
Guidelines for the Analysis and Design of
Argumentation-based Recommendation Systems

Mario Leivaa, Maximiliano C.D. Budána,b, Gerardo I. Simaria,∗

aDepartamento de Cs. e Ing. de la Computación, Universidad Nacional del Sur (UNS) &
Instituto de Cs. e Ing. de la Computación (UNS—CONICET), San Andres 800, (8000) Bah́ıa Blanca, Argentina

bDepartamento de Matemática, Universidad Nacional de Santiago del Estero,
Belgrano(s) 1912, (4200) Capital, Sgo. del Estero, Argentina

Abstract

Recommender systems study the characteristics of its users and, applying different kinds of processing to
the available data, find a subset of items that may be of interest to a given user in a specific situation.
Argumentation-based tools offer the possibility of analyzing complex and dynamic domains by generating
and analyzing arguments for and against recommending a specific item based on the users’ preferences. This
approach allows to analyze the qualitative and quantitative characteristics of the recommended items, and
to provide explanations to increase transparency. In this work, we develop a set of software engineering
guidelines for the analysis and design of recommender systems leveraging this approach.

Keywords: Recommendation Systems; Defeasible Argumentation; Methodological Guidelines;
Decision Support Systems.

1. Introduction

Existing recommender systems (“RS”, for short)
cannot formally address the defeasible nature of user
preferences in complex environments [1]. Decisions
about preferences are driven mainly by heuristics,
which are typically based on classifying the choices of
previous users or on gathering information from other
users with similar interests. In addition, as discussed
in [2], most quantitative approaches do not have a
clear underlying model, making it difficult to provide
users with a simple explanation of how the system
arrived at its recommendations. Another problem is
that modeling users’ preference criteria is not an easy

∗Corresponding author
Email addresses: mario.leiva@cs.uns.edu.ar (Mario

Leiva), mcdb@cs.uns.edu.ar (Maximiliano C.D. Budán),
gis@cs.uns.edu.ar (Gerardo I. Simari)

task, since it generally requires dealing with incom-
plete and potentially inconsistent knowledge.

Tools developed in the area of argumentation-
based reasoning offer the possibility of analyzing com-
plex and dynamic domains by studying the argu-
ments for and against recommending a specific item
based on user preferences. Specifically, defeasible ar-
gumentation leverages models that contain inconsis-
tency, evaluating arguments that support contradic-
tory conclusions and deciding which ones to keep.
An argument supports a conclusion from a set of
premises [3]; a conclusion C constitutes a piece of
tentative information that an agent is willing to ac-
cept. If the agent then acquires new information,
the conclusion C—along with the arguments that sup-
port it—could be invalidated. The validity of a con-
clusion C is guaranteed when there is an argument
that provides justification for C that is undefeated.
This process involves the construction of an argu-

Preprint submitted to IEEE Intelligent Systems June 2, 2020



Argumentation-Based Reasoning System

Analysis and 
resolution of conflicts 
(dialectical process)

ConclusionsArgument generation 
using KB elements

Knowledge Base (KB)

𝑟𝑢𝑙𝑒1
𝑟𝑢𝑙𝑒2
…

𝑟𝑢𝑙𝑒𝑟

𝑓𝑎𝑐𝑡1
𝑓𝑎𝑐𝑡2
…

𝑓𝑎𝑐𝑡𝑓

𝑝𝑟𝑒𝑠𝑢𝑚𝑝1
𝑝𝑟𝑒𝑠𝑢𝑚𝑝2

…
𝑝𝑟𝑒𝑠𝑢𝑚𝑝𝑝

Knowledge expressed 
in a logical language 

describing the domain

Figure 1: Outline of an argumentation-based reasoning system.

ment A for C, and the analysis of counterarguments
that are possible defeaters of A; as these defeaters
are arguments, it must be verified that they are not
themselves defeated, and so on. This analysis has
a valuable byproduct: the set of all arguments can
be used to provide explanations for recommendations
provided by the system, increasing its transparency.

