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When light is confined in all three directions and in dimensions of the order of the light wavelength,
discretization of the photon spectra and distinctive phenomena occur, the Purcell effect and the inhibition of
emission of atoms being two paradigmatic examples. Diverse solid-state devices that confine light in all three
dimensions have been developed and applied. Typically the confinement volume, operating wavelength, and
quality factor of these resonators are set by construction, and small variations of these characteristics with
external perturbations are targeted for applications including light modulation and control. Here we describe full
three-dimensional light trapping, that is set and tuned by laser excitation in an all-optical scheme. The proposed
device is based on a planar distributed Bragg reflector GaAs semiconductor microcavity operated at room
temperature. Lateral confinement is generated by an in-plane gradient in the refractive index of the structure’s
materials due to localized heating, which is in turn induced by carriers photoexcited by a focused laser. Strong
three-dimensional trapping of light is evidenced by the laser-induced changes on the spectral, spatial, and k-space
distribution of the emission. The dynamics of the laser-induced photonic potential is studied using modulated
optical excitation, highlighting the central role of thermal effects at the origin of the observed phenomena.

DOI: 10.1103/PhysRevB.99.195308

I. INTRODUCTION

Resonant cavities are pervasive to many different natural
phenomena and man-made devices. Standing waves confined
between reflective walls build up, localizing the wave energy
and enhancing their interaction with other physical degrees
of freedom. They are ubiquitous in the domain of optics, for
example as the basic feedback mechanism of lasers [1,2],
or in the most sensitive displacement sensors, such as the
Fabry-Perot cavities used for the detection of gravitational
waves at LIGO [3]. When the confinement is strong and in all
three dimensions, a discretization of part of the photon spectra
can occur [2,4–6], leading to distinctive phenomena such as,
for example, the inhibition or enhancement of the emission of
atoms [7–9], and the Bose-Einstein condensation of strongly
coupled matter and light particles (cavity polaritons) [6,10]. In
the NIR-visible spectral range, such three-dimensional pho-
ton trapping typically requires the development of confining
structures based on nano- and microfabrication methods. Di-
verse techniques have been developed and applied, including
the use of local defects in periodic photonic band gap free-
standing membranes [11], the introduction of traps in planar
distributed Bragg reflector (DBR) cavities through defects
such as GaAs droplets [12] or lateral patterning [2,6,13], or
their full three-dimensional (3D) structuring into microdisks
and pillar resonators based on finely tuned ion etching meth-
ods [4,5,14]. These techniques are already mature and robust,
leading to high-quality devices that have had a huge impact on
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the study of novel optical, optoelectronic, and optomechanical
phenomena in the last couple of decades. One key targeted
application has been that of all-optical modulation and control
of light. Being solid-state devices, however, their flexibility re-
garding their confinement characteristics and operating wave-
length is limited, since it is typically defined by design and
construction. In the most standard approach, highly confining
resonators are used with the ultranarrow cavity mode subtly
tuned by small changes in refractive index [15,16]. A different
situation would be attained if light trapping could not only be
tuned but also set in an all-optical scheme. Such tunable 3D
trapping of light is what we describe here.

Our approach to this task is based on a planar DBR
semiconductor microcavity for the light confinement in one
direction (z), plus a photon potential defined by a focused
laser for the in-plane additional trapping [see the scheme in
Fig. 1(a)]. When a semiconductor is optically excited above
or close to an electronic transition, a change of the refractive
index occurs. This can be due to the modification of the
electronic bands or the accessible electronic states induced
by the presence of excited carriers [17,18], or by the lattice
heating produced by the relaxation of these carriers [19]. If the
change is positive, the local value of the cavity mode energy
will be decreased and then light trapping will be possible. A
conceptual scheme of the so-obtained 3D effective attractive
photon potential is shown in Fig. 1(b).

