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A B S T R A C T

Unplanned urbanization increases the exposure of people to environmental hazards. Within a landscape ecology
framework, this study is a diagnosis of human health risk in San Martín, an urban district of Buenos Aires,
Argentina. Risk was estimated by combining four hazard indexes (water and air pollution, and mosquito and
rodent infestation) and a vulnerability index. Each index was obtained by integrating environmental and socio-
demographic layers in a Geographic Information System. Spatial autocorrelation was assessed for each hazard,
vulnerability and risk indexes using Moran's tests. Also, spatial associations between pairs of variables were
addressed by means of Geographically Weighted Regressions. The robustness of hazard and vulnerability indexes
was checked by a sensitivity analysis. In General San Martín district, 83.3% of the population is exposed to
relatively high levels of at least one hazard; 7.4% is exposed to relatively high levels of all hazards (11.5% of the
total area) and only 16.7% lives in areas of relatively low levels of all hazards (15.4% of the total area). Areas
where hazard intensity was relatively high corresponded to those areas where the most vulnerable population
lives, enhancing human health risk. The models for hazards and vulnerability were reasonably robust to changes
in the weights of the variables considered. Our results highlight the spatially heterogeneous nature of human
health risk in an urban landscape, and reveal the location of critical risk hotspots where reduction or mitigation
actions should be focused.
1. Introduction

Although cities occupy only 5% of the Earth's terrestrial surface, they
are home to more than half the global human population, and this per-
centage is likely to grow up to 60–92% by the end of the 21st century
(Jiang and O'Neill, 2017). Unplanned urbanization is usually associated
with environmental problems, including pollution, overcrowding, poor
sanitation, inadequate waste disposal, exposure to etiologic agents of
infectious diseases and insufficient access to safe drinking water (Moore
et al., 2003). Human health risks are driven by the combination of
environmental hazards and socio-demographic factors that determine
which populations are more vulnerable to them (Lindley et al., 2006).
Vulnerability depends on the extent to which health is sensitive to be
affected by the environmental hazards, the magnitude of the exposure
and the capacity to reduce the burden of a specific adverse health
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Among environmental hazards, pollution and zoonoses have been

highlighted as the most important in urban areas (McGranahan et al.,
2001). Urban air pollution represents a major environmental hazard to
human health, particularly with respect to respiratory and cardiovascular
affections, and cancer (World Health Organization, 2016). In developing
countries, an estimated 42% of such diseases are linked to solid fuel
smoke, vehicular and industrial emissions, and passive exposure to to-
bacco smoke (Maiztegui and Delucchi, 2010). A recognized group of air
pollutants is volatile organic compounds (VOCs). Main urban sources of
outdoor VOCs emissions are vehicular traffic, industries, dumps and
landfills, while significant indoor sources include building and furnishing
materials, and paints (Majumdar et al., 2014; Paciência et al., 2016).
VOCs also play an important role in atmospheric chemistry as precursors
of other secondary pollutants (Hubbell et al., 2005). Aromatic VOCs have
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proven diverse adverse health effects on humans. Benzene, for example,
has been classified as a grade 1carcinogen (IARC Working Group, 2018).

Access to safe drinking water is essential for public health risk man-
agement (Hrudey et al., 2006). Lack of appropriate urban planning forces
people to conduct individual perforations to the aquifer, to get direct
intakes from watercourses, or to access an official water net with pre-
carious connections (Moore et al., 2003). These alternative water sources
may be contaminated by inadequately disposed liquid effluents and un-
controlled garbage disposal (Cabral, 2010). Over 700 organic and inor-
ganic pollutants have been reported in water bodies, many of which are
dangerous given their toxicity and potential carcinogenesis (Brito et al.,
2015). The most common water-related diseases include diarrhea,
cholera, infectious hepatitis and arsenicosis (World Health Organization,
2011).

Zoonoses are diseases transmitted to humans either by direct contact
with infected secretions of animal hosts, or mediated by vectors. The
occurrence and distribution of zoonotic diseases are driven by complex
dynamics of environmental, ecological and social factors (World Health
Organization, 2014). In urban areas, rodents are the main vertebrate
pests (Singleton et al., 2003), often acting as reservoirs or carriers of
leptospirosis, salmonellosis, plague, rat-bite fever, and hantavirus renal
and pulmonary syndromes (Himsworth et al., 2013; Meerburg et al.,
2009). Likewise, in urban settings, anthropophilic mosquitoes such as
Aedes aegypti and Culex spp. breed mainly in man-made containers and
are the main vectors of dengue, chikungunya, Zika, West Nile fever and
St. Louis encephalitis (Weaver et al., 2018).

Landscape ecology provides a conceptual framework to integrate
multiple hazards and vulnerability by addressing their inherent spatial
complexity, thus obtaining risk maps with a quantitative approach. Risk
assessment can be substantially improved by the inclusion of spatial
analyses of the data in a Geographic Information System (GIS) (Di Salvo
et al., 2018; Liu et al., 2019; Poggio and Vr�s�caj, 2009), which also rep-
resents an advantage to communicate results, discuss the social percep-
tion of environmental hazards and plan management actions (Lahr and
Kooistra, 2010; vonHedemann et al., 2015).

Multi-hazard risk assessments that include vulnerability estimations
have been applied worldwide at a district or a landscape scale for mul-
tiple purposes, e.g., flood risk in urban areas (Ka�zmierczak and Cavan,
2011; Kubal et al., 2009); environmental risks of deltaic socio-ecological
systems (Hagenlocher et al., 2018); impact of catastrophic events (Mar-
zocchi et al., 2012); climate change-related risk (Lindley et al., 2006). In
Argentina, childhood health risk associated with sanitation and
agro-industrial activities has been studied at the country level (Maiztegui
and Delucchi, 2010).

Using a landscape ecology framework and aided by GIS tools, the aim
of this study was to make a diagnosis of human health risk in a temperate
urban area, and to analyze its spatial pattern at a district scale. We
quantified and mapped human health risk by integrating hazards and
vulnerability in a case study, the district General San Martín (Buenos
Aires, Argentina), a residential and industrial urban area that is part of
the greatest megalopolis of temperate South America. The methodolog-
ical approach and conceptual framework integrate theories and tools
from urban and landscape ecology, geospatial data, spatial statistics and
GIS approaches.

This article is organized as follows: we first describe the study area
and the minimal sampling units, and summarize our conceptual frame-
work. Next, we develop the hazard indexes and maps (water pollution,
air pollution, mosquito infestation and rodent infestation hazards), and
the vulnerability index and map, referring to the source variables and
their management in a GIS environment. We obtained hazard intensity
and also combinations of relatively low or high hazard levels to sum-
marize the four sources of environmental hazards. Also, we combined
hazards and vulnerability to obtain a risk intensity map. We performed
the following analyses on these products: spatial heterogeneity, spatial
relations between pairs of index values and sensitivity to check robust-
ness. Results are presented aided by maps and discussed within an urban
2

ecology framework.