There is a large body of work on frameworks to
carry out this kind of reasoning; the most closely re-
lated to this work are those based on rules, which
consider the structure of the arguments that model a
discussion [4, 5, 6]. Figure 1 presents a brief outline of
their basic elements. Such systems have a knowledge
base (KB) that allows storing information expressed
in a logical language. Inference rules allow to lever-
age certain information (antecedents) to derive new
information (consequents). Other elements of the KB
include facts or presumptions, representing evidence
obtained from the environment; such evidence typi-
cally plays a central role in firing rules and thus build-
ing arguments, which are then evaluated via an ex-
haustive analysis to decide which are accepted and
which conclusions can be guaranteed from the cur-
rent knowledge. A key property of argumentation-
based reasoning is non-monotonicity—the incorpora-
tion of new information can generate new arguments
that contradict existing ones and, therefore, invali-
date statements that were previously guaranteed.

In the domain of RS, the frameworks developed in
defeasible argumentation offer the possibility of ana-
lyzing complex and dynamic situations by studying
arguments for/against recommending an item based
on user preferences, focusing on both qualitative and

quantitative features. Though the process of obtain-
ing recommendations in this manner is very differ-
ent from traditional approaches, they share the same
main idea: establish a similarity between items and
users, and use that similarity to derive recommenda-
tions. The main difference is that traditional meth-
ods establish similarities through purely numerical
analyses, while ABRS use a dialectical process similar
to how human beings debate to establish similarity—
in particular, we can prioritize different elements de-
pending on users’ preferences. Thus, based on the set
of rules that define the behavior of the recommender
system together with knowledge of the domain, the
system will establish the set of arguments for recom-
mending an item, carry out the dialectical process,
and execute the corresponding actions.

State of the Art

There are several works that propose using argu-
mentation to enhance recommendations. Early work
includes [1], and [7, 2] present an application in the
domain of film recommendation, stressing the impor-
tance of considering both qualitative and quantitative
aspects; furthermore, explanations that support the
recommendations are generated in natural language.
Other recent efforts leveraging argumentation-based
tools are [8, 9]. Finally, other relevant work in-
volves applying data-driven approaches, as we will
discuss below [10, 11]. None of these efforts focus
on software development methodologies—this work
thus aims to present a set of guidelines to support
knowledge and software engineers in the analysis and
design of argumentation-based recommender systems
(ABRS), aiming to fill this gap in the current intelli-
gent systems development literature.

2. Analysis and Design of Argumentation-
based Recommender Systems

When executing the analysis and design of a RS
with these characteristics, it is desirable to focus on
four central aspects: (i) knowledge base design; (ii)
recommendation mechanism; (iii) design and presen-
tation of explanations; and (iv) design of user inter-
actions. We now introduce a series of methodologi-
cal guidelines defined around these aspects. Figure 2

2



1. Analysis of the Domain of Recommendations

2. Design of the Database for the System

3. Generation of the Knowledge Base

4. Argumentative Reasoning: Analysis & Design

5. Evaluation

6. Output Design

7. Design of user interactions

Domain information, items and users

Data to be analyzed

KB for the recommendation domain

Implemented system

Evaluated system

Recommendations with explanations

Redesign of the 
knowledge base 
and/or reasoner

3.1 Guidelines 3.2 Priorities 3.3 Formalization 

Figure 2: Schematic view of the stages for the analysis and
design of an ABRS, including intermediate results.

illustrates the relationships that exist among these
different tasks.

2.1. Stages 1–2: Domain Analysis and DB Design

The two main entities in RS are items and users—
tt is essential to analyze the relationships between
them, since they are central to user preferences. De-
pending on the domain, it is necessary to refine their
description to obtain more information from the par-
ticipating entities. Examples of relationships include:
“number of times the user listened to a song and the
rating given” and “number of times that a recom-
mended article was shared or valuation was provided
to it”. The result of Stage 1 offers a detailed and clear
description of the domain, and defines the attributes
associated with the entities that are most relevant for
the task.

The next step is to design the database—there
are three basic options: (i) create and populate the
database that feeds the system; (ii) reuse an existing
dataset related to the domain; or (iii) extend an ex-
isting dataset or merge several datasets to enhance
the available information. The latter two options
allow to determine the recommendation mechanism

without having to design and populate the underlying
database, which can be a very complex and expensive
process until enough relevant data is obtained.

Stages 1–2 can be mapped directly to those of tra-
ditional methods.

2.2. Stage 3: KB Generation

The KB is the structure where knowledge of the
domain is formally represented. Its generation can
be carried out in three steps:

� Analyze the domain and establish the criteria to
be used in the generation of recommendations.

� Specify a preference criterion to apply in case the
rules established in the previous step generate
contradictory results.

