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The definition of memory in operational approaches to quantum non-Markovianity depends on
the statistical properties of different sets of outcomes related to successive measurement processes
performed over the system of interest. Using projectors techniques we develop a perturbation
theory that enables to expressing both joint probabilities and outcome correlations in terms of the
unperturbed system density matrix propagator. This object defines the open system dynamics
in absence of measurement processes. Successive series terms, which are scaled by the system-
environment interaction strength, consist in a convolution structure involving system propagators
weighted by higher order bath correlations. The formalism is corroborated by studying different
dynamics that admit an exact description. Using the perturbative approach, unusual memory effects
induced by the interplay between the system-environment interaction and measurement processes
are found in finite temperature reservoirs.

I. INTRODUCTION

Most features characterizing an open quantum system
dynamics can be recovered from a perturbative approach
to the full system-environment dynamics. For example,
the Born-Markov approximation (BMA) [1–3] is able to
describe paradigmatic phenomena like decoherence and
dissipation. Even more, quantum memory effects were
originally related to departures from this “first-order”
approximation [4, 5]. This association relies on the local-
in-time property of the system evolution.
Over the past decade, the previous point of view was

reviewed significantly. Instead of the BMA, the hallmark
of quantumMarkovianity becomes the theory of quantum
dynamical semigroups [6]. In this alternative scenario
[7, 8] memory effects are determined from the system
density matrix propagator, which in fact encode different
departures that the system dynamics may develop with
respect to a “Markovian” Lindblad dynamics [9–25].

Alternative operational approaches [26] to quantum
non-Markovianity have been introduced recently [27–
32]. Instead of focusing on mappings from density op-
erators to density operators, the presence of memory
is determined from the statistical properties of differ-
ent outcomes obtained from successive measurement pro-
cesses performed during the system evolution. Consis-
tence with the classical definition of non-Markovianity
is achieved. In fact, given a sequence of measurement
outcomes, Markovianity can be checked through the cor-
responding conditional probabilities [27]. In addition and
in contrast to previous non-operational approaches, any
possible dynamical departure from BMA renders the dy-
namic non-Markovian [28]. Experimental setups for mea-
suring memory in an operational way were implemented
recently in Refs. [31, 32].
The definition of quantum non-Markovianity from an

operational perspective leads to an intrinsic dependence
of memory effects on measurement processes, which leads
to a richer structure when compared to the classical (in-
coherent) case [29–31]. On the other hand, in contrast to
non-operational approaches where memory effects can be
related to the system propagator, it is not known which
physical object (or structure) may play the same role in
these operational approaches [32, 33]. In fact, the sys-
tem dynamic between successive measurements, due to
non-Markovian effects, cannot in general be described
through a unique system propagator. This property has
its physical origin in the modification or dependence of
the bath state on system outcomes [28]. The main goal of
this paper is to provide a rigorous answer to this problem.

We characterize the structure that determines mem-
ory effects in operational approaches to quantum non-
Markovianity. The study is valid for arbitrary system-
environment interactions and relies on a perturbation
theory formulated with projector operator techniques
[2, 35]. The formalism is developed in the case where
three system measurement processes are performed, be-
ing applied to both joint probabilities [27] and a con-
ditional past-future (CPF) correlation [28]. In order to
understand the intrinsic differences between operational
and non-operational approaches, both kind of statisti-
cal objects are written as a function of the unperturbed

system propagator, which defines the open system dy-
namics in absence of measurement processes. The pro-
jector approach naturally leads to an expansion series
in the system-environment coupling strength. We found
that successive order contributions consist in a convolu-
tion term involving two system propagators weighed by
higher order bath correlations. This structure arises for
both quantum and classical environmental fluctuations.
These finding generalize the results found in [32], which
were derived for specific system-bath interaction Hamil-
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tonians. The validity of the formalism is confirmed by
studying different dynamics that admit an exact treat-
ment such as dephasing and decay in a bosonic bath at
zero temperature. As an application, we study mem-
ory effects in the thermalization of a two-level system,
showing that unusual memory effects may be induced
by raising the environment temperature. Generalization
to arbitrary number of measurement processes follows
straightforwardly from the present results.
The paper is outlined as follows. In Sec. II we re-

view how memory effects can be determined from joint
probabilities and the CPF correlation. In Sec. III we
develop the perturbation theory for both classical and
quantum environment fluctuations. In Sec. IV we ap-
ply the perturbation theory to dynamics that admit an
exact treatment. In addition, we study memory effects
induced by thermal reservoirs. In Sec. V we provide the
Conclusions. Auxiliary calculation details are presented
in the Appendix.