2. Methods

2.1. Study area

General San Martín district is located in Buenos Aires Province,
Argentina (central coordinates: 34�340S 58�330W, Fig. 1). It covers 56.3
km2, with 414,196 inhabitants and 7,356 inhabitants/km2 (Instituto
Nacional de Estadística y Censos, 2010). Climate is temperate humid. The
district includes residential, commercial and industrial neighborhoods.
Industries in the district are mainly metallurgical, chemical, petro-
chemical, and textile. As only urban areas were considered in this study,
the area comprised between Camino del Buen Ayre highway and
Reconquista River (Fig. 1) was excluded from the analysis (total study
area 50.2 km2). Potential hazard sources located within a buffer of 1 km
around the limits of the study area were included in the analysis. In this
work, straight-line buffers were used.

2.2. Minimal sampling units

To produce hazard, vulnerability and risk maps, several spatial layers
were gathered from available sources, recombined or generated ad hoc
(Table 1). As these were vector or raster layers at different spatial reso-
lutions, to combine them we defined the minimal sampling units as the
census tracts of the last “Population, Households, and Housing National
Census”, abbreviated INC from now on (Instituto Nacional de Estadística
y Censos, 2010) (Fig. 1(c)). The census tract is the minimum resolution
used by the INC and consists of a polygon covering several blocks,
comprising ca. 300 dwellings. A total of 434 census tracts covered the
study area, each track containing between 20 and 681 dwellings (each
dwelling has one or more households) and covering between 0.01 km2

and 1.91 km2. Geographic data was restructured and summarized in the
attribute table of the census tract layer (a polygon vector layer): e.g., the
raster altitude layer was converted to a vector layer with mean altitude
per census tract.

2.3. Conceptual framework

The conceptual framework of human health risk assessment in the
study area is summarized in Fig. 2, and involves product maps for each
hazard (water and air pollution, and mosquito and rodent infestation),
for vulnerability, and for risk. In general terms, we considered that
human health risks are driven by hazards and vulnerability, following
Lindley et al. (2006). For each hazard and vulnerability index, we con-
structed an equation that included multiple variables. Variables used to
compute hazard and vulnerability indexes were either additive primary
factorswith constant weights to relativize its contribution respect to other
primary factors; or multiplicative secondary factors applied to the primary
factors. Secondary factors are considered as potential enhancers to the
hazard: e.g., a weighting factor of 1.5 assumes that the hazard resulting
from the primary factors (scaled between 0 and 1) can be increased by
50% by the worst value of the secondary factor. Intermediate calcula-
tions, as well as the final indexes, were scaled between 0 and 1 (minimum
and maximum hazard/vulnerability/risk, respectively). Thus, resulting
products have no absolute values and should be interpreted as relative
indexes with extent on the study area.

The notation used for equations was: capital letters indicate whether
the index refers to a hazard (W ¼ water, A ¼ air, M ¼ mosquitoes, R ¼
rodents), vulnerability (V) or risk (R); subscript i indicates that the index
is computed per census tract i (1� i� 434); subscript p indicates that the
variable is a primary factor, subscript s indicates that the variable is a
secondary factor; and the subscripts j (j � 1) were used to enumerate
primary or secondary factors. In each equation, subscripts indicate the
minimum and maximum values used to scale the index (e.g., 0–1 for a
primary factor; 1–1.5 for a secondary factor).



Fig. 1. Study area. The case study was General San Martín (GSM), in Buenos Aires Province, Argentina. (a) Location in Argentina. (b) Location in Buenos Aires
Province. Note that the study area is neighbor to the capital city of Argentina, Buenos Aires City (BA). (c) General San Martín and neighbor districts. An optical satellite
image is shown (WorldView-3, acquired on November 15th 2014, color composition: Red ¼ band no. 5 (630–690 nm); Green ¼ band no. 3 (510–580 nm); Blue ¼ band
no. 2 (450–510 nm). Satellite image courtesy of the DigitalGlobe Foundation. For a detail of limits of the census tracts –i.e., the minimal sampling units– see Figs. 2, 3,
4, 5, and 6. See electronic version for color images.

Table 1
Geographic variables used in the hazard and vulnerability indexes. Input sources are detailed along with the original spatial resolution of the variable: demographic
information per census tracts, derived from the last national population census of the INC (Instituto Nacional de Estadística y Censos, 2010); point vector data provided
by SIT-UNSAM (Extension Secretary of San Martín University) and National Secretary of Energy; industry records from OPDS (Provincial Organism for Sustainable
Development); raster product SRTM (Shuttle Radar Topography Mission); WorldView-3 satellite imagery; and self-generated products. Columns refer to: Water
pollution hazard (W), Air pollution hazard (A), Mosquito infestation hazard (M), Rodent infestation hazard (R) or Vulnerability (V). The hazard and vulnerability
indexes for which these geographic variables were used are mentioned following the scientific notation used along the text, with the first letter indicating the hazard or
vulnerability and the second letter indicating a primary (p) or secondary (s) factor. Parenthesis point out that the variable was used as an intermediate input for
computing hazard indexes.

Variable Sources of the geographical inputs Spatial representation W A M R V

Percentage of households without
connection to a potable water public
network

INC Census tracts Wp

Source of water used for human consumption INC Census tracts Ws1

Percentage of households without a sewer
connection

INC Census tracts Ws2 Mp4 Rp7

Proximity to industries weighted by their
environmental complexity level

SIT-UNSAM, OPDS Point data Ws3 Ap4

Proximity to dumps and landfills Photointerpretation of WorldView-3 imagery and
ancillary literature

Polygons digitalized on 0.31 m
pansharpened scenes

Ws4 Ap3

Proximity to cemeteries, dumps and open
landfills

Photointerpretation of WorldView-3 imagery Polygons digitalized on 0.31 m
pansharpened scenes

Mp1 Rp3

Low topography SRTM 30 m raster grid Ws5 As1 Mp6

Proximity to gas stations National Secretary of Energy Point data Ap1

Vehicular and train emissions Self-generated based on public transport circulation and
traffic records

Line data Ap2

Vegetated/Non-vegetated surfaces NDVI threshold on WorldView-3 imagery 1.24 m raster grid As2 (Mp3) Rp1

Water storage at the dwelling Self-generated based on INC data Census tracts Mp2

Proximity to open canals and streams Photointerpretation of WorldView-3 imagery Lines digitalized on 0.31 m
pansharpened scenes