� Specify the KB in a formal logical language.

During the first step, we create statements in nat-
ural language that express how items should (not) be
recommended. Though here it may be necessary to
appeal to domain experts to generate rules and pri-
orities, it is also possible to leverage existing tools to
process large volumes of data, such as data mining,
machine learning, genetic algorithms, and informa-
tion retrieval [10, 12]. For instance, with association
rule mining it is possible to find which characteris-
tics best describe similarity between items, and pri-
oritize rules. In the second step, a preference crite-
rion is established among the criteria to reflect the
domain’s characteristics and the users’ preferences.
Finally, one must specify the patterns in a formal
logical language to be interpreted, analyzed, and ma-
nipulated by the reasoner. Traditional methods can-
not be applied directly in this stage, since they seek
to formalize metrics based on quantitative aspects to
characterize similar elements, while in ABRS similar
elements are characterized through rules. It is pos-
sible to adapt traditional approaches to generate a
more general representation of such metrics so that
they can be mapped into rules to feed dialectical pro-
cesses.

3



2.3. Stage 4: Analysis & Design of the Reasoner

The reasoner is the system’s main component—it
interprets available knowledge, create a model based
on that knowledge, analyzes the relationships be-
tween arguments, resolves conflicts between them,
and ultimately issues recommendations.

The first component of an argumentative reasoner
is the Inference Engine, which provides the ability
to analyze domain knowledge and infer new knowl-
edge to be used in the recommendation process. The
literature highlights three alternatives to represent
and formalize logic-based arguments: as a proof tree
based on the premises [13], as a sequence of proofs (or
derivations) [14], or as a pair of conclusion-premises
implying that there is a proof for the conclusion from
the premises in the underlying logic [3, 4].

The second component is the Relationship Inter-
preter. One of the essential definitions for any ar-
gumentative system is the definition of conflict (also
known as counter-argumentation or attack) among
arguments, which characterizes disagreement. This
component is responsible for interpreting the rela-
tionships between arguments, creating a model, and
establishing a preference order among arguments.
Argumentative systems typically parameterize the
comparison criterion between arguments, which is
generally specified by the knowledge engineer in re-
lation to the application domain.

The last component is the Semantic Analyzer,
which determines acceptability of arguments by con-
sidering their interactions—given an argument, it
considers its defeaters, the defeats of its defeaters,
and so on. The definition of a mechanism for decid-
ing acceptability of arguments determines precisely
how inferences are obtained. In the literature, there
are various proposals for this; in particular, either a
declarative approach or a procedural approach can be
followed. The former establishes conditions that a set
of acceptable arguments must meet [15, 16], while the
in the latter a specific algorithm is provided [4, 14].

2.4. Stage 5: Evaluation

The performance of the proposed system should
now be evaluated regarding its capability to charac-
terize users’ preferences—i.e., determine if it is ca-
pable of predicting the items that its users would

like, including additional considerations such as vari-
ety and surprise.

In [17], the authors present a study that empha-
sizes the evaluation of RS, defining three possible
experimental setups: offline experiments, user stud-
ies, and large-scale online experiments. They also
describe the most important properties that systems
must satisfy, together with their satisfaction crite-
ria. Typical properties are: accuracy of predictions,
coverage of recommendations offered, cold start capa-
bility, confidence, credibility, novelty and originality,
diversity, usefulness, risk, robustness, privacy, adapt-
ability, scalability, and performance. The selection of
experiments, and the subset of properties to empha-
size in the evaluation, is part of the activities carried
out by knowledge engineers based on their evaluation
of the domain.

2.5. Stage 6: Design of Outputs

Once all the machinery for producing recommen-
dations is in place, the next step is to design their
presentation to users—this consists of designing the
system interface, along with any justifications for
these selections. In particular, the knowledge engi-
neer must establish how the entities that support the
recommendations will be analyzed and represented,
to facilitate their understanding and generate a sat-
isfactory explanation. According to [18], an expla-
nation must be “understandable”, allow “to improve
knowledge”, and be “satisfactory” in the sense of ful-
filling the interlocutor’s expectations. The generation
of an understandable explanation refers to a justifica-
tion or coherent explanation requested by the inter-
locutor. On the other hand, [19] defines an explana-
tion as “a transfer of knowledge from one interlocutor
to another within the context of a dialogue”. Finally,
according to [20], an explanation “has to be planned
and then transmitted in an appropriate way”; i.e., it
is an “object to be designed” and a “communicative
act” to be achieved. The agent who acts as interlocu-
tor only has partial knowledge of the subject in ques-
tion, for which it requests an explanation in hopes
that the agent generating it can fill their knowledge
gaps.

