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Abstract: This paper addresses the optimal dispatch problem for battery energy storage systems
(BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by
a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent
load model, which is the main contribution of this paper. An artificial neural network was employed
for the short-term prediction of available renewable energy from wind and photovoltaic sources.
The NLP model was solved by using the general algebraic modeling system (GAMS) to implement
a 30-node test feeder composed of four renewable generators and three batteries. Simulation results
demonstrate that the cost reduction for a daily operation is drastically affected by the operating
conditions of the BESS, as well as the type of load model used.

Keywords: artificial neural networks; battery energy storage system; economic dispatch problem

1. Introduction

The integration of multiple renewable energy resources in electrical networks has mostly been
driven by global concerns about the effects of global warming. Renewable energy integration is
regarded as a solution that can mitigate this problem by minimizing greenhouse gas emissions,
which are primarily produced by transport and energy systems [1,2]. These generation technologies
are intended to replace the fossil fuels used for electricity generation gradually. The most studied
renewable power generation systems are photovoltaic solar and wind generation technologies, which
produce sustainable energy and reduce greenhouse gas emissions [3] by extracting energy from solar
radiation and wind speed for conversion to electrical energy. Nevertheless, because of its inherently
stochastic nature and dependence on weather conditions, this type of generation is associated with
many uncertainties, which must be taken into account during electrical planning processes and even
short-term grid operation (typically, as economic dispatch problems) [4].

A viable solution that tackles the characteristic variability of renewable energy sources is their
conversion into constant and reliable energy sources through the optimal integration of batteries (such
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as lithium-ion, lead–acid, and nickel–cadmium batteries). These batteries can store energy during
periods of high generation and low demand and inject power during periods of low generation and
high consumption. For this purpose, efficient dispatch strategies must be established to ensure the
adequate operation of the whole grid. The inclusion of battery energy storage systems (BESSs) in
electrical networks is independent of the operational characteristic of the network; that is, the electrical
grid can be operated in alternating current (AC) [5] or direct current (DC) mode [3]. The possibility
of integrating BESSs lies in the incorporation of AC or DC devices that use power electronic converters
to manage the power interchange between them and the grid [1,2].

DC microgrids are more attractive than AC microgrids because they have several advantages
that their AC counterparts lack. For example, DC microgrids have lower losses, greater reliability,
higher efficiency, and a simpler connection, and they do not require synchronization. Additionally,
DC microgrids do not need frequency and reactive power control [6]. DC microgrids are composed
of renewable energy, energy storage devices, and electronic loads, which are interconnected by means
of DC/DC power converters. Their efficiency is improved by the simplicity of their control states and
the reduction in energy conversion stages [7].

In this study, we focus on DC microgrids with a high penetration of renewable generation from
photovoltaic and wind technologies. We evaluate an economic dispatch problem for these grids by
short forecasting using artificial neural networks, as reported in [3]. In addition, our approach includes
a sensitivity analysis based on different load models using an exponential load representation to
determine the impact on the profits predicted by the daily economic dispatch model.

The specialized literature includes a variety of works that have studied this topic. In [3], a convex
optimization model was proposed for analyzing the day-ahead economic dispatch problem in DC
microgrids with BESSs and renewable generation. However, the study included only a static load
model, so the impact of constant current and constant impedance loads during daily operations
could not be determined. In [8], an efficient operation scheme was proposed for BESS systems in AC
distribution networks with a constant power load model, but the model did not consider the stochastic
variation in photovoltaic and wind generation. The authors of [9,10] proposed dynamic stochastic
models for operating BESS systems with short forecasting predictions in microgrid applications by
using artificial neural networks and a model predictive approach. Nevertheless, these approaches
focused on AC grids with constant power loads. Multiple authors have previously proposed the
integration and operation of a BESS system in electrical networks with optimization methods such
as convex relaxation with multi-stage stochastic planning [11–13], multi-agent models based on
market decisions [14], heuristic cost–benefit analysis [15], multi-objective genetic algorithms [16],
multi-objective particle swarm optimization [17,18], and bee colony optimization [19]. A complete
description of BESS allocation methods can be found in [20].