Mp5

Water availability Self-generated based on "Water storage at the dwelling"
and "Proximity to open canals and streams"

Census tracts and 0.31 m
pansharpened scenes

Rp5

Poor quality of construction materials of the
dwellings

INC Census tracts Rp2 Vp56

Human population density INC Census tracts (Mp3) Rp4

Proximity to food industries weighted by
their environmental complexity level

SIT-UNSAM, OPDS Point data Rp6

Proportion of children and elderly
population

INC Census tract Vp1

Overcrowding INC Census tract Vp2

Illiteracy rate INC Census tract Vp3

Economic inactivity rate INC Census tract Vp4

Distance to primary health centers SIT-UNSAM Point data Vp6
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Fig. 2. Methodological scheme. Environmental layers, socio-demographic indicators and remote sensing imagery were integrated in a GIS. Hazard, vulnerability and
risk indexes were obtained and mapped for the study area (General San Martín, abbreviated GSM), with census tract as the minimal sampling unit. Product maps are
pointed out with a rounded rectangle. See text for details on the procedures, variables and equations.
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2.4. Hazard maps

2.4.1. Water pollution hazard
The absence of connection to a safe water public network (variable

“Percentage of households without piped connection to a water public
network per census tract i”, Wpi) was considered as the primary factor
affecting drinking water quality. Provided the household was not con-
nected to the network, several secondary factors (Wsji) were considered
to have an extra negative impact on water quality. The indexWi of water
pollution hazard per census tract i was obtained by applying Eq. (1):

Wi ¼
�
Wpi �ðWs1i �Ws2i �Ws3i �Ws4i �Ws5iÞ

�
0�1 (1)

Secondary factors Wsj were:
Ws1. Source of drinking water.Households without connection to the

public water network may obtain drinking water from water cisterns or
deep wells (low relative hazard), river water, rainwater or shallow wells
(high hazard). The extended formula to compute the weights forWs1was:
Ws1i ¼ [1 ∙ (% of households in census tract i using water cisterns or deep
wells) þ 2 ∙ (% using riverwater, rainwater or shallow wells)] 1–1.50.
4

Ws2. Percentage of households without a sewer connection. House-
holds without a sewer connection may experience contamination of the
shallow aquifers used for water uptake. Types of on-site sanitation were:
cesspits with a septic chamber (low hazard), cesspits with no septic
chamber (medium hazard), rudimentary pits (high hazard). The
extended formula to compute the weights for Ws2 was: Ws2i ¼ [1 ∙ (% of
households in census tract i using cesspits with septic chambers)þ 2 ∙ (%
using cesspits without septic chambers) þ 3 ∙ (% using rudimentary
pits)] 1–1.50.

Ws3. Proximity to industries weighted by their environmental
complexity level. Groundwater can be contaminated with industrial ef-
fluents and waste. A georeferenced list of 871 industries within the study
area was provided by the Extension Secretary of San Martín University
(SIT-UNSAM). Besides, a non-georeferenced database of industries with
their environmental complexity levels (ECL) comprising 4,764 records
was available from the Provincial Organism for Sustainable Development
(OPDS; updated to 2015). OPDS groups industries into 1st, 2nd and 3rd

category (with increasing environmental complexity) according to in-
dustry type, effluents and waste, potential risks to the population or
environment, dimensions, and location. Matching these two databases by
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postal address, industry name and/or name of the owner resulted in 559
georeferenced industries with ECL categorization (64% of the SIT-
UNSAM database) and 312 non categorized georeferenced industries.

We constructed buffers of 100 m around each of the 871 georefer-
enced industries and computed the percentage of each census tract area
that fell within the buffers, discriminating by ECL categories when
available. The extended formula to compute the weights forWs3was:Ws3i
¼ [3 ∙ (% of census tract i close to 3rd category industries) þ 2 ∙ (% of
census tract i close to 2nd category industries) þ 1 ∙ (% of census tract i
close to 1st category industries or non-categorized industries)] 1–1.25.

Ws4. Proximity to dumps and landfills. Groundwater can be affected
by pollutants leaching from solid waste. Dumps and landfills were digi-
talized by photointerpretation of a cloud-free WorldView-3 scene ac-
quired on November 14th 2015 (imagery courtesy of Digital Globe
Foundation) with a high spatial resolution (pixel size: 1.24 m for multi-
spectral bands and 0.31 m for the panchromatic band). The scene was
corrected to top-of-atmosphere reflectance. A pansharpening procedure
was conducted to achieve a resolution of 0.31 m for multispectral pan-
sharpened bands. Digitalization was conducted at a 1:2,000 scale and
ancillary information were used to aid photointerpretation (Igarzabal de
Nistal et al., 2012; Mi~no, 2012). Polygons were labeled as: relatively high
hazard, considered to impact within a 400 m buffer area (based on
Igarzabal de Nistal et al. (2012) and similar to distances reported by
Taylor and Allen (2006)); and relatively low hazard, considered to
impact within a 100 m buffer area. High hazard was assigned to
consolidated open dumps (open dumps with an area over 1 ha or open
dumps inside landfills with a volume higher than 500 m3) and junk car
dumps. Low hazard was assigned to closed landfill areas and small
non-consolidated open dumps. The extended formula to compute the
weights for Ws4 was: Ws4i ¼ [% of census tract i within a 100 m buffer
area to low hazard dumps and landfills or within a 400 m hazard area to
high hazard dumps and landfills] 1–1.25.

Ws5. Low topography. Low topography was considered a proxy for
eventual floods associated with heavy rain, which have a negative impact
on groundwater quality by facilitating the horizontal transference of
pollutants from cesspits, ditches or dumps. The digital elevation model of
the Shuttle Radar Topography Mission (SRTM) was used (raster layer
with a spatial resolution of 30 m). The weight for Ws5 was computed as:
Ws5i ¼ [maximum SRTM altitude for the study area – mean SRTM alti-
tude in census tract i] 1–1.10.

2.4.2. Air pollution hazard
To become independent from household practices, only outdoor an-

thropic sources of VOCs were considered, focusing on BTEX chemicals
(benzene, toluene, ethylbenzene and xylene) due to their adverse health
effects and the existence of potential sources in the study area. We
considered four variables indicating the proximity to main anthropic
sources of BTEX as primary factors, along with two secondary factors.
The index Ai of air pollution hazard per census tract i was obtained by
applying Eq. (2):

Ai ¼
��
3 �Ap1i þ 3 �Ap2i þ 2:5 �Ap3i þ 2 �Ap4i

�
0�1 �ðAs1i �As2iÞ

�
0�1 (2)

Primary factors Apj were:
Ap1. Proximity to gas stations. We computed buffer distances to a

point vector layer of gas stations provided by the National Secretary of
Energy (Table 1). High hazard and low hazard were set at distances lower
than 100 m, and between 100 and 200 m, respectively (Correa et al.,
2012). The extended formula to compute the weights for Ap1 was: Ap1i ¼
[0.6 ∙ (% of census tract i within a 100 m buffer area to gas stations] þ
0.4 ∙ (% of census tract i between 101 and 200 m to gas stations)] 0–1.