In the domain of argumentation, structured ap-
proaches provide important advantages in the task of

4



translating the structure of arguments into natural
language propositions. Another interesting aspect is
the possibility they afford to visualize, through tree-
based structures, the dialectical process generated to
support a recommendation, which can be part of an
extended explanation.

This stage is modular—it depends on the domain,
since we consider that explaining and showing the
process to generate a recommendation is very use-
ful for certain domains (such as investments, medical
diagnosis, or risk analysis), but may prove to be over-
whelming and unhelpful in more mundane ones (such
as multimedia).

2.6. Stage 7: Design of User Interactions

This stage is common to the design of user interac-
tions any system—when the interface with the user
is well designed, the user “slides through” the inter-
action smoothly and effortlessly. In RS, the GUI is
focused on what the user sees when requesting a rec-
ommendation and how the system outputs (including
possible explanations) are presented.

3. Case Study: Music Recommendations

Methodologies aiding in the successful engineering
of software systems must be properly validated. In
this section, we implement our proposal to analyze
and design an ABRS in the music domain, compar-
ing the results obtained with a baseline RS that re-
sembles those designed under classical schemes. A
music RS aims to suggest songs, videos, albums, or
artists that appeal to its users—well-known examples
include Spotify, YouTube, Last.fm, Pandora, Genius,
among others.

For reasons of space, we only present a reduced
version of the analysis carried out in each stage, fo-
cusing on showing the intermediate results towards
obtaining the final system.

3.1. Case Study: Stages 1–2

The main attributes that describe a song are:
ID, Title, Author, Album, Genre—for our purposes,
these attributes suffice to build reasoning patterns to
support issuing recommendations. In most RS, users

are represented by their personal information: Name,
LastName, Sex, Age, Country.

Relationships represent the interaction between
users and items, which are also called transactions
and can be encoded via tuples User ID, Song ID,
Score, #reproductions. The latter is a secondary pa-
rameter to measure the degree to which the song was
liked by the user.

Once the domain of the recommender system has
been defined, the second stage of the process involves
designing how available information is stored in a
database.

3.2. Case Study: Stage 3

As described in Section 2.2, the generation of the
KB will be carried out in three steps.

3.2.1. Step 1: Analyze the domain

The system will reason based on the following gen-
eral criteria:

� If a user likes a song by a certain artist, they can
also be expected to like another song by the same
artist. For greater specificity, we can extend this
to sharing the same artist and tags.

� If a user likes a song of a certain genre, they
may be expected to like another song of the same
genre.

� If a particular song is liked by many users in
the system, a given user can also be expected to
like it.

� Given two similar users, a song liked by one of
them can be expected to be liked by the other.

In general, the dual of each of these criteria can also
be applied; for instance, if a user does not like a song
from a particular genre, they can be expected to not
like other songs in that genre. Based on these general
statements, criteria were defined to represent that
knowledge and direct the recommendation process.

Next, we establish the events that must be consid-
ered to trigger reasoning chains. These events are:

E1: Two songs are by the same artist.

5



E2: A song and an artist have similar tags whenever
they share a number of tags greater than or equal
to half the tags assigned to the entity with least
number of tags.

E3: Two songs have similar tags (genre); determined
as above.

E4: A song is considered to be “good” whenever the
ratio between the number of times it is played
and number of listeners is greater than or equal
to 6. Otherwise, the song is considered to be
“bad”.

Clearly, some of the parameters used here can be
readjusted or modified as needed. For example, a
weaker similarity notion can be used to specify close-
ness between two songs or artists, or the threshold
for determining song quality can be adjusted.

Once these foundations are defined, the conditions
that trigger the recommendations are derived as fol-
lows. Recommendations based on artist:

R1: A user may like a given song if there is another
song by the same artist that was positively val-
ued by them.

R2: A user may not like a given song if there is an-
other song by the same artist and it was nega-
tively valued by them.

Recommendations based on artist and tags:

R3: A user may like a particular song if there is an-
other song by the same artist valued positively
by them and whose artist has the same tags as
the song to be recommended.

