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Abstract—This express brief presents the stability analysis
of single-phase microgrids (SP-MG) operating under master–
slave connection with constant power terminals. The SP-MG is
composed of linear elements, nonlinear loads, and distributed
generators modeled as PQ constant terminals interconnected
through power electronic converters. Lyapunov’s direct method
through a Hamiltonian representation of the grid is used to
demonstrate stability. The non-autonomous model of the SP-MG
is transformed into an autonomous equivalent model based on
the dynamics of the error. The proposed analysis shows that if
there is an admissible trajectory x? solution of the power flow
equations, then the SP-MG is stable in the sense of Lyapunov.

Index Terms—Hamiltonian systems, Lyapunov’s direct method,
stability analysis, single-phase microgrids.

I. INTRODUCTION

M ICROGRIDS are increasingly common in modern dis-
tribution grids: they allow efficient integration of multi-

ple components, such as renewable generation, energy storage,
and controllable loads [1], [2]. All these components require
a power electronic converter for accurate control of active and
reactive power. Therefore, the dynamics of the circuit become
non-linear and makes stability analysis a challenging problem
[3]. Microgrids can be ac or dc [4]. The former can be sub-
classified into three-phase and single-phase. In this paper, we
study single-phase microgrids (SP-MG), which are popular in
small power applications that include residential storage and
generation, demand response, smart-cities, and rural areas [1].

Despite the growing literature on distributed controls for mi-
crogrids, most of the practical implementations use a master–
slave control where the main distribution grid imposes a
constant voltage and a fixed frequency, while the distributed
resources synchronize to these conditions [5]. Each electronic
power converter can be accurately modeled as a constant
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power terminal, since the details about internal control in
low voltage components are generally inaccessible, consider-
ing that each converter may have a different technology. In
addition, commercial converters have a fast dynamic and are
designed to maintain an active and reactive power according
to the requirements of the grid and/or the primary resource
[6]. Therefore, a practical method for the stability analysis
of a single-phase microgrid must consider a constant power
model.

There are different approaches to study stability of general
microgrids. A complete review of Lyapunov’s indirect method
for the stability analysis of common devices such as motors
and dc controlled loads was presented in [7]. The authors of
[8] present the stability analysis of ac three-phase reduced MG
based on Popov’s absolute stability criterion considering the
connection of constant power loads (CPLs). In [9] general con-
ditions to guarantee the existence of equilibrium points in ac
MG with constant power loads was presented; they focus only
on the particular ac–dc connections by using a Hamiltonian
approach under autonomous and non-autonomous reference
frames. The authors of [10] show the stability analysis of
three-phase four-wire MGs for low-voltage applications using
phasorial approximations, which approximates the dynamical
behavior of the MG. In [11] some structural properties for
stability of typical electrical circuits via Hamiltonian formu-
lations are explored.

On the other hand, for operating single-phase converters,
multiple-impedance based approaches have been proposed in
the specialized literature [12]. Those controllers are mainly
used for voltage and frequency control on isolated power grids
[13], by emulating via converters the dynamical behavior of
synchronous generators; as well as for active and reactive
decoupled control for grid-connected applications [14]. It is
important to mention that those approaches conventionally
used Laplace transformations for analyzing and designing their
controllers, which commonly focused on feedback methods
with PI actions.

Unlike [8], we analyze the SP-MG connection with CPLs.
We present a general dynamic model that considers all the
possible devices that can be connected to an SP-MG via a
general Hamiltonian model, which extends the reduced three-
phase model proposed by [8] to SP-MGs operating under
master–slave control strategy. Our model can be applied to
radial or meshed topologies. The proposed analysis allows
a unified method based on the structural properties of the
components. The dynamical structure of the MG evidences
its non-autonomous behavior, which implies the non-existence
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of equilibrium points [8], [9], [11]. This situation complicates
the classical stability analysis since it is not possible to use
linear transformations to transform a non-autonomous system
into an autonomous equivalent model [11]. Nevertheless, this
complication in the model arises as an opportunity to analyze
when the operative conditions in the SP-MGs guarantee a
stable behavior in the sense of Lyapunov.