Ap2. Proximity to vehicular traffic and non-electric train rails. Data
on annual average daily traffic (AADT) were only available for a national
highway (General Paz Avenue, AADT: ~209,000 vehicles in 2016,
source: National Road Direction). In addition, we assumed as high traffic
roads all other roads with public transport (bus) circulation, and gathered
5

(and digitalized) the information on bus routes. Roads with public
transport circulation indicate high levels of human activity, and are also
associated with high traffic from particular cars and trucks. Train rail-
roads used by diesel engine formations were also considered. The
extended formula to compute the weights for Ap2 was: Ap2i ¼ [(% of
census tract i within a 200 m buffer area to the national highway) þ [(%
of census tract i within a 100 m buffer area to high traffic roads or train
rails)] 0–1.

Ap3. Proximity to dumps and landfills. Equivalent to Ws4, but scaled
between 0 and 1.

Ap4. Proximity to industries weighted by their environmental
complexity level. Certain types of industries present in the study area use
solvents, lubricants, greases or waxes related to evaporative BTEX
emissions: metal-mechanics, printing offices, leather shoe factory,
coating application, among others. The number of locations where these
activities are carried out per census tract is highly correlated to the total
number of industries per census tract (r ¼ 0.92). In order to consider
these non-stack emissions, we constructed buffers of 100 m around in-
dustries discriminated by ECL categories, in a similar way to Ws3, but
scaled between 0 and 1.

Secondary hazard factors Asj were:
As1. Low topography. In low areas, limited atmospheric circulation

can generate an accumulation of air pollutants. The index is equivalent to
Ws5, but scaled between 1 and 1.20.

As2. Non-vegetated surfaces. As pollutants can be absorbed by
vegetation, census tracts with high proportions of non-vegetated surfaces
have a relatively higher air quality hazard. The high resolution
WorldView-3 scene was processed to top of atmosphere reflectance and
the Normalized Difference Vegetation Index (NDVI) was computed
(Tucker, 1979), using bands 7 and 5 as Infrared and Red reflectance,
respectively. An NDVI threshold was chosen by analyzing the NDVI
histogram of the scene and using a Jenks’ natural break criterion (Jenks
and Coulson, 1963): pixels with NDVI <0.33 were assigned to
non-vegetated surfaces. Non-vegetated areas were computed per census
tract, and the percentage of non-vegetated surfaces per census tract i was
computed and scaled between 1 and 1.20.

2.4.3. Mosquito infestation hazard
Six primary factors were considered as determinants of favorable

conditions for mosquito proliferation in urban settings. The index Mi of
mosquito infestation hazard per census tract i was obtained by applying
Eq. (3):

Mi ¼
�
3 �Mp1i þ 3 �Mp2i þ 3 �Mp3i þ 2 �Mp4i þ 2 �Mp5i þMp6i

�
0�1 (3)

Primary factors Mpj were:
Mp1. Proximity to cemeteries, dumps and open landfills. These sites

are considered key sources of mosquitoes in urban and suburban settle-
ments due to their high density of water-filled containers (Rubio et al.,
2013). Typical flight range for container mosquitoes varies between 100
m (Aedes aegypti) and 1000 m (Culex pipiens) (Verdonschot and
Besse-Lototskaya, 2014), and females are expected to stay near their
larval habitat if their basic requirements (sugar substances, blood sour-
ces, shelter andwater-field containers) are met (Vezzani, 2007). From the
map of dumps and landfills computed for the factor Ws4, we excluded
closed landfills and added the San Martín cemetery, digitalized by
photointerpretation on the aforementioned WorldView-3 scene. The
extended formula to compute the weights for Mp1 was: Mp1i ¼ [% of
census tract i within a 100 m buffer area to dumps, open landfills or
cemetery] 0–1.

Mp2. Water storage at the dwelling. Peridomiciliary water storage in
containers is common in dwellings without connection to a water public
network (Schmidt et al., 2011) and is also expected if the toilet lacks a
push button. The extended formula to compute the weights for Mp2 was:
Mp2i ¼ [(% of the households of census tract i without connection to
public network nor dwells with motor water pumps) x (% of the
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households without toilet with push button)] 0–1.
Mp3. Compromise between vegetated surfaces and human popula-

tion density. Adult mosquitoes feed on nectar and plant juices, but fe-
males of most species need to obtain nutrients from a blood meal before
they can produce eggs. Thus, resources for mosquitoes are enhanced
when high vegetated surfaces converge with high population density
(Rubio et al., 2013; Schmidt et al., 2011). We weighted green surface
coverage estimated with the WorldView-3 NDVI criterion (see As2) with
thresholds defined by Jenks’ Natural Breaks: k ¼ 1 for green areas
<19.8% of the census tract; k¼ 2 for green areas between 19.8% - 33.7%;
k ¼ 3 for green areas >33.7%. Human population density was computed
on a GIS by considering census tract areas. The extended formula to
compute the weights for Mp3 was: Mp3i ¼ [Density of human population
per census tract i þ k ∙ (% of green surfaces per census tract i)] 0–1.

Mp4. Percentage of households without a sewer connection. Except
for Ae. aegypti, which breeds exclusively in container habitats, many
urban mosquito species are favored by the occurrence of ponds and
ditches (Irwin et al., 2008), which are usually formed and/or built in the
soil to facilitate the drainage of domestic wastewater. This hazard factor
is equivalent to Ws2, but scaled between 0 and 1.

Mp5. Proximity to open canals and streams. Open canals and stream
margins, and in some cases the waste associated with them, provide a
suitable habitat for mosquitoes. Canals and streams were digitalized on
the pansharpened WordlView-3 scene. The percentage of the census tract
within a buffer zone of 100 m to waterways was computed.

Mp6. Low topography. Low topography may favor stagnant water
accumulation. Equivalent to Ws5, but scaled between 0 and 1.