II. OPERATIONAL MEMORY WITNESSES

Memory effects in open quantum systems can be de-
termined by subjecting the system to successive measure-
ment processes and checking if the corresponding prob-
ability structure satisfies the usual Markovian definition
[27]. It is simple to realize that a minimal number of
three system observations is necessary to detect memory
effects. Denoting with x → y → z the successive mea-
surement outcomes, their joint probability P (z, y, x) can
be written as

P (z, y, x) = P (z|y, x)P (y|x)P (x), (1)

where in general, P (b|a) denotes the conditional proba-
bility of b given a. Markovianity is defined by the equal-

ity P (z, y, x)
M
= P (z|y)P (y|x)P (x), that is, P (z|y, x) M

=
P (z|y). This property can easily be rewritten in terms
of a conditional past-future independence, leading to the

condition P (z, x|y) M
= P (z|y)P (x|y). This last formula-

tion can be checked with a CPF correlation [28],

Cpf (t, τ)|y =
∑

zx

[P (z, x|y)− P (z|y)P (x|y)]OzOx. (2)

Thus, Markovianity implies Cpf (t, τ)|y = 0, while
Cpf (t, τ)|y 6= 0 witnesses memory effects. In this equa-
tion, the sequence {x} → y → {z} defines the outcomes
at each stage, while {Oz} and {Ox} are the correspond-
ing observables at the initial and final (past and future)
observation times. The outcome y gives the conditional
character of the correlation. The parameters t and τ
denote the time intervals between the first and second,
and between the second and third measurements, respec-
tively.
Both operational memory witnesses [Eqs. (1) and (2)]

can be mapped between them. Using that P (z, x|y) =

P (z, y, x)/P (y), P (z|y) = P (z, y)/P (y) and P (x|y) =
P (y, x)/P (y), we get the equivalent expression

Cpf (t, τ)|y =
∑

zx

OzOx

P 2(y)
[P (z, y, x)P (y)− P (z, y)P (y, x)].

(3)
Here, all statistical objects can be written in terms
of the joint probability P (z, y, x). In fact, P (z, y) =
∑

x P (z, y, x), P (y, x) =
∑

z P (z, y, x) and P (y) =
∑

z,x P (z, y, x).
In a quantum regime, joint probabilities as well as

the CPF correlation intrinsically depend on the cho-
sen observables. Here they are defined through a set
of measurement operators denoted as {Ωx}, {Ωy}, and
{Ωz}, being normalized to the system identity matrix,
∑

z Ω
†
zΩz =

∑

y Ω
†
yΩy =

∑

xΩ
†
xΩx = I. For simplicity,

the intermediate measurement is assumed a projective
one [27, 28], that is, Ω†

yΩy = Ωy.
For the explicit calculation of P (z, y, x) or Cpf (t, τ)|y

we must define the evolution of the system-environment
arrange between measurements. Both (total) unitary dy-
namics and stochastic Liouville dynamics are considered.

A. Unitary system-environment dynamics

First, we assume that the system and the environment
are described by a unitary evolution with Hamiltonian
HT . The total density matrix ρset evolves as

d

dt
ρset = Lse(t)[ρ

se
t ], Lse(t)[•] = −i[HT (t), •]. (4)

As usual, the total Hamiltonian is written as HT (t) =
Hs+He+HI . Each contribution corresponds to the sys-
tem, the environment, and their interaction Hamiltonian,
respectively. The previous equation can be integrated as
ρset = Et,0[ρse0 ], where the bipartite propagator is

Etb,ta ≡
⌈

exp

∫ tb

ta

dt′Lse(t
′)

⌉

. (5)

Here ⌈· · · ⌉ denotes a time ordering operation, which is
necessary due to the dependence of Lse(t) on time. This
case arises, for example, when working in an interaction
representation or when the system is submitted to an
external time dependent field.
The system density matrix follows from a partial trace

over the environmental degrees of freedom, ρt = Tre(ρ
se
t ).

Thus,

ρt = Λt,t0 [ρ0] ≡ Tre(Et,t0 [ρ0 ⊗ σe]), (6)

where Λt,t0 is the system density matrix propagator. For
simplicity, we assume t0 = 0 and separable initial condi-

tions, ρse0 = ρ0 ⊗ σe.
From standard quantum measurement theory, the ex-

pression for the 3-joint probability is [34]

P (z, y, x) = Trse(EzEt+τ,t[ρy ⊗ Trs(EyEt,0[ρ̃x ⊗ σe])]),
(7)
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where ρ̃x ≡ Ωxρ0Ω
†
x and Ei ≡ Ω†

iΩi. Furthermore,
ρy = Ey is the (collapsed) system state after the second
measurement. We notice that in Eq. (7) the evolution in
the interval (0, t) can be written in terms of the unper-
turbed system propagator Λt,0 defined in Eq. (6). Never-
theless, this object is insufficient to describe the dynamics
in the interval (t, t+τ) because the initial bath state does

not remain unchanged, σe → Trs(EyEt,0[ρ̃x⊗σe]). In fact,
this feature is a witness of memory effects [28] whose de-
scription, for arbitrary system-environment interactions,
is performed in the following section.