The mathematical model presented in this paper allows the
analysis of stability properties of the SP-MG via Hamiltonian
formulation by exploring the structural properties inherent in
the power systems [11].

The remainder of this paper is organized as follows: Section
II presents the dynamical formulation of an arbitrary SP-MP.
Section III shows the stability analysis based on Lyapunov’s
direct method. Numerical evaluations are presented in Section
IV. Finally, some concluding remarks are provided in Section
V.

II. DYNAMICAL MODEL OF SP-MG
A. General Considerations

Consider a single-phase generic MG with linear and nonlin-
ear loads operating under grid-connected mode as depicted in
Fig. 2. Let us make the following assumptions for the SP-MG:

Assumption 1: The electrical connections among different
nodes in the SP-MG are modeled by a connected graph with
n external ports. Each port has the variables (vk, ik), k =
1, . . . , n− 1.

Assumption 2: There is a master–slave control. This implies
that the SP-MG operates under grid-connected mode and that
the grid provides the voltage profile and the fundamental
frequency for the entire SP-MG.

Assumption 3: Each node has at least one electrical element
connected directly to ground (electrical reference). This ele-
ment corresponds to the capacitive effect between each branch
(line) and ground.

Assumption 4: The PQ terminals are integrated to the SP-
MG via single-phase voltage source converters [15]. Each
PQ terminal may correspond to a constant power load or to
a distributed energy resource (energy storage or distributed
generator technology).

B. Dynamical Model of a Generic Node
Assume a CPL model for the n−1 nodes different from the

master node, as presented in Fig. 1(a). Then, by Kirchhoff’s
law

fk = gkvk + Ck
d

dt
vk + ik; k = 2, 3, . . . , n (1)

where fk corresponds to the current generated by the dis-
tributed energy resource or consumed by a nonlinear load
connected at node k, and in matrix form

~fl = Gl~vl + Cl
d

dt
~vl +~il, (2)

where ~fl = col(fk) ∈ Rn−1, Cl,Gl ∈ Rn−1×n−1 are diagonal
matrices with positive elements Ck and gk respectively. No-
tice that Gl contains the conductive effects associated to the
constant resistive loads interconnected to each node and Cl
contains all capacitive effects associated to the load nodes of
the network.

C. Dynamical Model of a Generic Line

There are b electrical lines in the SP-MG, represented by in-
ternal edges of the graph, with variables (vj , ij), j = 1, . . . , b.
The lines can be modeled employing a classical Π model
as depicted in Fig. 1(b), where Lj and Rj represent the
series inductance and resistance parameters of the electrical
conductor, while Cj represents the capacitive effect between
the conductor and the electrical reference.

By applying Kirchhoff’s laws to one line it follows that

vm − vn = vj = Lj
d

dt
ij +Rjij , (3)

with vm and vn being the voltages in both ends of the line,
which implies that vj corresponds to the voltage drop in the
jth line, and ij the current flowing through this line. This
expression can be generalized for all branches in matrix form
as

~vE = LE
d

dt
~iE +RE~iE , (4)

where ~vE = col(vj) ∈ Rb, ~iE = col(ij) ∈ Rb, while LE =
diag{Lj} ∈ Rb×b and RE = diag{Rj} ∈ Rb×b contain the
inductive Lj > 0 and resistive Rj > 0 effects, respectively.

Remark 1: The capacitive effects of each branch Cj will be
considered in the dynamics of the electrical nodes.

