1− F (ωn) − S(ωn)

−R(ωn) 1− Z(ωn)

]
= 0. (34)

The amplitudes X
(n)
k and Y

(n)
k , for each state with energy ωn, are normalized

to ∑
k

[(X
(n)
k )2 − (Y

(n)
k )2](1− 2fk(T )) = 1. (35)

The TDA expressions are straightforwardly recovered by setting Y
(n)
k = 0, and the

T = 0 case by writing fk(T = 0) = 0, for all values of k. The energy distribution

both for the TDA and the RPA states obeys Bose statistics with occupation factors

bn(T ) =
1

eωn/T − 1
. (36)

Therefore, it follows that the discrete energy distribution will be given by∑
n

ωnbn(T ). (37)

In the limit of the continuum [28], for the spectrum ωn, the energy distribution

Φ(ω) is proportional to

Φ(ω) ≈ ω3

eω/T − 1
. (38)

3. Results

In this section we shall present and discuss the results of our calculations, which

have been performed by adopting the following set of parameters shown in Table 3:
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Symbol Physical meaning Value

ρ Density of neutrinos 1030 neutrino/cm3

r Radius of the neutrinosphere 105 cm

T Temperature 0-2 MeV

G Strength of the ν-ν interaction 3.42× 10−34 MeV

3.1. Non-interacting neutrinos

With the parameters given in Table 3 we have calculated the number distribution

and the energy distribution for neutrinos with energies Ek =
√
p2
kc

2 +m2c4. Since

we have assumed pc >> mc2, the Fermi energy at T = 0 is given by the expression

εF (T = 0, ρ) = (3π2ρ)1/3~c, (39)

which gives a value of the order of 0.67 MeV for the value of ρ given in Table 3.

Applying the Fermi-Dirac statistics, Eq. 4 and Eq. 5, we have obtained the re-

sults shown in Figures 1-3. The curves shown in Figure 1 and Figure 2, for different

temperatures, exhibit a displacement in the energy of the maxima, as the tempera-

ture increases. The broadening of the spectrum (Figure 2) extends to large neutrino

energies. For typical SN temperatures (T = 2 MeV), the energy distribution reaches

the maximum at ε ≈ 6− 7 MeV. Figure 3 shows the mean value of the energy per

neutrino, as a function of the temperature. The curve follows a dependence of the

type E/N ∝ T 2.

0 2 4 6 8 10 12 14
 [MeV]

0.1

0.3

0.5

Nu
m

be
r d

ist
rib

ut
io

n T=0.5 MeV
T=1.5 MeV
T=2.0 MeV

Fig. 1. Number distribution of free neutrinos (Eq. 4) as a function of the neutrino energy, for

three different temperatures: T = 0.5 MeV (dotted line), T = 1.5 MeV (dashed line) and T = 2
MeV (dash-dotted line).
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T=1.5 MeV
T=2.0 MeV

Fig. 2. Energy-flux of free neutrinos (Eq. 5) as a function of the neutrino energy, for three different

temperatures: T = 0.5 MeV (dotted line), T = 1.5 MeV (dashed line) and T = 2 MeV (dash-dotted

line).

0 1.0 2.0
T [MeV]

4.0

8.0

12.0

E/
N 

[M
eV

]

Fig. 3. Mean value of the energy per particle (Equation 3), for free neutrinos as a function of the
temperature.

3.2. Neutrinos in the quasi-particle representation

As mentioned in the introduction, the treatment of neutrinos at high densities by

means of pair interactions has been advanced in [18]. Here, we are adopting the

same notion by working with the BCS approach.



September 24, 2020 22:12 WSPC/INSTRUCTION FILE output

12

Using the formalism presented in Section 2.2, requiring that ρ be high enough

so that neutrinos in the neutrinosphere may interact pairwise, the solutions of the

BCS equations lead to the properties of the neutrinos as quasi-particles.

Figure 4 shows the behaviour of the gap as a function of the temperature, as

given by ∆(T ) in Eq. 17. The gap collapses at the critical temperature T = Tc
which, for the present case, is of the order of 1.75 MeV.

In Figure 5 we show the quasi-particle excitation energy given by the expectation

value of the Hamiltonian (10) for different values of the temperature. It has the

typical ’S’ shape reminiscent of a first-order phase-transition. For temperatures

below Tc, the energy grows slowly. When the temperature increases, and the energy

gap decreases (see Figure 4), lower energy states become activated and eventually

the system seemingly undergoes a first order phase transition at T = Tc and reaches

the normal phase for higher values of T (see Figure 3). Although the concept of phase

transitions does not apply to systems with finite number of degrees of freedom,

for the present case the values of the density and cutoff in momentum space are

sufficiently large to justify its use. The critical temperature determines the transition

between the superfluid (T < Tc) and the normal (T > Tc) regime, as mentioned

before.