From Eq. (7), the CPF correlation [Eq. (3)] can be
written as

Cpf (t, τ)|y =
1

P 2(y)

∑

zx

OzOxTrse(EzEt+τ,t[ρy ⊗ Trs(EyEt,0[ρ̃yx ⊗ σe])]), (8)

where the auxiliary system matrix ρ̃yx is defined as ρ̃yx ≡
ρ̃x P (y)−ρ̃ P (y, x), being ρ̃ ≡ ∑

x′ ρ̃x′ . Explicitly, it reads

ρ̃yx = ρ̃x Trs(EyΛt,0[ρ̃])− ρ̃ Trs(EyΛt,0[ρ̃x]), (9)

Similarly, the probability P (y) is given by

P (y) =
∑

x′

Trs(EyΛt,0[ρ̃x′ ]). (10)

From the previous two expressions, we notice that both
ρ̃yx and P (y) can be written in terms of the unperturbed
system propagator Λt,0. On the other hand, it is simple
to show that the matrix ρ̃yx never vanishes. In fact,
after a simple algebra the condition ρ̃yx = 0 leads to the
incongruence ρ̃x/P (x) = ρ̃.
We notice that Eq. (8), disregarding the sum opera-

tion and under the replacement ρ̃yx → ρ̃x, has the same
structure as Eq. (7). This similitude allows us to formu-
late a perturbation theory that straightforwardly applies
to both kinds of objects. The same relation is also valid
for higher statistical objects (Sec. IV-C).

B. Stochastic Liouville dynamics

In addition, we deal with the case in which the open
system evolution is defined by a stochastic Liouville dy-
namics,

d

dt
ρstt = Lst(t)[ρ

st
t ], Lst(t)[•] = −i[Hst(t), •]. (11)

This equation can be integrated as ρstt = Est
t,0ρ0, where

the stochastic propagator is

Est
tb,ta

≡
⌈

exp

∫ tb

ta

dt′Lst(t
′)

⌉

. (12)

As before, ⌈· · · ⌉ denotes a time ordering operation. The

system density matrix ρt = ρstt follows after averaging
over realizations (over bar symbol) of the stochastic Li-
ouville superoperator Lst(t). Thus,

ρt = Λt,t0 [ρ0] ≡ Est
t,t0

[ρ0], (13)

where for simplicity we assumed that the initial system
state ρ0 is uncorrelated from the noise fluctuations. As
before, Λt,t0 (t0 = 0) is the system density matrix prop-
agator.
From quantum measurement theory, it is possible to

obtain [34]

P (z, y, x) = Trs(EzEst
t+τ,t[ρy])Trs(EyEst

t,0[ρ̃x]), (14)

where, as before, ρ̃x = Ωxρ0Ω
†
x and Ei = Ω†

iΩi. Similarly
to the unitary case, here the (average) evolution in the
interval (0, t) can be written in terms of the unperturbed
propagator (6), but it is unable to describe the dynamics
in the interval (t, t+τ) because the system state at time t
is a random one, being correlated with the environmental
fluctuations.
From Eq. (14) it is possible to write the CPF correla-

tion [Eq. (3)] as

Cpf (t, τ)|y =
∑

zx

OzOx

P 2(y)
Trs(EzEst

t+τ,t[ρy])Trs(EyEst
t,0[ρ̃yx]),

(15)
where ρ̃yx and P (y) can be read from Eqs. (9) and
(10), respectively, with the propagator Λt,0 defined by
Eq. (13).
Here, we can see that Eqs. (14) and (15) present a

similar structure, and both expressions can be related
under the same mapping that connects Eqs. (7) and (8).

III. PERTURBATION THEORY

In non-operational memory approaches, memory ef-
fects are mainly determined from the unperturbed system
density propagator. Thus, we develop a perturbation the-
ory where this object remains as an input of the formal-
ism. For both unitary system-environment interactions
as well as stochastic Liouville dynamics the formalism is
developed using projector techniques, which allow us to
find exact series expansions of both the joint probability
P (z, y, x) and the CPF correlation Cpf (t, τ)|y .
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A. Unitary system-environment dynamics

We introduce standard projectors [35]

P [ρse] = Tre(ρse)⊗ σe, Q[ρse] = ρse − Tre(ρse)⊗ σe,
(16)

where σe is a reference state of the bath. They satisfy
P + Q = Ise, where Ise is the bipartite identity matrix.
Introducing the operator Ise in front of each propagator
E in Eq. (7), it follows

P (z, y, x)=Trse(EzPEt+τ,t[ρy⊗Trs(EyPEt,0[ρ̃x ⊗ σe])])

+Trse(EzPEt+τ,t[ρy⊗Trs(EyQEt,0[ρ̃x ⊗ σe])]).
(17)

In deriving this expression we used that Tre(Q[ρse]) = 0,
equality valid for arbitrary system-environment state ρse.
We notice that the first line in the previous equation can
be written in terms of two system propagators [Eq. (6)]
between two arbitrary times, Λt,t′ [ρ] = Tre(Et,t′ [ρ⊗ σe]).
In the second line, as usual, we note that for separa-
ble initial conditions the irrelevant part in the projector
technique can be integrated as (see Appendix)

QEtb,ta =

∫ tb

ta

dt′Gt,t′QLse(t
′)PEt′,ta , (18)

where

Gt,t′ ≡
⌈

exp

∫ t

t′
dτ ′QLse(τ

′)

⌉

. (19)

Therefore, the contribution proportional to QEst
tb,ta

in
Eq. (17) can also be written in terms of the unperturbed
propagator PEt′,ta [ρ⊗ σe] [Eq. (6)]. On the other hand,
the relevant part (in the second line) can also be inte-
grated as (see Appendix)

PEtb,ta = PEtb,taP+
∫ tb

ta

dt′PEtb,t′PLse(t
′)Gt′,taQ. (20)

This expression is of central importance for the develop-
ing of the formalism because it enables to characterize the
projected system dynamics in terms of the unperturbed
propagator even when considering arbitrary initial envi-

ronment states.