2.4.4. Rodent infestation hazard
Rodent species that are hosts of several zoonoses in the area are Rattus

norvegicus, R. rattus, Mus musculus and Oligoryzomys flavescens (Carvalho
de Oliveira et al., 2014; Meerburg et al., 2009). The index Ri of rodent
infestation hazard per census tract i was obtained by applying Eq. (4),
which included seven primary hazard factors:

Ri ¼
�
3 �Rp1i þ 3 �Rp2i þ 2:5 �Rp3i þ 2:5 �Rp4i þ 2 �Rp5i þ 2 �Rp6i þ Rp7i

�
0�1

(4)

Primary factors Rpj were:
Rp1. Presence of vegetated surfaces. Rats need vegetated or ground

surfaces for shelter and burrow construction (Cavia et al., 2009; Feng and
Himsworth, 2014). Vegetable food is also important for native rodent
species and for M. musculus (Cavia et al., 2009; Masi et al., 2010).
R. norvegicus needs soil to construct its burrows (Traweger et al., 2006),
which in cities is usually available in parks, gardens, and unpaved roads.
The presence of fruit trees favors R. norvegicus and R. rattus (Masi et al.,
2010). Gardens and backyards are usually associated with pets (and pet
food) and with unused objects that make good rodent shelters (Tam-
ayo-Uria et al., 2014). The percentage of vegetated surface per census
tract is the complement of As2, scaled between 0 and 1.

Rp2. Poor quality of building materials of the dwellings. Poor quality
materials or poor quality constructions allow rodent entrance to the
dwelling (Masi et al., 2010). This variable was available per census tract i
(Table 1).

Rp3. Proximity to cemeteries, dumps and open landfills. These en-
vironments are usually vegetated, and provide food and shelter for ro-
dents (Masi et al., 2010; Lambert et al., 2017). Equivalent to Mp1.

Rp4. Human population density. More human population density is
positively associated with more garbage, particularly with food and
organic waste, which provide food for rodens (Masi et al., 2010; Feng and
Himsworth, 2014). This factor was computed as an intermediate step to
obtain Mp3.

Rp5. Water availability. Rodents need water, particularly
R. norvegicus (Cavia et al., 2009). To estimate water availability, we
considered the probability of water storage at the dwelling (Mp2) and the
proximity (<100 m) to open canals and streams (Mp5).
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Rp6. Proximity to food industries weighted by their environmental
complexity level. Sites close to food industries provide a good habitat for
rodents because of the availability of food and organic waste (which
constitutes the main food resource for rodents in urban habitats; Feng
and Himsworth, 2014), especially for R. rattus that can adapt to low
vegetated surfaces. This factor is analog to Ws3, but we only considered
food industries. No 3rd category food industries were recorded.

Rp7. Percentage of households without a sewer connection. House-
holds without a sewer connection and with rudimentary pits or cesspits
may allow rodent entry (Feng and Himsworth, 2014). This hazard factor
is equivalent to Ws2, but scaled between 0 and 1.

2.4.5. Hazard intensity and combinations of hazard levels
Two maps resulting from the combination of hazard indexes were

obtained. Hazard intensity per census tract i was computed following:

Hi ¼ ½Wi þ Ai þMi þ Ri� 0�1 (5)

Different combinations of hazard index values could result in the
same hazard intensity value for a given census tract, e.g. a high hazard
intensity could result equally from one very high and three low hazard
indexes, or from four intermediate hazard indexes. Therefore, an index of
hazard types was computed. Each hazard was categorized in relatively
low and high levels by using a threshold defined through Jenks’ Natural
Breaks with BAMMtools (Rabosky et al., 2014) in R Project (R Core Team,
2015). Next, each census tract was assigned to one out of the 16 possible
combinations resulting from the combination of relatively low and high
hazard levels for each variable.

2.5. Vulnerability

We considered six primary factors that may contribute to vulnera-
bility and assigned equal weights to each of them. The first five factors
were directly obtained by census tract from INC (Table 1), i.e., they
derive from demographic surveys averaged at the census tracts. All in-
termediate Vj indexes were scaled between 0 and 1, then vulnerability Vi

was computed as:

Vi ¼
�
Vp1i þ Vp2i þ Vp3i þ Vp4i þ Vp5i þ Vp6i

�
0�1 (6)

Vp1. Proportion of children and elderly population. People younger
than 14 years and older than 65 years are usually more vulnerable to
diseases and spend more time in their dwellings.

Vp2. Overcrowding. Overcrowded housing promotes the spread of
diseases such as measles, respiratory infections, diarrheal diseases and
vector-borne diseases, many of them related to deficient sanitation.

Vp3. Illiteracy rate. Low levels of education create disadvantageous
conditions to access or interpret information about surrounding health
hazards and how to deal with them; and to access to well-paid jobs.

Vp4. Economic inactivity. A person without employment nor occu-
pation suffers damage to their self-esteem and has limited access to
medical coverage and other services. Nutritional and household de-
ficiencies are also expected.

Vp5. Poor quality of construction materials of the dwellings. Dust,
moisture, cold and injuries associated with low quality dwellings may
affect human health. Equal to Rp2.

Vp6. Distance to primary health centers. Access to health care may
decrease with increasing distance to health care facilities. This variable
was generated by us, from a database of primary health centers: we
computed the average distance of each census tract to the closest primary
health center.

2.6. Human health risk

Human health risk was computed as:

Ri ¼ ½Hi :ðVi þ 1Þ� 0�1 (7)
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Note that –prior to rescaling between 0 and 1– risk cannot equal
0 unless Hi is minimum and equals 0. This formula expresses that even
with minimum Vi, a population exposed to high hazard levels could be
under high sanitary risk.
2.7. Spatial patterns

Spatial heterogeneity of each hazard, vulnerability and risk indexes
was first analyzed with Moran's I tests. This is a global test for spatial
autocorrelation appropriate for areal data (Bivand et al., 2008), which
compares the index value in each census tract with the value weighted by
the contribution of neighbor census tracts. We considered that neighbor
census tracts to a given census tract i were those sharing at least one
vertex with i (Queen-style census tract contiguities). Equal spatial
weights were assigned for the set of neighbors of each census tract i.
Fig. 3. Hazard maps. Relative hazard indexes, ranging between 0 and 1, per census tr
hazard. (d) Rodent infestation hazard.
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Next, to analyze the spatial relations between pairs of index values,
geographically weighted regressions (GWR) were computed (Bivand
et al., 2008): if the association was significant, varying slopes were ob-
tained and plotted for all census tracts. Thus, not only the existence of a
correlation between index values but also its magnitude over the study
area was addressed. Libraries spdep (Bivand and Piras, 2015), GWmodel
(Gollini et al., 2015) and rgdal (Bivand et al., 2018) in R Project were
used.
2.8. Sensitivity analysis