R4: A user may not like a particular song if there is
another song by the same artist that is negatively
valued by them and this artist has the same tags
as the song to be recommended.

As explained above, we can derive analogous guide-
lines based on genre, ratings, and user similarity.

These criteria model knowledge of the applica-
tion domain—they are the building blocks used to
build arguments for/against specific recommenda-
tions. Note that they combine qualitative and quanti-
tative approaches, taking advantage of the flexibility
offered by argumentation-based reasoning.

3.2.2. Step 2: Establish priorities

We consider that the preference criterion that best
responds to this particular domain is rule priority.
Therefore, in this step an order of priorities must
be defined between the defined criteria. We use the
symbol “�” to denote “greater priority than”. An
example of priority using the rules defined above is:
R1 � R4. The next step involves the formalization
of these priorities in a formal logical language.

3.2.3. Step 3: Specify the KB

We now present a subset of the rules and priorities
formalized in DeLP, whose language is based on logic
programming, where the basic concepts such as vari-
ables and functions are defined in the usual way. Lit-
erals are atoms that can be preceded by the symbol
∼ denoting a strict negation; facts are positive liter-
als. Strict rules are ordered pairs L0 ←− L1, . . . , Ln,
where the first component, L0, is a literal and the
second component, L1, . . . , Ln,is a set finite and not
empty if literals. Similarly, a defeasible rule is an
ordered pair L0 —< L1, . . . , Ln, where the first com-
ponent, L0, is a literal and the second component,
L1, . . . , Ln, is a finite and not empty set of literals.
Strict rules are used to represent incontrovertible in-
formation, while defeasible rules are used to represent
defeasible knowledge (that is, tentative information
that can be used if nothing opposes it).

In this formalism, the state of the domain is mod-
eled through a defeasible logic program, essentially a
set of facts, strict rules and defeasible rules. Given a
defeasible logic program P, the subset of strict rules
and facts is denoted with Π, and the subset of defeasi-
ble rules with ∆. In this way, a P program can be de-
noted with (Π,∆). Since the set Π represents non de-
feasible information, this must be non-contradictory.
We use the convention that names of variables begin
with capital letters, while the constants and names
of predicates begin with lowercase letters. Finally,
given a program P and query Q, the reasoner must
provide a response based on the domain knowledge.

Recommending a song based on artist:

R1 (defeasible rule):

likes by artist(Track1,User) —<

listen artist(User,Track2,Artist, l),

6



Track1 = \ = Track2,
same artist(Track1,Track2).

R2 (defeasible rule):

∼likes by artist(Track1,User) —<

listen artist(User,Track2,Artist, b),
Track1 = \ = Track2,
same artist(Track1,Track2).

E1 (strict rule):

same artist(Track1,Track2) ←
artist track(Artist,Track1)
artist track(Artist,Track2).

Priorities:

We use “better rule(rule1, rule2)” to encode that R1
has priority over R2.

General rules:
Based on all the rules defined, some further general
rules are formalized:

recommend(Track,User)—<

likes by artist(Track,User)
recommend(Track,User)—<

likes by artist track(Track,User).

The formalization of all the criteria, and the pri-
orities over them, define the logic program (model)
used by the reasoner to guide the recommendation
process.

3.3. Case Study: Stage 4

The reasoning machinery provided by Defeasi-
ble Logic Programming (DeLP) [4] is used as the
argumentation-based tool in the system. An impor-
tant design aspect is the integration between DeLP
programs and relational databases, which affords the
necessary information from entities to create argu-
ments. In our proposal, such integration is provided
by the Database Integration for DeLP (DBI-DeLP)
framework [21]. A DBI-DeLP program is an extended
DeLP program with information obtained from one
or more databases. An important point is the need to
consider the possible presence of contradictory infor-
mation linked to the use of several databases, which
for instance could lead to reasons both in favor of the
recommendation of an element and against it. Since
facts in DeLP cannot be contradictory, here we adopt

the notion of presumption to represent “defeasible”
information.