D. Line–Node Relationship

The line–node relationship is given by the Incidence matrix
[A] ∈ Rb×n with entries equal to ±1 depending on the
incidence and the chosen current flow. Let the vector of nodal
voltages be ~vN = col(vk) ∈ Rn. Then

~iN = AT~iE , ~vE = A~vN . (5)

Property 1: Due to the existence of a master node, the vector
of nodal voltages and currents can be split as follows:

~vN =

[
~v0
~vl

]
, ~iN =

[
~i0
~il

]
(6)

with ~v0 ∈ R and ~i0 ∈ R the master voltage and current,
respectively, while the ~vl,~il ∈ Rn−1 are the rest of the nodal
voltages and currents. Under these conditions, Eq. (5) can also
be rewritten as

~vE =
[
A0 Al

] [ ~v0
~vl

]
= A0~v0 + Al~vl (7a)[

~i0
~il

]
=

[
AT

0

AT
l

]
~iE ⇒ ~il = AT

l
~iE (7b)

ij
Node m Node n

Cj

Lj Rj

Cj

(b)(a)

Ck

Node k

Gkfk

ik

Fig. 1. π model of the jth electrical branch connected between m and n
nodes
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with A0 ∈ Rb×1 the first column of A and Al ∈ Rb×(n−1).
Eq. (7b) also implies that~i0 = AT

0
~iE , which is always satisfied

since the master source is ideal.

E. Complete Dynamical Model

The dynamical model of the SP-MG is represented by
Eqs. (4) and (2) under the line–node relation (7) as

LE
d

dt
~iE = −RE~iE + Al~vl +A0~v0 (8a)

Cl
d

dt
~vl = −Gl~vl − AT

l
~iE + ~fl (8b)

s.t: ~i0 = AT
0
~iE (8c)

It is important to notice that the dynamical model of the SP-
MG (8) corresponds to a port-controlled Hamiltonian system
with an external input

Dẋ = [J −R]∇H (x) + Γ (9)

where D = diag{LE , Cl} ∈ R(b+n−1)×(b+n−1), D =
DT > 0, the dissipation matrix R = diag{RE , Gl} ∈
R(b+n−1)×(b+n−1), R = RT > 0, the state x =[
~iTE ~vTl

]T ∈ Rb+n−1, the matrices

Γ =

[
A0~v0
~fl

]
∈ Rb+n−1, J =

[
0 Al

−AT
l 0

]
(10)

and the quadratic function

H (x) =
1

2
xTx, ∇H (x) =

[
∂

∂x
H (x)

]T
= x (11)

Remark 2: H(x) is known as the Hamiltonian function and
in this case corresponds to the total energy stored in the electric
and magnetic fields.

F. CPL integration through a VSC

The integration of a CPL can be made through a power
VSC technology (see Fig. 2). By applying Kirchhoff’s laws
we obtain [15]

Lk
d

dt
fk = −Rkfk +mkv

k
dc − vk; (12)

Ck
dc

d

dt
vkdc = is −mkfk; (13)

where Lk and Rk are the filter inductance and resistance
parameters, mk is the averaged control input (modulation
index), and vkdc corresponds to the voltage profile in the
terminals of the capacitance Ck

dc located in the dc side of the
VSC. Additionally, is corresponds to the current consumed by
the constant power load in the dc side of the VSC.

Applying the passivity-based control theory as proposed in
[11], we can control the current delivered/consumed by the
distributed generator or CPL as follows:

mk =
1

vkdc

(
Rkfk + vk + kkp (f?k − fk)

)
(14)

where f?k corresponds to the desired ac current reference
defined as a linear function of the voltage profile vk and
the active and reactive power references P ? and Q?, i.e.,
f?k = αP ?vk ± βQ? d

dtvk.

Notice that if the control equation (14) fulfills its tasks,
the current fk enhances its desired reference, which implies
that the active and reactive power consumption at the CPL
terminals is controlled, and the stability behavior of the whole
SP-MG is ensured [6]. For more details about the dynamical
behavior of the CPLs in power systems, see [4] and [9].