In the construction of hazard and vulnerability indexes, the variables
selected and the weight given to each were based on the existing liter-
ature, our expertise and perception of the local system. To test the
robustness of each index and their derived maps, we conducted a
act. (a) Water pollution hazard. (b) Air pollution hazard. (c) Mosquito infestation
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sensitivity analysis. The sensitivity of each primary or secondary factor is
related to the amount of uncertainty in the estimation of hazard and
vulnerability, and ultimately contributes to the uncertainty of the final
risk model. In the hazard indexes, for each primary factor we considered
the effect of varying the originally assigned weight by 10, 20 and 50% up
and down (adapted from Koch & Yemshanov, 2015). As an example, for
Ap1i in Eq. (2), the original “3 ∙weight”was replaced by 3.3, 3.6, 4.5, 2.7,
2.4 and 1.5, and on each occasion the number of census tracts that
switched categories (from relatively low to high hazard levels, or vice
versa, as defined in Section 2.4.5) was calculated. This was performed in
turns, maintaining all the other parameters equal. Secondary factors were
either omitted or their weights were duplicated, and once again the
number of census tracts that switched categories was calculated.
Regarding the vulnerability index, each primary factor was removed or
duplicated in turns in Eq. (6). The R2 coefficient of the linear regression
between each modified vulnerability and the original vulnerability
values per census tracts, along with the minimum, maximum and 1st and
3rd quartiles of the residuals of such regression were calculated.

3. Results

3.1. Hazard maps

The four hazard maps (based on air pollution, water pollution, and
rodent and mosquito infestation indexes) show that hazard indexes are
spatially heterogeneous over the study area (Fig. 3). Hazard values per
Fig. 4. Slopes of geographically weighted regressions per census tract. Significant re
were used for values lower than 0 and higher than 1 (see electronic version for color
hazard as a function of Water pollution hazard; (b) Rodent infestation hazard as a fu
Mosquito infestation hazard; (d) Vulnerability index as a function of hazard intensit
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census tract were positively and significantly autocorrelated (p< 0.0001;
Moran's I index varying between 0.32 (air quality) and 0.83 (mosquito
infestation)). However, not all the hazard indexes showed the same
spatial pattern (Fig. 3), as can be noted in the spatial association between
pairs of hazard maps (slopes of geographically weighted regressions;
Fig. 4). In particular, air pollution was not significantly associated with
the other hazard indexes (p > 0.01; and slopes close to 0 in most of the
census tracts). The remaining hazard indexes were associated (p <

0.0001), with a varying slope along the census tracts. The highest spatial
association was observed between mosquito and rodent hazards (p <

0.0001, R2 ¼ 0.88, median GWR slope 0.71, range 0.27–2.06; Fig. 4c). A
North-South section covering several census tracts denotes a sector with
similar (GWR slopes ca. 1) or relatively higher hazard for rodent than for
mosquito infestation (GWR slopes >1; Fig. 4a). Since mosquito and ro-
dent hazard maps were correlated, they showed a similar spatial asso-
ciation with water pollution hazard (Fig. 4a and b; p< 0.0001, R2 ¼ 0.50
for mosquitoes and 0.43 for rodents; median GWR slopes 0.14 and 0.12,
respectively; range 0.01–0.95). Two hotspots where mosquito, rodent
and water hazards were similar and relatively high were detected at the
North-West and South-East zones of the study area (Fig. 4a and b, see also
Fig. 3).

Threshold values for relatively low and high hazards were 0.38 for air
pollution, 0.26 for mosquito infestation and 0.36 for rodent infestation.
Water pollution index values presented a highly skewed distribution,
therefore Jenks’ Natural Break (threshold 0.22) classified only 3.2% of
the census tracts as “high”: we decided to adopt 0.01 as the threshold,
gressions are shown. Greyscale was used for values between 0 and 1; and colors
images). Slopes correspond to the regression between: (a) Mosquito infestation
nction of Water pollution hazard; (c) Rodent infestation hazard as a function of
y index; (e) Risk index as a function of hazard intensity index.



Fig. 5. Hazard types. (a) Hazard level combinations. (b) Number of relatively high hazard levels. See electronic version for color images.
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which classified 21.9% of the census tracts as relatively high hazard level.
The combination of hazard levels was spatially structured, showing

clusters of census tracts assigned to the same category (Fig. 5a). Low
levels of all hazards were obtained in 16.6% of the census tracts (15.4%
of the total area, 16.7% of the total population) (Table 2). High levels of
all hazards occurred in 6.9% of the census tracts (11.5% of the total area,
Table 2
Census tracts, areas and exposed population in each category of hazard types.
Results are summarized per relative hazard levels and per number of sources
(water, air, mosquitoes or rodents) with relatively high hazard levels.

Hazard Census tracts Area Exposed
population*

Number % km2 % Inhabitants %

Per hazard levels
Low hazard for all
sources

72 16.6 7.7 15.4 69,137 16.7

High hazard for air
pollution

159 36.6 15.6 31.2 131,509 31.8

High hazard for rodents 44 10.1 6.1 12.1 50,206 12.1
High hazard due for air
and mosquitoes

43 9.9 5.0 9.9 42,731 10.3

High hazard for all
sources

30 6.9 5.8 11.5 30,493 7.4

Other hazard level
combinations

86 19.9 10.0 19.9 89,816 21.7

Per number of sources with high hazard
No high hazard levels 72 16.6 7.7 15.4 69,137 16.7
One high hazard levels 216 49.8 23.1 46.0 195,966 47.3
Two high hazard levels 74 17.1 9.3 18.5 76,929 18.6
Three high hazard
levels

42 9.7 4.4 8.7 41,367 10

Four high hazard levels 30 6.8 5.8 11.4 30,493 7.4

* Total exposed population (413,982 inhabitants) is lower than the total
General San Martín population (414,196 inhabitants); this is due to the exclusion
of a census tract outside the study area and with 304 inhabitants (0.07% of the
population).
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7.4% of the total population). A high level of air pollution and a low level
for the remaining sources was the most common combination, with
36.6% of the census tracts (31.2% of the total area and an exposed
population of 31.8%). Most of the study area was exposed to relatively
high levels of at least one hazard (Fig. 5b, Table 2): 83.5% of the census
tracts, 84.7% of the total area and 83.3% of the population. Hazard in-
tensity was spatially structured, showing autocorrelation (p < 0.0001,
Moran's I index 0.71) (Fig. 6a).

3.2. Vulnerability and risk maps

Both vulnerability and risk maps showed spatial autocorrelation (p <

0.0001, Moran's I index 0.61 and 0.68, respectively; Fig. 6b and c). The
vulnerability map was spatially correlated to the hazard intensity map (p
< 0.0001, R2¼ 0.67, median GWR slope 0.27, range -0.09–1.07; Fig. 4d);
and the risk map was spatially correlated to the hazard map (p < 0.0001,
R2 ¼ 0.84, median GWR slope 1.54, range 0.53–3.04; Fig. 4e). In other
words, those areas where hazard intensity was relatively high were
coincident with areas where the most vulnerable population live, leading
to a higher risk to human health. In particular, a hotspot with high and
similar hazard and vulnerability index values occurred in the North-West
section of the study area (Fig. 6).