In the transparency region of a semiconductor, and for
a fixed wavelength, the refractive index is expected to in-
crease if the band gap is reduced. A gap reduction could be
produced by an increase of the local temperature generated
by photocarrier-induced laser heating. However, more com-
plex nonlinearities related to photoexcited carrier correlations

2469-9950/2019/99(19)/195308(8) 195308-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.195308&domain=pdf&date_stamp=2019-05-29
https://doi.org/10.1103/PhysRevB.99.195308


S. ANGUIANO et al. PHYSICAL REVIEW B 99, 195308 (2019)

Energy

Position

Continuous spectrum

(b)

(a)

(c)

W
el

l d
ep

th
 (

m
eV

)

(d)

(a)

(c)

0

5

10

15

Laser power (mW)
0 10 20 30 40 50 60 70 80

Exp.
Lineal
Quadradic

FIG. 1. (a) Sketch of the system, showing the generation of electron-hole pairs and the resulting temperature distribution due to their
relaxation with the lattice. (b) Representation of a Gaussian optical well and the resulting confined modes, which appear beneath the original
continuous spectrum. (c) Photoluminescence spectra as a function of incident power, ranging from 1.8 up to 76.5 mW. (d) Optical potential
well depth as a function of laser power. The black circles are experimental results, while the red line is a linear fit to the low power (�30 mW)
part of the data, and the blue dashed line is a quadratic fit to the whole data.

could in principle also be involved [17]. For example, polari-
ton energy barriers (in contrast with traps) have been demon-
strated as a result of the blueshift of the polariton branch due
to polariton-polariton interactions in microcavities at low tem-
peratures and in the strong-coupling regime [20–22]. Trapping
can be induced, for example, by means of potential barriers
generated with ringlike laser illumination, as reported for cold
excitons in indirect quantum wells [23]. Optically generated
local traps in planar microcavities with attractive weak poten-
tials have been shown to stabilize polariton condensates with
a mechanism based on spatially confined gain [24], similar
to gain guiding in semiconductor laser structures [25]. Also,
positive changes of the refractive index have been reported
to affect photon lasing in GaAs microcavities when evolving
from the excitonic regime toward the electron-hole plasma
regime with increasing photoexcitation power [26]. In contrast
with these low-temperature carrier-related correlation effects,
we will demonstrate that strong three-dimensional trapping of
photons can be achieved in planar semiconductor microcavi-
ties at room temperature through photothermal phenomena.

II. SAMPLE AND EXPERIMENTAL SET-UP

The studied sample consists of a high Q-factor λ/2 bulk-
GaAs planar cavity enclosed by two DBRs consisting of

alternating Ga0.9Al0.1As/Ga0.05Al0.95As λ/4 layers, 28 pairs
on the bottom, and 24 on top. The structure was grown
by molecular beam epitaxy on an ∼400 − μm-thick GaAs
substrate. The structure presents a gradient in the layers’
thicknesses that allows one to tune the optical mode around
the GaAs electronic transition at ∼1.42 eV just by shifting the
position of the laser spot on the sample. The reported exper-
iments correspond to room-temperature photoluminescence
microscopy measurements, with the optical cavity mode tuned
below the GaAs gap. In high-purity devices like the ones
studied in this work the emission at energies below the elec-
tronic resonance is known to be mostly due to phonon-assisted
recombination [27–29].

The optical setup, described in the Supplemental Material
[30], allows for the acquisition of the integrated emitted spec-
tra, or alternatively the spatial or k-dispersion profile of the
emission [31]. The structure was fixed with heat-conducting
silver paint on a copper holder in equilibrium with ambient
temperature, and was excited with a 1.63 eV continuous-wave
(cw) Ti:sapphire laser. A 20× objective lens with a numerical
aperture of 0.3 was used for both excitation and light collec-
tion, giving a Gaussian spot with full width at half maximum
(FWHM) of ∼10 μm. Figure 1(c) presents a few examples of
the photoluminescence spectra obtained when exciting with
different incident powers, with the optical cavity mode tuned
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FIG. 2. Photoluminescence spectra spatial [(a),(c)] and angular [(b),(d)] resolution. The colors chosen for the spatial (orange) and the
angular (blue) images are different to help in their rapid identification. The sample was excited with ∼1.7 mW [(a),(b)] and ∼18 mW
[(c),(d)].

below but not far from the GaAs gap (εgap ∼ 1.42 eV at room
temperature), and collected over the full angular range of the
objective (equivalent to kr ≈ 2.1 μm−1).