It is important to highlight that the above-mentioned BESS allocation methods are for AC grids
with long planning periods. In contrast, our aim is to propose a day-ahead operation method for BESS
systems in DC microgrids with a high penetration of renewable generation. Since this concept has only
been addressed in [3,21], there is ample opportunity to expand current knowledge on this topic. For this
purpose, we performed a sensitivity analysis based on an exponential voltage-dependent load model by
using a short forecasting load method based on artificial neuronal networks (ANNs). The exponential
voltage-dependent load model is implemented because it represents a suitable formulation for power
flow problems since with a single exponent the linear combination of ZIP loads can be obtained in
a simplified way, while the ZIP model requires three exponents. In addition, this representation
permits making voltage analysis stability by keeping a relationship directly between the voltages
of loads and sources. To solve the proposed nonlinear non-convex model, which represents the optimal
day-ahead operation of BESSs in DC microgrids with a high penetration of renewable generation, we
employed the general algebraic modeling system (GAMS) and its nonlinear optimization packages, as
recommended in [3,8,22,23].
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The remainder of this paper is organized as follows. Section 2 presents the mathematical
model that represents the day-ahead operation of BESS systems in DC microgrids with renewable
generation for power cost minimization. Section 3 describes the short-forecasting approach based
on ANNs for predicting the power output of photovoltaic and wind generation from solar radiation,
temperature, pressure, humidity, and time inputs. Section 4 provides the GAMS code for a small
six-node DC test feeder that can be used by graduate and undergraduate students to identify potential
applications of this software in power system optimization scenarios. Section 5 presents the numerical
validation of the proposed approach in a DC microgrid composed of 21 nodes with a radial structure,
two renewable generators, and three BESSs for typical Colombian demand and generation scenarios.
Concluding remarks are reported in Section 6.

2. Mathematical Model

The economic dispatch problem in DC microgrids for a daily operation with renewable generation
and energy storage technologies is a nonlinear non-convex optimization problem whose economic
objective function is related to energy production (buying) costs, as well as nonlinear constraints
related to the technical aspects associated with power grid operation.

Objective function

min z = ∑
t∈T

∑
i∈N

CoEi,t pi,t∆t (1)

where z represents the objective function value, CoEi,t is the cost of buying energy at node i in period
t, pi,t is the power bought at node i during period t, and ∆t is the length of the time period under
analysis (e.g., 1 h or 15 min). T and N are the sets that contain all periods of time considered and the
total number of nodes in the DC microgrid, respectively.

Set of constraints

pi,t + pdg
i,t + pb

i,t − pd
i,t = vi,t ∑

j∈N
Gijvj,t, {∀i ∈ N& ∀t ∈ T } (2)

SoCb
i,t = SoCb

i,t−1 − ϕb
i pb

i,t∆t, {∀i ∈ N& ∀t ∈ T } (3)

SoCb
i,t0

= SoCb,ini
i , {∀i ∈ N} (4)

SoCb
i,t f

= SoCb, f in
i , {∀i ∈ N} (5)

pmin
i,t ≤ pi,t ≤ pmax

i,t , {∀i ∈ N& ∀t ∈ T } (6)

pdg,min
i,t ≤ pdg

i,t ≤ pdg,max
i,t , {∀i ∈ N& ∀t ∈ T } (7)

pb,min
i ≤ pb

i,t ≤ pb,max
i , {∀i ∈ N& ∀t ∈ T } (8)

vmin
i ≤ vi,t ≤ vmax

i , {∀i ∈ N& ∀t ∈ T } (9)

SoCb,min
i ≤ SoCb

i,t ≤ SoCb,max
i , {∀i ∈ N& ∀t ∈ T } (10)
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where pdg
i,t , pb

i,t, and pd
i,t are the power generation by renewable energy resources (i.e., distributed

generation), the power delivered/absorbed by the batteries, and the power demand at node i during
the time period t, respectively. SoCb

i,t represents the state of charge of the battery in the ith node at the
tth time period. vi,t represents the voltage profile at node i during period t, and Gij corresponds to the
ijt component of the conductance matrix associated with the physical connection of the nodes through
DC branches. SoCb,ini

i and SoCb, f in
i are the initial and final desired states of charge of the batteries,

while SoCb,min
i and SoCb,max

i are the maximum and upper state-of-charge bounds. pmin
i,t , pmax

i,t , pdg,min
i,t ,

and pdg,max
i,t are the minimum and maximum bounds of admissible generation for conventional and

renewable generators located in the ith node in time period t, while pb,min
i and pb,max

i represent the
minimum and maximum charge/discharge capabilities of a battery connected at node i. vmin

i and vmax
i

are the voltage regulation bounds of the DC microgrid. Finally, ϕb
i represents the coefficient of charge

of a battery connected at node i.

Remark 1. The economic dispatch model for operating BESSs in DC microgrids on a DC power grid defined
in Equations (1)–(10) was previously proposed in [3]. The main difference in this work is the inclusion
of voltage-dependent load modeling, which has not yet been reported in the specialized literature.