Introducing explicitly Eqs. (18) and (20) in P (z, y, x),
using that PQ = 0 and after some algebra, from Eq. (17)
we get

P (z, y, x)=Trs(EzΛt+τ,t[ρy])Trs(EyΛt,0[ρ̃x])+

∫ τ

0

dτ ′
∫ t

0

dt′Trs(EzΛt+τ,t+τ ′Tre(Φ̃
se
t+τ ′,t[ρy⊗Trs(EyΦ

se
t,t′Λt′,0[ρ̃x]⊗σe)])),

(21)

where for shortening the expression we introduced the
system-environment superoperators

Φ̃se
tb,ta

= Lse(tb)Gtb,ta , Φse
tb,ta

≡ Gtb,taQLse(ta). (22)

The system propagator Λt,t′ is defined by Eq. (6).
Eq. (21) is the main result of this section. It ex-

presses P (z, y, x) as a function of the unperturbed sys-
tem propagator. We notice that the first contribution

corresponds to a Markovian limit, where P (z, y, x)
M
=

P (z|y)P (y|x)P (x) with P (z|y) M
= Trs(EzΛt+τ,t[ρy]) and

P (y|x)P (x) M
= Trs(EyΛt,0[ρ̃x]) with P (x) = Trs(ρ̃x) =

Trs(Exρ0). Consistently, the second (integral) contribu-
tion takes into account memory effects, which in turn an-
swers our main motivation. It consists in a convolution
structure involving two unperturbed system propagators
weighted by the “correlation” between the bipartite op-
erators Φ̃se

tb,ta
and Φse

tb,ta
[Eq. (22)]. These objects can

be written as a series in the interaction strength [propor-
tional to Lse(t)], which follows from the expansion Gt,t′ =

Ise+
∫ t

t′
dτ1QLse(τ1)+

∫ t

t′
dτ2

∫ τ2

t′
dτ1QLse(τ2)QLse(τ1)+

· · · . Thus, the non-Markovian contribution in Eq. (21)
can be written as a series in the interaction strength,

each term involving two system propagators and high or-
der bath correlations.
In order to lighten the structure of the perturbation

series, we write it for the CPF correlation. Using the
similarity between Eqs. (7) and (8), it follows that the
first (Markovian) term in Eq. (21) does not contribute to
Cpf (t, τ)|y . In fact

∑

xOxTrs(EyΛt,0[ρ̃yx]) = 0. Thus,
consistently the CPF correlation only depends on the
second integral contribution, which in fact measures the
memory effects. We get

Cpf (t, τ)|y =
∑

z,x

OzOx

P 2(y)

∫ t

0

dt′
∫ τ

0

dτ ′Ξ(z, x|y)[ρ̃yx],

(23)
where

Ξ(z, x|y)[•] ≡ Trse(EzΥ̃
se
t+τ ′,t[ ρy ⊗ Trs(EyΥ

se
t,t′ [•]) ]).

(24)
This term defines the integrand in Eq. (21). For nota-
tional convenience here we introduced the superoperator

Υ̃se
t+τ ′,t[•] ≡ Λt+τ,t+τ ′Φ̃se

t+τ ′,t[•], (25)

and similarly

Υse
t,t′ [•] ≡ Φse

t,t′ [Λt′,0[•]⊗ σe]. (26)
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The final expression (23) enables to perform a per-
turbative theory for the CPF correlation developed as
a series in terms of the system-environment interaction
strength. In fact, expansion of the superoperators Φ̃se

tb,ta

and Φse
tb,ta

[Eq. (22)] in powers of Lse(t) leads to

Ξ(z, x|y)[•] =
∞
∑

n=1

Ξ(n)(z, x|y)[•], (27)

where the index n labels the bath correlation order that
appears in each term. For example, to first order Φ̃se

tb,ta
=

Lse(tb)Gtb,ta ≃ Lse(tb), and Φst
tb,ta

= Gst
ta,tb

QLse(ta) ≃
QLse(ta) = Lse(ta), where the last equality relies on the
usual assumption PLse(ta)P = 0. The first not null order
is weighted by the bath correlations Tre(Lse(t)Lse(t