3.3. Sensitivity analysis

Very stable results were obtained for two of the hazard indexes. For
rodent infestation, all changes in the weights assigned to hazard indexes
resulted in less than 2% of the census tracts switching categories. For
water pollution, all weight changes affected <10% of the census tracts,
and the source of water used for human consumption Ws1 was the most
affecting variable. Regarding mosquito infestation, all changes resulted
in<7% of census tracts switching categories, except when we considered
a reduction of 50% in the weight affecting the percentage of households
without a sewer connection (Mp4). This resulted in 92 out of the 434



Fig. 6. Product maps. (a) Hazard intensity map. (b) Vulnerability map. (c)
Risk map.
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census tracts (21.2%) of the tracts changing from relatively high to low
hazard levels. Lastly, when analyzing the air pollution map, all changes
resulted in <13% of the census tracts switching categories except in two
cases. When increasing the weight assigned to the proximity to gas sta-
tions (Ap1) by 50%, 77 out of the 434 census tracts (17.7%) switched
categories, mainly from relatively high to low hazard levels. When
reducing the weight assigned to vehicular and train emissions (Ap2) by
50%, 121 out of the 434 census tracts (27.9%) switched categories.
Remarkably, when increasing the weight of Ap2 by 50% no significant
change was observed, probably because the hazard index increased
further (from relatively high to a non-discriminated very high category).

Modified vulnerability index values per census tract as a result of
removing or duplicating each primary factor were highly correlated with
the original values (R2 coefficients in the range 0.89–0.99, Table 3). The
lowest correlation coefficient was obtained by removing the Distance to
primary health centers (V6), in which a maximum change in 0.24 in the
vulnerability index value was recorded and the 1st quartile of the values
was modified in -0.07. All other changes resulted in modified vulnera-
bility index values within -0.03 and 0.03 for 1st and 3rd quartiles
(Table 3), showing high robustness.

4. Discussion

This interdisciplinary approach contributes to the territorial repre-
sentation of environmental hazards, social vulnerability and the resulting
risk to human health in a complex urban environment. Georeferenced
data are integrated into a GIS framework by means of statistical tools and
with an urban landscape ecology approach. Our study constitutes an
unprecedented baseline for General San Martín, Argentina. The meth-
odology allows for the spatial representation at a district scale of the risk
derived from one or more hazards, and can be thought as a modular,
dynamic and perfectible scheme as more studies are performed in the
area and novel information regarding these or other hazards becomes
available. The expected outputs (hazard, vulnerability and risk indexes)
can be a valuable tool for policy-makers; as well as a baseline to plan
environmental measurements and to monitor environmental and human
health indicators.

General San Martín has been pointed out as the third riskiest district
of Argentina in terms of child health mainly due to high levels of in-
dustrial pollution and social vulnerability (Maiztegui and Delucchi,
2010), and is among the four districts of Buenos Aires Province with
more environmental problems (Vel�azquez and Celemín, 2013). Our
hazard maps reinforce this alarming situation since over 83% of the
population is exposed to relatively high levels of at least one of the
considered hazards, and almost 7% is exposed to relatively high levels of
the four hazards. In a previous study in this district, variables related to
vulnerability have been analyzed within a sociological framework using
GIS tools (�Alvarez and Iulita, 2006). However, this is the first study
addressing the spatial patterns of environmental hazards and risks.

Spatial heterogeneity needs to be addressed in environmental man-
agement policies: our results showed that the studied hazard sources (air
pollution, water pollution, and rodent and mosquito infestation) are not
homogeneously distributed along the study area. With the exception of
air pollution, hazards were positively spatially autocorrelated and high
levels were clustered in the North-West (NW) section of the study area,
particularly in two hotspots. This denotes the need to guarantee basic
sanitary conditions and thus prioritize access to safe drinking water,
garbage disposal, mosquito and rodent control, and development of
green spaces, among other issues, in these hotspots. Unfortunately, areas
with higher hazard levels coincide with those of greatest vulnerability.
The population in the NW area of the district has fewer tools to avoid or
mitigate the impact of any threat to their health. Therefore, prevention
and control of environmental hazards must be coupled with improving
access to health care and education (Kjellstrom et al., 2007).

The greatest geographic associations were found between biological
hazards (mosquito and rodent infestation), as expected since some of the



Table 3
Sensitivity analyses for the vulnerability index. In turns, each of the variables included in the vulnerability index (V1 to V6) was removed or its weight was duplicated.
The modified index was regressed onto the original one: R2 adjust and descriptors of the residuals are summarized.

Variable Action R2 Residuals

Minimum 1st quartile 3rd quartile Maximum

V1. Proportion of children and elderly population Remove 0.956 -0.15 -0.02 0.02 0.10
Duplicate 0.975 -0.07 -0.01 0.01 0.11

V2. Overcrowding Remove 0.967 -0.13 -0.01 0.02 0.07
Duplicate 0.986 -0.04 -0.01 0.01 0.08

V3. Illiteracy rate Remove 0.965 -0.21 -0.01 0.02 0.10
Duplicate 0.983 -0.06 -0.01 0.01 0.13

V4. Economic inactivity Remove 0.937 -0.16 -0.02 0.02 0.11
Duplicate 0.961 -0.09 -0.02 0.02 0.12

V5. Poor quality of construction materials Remove 0.911 -0.13 -0.03 0.03 0.13
Duplicate 0.983 -0.07 -0.01 0.01 0.07

V6. Distance to primary health centers Remove 0.887 -0.17 -0.07 0.01 0.24
Duplicate 0.911 -0.09 -0.03 0.03 0.14
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primary factors were shared by these hazard indexes. While water
pollution hazard hotspots were partially coincident with the NW area, air
pollution hazard showed a contrasting spatial pattern. Air pollution de-
pends on emission sources that are not only restricted to the NW area
with the highest social vulnerability (Fig. 6c), such as industries and
vehicular traffic. The effect of industries on environmental hazards and
risk was expected: General San Martín is one of the districts with the
highest industrial development in Buenos Aires Province (Fritzsche and
Vio, 2000).