The specialized literature includes two widely used models for modeling voltage-dependent load
behaviors. The first model corresponds to an exponential representation of the voltage dependence,
and the second model is a polynomial model known as the ZIP model [24]; the two models are
equivalent [25]. We selected the exponential model to represent the voltage dependence on the
demand nodes. This exponential representation is

pd
i,t = pd0

i,t

(
vi,t

vnom

)αi

, {∀i ∈ N& ∀t ∈ T } (11)

where pd0
i,t corresponds to the base constant power consumption under nominal voltage operating

conditions at node i during time period t, and αi is the exponential coefficient of the load connected at
node i.

Remark 2. If the parameter αi in the exponential load model connected at node i is assigned the value of 2, then
the load is modeled as constant resistive consumption. If this parameter takes the value of 1, then the load is
modeled as constant current. If αi takes the value of 0, then the load model corresponds to the classical constant
power representation.

The proposed optimization model for solving economic dispatch problems in DC microgrids is
nonlinear non-convex because Equation (2) contains products between the voltage variables vi,t and
vj,t. This turns the right-hand side of Equation (2) into a quadratic set of non-affine constraints that, in
conjunction with the exponential load model, permit multiple solutions.

To demonstrate that the ZIP and exponential load models are equivalent in certain operating
conditions, namely, constant power, constant impedance, and constant current scenarios, we define
the polynomial model as follows:

pd
i,t = pd0

i,t

(
ai + bi

(
vi,t

vnom

)
+ ci

(
vi,t

vnom

)2
)

, {∀i ∈ N& ∀t ∈ T } (12)

where ai ≥ 0, bi ≥ 0, and ci ≥ 0 represent the coefficients of the constant power, constant current, and
constant impedance components, respectively. In addition, ai + bi + ci = 1 must hold since each factor
represents the percentage of the type of load present in node i. With these factors, we can select three
special cases in which the ZIP and exponential models represent the same load.
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• If ai = 1, then bi = 0 and ci = 0, implying that the ZIP model takes only the component associated
with the power, i.e., the constant power representation, which is completely equivalent to αi = 0
in the exponential model.

• If bi = 1, then ai = 0 and ci = 0, implying that the ZIP model takes only the component associated
with the current, i.e., the constant current representation, which is completely equivalent to αi = 1
in the exponential model.

• If ci = 1, then ai = 0 and bi = 0, implying that the ZIP model takes only the component associated
with the impedance, i.e., the constant impedance representation, which is completely equivalent
to αi = 2 in the exponential model.

In addition, any possible combination of the coefficients ai, bi, and ci0 can be represented by a real
number associated with the exponential load model. This exponent (αi) can be obtained by applying
a Taylor’s series expansion over Equation (11) and comparing it with Equation (12).

3. Short-Term Forecasting for Renewable Generation

The high variability of distributed generation using renewable resources means that the power
outputs from these sources in the operation of an electrical distribution network are difficult to predict.
The day-ahead economic dispatch requires the determination of the short-term forecast for power
generation in photovoltaic systems and wind turbines. Multiple approaches have been proposed for
this purpose, including the similar-day approach [26,27], fuzzy logic [28,29], stochastic optimization,
and artificial neural networks [29,30]. Based on the conventional and frequently used approaches,
for this investigation, we selected the artificial neural network (ANN) that was recently reported in [3]
to predict the power outputs of wind turbines (WTs) and photovoltaic (PV) plants. The inputs are
humidity, pressure, temperature, time, wind speed, and solar radiation.

Remark 3. Short-term forecasting of renewable generation is a key component of an electric distribution
operation for utilities since, normally, companies entrusted with a national grid operation define their operation
for 24 h using a day-ahead economic dispatch. Thus, utilities need to take short-term forecasting into account for
the accurate and real operation of their networks [31].

The main characteristics and structure of ANNs are introduced in the next section.

3.1. An Artificial Neural Network

An ANN is a computational model that represents and exploits the main learning characteristics
of the human brain; they work with interconnected layers of nodes that emulate neuronal connections.
An ANN can be used for pattern recognition, the forecasting of future events, or data classification
based on an initial training dataset. Figure 1 presents the conventional structure of an ANN
implemented in MATLAB for solar prediction using two inputs [3].

x(t)

y(t)

1:6

1:6

W

W

b

+

W

b

+ y(t)

Hidden Layer with Delays
Output Layer

2

1
18

1 1

Figure 1. ANN for solar radiation prediction.

A neural network can be decomposed into layers of abstraction. It can be trained with multiple
types of input information to recognize different behaviors according to a particular set of inputs
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or measures. For example, it can be used to control the position of a pendulum by reading its state
variables (inverse design) [32] or predict renewable generation outputs according to current weather
conditions [3]. The behavior of an ANN is defined by the manner in which its individual elements
are connected and by the strength or weights of those connections (see the w and b parameters in
Figure 1). These weights are automatically adjusted during training according to a specified learning
rule until the neural network performs the desired task correctly [33]. In the next section, we briefly
explain the ANN used for predicting the available solar and wind power to predict the day-ahead
economic dispatch.