III. STABILITY ANALYSIS

This section studies the dynamic behavior of a general
SP-MG considering external sources Γ. In this sense, the
admissible trajectories x?(t) are the set of state trajectories
that the system can reproduce and are the solutions of

Dẋ? = [J −R]∇H (x?) + Γ? (15)

where

Γ? =

[
A0~v0
~f?l

]
, and H(x?) =

1

2
x?Tx?

Define the classical tracking error as x̃ = x− x?. Then the
dynamic behavior for the tracking error can be written as

D ˙̃x = [J −R]∇H (x̃) + Γ̃ (16)

In the next proposition, conditions for x̃→ 0 are given.
Proposition 1: Assume that ~v0(t) and ~fl(t) are time-varying

and that their steady state behaviors are well defined. Then,
x̃(t) of the system (16) is ultimately bounded. Moreover, if it is
assumed that ~f?l (t) = ~fl(t) is imposed by the constant power
load controllers, which means Γ̃→ 0, asymptotic stability of
x̃ = 0 is achieved.
Proof: Consider the positive function

V (x̃) =
1

2
x̃TDx̃ (17)

The time derivative of (17) along the trajectories of (16) is

V̇(x̃) = −x̃TRx̃+ x̃T Γ̃

≤ −λmin{R}|x̃|2 + |x̃||Γ̃|
= −(1− θ)λmin{R}|x̃|2 − θλmin{R}|x̃|2 + |x̃||Γ̃|

with 0 < θ < 1, while λmin{R} stands for the minimum
eigenvalue of R and | · | denotes the norm. So, it can be
concluded that

V̇(x̃) ≤ −(1− θ)λmin{R}|x̃|2 (18)

for all

|x̃| ≥ |Γ̃|
θλmin{R}

> 0 (19)

Since (1 − θ)λmin{R}|x̃|2 is a continuous positive definite
function of x̃, inequality (18) shows that the solutions x̃(t) are
ultimately bounded. Moreover, notice that if it is assumed that
the control of the power converters guarantees that Γ → Γ?,
then the ball defined in (19) becomes the origin and asymptotic
stability of x̃ = 0 is achieved, which concludes the proof.

Remark 3: As long as Γ̃ 6= 0, the trajectories of the error
tend to a ball of radius determined by the norm of Γ̃.

Remark 4: Note that the components of ~fl, corresponding to
the loads, will tend to a value ~f?l ; this value must correspond
to an admissible behavior for the CPL, which means that it
must satisfy the power flow equations that result from solving
(9) under a sinusoidal regime.
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IV. TEST SYSTEM AND SIMULATION RESULTS

A. Test system and simulation scenarios

The electrical configuration presented in Fig. 2 is employed
as a test system to validate the mathematical model derived
in this paper. All electrical parameters of the test system are
presented in Table I. These electrical parameters have been
taken from [16].

In the case of the photovoltaic array the maximum power
available is 5 kW and its VSC is designed to support 15 kVA as
maximum, which allows generating 4 kVAr of reactive power.
For the motor load, we assume that its active and reactive
power consumption are 6 kW and 5 kVA, respectively.

As simulation cases, we consider two extreme operating
scenarios in the normal grid operation as follows: first, the
stable behavior of the power grid is tested considering vari-
ations in the power generated and consumed around ±20%
of their nominal values. Second, a short-circuit at node j
with a duration of 5 cycles is simulated as extreme operative
condition.