′)σe),
which in turn weights the integral between both system
propagators Λt+τ,t+τ ′ and Λt′,0. This structure is similar
to that found in Ref. [32] for models that admit an exact
analytic calculation.
In order to explicitly visualize the previous structure,

we consider the bipartite Hamiltonian

HT (t) =
∑

µ

Sµ
t ⊗Bµ

t . (28)

Assuming, as usual, that expectation values of the bath
operators are null, Tre(B

µ
t σe) = 0, and considering Her-

mitian operators, from Eq. (24) we get

Ξ(1)(z, x|y)[•] = ∑

µ,ν

{

Trs

(

EzΛt+τ,t+τ ′[ρyS
µ
t+τ ′ ]

)

− c.c.
}

×
{

χµν(τ
′ + t′) Trs

(

EyS
ν
t−t′Λt′,0[•]

)

− c.c.
}

,

(29)
where the bath correlations are defined as χµν(t, t

′) ≡
Tre(B

µ
t B

ν
t′σe). For simplicity they are assumed station-

ary, χµν(t + τ ′, t − t′) = χµν(τ
′ + t′). Higher order

terms include higher bath correlations that involve a
higher number of bath operators. For bosonic environ-
ments, Ξ(n)(z, x|y)[•] involves a product of n correlations
χµν(t, t

′). When χµν(τ
′+ t′) ≈ δ(τ ′+ t′), the double time

integral
∫ t

0 dt
′
∫ τ

0 dτ
′ of the successive series terms van-

ishes, recovering consistently a Markovian limit.

We remark that the exact expressions (21) and (23)
explicitly depend on the unperturbed propagator Λtb,ta .
This object, when is not available in an exact analytical
way, using standard tools [2, 35], can be approximated
to the same order as the joint probability or CPF corre-
lation.

B. Stochastic Liouville dynamics

The previous perturbation theory can also be de-
veloped for the case of stochastic Liouville dynamics,
Eqs. (14) and (15). Instead of the projectors (16), here
they are defined as

P [fst] = fst, Q[fst] = fst − fst, (30)
where fst is an arbitrary functional of the noise fluctu-
ations. After introducing the identity P + Q = 1 in
Eq. (14), we get

P (z, y, x) = Trs(EzPEst
t+τ,t[ρy])Trs(EyPEst

t,0[ρ̃x])

+Trs(EzPEst
t+τ,t[ρy])Trs(EyQEst

t,0[ρ̃x]).

(31)

Using similar transformations and solutions as in the pre-
vious section, for the joint probability we obtain

P (z, y, x)=Trs(EzΛt+τ,t[ρy])Trs(EyΛt,0[ρ̃x]) +

∫ τ

0

dτ ′
∫ t

0

dt′Trs(EzΛt+τ,t+τ ′Φ̃st
t+τ ′,t[ρy])Trs(EyΦst

t,t′Λt′,0[ρ̃x])], (32)

where here

Φ̃st
tb,ta

= Lst(tb)Gst
tb,ta

, Φst
tb,ta

≡ Gst
tb,ta

QLst(ta), (33)

and correspondingly

Gst
t,t′ =

⌈

exp

∫ t

t′
dt′QLst(t

′)

⌉

. (34)

The propagator Λtb,ta is defined by Eq. (13). The CPF
correlation, using the similitude of Eqs. (14) and (15),

can be written from Eq. (32) as

Cpf (t, τ)|y =
∑

z,x

OzOx

P 2(y)

∫ t

0

dt′
∫ τ

0

dτ ′Ξ(z, x|y)[ρ̃yx],

(35)
where

Ξ(z, x|y)[•] ≡ Trs(EzΥ̃st
t+τ ′,t[ρy])Trs(EyΥst

t,t′ [•]). (36)

Similarly, we defined

Υ̃st
t+τ ′,t[•] ≡ Λt+τ,t+τ ′Φ̃st

t+τ ′,t[•], (37)
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and the stochastic superoperator

Υst
t,t′ [•] ≡ Φst

t,t′ [Λt′,0[•]]. (38)

Furthermore, ρyx is the matrix defined by Eq. (9). From
Eq. (36) the perturbation theory follows straightfor-
wardly.

IV. EXAMPLES AND APPLICATIONS

In this section we apply the perturbation theory for
different dynamics of interest such as dephasing induced
by a Gaussian non-white noise and dissipation induced
by a non-Markovian bosonic thermal bath.

A. Non-Markovian dephasing

We consider a two-level system driven by a dephasing
stochastic Hamiltonian. The stochastic system state ρstt
evolves as

d

dt
ρstt = −iξ(t)[σẑ , ρstt ], (39)

where σẑ is the ẑ-Pauli matrix (eigenvalues |±〉) and ξ(t)
is a (real) stationary color Gaussian noise with vanishing

average ξ(t) = 0 and stationary correlation χ(t − t′) =

ξ(t)ξ(t′) = (γ/2τc) exp[−|t− t′|/τc]. We consider that the
system begins in its upper state, ρ0 = |+〉〈+|. Further-
more, the three measurements are performed in the x̂-
direction in the Bloch sphere, {Ωx} = {Ωy} = {Ωz} =

|x̂±〉〈x̂±|, where |x̂±〉 = (|+〉 ± |−〉)/
√
2 are the eigenval-

ues of σx̂, the x̂-Pauli matrix. Thus, x = ±1, y = ±1,
and z = ±1. Under the previous conditions, both the
joint probabilities and CPF correlation can be obtained
in an exact analytical way. Explicit expressions can be
found in Ref. [28] [(γ/2τc) ↔ g2]. Similarly, for this
model it is possible to obtain explicit recursive relations
and expressions for the successive series terms [Eq. (27)],
which are of order (γτc)

n. Due to the symmetry of the
problem, the first order contribution vanishes.