3.2. The Nonlinear Autoregressive Exogenous Neural Network

A nonlinear autoregressive exogenous (NARX) neural network is a dynamic recurrent ANN
with feedback connections enclosing several layers that help to predict stochastic variables by using
historical information [3]. This information is used to train the ANN by using the following rule

y(t) = f
(
y(t− 1), ..., y(t− ny), x(t− 1), ..., x(t− nx)

)
(13)

where x corresponds to the set of exogenous inputs, while y is the desired output, which depends
on the last ny values of the variable being predicted, and t represents the current time to which the
prediction applies. Table 1 presents the set of inputs for predicting solar radiation and wind speed for
photovoltaic and wind generation applications.

Table 1. Input parameters and desired outputs for wind and solar generation forecasting.

Photovoltaic Wind

Inputs Output Inputs Output

Temperature
Solar Radiation

Temperature

Wind speedHumidity

Time Pressure
Time

0 2 4 6 8 10 12 14 16 18 20 22 24
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Figure 2. Historical data used for the NARX training process: (a) wind power; and (b) solar radiation.
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The process of training the NARX network for predicting solar radiation and wind speed was
implemented in MATLAB software via ntstool using 2 inputs, 6 delays, and 18 hidden neurons for the
photovoltaic case and 4 inputs, 4 delays, and 12 neurons for the wind generation case, as recommended
in [3]. We used 70% of the data for training and 15% for adjusting and validating the ANN in this
study. Finally, Figure 2 shows the solar and wind power information that

4. Proposed Solution Method

The solution of the proposed nonlinear convex optimization model for the optimal operation
of BESSs in DC microgrids was produced in this study by using the general algebraic modeling system,
widely known as GAMS. This is a nonlinear large-scale optimization software program applied for
general simulation purposes. The main characteristics of GAMS software are listed below.

X It is possible to use a compact formulation by implementing a set representation.
X Its mathematical structure preserves the same nature of the symbolic model, which facilitates

numerical implementation.
X It can solve a range of problems, from linear programming optimization problems to nonlinear

mixed-integer programming problems (non-convex formulations).
X It has a free version for demonstration, so it is useful for introducing engineering students to

mathematical optimization.
X The implementation of any mathematical model in GAMS only requires basic programming

skills. In addition, it uses a unique plain interface with reserve words that facilitate their
mathematical implementations.

Basic Elements for GAMS Implementation

Any mathematical optimization formulation in GAMS [34] can be implemented by following the
structure presented in Algorithm 1.

Algorithm 1: The main steps of implementing an optimization model in GAMS.
Data: Selection of the test system.
Sets Definition of sets, scalar, parameters (constant vectors), and tables (constant matrices).;
Variables: Determine the nature of variables, e.g., binary, integer, or continuous.;
Equations: Write the set of equations that represent the optimization problem, i.e., (1)–(10).;
Solution: Solve the mathematical model using an NLP solver for minimization.;
Visualization: Print the variables of interest, i.e., states of charge in batteries or voltages.;
Result: Optimal scheme for scheduling BESS in DC microgrids.

More details on using reserved words and more commands to implement mathematical models
in GAMS are found in [35,36]. Appendix A shows an example of the implementation of the proposed
mathematical model given in Equations (1)–(10).

5. Test System and Simulation Scenarios

This section presents the main characteristics of the test system, as well as the simulation scenarios.

5.1. The 30-Node Test System

The 30-node test feeder is a DC distribution grid operated with 13.8 kV and a total load of 5.85 MW
(these values correspond to a classical AC distribution test feeder for Colombian utilities [8]). The grid
configuration of this test feeder is depicted in Figure 3, and the conductor parameters of this test
system are summarized in Table 2, in which the caliber and resistance per kilometer are reported (these
values are taken from CENTELSA company for cables ACC [37]).
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Figure 3. Electrical configuration of the 30-node test system.

Table 2. Information about the conductors of the test system.

Type Caliber AWG/kcmil Resistance [Ω/km] Max. Current [A]

1 4 1.360 138
2 2 0.854 185
3 266.8 0.213 443

Table 3 reports the length of each branch, the type of conductor, and the peak load at the
receiving node.

For this test feeder, we considered four renewable generators, which have an aggregated
maximum power capability of 4 MW and are distributed as follows: two PV generators are located
at nodes 9 and 18 with installed capacities of 850 and 1150 kW, respectively, and two wind generators
are located at nodes 12 and 21 with maximum power capabilities of 600 and 1400 kW, respectively.
In addition, we considered the inclusion of three large-scale energy storage systems with the capabilities
reported in Table 4.

