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Abstract: In this article, we briefly review the dynamical and thermodynamical aspects of different
forms of quantum motors and quantum pumps. We then extend previous results to provide new
theoretical tools for a systematic study of those phenomena at far-from-equilibrium conditions.
We mainly focus on two key topics: (1) The steady-state regime of quantum motors and pumps,
paying particular attention to the role of higher order terms in the nonadiabatic expansion of
the current-induced forces. (2) The thermodynamical properties of such systems, emphasizing
systematic ways of studying the relationship between different energy fluxes (charge and heat
currents and mechanical power) passing through the system when beyond-first-order expansions are
required. We derive a general order-by-order scheme based on energy conservation to rationalize
how every order of the expansion of one form of energy flux is connected with the others. We use this
approach to give a physical interpretation of the leading terms of the expansion. Finally, we illustrate
the above-discussed topics in a double quantum dot within the Coulomb-blockade regime and
capacitively coupled to a mechanical rotor. We find many exciting features of this system for arbitrary
nonequilibrium conditions: a definite parity of the expansion coefficients with respect to the voltage
or temperature biases; negative friction coefficients; and the fact that, under fixed parameters, the
device can exhibit multiple steady states where it may operate as a quantum motor or as a quantum
pump, depending on the initial conditions.

Keywords: quantum thermodynamics; steady-state dynamics; nonlinear transport; adiabatic
quantum motors; adiabatic quantum pumps; quantum heat engines; quantum refrigerators; transport
through quantum dots

1. Introduction

In recent years, there has been a sustained growth in the interest in different forms
of nanomachines. This was boosted by seminal experiments [1–8], the blooming of new theoretical
proposals [9–30], and the latest developments towards the understanding of the fundamental physics
underlying such systems [31–45]. Quantum mechanics has proven to be crucial in the description
of a broad family of nanomachines, which can be put together under the generic name
of “quantum motors” and “quantum pumps” [13,46–53]. They typically consist of an electromechanical
device connected to electronic reservoirs and controlled by nonequilibrium sources; see Figure 1.
These nonequilibrium sources may include temperature gradients and bias voltages among
the reservoirs or even an external driving of the internal parameters of the system. The dimensions
of the electronic component of these devices are normally within the characteristic coherence
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length of the electrons flowing through them, hence the essential role of quantum mechanics
in their description.

Various aspects of quantum motors and pumps have been extensively studied in the literature.
For example, it has been shown that quantum interferences can be exploited to boost the performance
of these devices. Remarkably, some systems operate solely due to quantum interference, e.g., quantum
pumps and motors based on chaotic quantum dots [13,39,54], Thouless quantum pumps
and motors [13,22,55], or Anderson quantum motors [56], among others. On the other hand,
the strong Coulomb repulsion between electrons in quantum-dot-based pumps and motors has
shown to enhance the performance (or even induce the activation) of these nanodevices [26,42,57–59].
The effect of decoherence has also been addressed [22,39,54,60], as well as the influence of the friction
forces and the system-lead coupling in the dynamics of quantum motors and pumps [22].
Indeed, the thermodynamics of those systems has proven to be a key aspect to study. In the last
few years, different individual efforts have coalesced to give rise to a new field dubbed
“quantum thermodynamics” [48–53,61], which studies the relations among the different energy fluxes
that drive the motion of those machines where quantum mechanics plays a fundamental role.

++ + ++ + + + + + + +

Figure 1. Examples of local systems (enclosed by dashed lines) where the movement of a mechanical
piece (in blue) is coupled to the flux of quantum particles traveling from/to infinite reservoirs
(black hemiellipses). (a) A Thouless’ adiabatic quantum motor made of charges periodically arranged
on the surface of a rotational piece and interacting with a wire coiled around it [22]. (b) An Anderson’s
adiabatic quantum motor made of a multi-wall nanotube where the outer one, with random
impurities, is shorter than the inner one. Another example of it can be made with a rotating
piece as in (a), but with charges randomly distributed. (c) A double quantum dot capacitively
coupled to a rotor with positive and negative permanent charges. The dots are assumed to be weakly
coupled to the electron reservoirs [42]. (d) As a result of an external agent, a tip hits a conductive
wire capacitively coupled to permanent charges underneath. This starts the oscillation of the wire,
which in turn pumps electrons between the reservoirs [23].