III. RESULTS AND DISCUSSION

The low power spectrum in Fig. 1(c) (1.8 mW) is rep-
resentative of the planar microcavity [one-dimensional (1D)
confinement] situation. The planar cavity quality factor in the
transparency region, below the GaAs gap, is around 1 × 104.
This corresponds, for the emission normal to the structure,
to a narrow peak of ∼ 150 μeV width centered in this case
at ∼1.3755 eV. The confined cavity mode emission along z
defines the low-energy flank of this curve. Its flat continu-
ation toward higher energies is determined by the in-plane
parabolic dispersion of the planar cavity optical mode, which
is collected within the numerical aperture of the microscope
objective [32]. Major and quite striking changes in the spec-
tra occur when the focused laser power is increased. Some
conspicuous new features arise, namely, a redshift of the
emission, and the appearance of clear peaks contrasting with
the essentially featureless low-power spectrum. As we argue
next, these features evidence the optical confinement within a
Gaussian photon potential well, which is induced by the local

heating of the sample due to the laser excitation. The trapping
energy can attain quite significant values under the focusing
conditions used, e.g., ∼13 meV for a ∼76.5 mW excitation, a
value equivalent to 100 times the FWHM of the unperturbed
planar cavity mode.

Three-dimensional confinement of light should be reflected
in the induced changes of the spectra [as manifested by the
energy lowering and spectral discretization in Fig. 1(c)], but
also by the corresponding modified spatial and k-space (angu-
lar) characteristics of the photoluminescence emission [33].
Figure 2 presents the spatial [(a),(c)] and angular [(b),(d)]
distributions of the emitted light when a low- [(a),(b)] or high-
[(c),(d)] power excitation is applied. Again, the low-power
panels (1.7 mW) are representative of the planar (1D confine-
ment) case. As expected, the spatial distribution reproduces
the shape of the excitation Gaussian profile. Its in-plane k dis-
persion in turn reflects the typical parabolic behavior of light
confined in one dimension, but free to propagate in the other
two (in-plane) directions. The situation dramatically changes
when increasing the focused laser power (18 mW in Fig. 2).
New discretized modes appear at lower energies, with spatial
and in-plane k dispersion strongly resemblant of laterally con-
fined modes, as seen, e.g., in micropillar cavities [4,5,34] or in
laterally microstructured planar resonators [6,35]. The spatial
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FIG. 3. Spatial distribution of the photoluminescence spectra for an excitation of ∼18 mW. The top-leftmost graph corresponds to the
reconstructed spatial image of the emitted photoluminescence. The red curve in the top-rightmost graph is the spectral distribution of the
emitted light coming from the central line (Y = 0 μm) of the spot. The rest are different energy cuts [with increasing energy from left to right
and top to bottom, labeled from (1) to (5)]. The dashed orange arrows and circles show the calculated energies and effective diameters of the
confined modes, respectively. The vertical dashed line in the top-rightmost panel corresponds to ε∞.

and spectral envelope of the observed modes in Fig. 2(c)
nicely reflects the Gaussian photon potential trap induced by
the focused laser.

In Fig. 3 we show the lateral distribution of the emitted
light for 18 mW excitation. The top-left graph corresponds
to the total integrated emission, reflecting the homogeneous
spatial distribution of the excitation beam. The spectrum
displayed in the top-right panel corresponds to this emission
when the spot is imaged centered on the spectrometer entrance
slit. The vertical dotted line in this latter panel shows the
energy of the unperturbed cavity mode, above which modes
are not confined. The discrete peaks (1)–(5) correspond to the
observed fully 3D confined photonic states. The six remaining
graphs in this figure are constant energy sections that were
selected to leave only one mode for each cut [labeled with the
same numbers (1)–(5)], and the nonconfined spectral region.
Circularly symmetric modes confined within different radial
distances are clearly identified.

The spectral and spatial distributions of the observed
modes have the required information to model the laser-
induced photon potential. Regardless of the exact physical
process, which we will approach later on, it is apparent that
the laser excitation is generating a local change in the optical
properties of the structure, which in turn produces an optical
potential well that confines light in an analogous way as that
observed in a micropillar structure [4]. Based on the excitation
profile and symmetry of the studied system, a Gaussian well
of finite depth is expected to be generated:

ε = ε∞ − �ε0e−r2/2σ 2
, (1)

where r is the radius, σ the standard deviation, ε∞ the energy
of the continuum (datum obtained from the experiment), and
�ε0 the effective depth of the well. The problem can be sig-
nificantly simplified by making the approximation that each
confined mode of energy ε, interacts with an infinitely deep
circular well of diameter Deff , given by (1). This is equivalent
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FIG. 4. Comparison between the obtained optical potential wells
for three different excitation powers.

to considering that the confined modes present a node on the
wall of the Gaussian well, if we define Deff so that it follows
the Gaussian shape of the actual potential well. Therefore,
reformulating Eq. (1), we get the dependence between the
mode energy and the effective diameter of the infinitely deep
well that best approximates the problem:

ε = ε∞ − �ε0e−D2
eff /8σ 2

, (2)

being �ε0 = ε∞ − ε0 the potential well depth and ε0 the
energy of the bottom of the potential well.