Table 3. Information about branches and consumption of the 30-node test feeder.

Node i Node j Type of Conductor Length [km] pd0
j [kW]

1 2 1 1.75 100
1 3 3 1.25 0
3 4 1 0.75 500
4 5 1 0.25 350
5 6 1 0.40 150



Energies 2019, 12, 4494 9 of 20

Table 3. Cont.

Node i Node j Type of Conductor Length [km] pd0
j [kW]

3 7 1 0.50 0
7 8 1 0.45 400
7 9 1 0.80 300
3 10 3 1.85 0
10 11 1 0.75 400
11 12 1 1.00 175
12 13 1 0.40 225
10 14 3 0.85 0
14 15 3 1.70 0
15 16 1 0.52 0
16 17 1 0.15 200
16 18 1 0.42 150
14 19 2 0.28 0
19 20 2 0.35 250
19 21 2 0.45 150
21 22 2 0.75 0
22 23 2 0.26 600
22 24 2 0.34 500
22 25 2 0.17 300
18 26 2 0.85 450
26 27 1 0.42 200
15 28 1 1.40 100
28 29 1 0.75 150
23 30 1 0.82 200

Table 4. Energy storage capabilities and locations.

Location Energy [kWh] Time of Charge/Discharge [h]

3 1500 3
15 2000 5
22 1200 4

It is important to mention that the lifespan, energy density, and power output capabilities
depend on the battery technology and can thus change drastically [38]. In this study, we considered
lithium-ion batteries, which have between 3 and 15 years of continuous operation as a function
of the dispatch methodology employed for their operation [38]. In addition, the costs of acquisition can
oscillate between 600 and 3800 US$/kWh. The data reported in Table 4 show that the energy storage
capabilities of the batteries in this study are 1200, 1500, and 2000 kWh. Given the required times for
charge/discharge, their power capabilities are 400 and 500 kW, respectively.

For additional information about operational and installation costs, as well as the recommended
maximum and minimum states of charge, consult References [38,39].

Figure 4 presents the real and predicted power outputs of the renewable generators, the percentage
load variation, and the cost of power generation at the slack node during the day. All of this information
is included in the Appendix to provide an opportunity to validate this approach.

The real curves shown in Figure 4 were obtained using online data for solar radiation, wind speed,
temperature, pressure, and humidity for time periods of 1.5 h. This information, which can be found
in [40], was used to obtain the PV and WT power outputs presented in Figure 2. To determine the
estimated (predicted) curves of generation for photovoltaic systems and wind turbines, we used 70%
of the data to train the proposed ANN, and the remaining 30% of the dataset was employed in the
validation scenario. In this regard, in our numerical results, we selected an arbitrary day from the
validation set and designated it as the real curve. In addition, we used the ANN for the predictions.
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Figure 4 reports the real and estimated power outputs, which clearly demonstrate that ANNs are an
excellent tool for the short-term forecasting of renewables.

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

20

40

60

80

100

(a
)S

ol
ar

ge
ne

ra
ti

on
[%

]

PVr node 9
PVp node 9
PVr node 18
PVp node 18

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
40

60

80

100

(b
)W

in
d

ge
ne

ra
ti

on
[%

]

WTr node 12 WTp node 12
WTr node 21 WTp node 21

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
40

60

80

100

(c
)C

os
ta

nd
lo

ad
va

ri
at

io
n

[%
]

Load
Cost

Figure 4. Behavior of renewable generation, demand, and costs during a daily operation: (a) real
and predicted photovoltaic generation; (b) real and predicted wind generation; and (c) demand and
cost behavior.

5.2. Simulation Scenarios

To validate the proposed mathematical model, we considered the following three
simulation scenarios:

• Scenario 1 (S1): Optimal dispatch with the BESS starting and finishing the daily operation in the
totally discharged state.

• Scenario 2 (S2): Optimal dispatch with the BESS starting and finishing the daily operation with
a 50% charge, with the possibility that the states of charge vary from 0% to 100% during the day.

• Scenario 3 (S3): Optimal dispatch with the BESS starting and finishing the daily operation with
a 50% charge, with the possibility that the states of charge vary from 50% to 100% during the day.

For all simulation scenarios, we varied the exponential load coefficient from 0 to 2 in steps of 0.5 in
order to identify the effect of the load model on the daily economic dispatch of the network. In addition,
for all simulations, we contrasted the predicted generation given by the artificial neural network with
the real output of the power generation to determine the efficiency and robustness of the proposed
economic dispatch model. For all simulations, we assumed that the system operates with a resolution
of 0.5 h. Furthermore, for the peak of the electricity, we applied the information reported by the utility
CODENSA for Colombia in May 2019, which is COP$/kWh 479.3389.
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6. Numerical Results

All simulations were carried out on a desktop computer running on INTEL(R) Core(TM) i7-7700,
3.60 GHz, 8 GB RAM with 64-bit Windows 10 Pro using GAMS 25.1.3 with the nonlinear large-scale
solver CONOPT4 (Supplementary Materials).