In Fig. 1 we plot the CPF correlation Cpf (t, τ)|y at
equal measurement time intervals t = τ , for different
noise correlation times. Both the exact expression and
the perturbation theory estimation are shown. The un-
perturbed system propagator Λt,t′ [Eq. (13)] was taken
as the exact one. Similarly to the exact expression,
the CPF correlation obtained by adding successive se-
ries terms is independent of the conditional y = ±1. We
found that for smaller noise correlation times the conver-
gence to the exact expression is increased, which shows
the consistence of the perturbation theory. Furthermore,
we checked that, to the same order, all joint probabilities
P (z, y, x) [Eq. (32)] are definite positive. This feature
also supports the developed formalism.
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FIG. 1: CPF correlation Cpf (t, t)|y (y = ±1) obtained by
adding successive contributions in the perturbation theory for
the dephasing dynamics (39). The noise correlation is χ(t) =
(γ/2τc) exp[−|t|/τc]. The three measurements are performed
in the x̂-Bloch direction, while the system begins in its upper
state. The parameters in (a) and (b) respectively are γτc =
0.05 and 0.1.

B. Non-Markovian bosonic bath

The decay of a two-level system in a bosonic environ-
ment is described by the total Hamiltonian [2]

Htot =
ω0

2
σz+

∑

k

ωkb
†
kbk+

∑

k

(gkσ+bk+g
∗
kσ−b

†
k), (40)

where [bk, b
†
k] = 1 are the creation-annihilation bosonic

operators and σ+ = |+〉〈−|, σ− = |−〉〈+| are the raising
and lowering operators of the system. Memory effects
in this dynamics can also be analyzed in an operational
approach to quantum non-Markovianity.
We consider two different measurement schemes. In

the first one, the three measurements are performed in
ẑ−Bloch direction (ẑ-ẑ-ẑ scheme) while in the second
one, the first and last measurements are performed in the
x̂−Bloch direction, while the intermediate one in the ẑ-
direction (x̂-ẑ-x̂ scheme). These observables are defined
in the representation interaction with respect to the sys-
tem and bath free evolutions. In this frame, the total
Hamiltonian reads

Htot = σ+B(t) + σ−B
†(t), (41)

where B(t) =
∑

k gkbk exp[+i(ω0 − ωk)t]. Furthermore,
the initial bipartite state is taken as

ρse0 = |ψ0〉〈ψ0| ⊗ σe, |ψ0〉 = (a|+〉+ b|−〉), (42)

with normalized coefficients a and b. The initial bath
state σe is taken as a thermal one. For both measurement
schemes, the perturbation theory enables us to study the
dependence of memory effects with temperature. Given
the bosonic property of the bath, its complete set of (op-
erator) correlations can be written in terms of only two
ones,

χ↓(t) ≡ Tre[B(t)B†σe], χ↑(t) ≡ Tre[B
†(t)Bσe]. (43)



7

0 1 2 3 4 5
-3

-2

-1

0

0 1 2 3 4 5
-8

-6

-4

-2

0

0.0 0.5 1.0 1.5 2.0 2.5
0

2

4

6

8

10

12

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

^ ^ ^

c=0.1

c=0.1

c=0.4

c=0.4
(c)

x-z-x

 

 

C
pf

(t,
t)

y

t

 1° order
  exact

x10-3 x10-2

x10-2 x10-2

(b)(a)

(d)

x-z-x

 

 

C
pf

(t,
t)

y

t

 1° order
 exact

^

y=-1y=-1

y=-1y=-1
^ ^ ^^ ^ z-z-zz-z-z

 

C
pf

(t,
t)

y

t

 2° order
 exact

^ ^ ^

 

 

C
pf

(t,
t)

y

t

 2° order
 exact

FIG. 2: CPF correlation Cpf (t, t)|y (y = −1) obtained in a
perturbative way for the dissipative dynamics (41) with en-
vironment at zero temperature. Its correlations are χ↓(t) =
(γ/2τc) exp[−|t|/τc] and χ↑(t) = 0. (a) and (b) correspond
to the ẑ-ẑ-ẑ measurement scheme while (c) and (d) to the
x̂-ẑ-x̂ scheme. The bath correlation time τc is indicated in
each plot. In all cases, the initial system state is |ψ0〉 =
(
√
p|+〉+√

1− p|−〉) with p = 0.8.