In DBI-DeLP, the tuples of the database (in our
case, the information from the dataset) are repre-
sented as a particular type of presumptions called
operative presumptions, which are literals of the form
predicate(q1, . . . , qm) —< true. A DBI-DeLP program
is a DeLP program with a set of operative presump-
tions, associated with the dataset records used in the
RS, which are retrieved at the request of the sys-
tem to answer a particular query associated with a
recommendation and then discarded. In summary,
to obtain data relevant to the argumentation pro-
cess, elements from the literal that the dialectical
process is trying to warrant are used to determine
relevant records in the database, and the relevant
SQL queries are issued. Finally, all the recovered re-
sults are transformed into operative presumptions—
this dynamic search for relevant information is crucial
in adequately leveraging available datasets.

The use of DeLP as the argumentation engine was
chosen based on our familiarity with its implementa-
tion, which simplified the development of the proto-
type used for this case study; we also consider that
DeLP is a powerful tool based on intuitive concepts.
Note, however, that this choice is modular and there
are alternative structured argumentation systems in
the literature, such as ASPIC+ [5], ABA [6], and
hybrid methods [8]. In this last work the authors
present a method for making predictions in RS, and
show experimentally that it is competitive in the
movie domain; they also illustrate how it can be used
to generate effective explanations, which is a valu-
able byproduct of many dialectical processes, not just
DeLP.

3.4. Case Study: Stage 5

The goal of the evaluation is to determine if the
system is able to make good predictions regarding
items that users like. Here we report on the results
of an offline experiment to evaluate our case study.

3.4.1. Experiment setup

The dataset consists of 1,200 valuations, selected at
random with the sole condition that they come from

7



different users; our goal was to avoid the possible
introduction of biases stemming from the behavior of
specific users. There may be repeated songs in the
ratings, since the same song may appear in multiple
ratings from different users.

The experiment consists of issuing a series of
queries to the system to evaluate its capability of pre-
dicting whether or not a given user likes a song. Such
queries are of the form “recommend(Track,User)?”.
Then, each answer was classified in one of the fol-
lowing categories, according to the response obtained
and the evaluation that the user gave to that song
within the dataset1: True Positive (TP): recom-
mended song rated “l” (love) by the user; True Neg-
ative (TN): song not recommended, and user rated
it “b” (bad); False Positive (FP): recommended song
rated “b” (bad); False Negative (FN): song not rec-
ommended, and user rated it “l” (love); and Unde-
cided (U): the system neither suggests nor denies the
recommendation. The last case occurs when the sys-
tem cannot guarantee either recommendation or non-
recommendation of a song to a user, thus arriving at
an undecided position. To carry out the test, 1,200
queries were made to the recommender system (one
for each valuation in the dataset).

The experiment was run twice, one for each DeLP
program (mixed and quantitative models) in order to
present a comparison of the performance of the two
approaches—the DeLP programs were derived based
on the guidelines presented above. The first program
follows the mixed approach, and is composed of all
the previously defined preference criteria so the sys-
tem is able to work with both quantitative and qual-
itative features of the entities that participate in the
domain. The second program is based on criteria
that consider purely quantitative features, as in tra-
ditional RS.

3.4.2. Results

The results are presented in Figure 3; on the left
we show how each approach performed regarding an-

1To ensure that the triple (Track,User,Rating) had no in-
fluence on the prediction made by the system, the correspond-
ing record was removed from the test dataset.

swer categories, and on the right we have the classical
metrics derived from these values. As we can see, the
mixed approach outperforms the purely quantitative
one in all metrics; its only disadvantage is observed
in the true negative category, but this is offset by its
performance in the rest. These result clearly show
the advantages of applying a mixed approach, which
allows to “refine” the answer given by the quantita-
tive approach based on a more complete analysis of
the available information.

3.5. Case Study: Stage 6

We propose explanations based on the approach
by [2], where explanations are derived based on the
structures of the arguments involved, making a sim-
ple replacement of the logical structure to their corre-
sponding colloquial interpretations. As an example,
we have

Argument structure:

recommend(Track,User)—<

likes by artist(Track1,User),
listen artist(User,Track2,Artist, l),
Track1 = \ = Track2,
same artist(Track1,Track2)

Explanation: “User, the song Track was recom-
mended since you liked another song by the same
artist.

Such explanations can then be offered to users
upon request.

3.6. Case Study: Stage 7

For reasons of space, and since the user interface
does not differ from typical ones in similar systems,
we do not include details of this stage here.