Despite the progress in the theoretical description of quantum motors and pumps,
most of the research has focused on parameter conditions that lie close to the thermodynamic
equilibrium, i.e., small bias voltages, temperature gradients, or frequencies of the external
driving [48–53,61]. This is reasonable since under such conditions, the linear response regime
of the nonequilibrium sources gives an accurate description of the problem, greatly simplifying
its general treatment. For example, in this regime, it is common to define dimensionless figures
of merit made by some combination of linear response coefficients, which give a measurement
of the efficiency or the maximum power that quantum devices can achieve. It is also known that such
figures of merit fail in nonlinear regime conditions [52]. Although efforts have been made in this
direction, currently, there is not a nonlinear version for the figures of merit, and the performance
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must be calculated from the microscopic details of the system’s dynamics. One strategy to deal
with such situations is to use phenomenological models where the linear response coefficients are
parameterized with respect to the voltage biases, the temperature gradients, or to other relevant
parameters of the system; see [52] and the references therein. However, such parameterizations usually
hide the physics behind the nonlinearities and require the optimization of a number of variables that
grow very fast with the complexity of the model. The weakly nonlinear regime of transport has also
been explored within the scattering matrix formalism. Under these conditions, it is enough to expand
the response coefficients up to second order of the voltage biases and temperature gradients, which can
be done by using standard quantum transport techniques. This approach has been applied to a variety
of situations, where it proved to be a valuable strategy; see [48] and the references therein. However,
it would be also important to extend this method to more general situations without hindering
the description of the physical processes that take part in the nonlinear effects, while keeping the deep
connections between the response coefficients.

Regarding the dynamics of quantum motors and pumps, one can notice that most of the works
in the literature assume a constant terminal velocity of the driving parameters without a concrete
model for them. A typical problem is that when these devices are coupled to nonequilibrium
sources, nonconservative current-induced forces (CIFs) appear. These CIFs come, in the first place,
by assuming a type of Born–Oppenheimer approximation where the electronic and mechanical
degrees of freedom can be treated separately and, secondly, by evaluating the mean value
of the force operator [10,11,22,24,26,34,35,37,39,42,44,49–51,62–71]. Because of the delayed response
of the electronic degrees of freedom to the mechanical motion, one should include the so-called
nonadiabatic corrections with the CIFs. This phenomenon is translated into a possible complex
dependency of the CIFs on the velocity of the mechanical degrees of freedom. When the effect of the
mechanical velocities on CIFs can be treated in linear response, it is clear whether it is adequate or not
to assume a constant terminal velocity [22,39,42]. However, in far-from-equilibrium conditions, this
subject has not been fully addressed.

In this article, we discuss two key aspects of far-from-equilibrium quantum motors and pumps:
their steady-state dynamics, especially when CIFs present nontrivial dependencies on the terminal
velocities; and their nonequilibrium thermodynamical properties, when a linear response description
is not enough. We provide a systematic expansion to study the relations between the different energy
fluxes that drive the quantum device. These aspects are illustrated in a concrete example where
nonlinear effects due to nonequilibrium sources play a major role in the steady-state properties
of the system. We show that these nonlinearities may result in, e.g., negative friction coefficients
or motor/pump coexistence regimes.

Our work is organized as follows: In Section 2, we present the general model that describes
the considered type of systems, and we derive an effective Langevin equation that characterizes
the dynamics of the mechanical degrees of freedom, treated classically in the present context.
In Section 3, we discuss in general terms the steady-state dynamics of quantum motors and pumps,
highlighting some key aspects that differentiate close-to and far-from equilibrium conditions.
In Section 4, we derive, on general grounds, the first law of thermodynamics for the kind
of systems treated. Then, we expand the different energy fluxes passing through the system in
terms of the nonequilibrium sources (temperature gradients, bias voltages, and velocities) for an
arbitrary number of reservoirs. In this way, we obtain an order-by-order relation between the different
energy fluxes entering and leaving the device. In Section 5, we perform a derivation of the rate
of entropy production from first principles. Then, based on the second law of thermodynamics,
we discuss the limits of the efficiency for different forms of quantum motors and pumps in general
nonequilibrium conditions. In Section 6, we analyze and give physical interpretation to some
of the relations obtained in Section 4. Finally, in Section 7, we consider the CIFs for strongly-interacting
electrons in a particular example based on a double quantum dot system coupled to a mechanical
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rotor. We then analyze in detail the effects of higher order terms in the CIFs on the final steady state
of the electromechanical system.