Zero temperature: For different physical arrangements,
the environment temperature can be (effectively) taken
as null. Thus, σe = |0〉〈0|, where |0〉 ≡ ∏

k |0〉k.
Each state |0〉k corresponds to the vacuum state of each
bosonic mode. As is well known [2], in this case the full
system-environment dynamic admits a simple analytical
solution, given also an exact expression for the unper-
turbed system propagator Λt,t′ [Eq. (6)]. Furthermore,
the CPF correlation and joint probabilities can also be
calculated in an exact way. In fact, the open system dy-
namics and the CPF correlation have been implemented
and measured in a photonic setup [32].

We consider a Lorentzian spectral bath density.
Thus, the environment correlations read χ↓(t) =
(γ/2τc) exp[−|t|/τc], while the zero temperature condi-
tion leads to χ↑(t) = 0. In Fig. 2 we plot the CPF corre-
lation Cpf (t, t)|y at equal time intervals for both measure-
ment schemes and the conditional y = −1. In the ẑ-ẑ-ẑ
scheme [(a) and (b)], the first order contribution van-
ishes. Similarly to the previous case, (at second order)
a decrease in the bath correlation time leads to a higher
convergence with the exact analytical result [32]. On the
other hand, in the x̂-ẑ-x̂ scheme, the first order contri-
bution coincides with the exact solution. Thus, while
higher order contributions do not vanish, their addition
cancel out. These results also support the consistence of
the perturbation theory. In addition, we found that to
the same order, all joint probabilities P (z, y, x) [Eq. (21)]
are definite positive.

For the conditional y = +1, the exact calculation of
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FIG. 3: CPF correlation Cpf (t, t)|y obtained in a pertur-
bative way for the dissipative dynamics (41) with an envi-
ronment at finite temperature. Its correlations are χ↓(t) =
(n̄+1)(γ/2τc) exp[−|t|/τc] and χ↑(t) = n̄(γ/2τc) exp[−|t|/τc].
(a) and (b) correspond to y = −1 for the ẑ-ẑ-ẑ and x̂-ẑ-x̂
measurement schemes, respectively. In (c) and (d) y = +1.
The bath correlation parameters are indicated in each plot.
In all cases, the initial system state |ψ0〉 is the same as in
Fig. 2.

the CPF correlation leads to [32]

Cpf (t, τ)|y=+1 =
ẑẑẑ

0, Cpf (t, τ)|y=+1 =
x̂ẑx̂

0. (44)

In this case, the joint probabilities P (z, y, x) can be writ-
ten as P (z, 1, x) =

ẑẑẑ
P (z|1)P (1|x)P (x)and P (z, 1, x) =

x̂ẑx̂

P (z)P (1)P (x) [36]. In fact, these expressions correspond
to the first contribution in Eq. (21), while the inte-
gral contribution vanishes. Thus, in this restricted case
(y = +1), the Markov property is fulfilled leading to a
vanishing CPF correlation and, consequently, the pertur-
bation theory loses its meaning.
Finite temperature: For finite temperature, a simple

expression for the unperturbed system propagator is not
available. In addition, neither the CPF correlation nor
the joint probabilities can be obtained in an exact ana-
lytical way. Nevertheless, this case can be dealt with the
developed perturbation theory.
At finite temperature, both bath correlations [Eq. (43)]

must be considered. As a model, we take
χ↓(t) = (n̄ + 1)(γ/2τc) exp[−|t|/τc], and χ↑(t) =
n̄(γ/2τc) exp[−|t|/τc], where n̄ is the average number of
bosonic bath excitations at the natural frequency of the
system. When n̄ = 0 the previous Lorentzian case at
null temperature is recovered. This correlation model
arises when the dependence on frequency of the num-
ber of thermal bath excitations is almost a flat function
around the natural system frequency [3]. In this approx-
imation, temperature increases the “intensity” of the en-
vironment fluctuations, while their correlation time is in-
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dependent of it. Consistently, the unperturbed density
matrix propagator is taken as the (exact) zero temper-
ature propagator [2], with an extra similar contribution
that takes into account (thermally induced) transitions
from the lower to the upper system state.
By using the previous assumptions, in Fig. 3 we plot

the CPF correlation obtained from the perturbation the-
ory [Eqs. (23) and (27)]. For both measurement schemes
(ẑ-ẑ-ẑ and x̂-ẑ-x̂), and for the conditional y = −1
[Figs. 3(a) and (b)], the memory effects (amplitude of
the CPF correlation) weakly depends on temperature.
Small departures with respect to the vanishing tempera-
ture case [Fig. 2] are observed. Due to the normalization
of the time axis [γ(n̄+1)t], a natural change of time scale
(shrinking due to the increasing of the effective system
decay rates) is not observed.
On the other hand, for the conditional y = +1