6.1. Comparison between Real and Projected Cases

Table 5 reports the numerical performance of the proposed economic dispatch model for operating
renewable generators and batteries with different operating conditions. First, it is important to mention
that the effect of the exponential coefficient of the load directly affects the final operating cost in both
cases (real and expected generation). For example, in S1, we observe that, when α = 0 (constant power
load), the total operating cost per day is 18.4526 MCOP$ (millions of Colombian pesos); for α = 2
(constant resistive load), the cost is 17.8121 MCOP$, which is a difference of about 0.6405 MCOP$
and confirms that the load model can significantly affect the expected operating cost of the utility.
These variations are considered to be uncertainties in the planning process. Figure 5 presents the
differences between the real and expected operating costs when the exponential load coefficient is
located at the extremes. From this picture, it is clear that the differences between load models remain
quasi-constant for real and expected generation cases. In addition, the operating conditions (scenarios)
do not significantly affect the final costs, which implies that they are not strongly correlated under
different load models.

Table 5. Operating costs during a daily operation for the different operating scenarios (values in
MCOP$, i.e., millions of Colombian pesos).

Case α = 0.0 α = 0.5 α = 1.0 α = 1.5 α = 2.0

Scenario 1

Real 18.4526 18.2860 18.1239 17.9661 17.8121
Expected 18.2310 18.0668 17.9069 17.7513 17.5994

Scenario 2

Real 18.4336 18.2631 18.0973 17.9358 17.7784
Expected 18.2122 18.0441 17.8805 17.7212 17.5659

Scenario 3

Real 18.6883 18.5133 18.3432 18.1776 18.0164
Expected 18.4665 18.2939 18.1260 17.9627 17.8036

Scenario 1 Scenario 2 Scenario 3
0.6

0.62

0.64
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0.7

0.64
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0.65
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D
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C
O
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Figure 5. Differences in expected operational costs between two models: constant power load and
constant resistive load.

Next, Figure 6 shows the estimation error for the final operational costs when ANNs are used
to predict the generation for the next day compared with the final result when using the real curve.
This picture shows that, for practical purposes, in the proposed test system, the average expected
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estimation error of the ANN is about 1.20% for all the simulation scenarios, and it has a decreasing
tendency when the load model changes from a constant power load to a constant resistive load.
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Figure 6. Final estimation error of the proposed artificial neural network for each load coefficient and
operating scenario.

It is important to mention that each simulation condition (a combination of the battery parameters
and the exponential coefficient) was solved in less than 700 ms. Thus, GAMS proves to be an excellent
tool for solving economic dispatch problems since it can evaluate multiple scenarios before the
real validation.

6.2. Additional Results

To verify that all the batteries are within their operating bounds, we selected the second scenario
with constant power loads for the expected case. Figure 7a reports the state of charge of each battery
during the daily operation. It is possible to observe that all the batteries effectively begin and finish the
day with a 50% load, while, during the day, the state of charge varies from 0% to 100%, as defined in
S2. From the results obtained for the batteries, we can conclude the following (all comments below are
related to the plots presented in Figure 4):

• During the first eight periods (4 h), all batteries achieve 100% load. This behavior can be attributed
to the possibility of buying energy at low prices during this period, which also coincides with low
power consumption.

• Between Periods 18 and 24, the batteries experience continuous discharges. This behavior
coincides with high increases in load consumption, while photovoltaic generation
is simultaneously increasing from zero to its maximum; this implies that not all the capability
of renewable generation is available to supply all the demand. For this reason, the batteries help
to supply it.

• Between Periods 24 and 32, the batteries begin to charge until they reach maximum values, taking
advantage of the renewable generation peaks.

• When the load reaches the maximum value and photovoltaic power generation starts to decrease,
all the batteries discharge their available power to reduce the cost. This occurs from Period
32 to 40.

• Finally, from Period 43 (and Period 44), all the batteries start to increase their states of charge from
0% until the end of the daily operation, at which time they are at 50%. These changes in the states
of charge of all the batteries occur after Period 43 since the cost of power generation is lower at
this time, which also coincides with low power consumption.
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Figure 7. Batteries and voltage profile behaviors during a daily operation: (a) states of charge of each
battery; and (b) voltage profiles in all the nodes.

For the voltage performance, Figure 7b demonstrates that all the nodes for all the time periods
remain between 0.975 and 1.005 pu. Therefore, the worst voltage regulation is 2.5%, which is very
small compared with the conventional bounds (±10%) for medium-voltage grids in Colombia [8].