4. Conclusions and Future Work

The main contribution of this work lies in the de-
velopment of methodological guidelines for the anal-
ysis and design of an ABRS capable of: (i) making
recommendations to its users from an incomplete or
inconsistent knowledge base, (ii) providing the possi-
bility of adapting the knowledge-based analysis that
is carried out according to its users’ preferences, (iii)

8



TP TN FP FN

MA 563 98 84 17

QA 203 451 149 397

0

100

200

300

400

500

600

V
a
lu
e
s

Mixed Approach vs. Quantitative Approach (categories)

Prec. Compr. Accur.

MA 0.87 0.97 0.86 0.88 0.91 0.93

QA 0.57 0.33 0.54 0.49 0.41 0.37

0

0.2

0.4

0.6

0.8

1

V
a
lu
e
s

Mixed Approach vs. Quantitative Approach (metrics)

𝐹(0,5) 𝐹(1) 𝐹(1,5)
Figure 3: Comparison of approaches: Categories (left) and Metrics (right).

analyzing qualitative and quantitative information,
and (iv) providing explanations. The state of the
art of ABRS focuses on studying the characteristics
of such systems and the development of prototypes,
without applying a methodology to guide the pro-
cess; i.e., exploiting argumentation-based tools in RS,
without referring to the specific design choices made.
Our work is therefore a first approach to the inves-
tigation of software development methodologies tai-
lored to this type of system.

Future work involves further evolving these guide-
lines towards a formal and solid software development
methodology for creating high-quality ABRS.

Acknowledgments.. This work was funded in part
by Universidad Nacional del Sur (UNS) under
grants PGI 24/N046 and PGI 24/ZN34, by Consejo
Nacional de Investigaciones Cient́ıficas y Técnicas
(CONICET) under grant PIP 11220170100871CO,
and by Agencia Nacional de Promoción Cient́ıfica y
Promoción Tecnológica under grant PICT-2018-0475
(PRH-PIDRI-2014-0007).

References

[1] C. I. Chesñevar, A. G. Maguitman, and M. P.
González, “Empowering recommendation tech-
nologies through argumentation,” in Argumen-
tation in artificial intelligence, pp. 403–422,
Springer, 2009.

[2] C. E. Briguez, M. C. Budan, C. A. Deagustini,
A. G. Maguitman, M. Capobianco, and G. R.

Simari, “Argument-based mixed recommenders
and their application to movie suggestion,” Ex-
pert Systems with Applications, vol. 41, no. 14,
pp. 6467–6482, 2014.

[3] G. R. Simari and R. P. Loui, “A mathematical
treatment of defeasible reasoning and its imple-
mentation,” Artificial intelligence, vol. 53, no. 2-
3, pp. 125–157, 1992.

[4] A. J. Garćıa and G. R. Simari, “Defeasible
logic programming: DeLP-servers, contextual
queries, and explanations for answers,” Argu-
ment & Computation, vol. 5, no. 1, pp. 63–88,
2014.

[5] S. Modgil and H. Prakken, “The ASPIC+ frame-
work for structured argumentation: a tutorial,”
Argument & Computation, vol. 5, no. 1, pp. 31–
62, 2014.

[6] F. Toni, “A tutorial on assumption-based argu-
mentation,” Argument & Computation, vol. 5,
no. 1, pp. 89–117, 2014.

[7] C. E. Briguez, M. Capobianco, and A. G. Magui-
tman, “A theoretical framework for trust-based
news recommender systems and its implementa-
tion using defeasible argumentation,” Interna-
tional Journal on Artificial Intelligence Tools,
vol. 22, no. 04, p. 1350021, 2013.

[8] A. Rago, O. Cocarascu, and F. Toni,
“Argumentation-based recommendations:

9



Fantastic explanations and how to find them,”
2018.

[9] C. Diez, J. Palanca, V. Sanchez-Anguix,
S. Heras, A. Giret, and V. Julián, “Towards a
persuasive recommender for bike sharing sys-
tems: A defeasible argumentation approach,”
Energies, vol. 12, no. 4, p. 662, 2019.

[10] I. Portugal, P. Alencar, and D. Cowan, “The use
of machine learning algorithms in recommender
systems: A systematic review,” Expert Systems
with Applications, vol. 97, pp. 205–227, 2018.

[11] B. S. Neysiani, N. Soltani, R. Mofidi, and M. H.
Nadimi-Shahraki, “Improve performance of as-
sociation rule-based collaborative filtering rec-
ommendation systems using genetic algorithm,”
Int. J. Inf Technol. Comput. Sci., vol. 2, pp. 48–
55, 2019.