Under these assumptions, the confined modes can be well
represented with Bessel functions, and their energies can be
calculated as [33]

ε =
√

ε0
2 + 4h̄2c2

ncav
2

X 2
ml

D2
eff

, (3)

where Xml is the mth root of the Bessel function of order l,
c the speed of light in vacuum, and ncav the effective index
of refraction of the sample. Equations (2) and (3) can be
combined to obtain ε0 and σ as fitting parameters, with the
measured energies ε and the corresponding Bessel roots Xml

as the input data (see the Supplemental Material [30] for a
more detailed description of the procedure). The theoretical
results reproduce simultaneously the effective diameters and
the peaks of the observed spectra very well (see, e.g., the
dashed circles and arrows in Fig. 3).

In Fig. 4 the effective photon potentials obtained for three
different excitation powers are compared. A deepening of the
well is observed as the power is increased, while the width
turns out to be fairly constant, as expected from the invariant
laser spot shape. This agreement allows one to conclude
that, at least for low excitation powers, the laser-induced
potential shape is essentially independent of the laser power
(its Gaussian shape and lateral width σ remain unaltered),
being only the well depth is strongly sensitive to the excitation
power. In fact, as can be observed in Fig. 1(d), the photon
potential depth shows a supralinear dependence with laser
power above ∼40 mW. In principle the number of photoex-
cited carriers should be proportional to the incident power.
The observed quadratic dependence might be reflecting an

increased absorption at the fixed laser energy, for example
due to a GaAs gap reduction induced by a temperature
increase.

This latter result points toward the physical origin of the
proposed Gaussian photon potential. The potential, schema-
tized in Fig. 1(b), represents the effective local energy of
the optical cavity mode of an equivalent planar structure. It
is this lateral gradient of the cavity mode energy that leads
to light confinement and to new photonic modes (just like a
quantum well leads to new confined electronic states defined
by, though shifted from, the confinement potential). Similar
ideas have been applied to model effective phonon poten-
tials [36]. The resulting modes are redshifted (with respect
to the unperturbed planar structure) by the laser excitation,
mapping out the shape of the focused laser intensity pro-
file [see, e.g., Fig. 2(c)]. As mentioned in the Introduction,
either electronic or thermal phenomena can be at the basis
of the observed phenomena. The different phenomena have,
however, very different dynamics, typically reflecting pico-
and nanosecond recombination when photoexcited carriers
are responsible [37], and microsecond thermal diffusion times
if heating is dominant [38]. To clarify this issue, the dynamics
of the photon potential was studied using modulated optical
excitation. The modulation was achieved with an acousto-
optic modulator, fed with a square-wave generator of tunable
frequency and duty cycle.

The top-left panel in Fig. 5 presents photoluminescence
spectra as a function of the modulation frequency, for a
duty cycle of 20%. From blue to red, the curves correspond
to modulation frequencies ranging from 1 MHz to 1 Hz.
The figure clearly shows the 3D confined spectra for slow
modulation (similar to the cw experiments shown above),
which evolve into the laterally unconfined planar situation
with increasing modulation frequency. The top-right panel
in Fig. 5 (corresponding to a slightly different position on
the sample) displays the photoluminescence spectra variation
with duty cycle for a square-wave modulation of 400 kHz.
This particular frequency was selected because it is where
the discrete modes start to be noticed for the minimum duty
cycle available (20%). From blue to red, the curves correspond
to duty cycles ranging from 20% (0.5 μs on, 2.0 μs off) to
80% (2.0 μs on, 0.5 μs off), with steps of 5%. The times
involved in the observed dynamics clearly point toward a
thermal phenomenon. We note that these results can be related
to the “thermal lensing” previously investigated in vertical
cavity surface emitting lasers, by which the laser mode lateral
distribution is changed depending on the drive power, due to
nonuniform heating [39,40].