1.0 2.0
T [MeV]

0

1.0

2.0

 [M
eV

]

Fig. 4. Dependence of the energy gap (Eq. 17) with temperature.

Figure 6 shows the quasi-particle energy flux as a function of the energy, for

three different values of the temperature. At low temperatures (T = 0.5 MeV), the

spectrum has a threshold at 2 MeV. This feature persists at higher temperatures

(T = 1.5 MeV) below Tc although the threshold reduces to about 1 MeV. For tem-

peratures higher than Tc (T = 2 MeV), the threshold disappears and the spectrum
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T [MeV]
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12.0

E/
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eV

]

Fig. 5. BCS excitation energy as a function of the temperature, i.e, the mean value of the Hamil-
tonian (10), E/N , calculated as a function of the temperature T .

regains the structure found in the normal phase (see Figure 2).

0 2 4 6 8 10 12 14
E [MeV]

0.2

0.4

0.6

0.8

En
er

gy
 fl

ux
 

T=0.5 MeV
T=1.5 MeV
T=2.0 MeV

Fig. 6. Quasi-particle energy-flux (Eq. 18) as a function of the energy E. The vertical axis has

been normalized by the total quasi-particle energy, and the flux is displayed for three different
temperatures: T = 0.5 MeV (dotted line), T = 1.5 MeV (dashed line) and T = 2 MeV (dash-

dotted line).
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3.3. Bosonic excitations of the neutrino plasma

To explore the collective motion associated to pairs of neutrinos, one goes beyond

the BCS approximation, by treating the terms H22 and H40+04 of Hamiltonian (8).

The equations presented in Section 2.3 are then applied to the description of bosonic

excitations in the neutrinosphere. The TDA approach gives energies ω{n} (or ω in

the continuum limit) which are also functions of the temperature. The temperature

dependence of ω is shown in Figure 7. It has been calculated by solving Eq. 25. For

the sake of the present discussion we have neglected ground-state correlations and

we have limited ourselves to the TDA instead of the RPA (see Eq. 34). As can be

seen from Figure 7, there is a region for T < Tc which shows a gap in the spectrum

of ω. This feature is also exhibited by the TDA energy distribution of Figure 8,

where there is a threshold at low energies for T < Tc. The shift of the spectrum to

lower energies follows the behaviour of the gap with the temperature. Beyond the

critical temperature Tc, the TDA spectrum is similar to that of massless bosons.

1.0 2.0 3.0
T [MeV]

0

10

20

 [M
eV

]

Fig. 7. Eigenvalues ω of the TDA equations (Eq. 21) as a function of the temperature.

Before ending this section we would like to make a comparison with the results

reported by Birol et al. [18] in their paper. There, they have used the Richard-

son method to solve the pairing-interaction problem, a method which is suitable

for the description of the short-range part of the pairing interaction. Here we have

introduced a quasi-particle mean-field description consisting of the BCS method

and the associated Bogoliubov transformations, followed by a TDA linearization

of the long-range interactions among pairs of quasi-particles. In this respect, the

combined procedure (BCS+TDA) allows a more complete description in both sides

of the superfluid to normal regimes. This leads to a different behaviour of the exci-
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Fig. 9. Mean energy per particle in the Tamm-Dancoff approximation (Eq. 37)

tation energies with temperature and to the appearance of temperature-dependent

low-energy thresholds for the emission of the neutrinos, in both the normal and

superfluid phases.
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4. Conclusions

In this work we have explored some consequences of the inclusion of pair-interactions

among neutrinos within a SN environment, motivated by the ideas originally pre-

sented by S. Birol, Y. Pehlivan, A. Balantekin and T. Kajino [18]. Along the same

lines, we have taken a separable pairing interaction but treated it in the BCS+TDA

approximation. As a result of this approach, it is found that the spectral distribution

of the emitted neutrinos shows the effect of the interactions both in the superfluid

(T < Tc) and normal (T > Tc) phases. We think that this may be relevant for the

analysis of the energy distribution of SN-neutrinos. From a physical point of view,

the occurrence of neutrino-pair interactions would reflect upon the thermodynamic

properties of the neutrinosphere, mostly affecting the heat transfer from the core

to the external crust of the SN. It may also pave the way to the inclusion of more

realistic interactions among neutrinos, particularly of the local type. Work is in

progress concerning this aspect of the problem.
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