7. Conclusions and Future Works

In this paper, we propose a nonlinear programming model that represents the problem
of economic dispatch of DC microgrids with a high penetration of renewable generators and energy
storage systems. The renewable energy generation was predicted with recursive artificial neural
networks considering different inputs, such as temperature, pressure, humidity, and time. Different
operating scenarios were tested to observe the effect of several operating conditions that can be
implemented by utilities. The main contribution of this research is the exponential load model for
the economic dispatch, which demonstrates the effect of the expected operating costs as a function
of the load model. Additionally, the exponential voltage-dependent load model allowed having
a representation of ZIP loads with single exponent, which is a suitable formulation for power flow
problems. The results of the models reveal that a constant power load is the most expensive scenario,
and a constant resistive load is the least expensive. All simulation scenarios were developed using the
GAMS package as an optimizer, which has a user-friendly interface that permits the development of a
consistent mathematical model that is not found with the solution technique. Further, solutions with
the model were found with faster convergence times (less than 1 s in all simulation scenarios).

The artificial neural network used to predict the potential generation for dispatching all the
batteries shows that the estimation error of the final costs is lower than 1.21%, which confirms that it is
a powerful tool for modeling the operation of electrical networks that require accurate predictions in
short periods of time.

Future work may include the development of an optimization strategy for reallocating available
batteries in order to minimize the operational cost of the grid by reducing the active power loss during
the charging/discharging processes. Additional work may also entail the proposal of a metaheuristic
algorithm to locate renewable generators and batteries in DC microgrids in a master-slave approach
for minimizing power losses and operational costs, especially in rural or non-interconnected grids.
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Appendix A. Numerical Example

To illustrate the implementation of the proposed mathematical model defined by
Equations (1)–(10), we designed a small distribution network operating in the DC mode, as depicted
in Figure A1. This network contains constant power loads (α = 1 in Equation (11)). In addition, we
included a wind turbine with a typical daily generation curve. This grid comprises a battery energy
storage system connected at node 4; three constant power loads (CPLs) in nodes 2, 4, and 5; a slack
node connected at node 1; and a wind turbine connected at node 3. The resistive parameters of this
test system are presented in Table A1.

−
+

1 2 3

54
Slack WT

B CPL

Figure A1. Grid connection for the numerical example.

Table A1. Branch and load information for the numerical example.

Node i Node j Resistance [pu] CPL (Node j) [pu]

1 2 0.0050 0.40
2 3 0.0025 0.00
1 4 0.0040 0.35
4 5 0.0020 0.50
2 4 0.0020 —

It is important to mention that the power consumption reported in the CPL column of Table A1 is
associated with node j.

For this test feeder, we used a voltage base of 13.2 kV and a power base of 100 kW. The percentage
of the power demand during the day, the power output of the wind turbine, and the cost of the power
provided by the slack node are reported in Figure A2. The peak cost employed for this normalized
cost picture is 0.945 $/kWh.

http://www.mdpi.com/1996-1073/12/23/4494/s1
http://www.mdpi.com/1996-1073/12/23/4494/s1
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Figure A2. Input data for the numerical example.

All the information presented in Figure A2 is included in the body of Algorithm A1 as tables;
for example, the first column, TABLE CV(t,*), refers to the period number in the analysis; the second
column titled Cost is associated with the the cost per kilowatt-hour; and, the third column, Var, reports
the percentage variation in consumption during the day. The rest of the tables are related to the
information of the systems.

SETS
t Set of~times /t1*t24/
i Set of~nodes /N1*N5/
g Set of~convetional generators /G1/
gd Set of~distributed generators /GD1/
b Set of~batteries /B1/
map(g,i) Relates nodes and Conv. Gen. /G1.N1/
mapgd(gd,i) Relates nodes and Dist. Gen. /GD1.N3/
mapb(b,i) Relates nodes and Batteries /B1.N4/;
SCALAR
Sb Base of~power [kW] /100/
Dt Delta of~time [h] /1.0/;
ALIAS(i,j);
TABLE Gbus(i,j) Admittance matrix [p.u]

N1 N2 N3 N4 N5
N1 450 -200 0 -250 0
N2 -200 1100 -400 -500 0
N3 0 -400 400 0 0
N4 -250 -500 0 1150 -400
N5 0 0 0 -400 400
TABLE Load(i,*) Demand information [p.u]
PL
N1 0.00
N2 0.40
N3 0.00
N4 0.35
N5 0.50
TABLE CV(t,*) Cost [$/kW] and load variation [p.u]