B. Simulation results

The simulation results presented in this section were car-
ried out in MATLAB/SIMULINK software by using the

Bus lBus n
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dcvdcn

Bus jBus iBus s

ac
dcvdcm

Bus kBus m

Filter n

Filter m

RLsi RLij

RLjl

RLjk

Rl

Rj

Rk

Cl

Cj

Ck

Ci

Phot. Syst. VSC

VSC

Utility

PQ load

Fig. 2. Possible configuration of a generic MG [6]

TABLE I
TEST SYSTEM PARAMETERS

Parameter Value Parameter Value Parameter Value
Ci 50 µF Cj 120 µF Ck 200 µF
Ck 200 µF Rsi 20 mΩ Lsi 200 µH
Rij 50 mΩ Lij 100 µH Rjk 60 mΩ
Ljk 120 µH Rjl 50 mΩ Ljl 100 µH
Rkm 40 mΩ Lkm 800 µH Rln 40 mΩ
Lln 800 µH Rj 5 Ω Rk = Rj 4 Ω
f 60 Hz Vrms

380√
3
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Fig. 3. Active and reactive power behavior and current RMS values: (a)
photovoltaic system, (b) motor load and (c) current RMS

Simulink/SymPowerSystem library, which allows implement-
ing all the circuit components depicted in Fig. 2; additionally,
it solves all the differential equations that result from the
dynamical model via numerical approaches, such as Runge–
Kutta or Backward Euler methods.

In the first simulation scenario, the power generation or
consumption is incremented 20% respect to its nominal value
as presented in Fig. 3.

Notice that when the active power in the PV system
increases, some oscillation appears in the reactive power
generation, this situation also occurs in the active power per-
formance when the reactive power experiences variations in its
behavior as presented in Fig. 3(a). Additionally, the motor load
presents the same dynamical behavior observed for the PV
system when the active or reactive power changes its operating
values, as can be seen in Fig. 3(b). On the other hand,
the RMS values of the filter currents show an incremental
behavior (see Fig. 3(c), which is expected, since active and
reactive power generation/consumption increase their values
from 100% to 120%, producing important increments in the
current performance due to the voltage profiles remaining near
the grid voltage.

A short-circuit event is considered as second simulation
scenario at node j (see Fig. 2). This short-circuit has a duration
of 5 cycles of the voltage signal. In Fig. 4 the active and
reactive power performance in the constant power terminals
are presented as well as the voltage profile in some buses of
the system.

Recall that when the short-circuit appears after about 0.4 s
of simulation time, the active and reactive power generation
in the PV system as well as in the motor load experience a
large disturbance in terms of power behavior (see Figs. 4(a)
and 4(b)); nevertheless, when the fault reaches the steady
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Fig. 4. Active and reactive power behavior and voltage RMS values: (a)
photovoltaic system, (b) motor load and (c) voltage RMS

state, the constant power terminals continue operating under
their nominal values. On the other hand, when the fault
disappears, another disturbance is experienced in the constant
power terminals. This occurs due to the fact that the RMS
voltage in all the system nodes decreases drastically during
the short-circuit event, which moves the instantaneous power
behavior in the entire SP-MG.

It is important to mention that for both simulation scenarios,
the SP-MG remains stable, which implies that the proposed
dynamical analysis represents with a high degree of fidelity
the electrical performance of the grid. Notwithstanding, this
behavior is guaranteed, since the performance of the active
and reactive power in the constant power terminals have a
well defined behavior in terms of the power flow analysis.
There are admissible trajectories for Γ for all the operating
scenarios simulated. Additionally, these simulations were ob-
tained via the iterative solution of the proposed dynamical
models via the Rung–Kutta discretization methods available
in MATLAB/SIMULINK software.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a general dynamical formulation of SP-MG is
presented using a compact formulation based on the incidence
matrix. This model exhibits a Hamiltonian non-autonomous
structure that allows exploring its stability properties by means
of Lyapunov’s direct method. The stability properties are
explored by employing the dynamics of the error, which
permits transforming the non-autonomous model of the SP-
MG into an autonomous equivalent model. Based on this
transformation, the stability analysis focuses on the study of
a classical regulation problem.

As future work, the approach presented in this paper can
be extended to analyze three-phase microgrids. Analogously,

this analysis can be made using the two-phase representation
of the system applying Clarks transformation. Additionally, it
would be possible to validate the dynamical model proposed
in this paper via experimental tests by adding the design of
controllers for constant power loads.
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