[12] M. K. Najafabadi, A. H. Mohamed, and M. N.
Mahrin, “A survey on data mining techniques in
recommender systems,” Soft Computing, vol. 23,
no. 2, pp. 627–654, 2019.

[13] F. Lin and Y. Shoham, “Argument systems:
A uniform basis for nonmonotonic reasoning.,”
KR, vol. 89, pp. 245–255, 1989.

[14] H. Prakken and G. Sartor, “Argument-based ex-
tended logic programming with defeasible pri-
orities,” Journal of applied non-classical logics,
vol. 7, no. 1-2, pp. 25–75, 1997.

[15] P. M. Dung, “On the acceptability of arguments
and its fundamental role in nonmonotonic rea-
soning, logic programming and n-person games,”
Artificial intelligence, vol. 77, no. 2, pp. 321–357,
1995.

[16] C. Cayrol and M.-C. Lagasquie-Schiex, “On the
acceptability of arguments in bipolar argumen-
tation frameworks,” in ECSQARU, pp. 378–389,
Springer, 2005.

[17] G. Shani and A. Gunawardana, “Evaluating rec-
ommendation systems,” in Recommender sys-
tems handbook, pp. 257–297, Springer, 2011.

[18] C. Lacave and F. J. Diez, “A review of explana-
tion methods for heuristic expert systems,” The
Knowledge Engineering Review, vol. 19, no. 2,
pp. 133–146, 2004.

[19] D. Walton, “A new dialectical theory of explana-
tion,” Philosophical Explorations, vol. 7, no. 1,
pp. 71–89, 2004.

[20] B. Moulin, H. Irandoust, M. Bélanger, and
G. Desbordes, “Explanation and argumentation
capabilities: Towards the creation of more per-
suasive agents,” Artificial Intelligence Review,
vol. 17, no. 3, pp. 169–222, 2002.

[21] C. A. Deagustini, S. E. F. Dalibón, S. Gottifredi,
M. A. Falappa, C. I. Chesñevar, and G. R.
Simari, “Relational databases as a massive in-
formation source for defeasible argumentation,”
Knowledge-Based Systems, vol. 51, pp. 93–109,
2013.

10



Author Bios

Mario Leiva is a Ph.D. student at Universidad Na-
cional del Sur, Argentina. His main interests are
in Artificial Intelligence, focusing on theoretical and
practical aspects of argumentation-based reasoning.
E-mail: mario.leiva@cs.uns.edu.ar.

Maximiliano C.D. Budán is a professor at Uni-
versidad Nacional de Santiago del Estero, and a re-
searcher at the Institute of Computer Science and
Engineering – CONICET, Argentina. His main in-
terests are in Artificial Intelligence and Abstract
Algebras, with a focus on reasoning under uncer-
tainty considering qualitative and quantitative fea-
tures varying over time. He obtained his Ph.D. from
Universidad Nacional del Sur (Bah́ıa Blanca, Ar-
gentina), in the area of Artificial Intelligence. E-mail:
mcdb@cs.uns.edu.ar.

Gerardo I. Simari is a professor at Universidad
Nacional del Sur, a researcher at CONICET, Ar-
gentina, and adjunct faculty at Arizona State Uni-
versity (USA). His main interests lie at the intersec-
tion of Artificial Intelligence and Databases, with a
particular focus on reasoning under uncertainty. He
obtained his Ph.D. from University of Maryland Col-
lege Park (USA), in the area of Artificial Intelligence.
E-mail: gis@cs.uns.edu.ar.

11


	Introduction
	Analysis and Design of Argumentation-based Recommender Systems
	Stages 1–2: Domain Analysis and DB Design
	Stage 3: KB Generation
	Stage 4: Analysis & Design of the Reasoner
	Stage 5: Evaluation
	Stage 6: Design of Outputs
	Stage 7: Design of User Interactions

	Case Study: Music Recommendations
	Case Study: Stages 1–2
	Case Study: Stage 3
	Step 1: Analyze the domain
	Step 2: Establish priorities
	Step 3: Specify the KB

	Case Study: Stage 4
	Case Study: Stage 5
	Experiment setup
	Results

	Case Study: Stage 6
	Case Study: Stage 7

	Conclusions and Future Work