Cost Var
t1 0.770 0.34
t2 0.710 0.22
t3 0.690 0.22
t4 0.700 0.18
t5 0.720 0.18
t6 0.800 0.22
t7 0.870 0.28
t8 0.910 0.40
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t9 0.880 0.62
t10 0.910 0.72
t11 0.910 0.84
t12 0.910 0.90
t13 0.900 0.94
t14 0.895 0.90
t15 0.895 0.86
t16 0.900 0.90
t17 0.925 0.90
t18 0.945 0.86
t19 0.925 1.00
t20 0.905 0.92
t21 0.875 0.98
t22 0.825 0.90
t23 0.755 0.76
t24 0.685 0.58
TABLE Gend(t,gd) Wind turbine power [p.u]

GD1
t1 0.491746506
t2 0.468282938
t3 0.452321598
t4 0.440593128
t5 0.442434522
t6 0.462949470
t7 0.542106738
t8 0.658875156
t9 0.732416360
t10 0.778458598
t11 0.767274808
t12 0.745063928
t13 0.733924020
t14 0.734122492
t15 0.730361338
t16 0.726223540
t17 0.694916588
t18 0.646582836
t19 0.544928278
t20 0.499666060
t21 0.469398008
t22 0.406462266
t23 0.319635270
t24 0.284079772;
TABLE Batt(b,*) Battery operation rank

SoCmin SoCmax SoCi SoCf Phi PbD PbC
* [%] [%] [%] [%] [p.u] [p.u] [p.u]
B1 0.0 1.0 0.0 0.0 0.8 0.3125 -0.25;
VARIABLES
z Objective function variable
v(i,t) Nodal voltage [p.u]
p(g,t) Conventional power generation [p.u]
pgd(gd,t) Distributed power generation [p.u]
SoC(b,t) State-of-Charge of~the battery
pb(b,t) Power input/output in the battery [p.u];
pgd.lo(gd,t) = 0;
pgd.up(gd,t) = Gend(t,gd);
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pb.lo(b,t) = Batt(b,’PbC’);
pb.up(b,t) = Batt(b,’PbD’);
SoC.lo(b,t) = Batt(b,’SoCmin’);
SoC.up(b,t) = Batt(b,’SoCmax’);
SoC.fx(b,’t1’) = Batt(b,’SoCini’);
SoC.fx(b,’t24’) = Batt(b,’SoCfin’);
v.lo(i,t) = 0.95; v.up(i,t) = 1.05;
v.fx(’N1’,t) = 1.0; p.lo(g,t) = 0;
EQUATIONS
Fo Objetive function equation
Balance(i,t) Power balance
States(b,t) State of~the battery;
Fo.. z=e=Sb*sum(g,sum(t,CV(t,’Cost’)*p(g,t)))*Dt;
Balance(i,t).. SUM(g$map(g,i),p(g,t)) +
SUM(gd$mapgd(gd,i),pgd(gd,t))+
SUM(b$mapb(b,i),pb(b,t)) -
Load(i,’PL’)*(CV(t,’Var’))*(v(i,t)**2)
=e= SUM(j,Gbus(i,j)*v(i,t)*v(j,t));
States(b,t).. SoC(b,t) =e= SoC(b,t-1)$(ORD(t)
gt 1) + Batt(b,’SoCini’)$(ord(t) eq 1) -
Batt(b,’Phi’)*Pb(b,t);
MODEL Eco_Disp_Batts /all/;
SOLVE Eco_Disp_Batts using NLP minimizing z;
DISPLAY z.l;

Algorithm A1: GAMS implementation for the proposed numerical example.

It is important to highlight that TABLE Batt(b,*) for this example begins and ends totally
discharge. Its state of charge during the day varies from 0% to 100%. During the charging process,
the battery can absorb 0.25 pu of power (5 h for charging); during the discharging process, it can
produce 0.3125 pu of power (4 h for discharging). For more details about GAMS implementation, refer
to [35,36].

If we evaluate Algorithm A1 to obtain the solution of the cost minimization problem for DC
microgrids with battery energy storage, then the solution achieved is the one reported in Table A2.

Table A2. Solution reported by GAMS.

Model Objective Function z [$]

Without BESS 622.7769
With BESS 506.6114

Note that, when batteries are included in this small example, the total operating cost per day is
reduced by about 18.65%, which shows a clear benefit of using a BESS to improve the grid performance
in terms of the operational cost. The remaining analysis about the states of charge and discharge of the
battery, as well as slack generation profiles, are in Section 6. Finally, Figure A3 presents a screenshot
of the GAMS output.
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Figure A3. GAMS report.

The GAMS report in Figure A3 shows that the nonlinear model of the optimal operation of the
BESS in DC microgrids attains the global optimal solution for this numerical example and takes only
196 ms.
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