The spatial patterns of environmental hazards here reported are an
emergent landscape feature of environmental problems associated with
unplanned urbanization. Two main urbanization processes can be
recognized in the district (�Alvarez, 2005; Chiaramonte, 2005; Paredes,
2010): settlements close to industries during a stage of industrial devel-
opment (beginning in the 1930s, important during the 1940s–50s); and
settlements in low topography areas, beginning in the 1970s–1980s,
close to Reconquista River (NW area of the district), and nowadays
exposed to flooding and close to dumps and landfills. We suggest that the
distinct spatial pattern observed for the air pollution hazard map is the
combined product of potential air pollution related to industrial activities
and to high-vehicular traffic zones associated to the proximity of Buenos
Aires city and to the main vehicular access, including trucks and urban
transport; superimposed to hazard zones related to the NW area close to
dump and landfills. On the other hand, the other hazard sources would
mainly reflect the second unplanned urbanization process. Thus, several
historical processes of unplanned urbanization would be potentially
interacting to generate the environmental hazard patterns at a landscape
scale.

Our results support social and infrastructure asymmetries previously
reported for urban districts close to the Argentinean capital city: highly
populated low-income settlements or slums in areas with limited access
to safe drinking water, inexistent sewer connection and insufficient
garbage disposal, access to public health services and education, among
other issues (Curutchet et al., 2012; Paredes, 2010; Vel�azquez and Cel-
emín, 2013). Such spatial heterogeneity has been observed in other
urban areas (e.g., Ka�zmierczak and Cavan, 2011). The methodological
proposal presented herein can be replicated in other temperate urban
areas, adapting the conceptual framework to any other environmental
hazards using the same (or other) data sources and weighting criteria. It
is worth mentioning that low and high risk categories are comparative
solely within the district they were developed, as no theoretical criterion
for low and high levels was taken for each hazard, rather a replicable
standardized procedure using Jenks’ breaks was preferred. Even though
this methodology does not allow for the estimation of absolute risk
values, the detection of areas with relatively high risk values is necessary
to focusing and optimizing the implementation of environmental sani-
tation and the reduction of levels of social vulnerability (Di Salvo et al.,
2018).
11
Addressing uncertainties in human health risk assessment is impor-
tant for effective decision making, highlighting the implications and
limitations of the obtained models. The lack of robustness is one of the
contributors to uncertainties and can be assessed through sensitivity
analyses (Arunraj et al., 2013; Dong et al., 2015). According to our re-
sults, the models for each hazard and vulnerability were robust to
changes in the weights given to the variables considered. In the few cases
in which this did not hold and many census tracts switched categories,
they did so mainly from relatively high to low hazard levels: i.e., a con-
servative situation in which hazard would be ultimately overestimated.
This is preferred over underestimation in terms of protection of the
population, but would lead to squandered resources. Having identified
the critical variables, i.e., those with a greater effect on the uncertainty of
hazard estimations, future research can be focused on improving their
measure and the estimation of their weights (Barrio-Parra et al., 2019).
Regarding air pollution, a reduction in the weight of vehicular and train
emissions by 50% was the only case (out of 28 different combinations of
parameters tested) in which the hazard index was not robust. This index
may be improved by including more reliable data on annual average
daily traffic, rather than assuming high traffic where public transport
circulation occurs. Unfortunately, such records are still unavailable. Be-
sides, the sensitivity analysis allowed for the identification of some sec-
ondary factors that did not have a significant effect on the hazard
outcome. Such variables, that may be unavailable or measured with a
high level of uncertainty in other areas, could be omitted in future
analyses.

At the district scale, our map distinguished the most relevant areas for
human health from an environmental point of view, considering the
census tract as the minimal sampling unit. The criterion for this selection
was related to the minimum unit for which information was available
with the required degree of detail. Hazard and risk analyses can also be
conducted at a more detailed scale, such as a neighborhood, or also at a
regional or country scale. Other variables might then be appropriate
since their effect on hazard, vulnerability and risk indexes may be scale-
dependent (McGranahan et al., 2001) and vary when disaggregating data
(Maantay and Maroko, 2009). Regarding the temporal scale, our
approach characterized the current state of hazards, vulnerability and
risk in a static snapshot corresponding mainly to the last decade, due to
the inclusion of data from the last National Census of Population con-
ducted in 2010 (Instituto Nacional de Estadística y Censos, 2010).
Long-term temporal studies of risk change would be desirable (Bie�n et al.,
2005), to assess the effect of urban growth and the impact of possible
improvements in access to public services, environmental management
and sanitation.

The hazards considered in this study (i.e., water and air pollution,
mosquito and rodent infestation) affect human health in a wide range of
urban areas (McGranahan et al., 2001; Moore et al., 2003), but other
hazards related to inherent features of the urban living environment (e.g.
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building conditions, energy and food demands, climate change) could be
easily added to the methodological scheme (Kjellstrom et al., 2007).
Some examples are flood hazard and electric hazard due to poor wiring
and precarious connections to energy (increasing the probability of fires
and electrocution) (Ahmed, 2016). Likewise, vulnerability estimations
could be optimized by the inclusion of variables that consider social,
economic and environmental aspects related to local sanitary problems
(Ka�zmierczak and Cavan, 2011). The estimation of environmental haz-
ards and sanitary risk is substantially improved if immersed in an inter-
disciplinary urban ecological view linked with a sociological approach,
addressing the social perception of risks and the participation of com-
munity organizations (Merlinsky, 2013).

5. Conclusion

Risk is heterogeneous and multidimensional. The development of
tools to measure and assess risk exposure, and to organize mitigation and
reduction actions are configured as essential ingredients of any man-
agement strategy. Our contribution is to provide a methodological
framework to analyze environmental hazards, vulnerability and risks,
and to assess their spatial relations. We consider that our conceptual
framework is valuable because it integrates theories and tools from urban
and landscape ecology, spatial statistics and GIS approaches. For policy-
makers, risk assessments need to be informed or summarized in technical
(non-academic) language, in a clear and simple manner, and in the native
language of the local population (in our case study, Spanish). In this way,
the local population and decision-makers can discuss policies and
participate in prevention and mitigation actions. Notwithstanding, these
sources of sanitary risk are beyond the exclusive control of individuals, as
they require the action of decision-makers and a firm regulation back-
ground. Therefore, management organisms and local politicians need
baseline studies, to which we intend to contribute. A risk map of this
nature provides georeferenced and integrated information about hazard,
vulnerability and risks.

This study generated hypotheses on the spatial arrangement of the
territory regarding environmental hazards and risks to human health.
Future work will include the assessment of these environmental hazards
by field measures of air and water quality and the abundance of
mosquitoes and rodents. The obtained hazard and risk maps will be an
input for planning environmental health assessments, aiding in the
design of sampling campaigns. The field validation of the risk map pre-
sented in this work will be critical to demonstrating that the consider-
ations made for its elaboration were correct and will allow its use as a
monitoring tool. With regard to possible inputs for policy-makers, we
have already presented several technical reports to government agencies
and neighborhood leaders.
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