[Figs. 3(c) and (d)] a strong dependence on temperature
is observed in both measurement schemes. In fact, in this
situation, in the limit n̄ → 0, the CPF correlation van-
ishes, Eq. (44). By increasing temperature the maximal
amplitude of the CPF correlation also increases.
The previous unusual effect, that is, an increasing

of the memory effects with temperature, does not rely
on the specific environmental properties such as the
proposed correlation model. It relies on the symme-
tries of the problem, which are defined by the system-
environment interaction and the quantum measurement
processes. For the conditional y = +1, an increasing
of the bath temperature leads to an extra dissipation
channel that breaks the conditional statistical indepen-
dence of the first and last (past and future) measurement
outcomes. From the point of view of joint probabilities,
temperature leads to extra contributions that break the
Markovian property. In fact, for y = +1 we found that
the first integral series contributions in Eq. (21) are pro-
portional to n̄, while in the previous case (y = −1) are
proportional to (n̄ + 1). We checked that by increasing
temperature, the memory effects saturates. In addition,
a vanishing of memory effects with temperature can be
introduced through a temperature dependent bath cor-
relation time.

C. Generalizations

The present approach is generalizable to different cases
of interest. First, the formalism can be extended by con-
sidering arbitrary initial conditions, ρse0 6= ρ0 ⊗ σe. For
example the bath state can be an arbitrary one, differ-
ent from the reference state in the projectors definition
[Eq. (16)]. In addition system and environment may be
correlated at the initial time. These situations lead to
an extra term in the perturbation theory [see Eq. (A.2)
in the Appendix]. On the other hand, higher statisti-
cal objects can also be worked out with similar tech-
niques. In fact, one may consider higher joint proba-
bilities P (xm, · · ·x1) involvingm-measurement processes

[27]. In this case, (m − 1) system propagators are in-
volved in the convolution term, while the structure of
series terms assumes a similar form. The same result
applies to higher CPF correlations [28].

V. SUMMARY AND CONCLUSIONS

Using projector techniques, we have developed a per-
turbation theory for describing memory effects in opera-
tional approaches to quantum non-Markovianity, where
the system dynamics is explicitly observed at different
times. The formalism leads to exact expressions of both
joint probabilities and correlations, which are written in
terms of the unperturbed system density matrix propa-
gator. We worked out the minimal case of three measure-
ment processes. Memory contributions are defined by a
convolution integral involving two system propagators,
where the successive series terms are weighted by higher
order bath correlations. In a bosonic or Gaussian case
they can be reduced to two-point correlations. This re-
sult clarifies which structure determines memory effects
in operational approaches to quantum non-Markovianity.

As examples, we applied the theory to different open
system dynamics that admit an exact treatment, such as
dephasing induced by stochastic Hamiltonians and de-
cay of a two-level system in a bosonic reservoir at zero
temperature. The consistence between the perturbation
theory and exact solutions shows and guarantees the va-
lidity of the proposed approach. We also studied non-
Markovian effects that emerge when considering thermal
baths. Unusual memory effects arise due to the interplay
between the measurement process, the bipartite dynam-
ics, and the environment temperature. We found that,
depending on the chosen measurement processes and con-
ditionals, memory effects may grow with the environment
temperature. This feature can be understood from a
special interplay between the previous ingredients, where
an extra dissipative channel induced by the environment
temperature facilitates the developing of memory effects.

To conclude, our theory provides a solid basis for ana-
lyzing memory effects in operational approaches to quan-
tum non-Markovianity. Application to others physical
arrangements and statistical objects can be tackled by
using the developed formalism.
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Appendix: Formal solutions from projector

techniques

As usual [35], a bipartite system-environment evolu-
tion, (d/dt)ρset = Lse(t)ρ

se
t , can be split as

d

dt
Pρset = PLse(t)Pρset + PLse(t)Qρset , (A.1a)

d

dt
Qρset = QLse(t)Pρset +QLse(t)Qρset , (A.1b)

where the projectors P and Q are given by Eq. (16). The
irrelevant part Qρset can be integrated as

Qρset = Gt,t0Qρset0 +

∫ t

t0

dt′Gt,t′QLse(t
′)Pρset′ , (A.2)

where the corresponding propagator is

Gt,t′ =

⌈

exp

∫ t

t′
dt′QLse(t

′)

⌉

. (A.3)

By introducing the solution Eq. (A.2) into Eq. (A.1) the
evolution of the relevant part Pρset can be written as

d

dt
Pρset =

∫ t

t0

dt′K(t, t′)Pρset′ + It,t0 , (A.4)

where the exact memory kernel is

K(t, t′) = δ(t− t′)PLse(t)+PLse(t)Gt,t′QLse(t
′), (A.5)

while the inhomogeneous term is

It,t0 = PLse(t)Gt,t0Qρset0 . (A.6)

The evolution (A.4) can be solved in a formal way by
noticing that the solution of the homogeneous part can
be written as PEt,t0Pρset0 . Thus, the full solution is given
by

Pρset = PEt,t0Pρset0 +

∫ t

t0

dt′PEt,t′PLse(t
′)Gt′,t0Qρset0 ,

(A.7)
where we have used the explicit expression for the inho-
mogeneous contribution, Eq. (A.6). The general solution
Eqs. (A.2) and (A.7) support Eqs. (18) and (20) respec-
tively.
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