Having established the thermal origin of the phenomena,
we note that two different effects could in principle be re-
sponsible for the observed features: a local increase of the
refractive index, or a local expansion of the structure. Cal-
culating the spectral position of the optical mode with the
transfer matrix method (considering the expansion coefficient
and the dependence on temperature of the refractive index
of the materials), it turns out that, for a given increase in
temperature, the effect of the refractive index change on the
spectral position of the optical mode is roughly about eight
times larger than that due to the thermal expansion of the
lattice.
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FIG. 5. Top panel, vs frequency: photoluminescence spectra as a function of frequency for a 20% duty cycle square-wave modulation,
with excitation power of 41.3 mW. From blue to red, the curves correspond to frequencies ranging from 1 MHz to 1 Hz. Note that the selected
frequencies are not equidistant; e.g., the three most shifted spectra correspond to 1 Hz, 1 kHz, and 5 kHz. vs duty cycle: photoluminescence
spectra as a function of the duty cycle for a square-wave modulation of 400 kHz and an excitation power of 33 mW, taken at a slightly different
position on the sample. From blue to red, the curves correspond to duty cycles ranging from 20% to 80%, with steps of 5%. Bottom panel,
main frame: optical well depth as a function of the modulation period for an excitation of 47 mW and a duty cycle of 20%, taken at a slightly
different position on the sample. Inset: optical well depth as a function of the duty cycle time. The circles correspond to the experimental
results, taken from the curves shown in the top-rightmost panel, while the red dotted curves were obtained from a thermal diffusion model.

Assuming that the change in the refractive index that gives
rise to the optical well is directly proportional to the local
change in temperature due to the laser excitation, it is possible
to describe the physical situation as a heat diffusion problem.
A thermal diffusion model was used to obtain the structure’s
mean temperature during excitation, as a function of the
modulation frequency and duty cycle (see the Supplemental
Material [30] for a detailed description of the calculations).
The thermal diffusivities used in the model were taken from
the literature, and are included in the Supplemental Material
[30]. Since the exact fraction of the incident laser power that is
actually converted into heat is difficult to determine, we used
the thermal source maximum value (at the top Ga0.9Al0.1As
layer) as the (only) fitting parameter.

In the bottom panel in Fig. 5 we show a comparison
between the experimentally observed optical potential well
depth (circles), derived from experimental curves as in
the top-left figure (though taken at a different power and
position on the sample) and the theoretical results (red dashed
line) obtained from the thermal diffusion model (maximum
heating power of 1.0 mW

μm3 ), as a function of the inverse of the
modulation frequency f . The data in the inset corresponds to
the well depth as a function of the duty cycle time, obtained

from the measurements shown in the top-right panel, again
compared with the theoretical curve derived from the thermal
diffusion model (maximum heating power of 0.5 mW

μm3 ).
In order to estimate the optical potential depth for these
measurements, there are two possibilities. If the confined
modes are well defined in energy, the method explained before
(Bessel modes) could be used; if the modes are somewhat
blurred, as occurs for high-frequency modulation, or are
too weakly confined to appreciate them, it is still possible to
estimate the potential well depth from the envelope function of
the emitted photoluminescence. The two methods give similar
results, but to be able to compare the high- and low-frequency
modulations in Fig. 5, as well as the long and short duty
cycles, the second one was used. The agreement between ex-
periment and theory shown in Fig. 5 clearly confirms thermal
effects at the origin of the reported light trapping phenomena.

IV. CONCLUSIONS

In conclusion, we note that equivalent 3D confinement was
obtained using a 514 ns laser, which is strongly absorbed at
the first layers of the top DBR, thus only weakly coupling
with the rest of the structure. This implies that two-laser
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schemes may be implemented, with one laser used to seed
the cavity emission, and the other to dynamically control
the 3D light trapping. We note that the GaAs gap strongly
depends on temperature above ∼100 K [41]. Below this
temperature electronic nonlinearities (which are typically
weaker but faster) should be dominant over the observed
thermal effects. With both approaches rich photon potentials
could be accessible using phase and intensity modulated

illumination such as that used in super-resolution microscopy
and other photonic applications.
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