2. Current-Induced Forces and Langevin Equation

In this section, we introduce the generic model for the treatment of CIFs and the standard method
employed in the description of the dynamics of the mechanical degrees of freedom. As a starting
point, we consider as the local system the region where electronic and mechanical degrees of freedom
are present and coupled to each other, like the examples shown in Figure 1. Such a local system is
generically modeled by the following Hamiltonian:

Ĥlocal = Ĥs(X̂) +
P̂2

2meff
+ U(X̂, t), (1)

where X̂ = (X̂1, ..., X̂N) is the vector of mechanical coordinates and P̂ = (P̂1, ..., P̂N) collects their
associated momenta, meff is the effective mass related to X̂, and U(X̂, t) represents some external
potential, of a mechanical nature, that may be acting on the local system. The explicit time dependence
on this potential thus emphasizes the fact that an external agent can exert some effective work
on the local system. The Hamiltonian Ĥs includes both the electronic degrees of freedom and their
coupling to the mechanical ones through:

Ĥs(X̂) = ∑
i

Ei(X̂) |i〉 〈i| , (2)

where the sum runs over all possible electronic many-body eigenstates |i〉. The local system is then
coupled to macroscopic reservoirs, and the total Hamiltonian, including the mechanical degrees
of freedom, reads:

Ĥtotal = Ĥlocal + ∑
r

Ĥr + ∑
r

Ĥs,r. (3)

Each lead r is described as a reservoir of noninteracting electrons through the Hamiltonian:

Ĥr = ∑
kσ

εrk ĉ†
rkσ ĉrkσ, (4)

where ĉ†
rkσ (ĉrkσ) creates (annihilates) an electron in the r-reservoir with state-index k and spin projection

σ. As usual, the reservoirs are assumed to be always in equilibrium, characterized by a temperature Tr

and electrochemical potential µr. The coupling between the local system and the r-lead is determined
by the tunnel Hamiltonian:

Ĥs,r = ∑
kσ`

(
tr`d̂†

`σ ĉrkσ + h.c.
)

, (5)

where tr` denotes the tunnel amplitude, assumed to be k and σ independent for simplicity,
and the fermion operator d̂†

`σ (d̂`σ) creates (annihilates) one electron with spin σ in the `-orbital
of the local system. The tunnel-coupling strengths Γr` = 2πρr|tr`|2 then characterize the rate
at which the electrons enter/leave the local system from/to the r-reservoir, where ρr is the density
of states in the r-lead. Note that Ĥs is defined in the eigenstate basis, while Ĥs,r is written in terms
of single-particle field operators. The tunnel matrix elements accounting for transitions between
different eigenstates can then be obtained from linear superpositions of the above tunnel amplitudes [72].

To obtain an effective description of the dynamics of the mechanical degrees of freedom through a
Langevin equation, we start from the Heisenberg equation of motion for the P̂ operator, which yields:

meff
d ˙̂X
dt

+ ∇̂U(X̂, t) = −∇̂Hs(X̂). (6)
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The measured value Ameasured of an observable described by an operator Â can always be
taken as its mean value A = 〈Â〉 plus some fluctuation ξA around it, i.e., Ameasured = A + ξA.
We will work under the nonequilibrium Born–Oppenheimer approximation [13,22,34,35,37,39,49,73,
74] (or Ehrenfest approximation [33,63,75–77]), where the dynamics of the electronic and mechanical
degrees of freedom can be separated and the latter is treated classically. This allows us to neglect the
fluctuations of the terms appearing in the left-hand side of Equation (6) and describe the mechanical
motion only through the mean value X, which is reasonable for large or massive objects. With this
in mind, we obtain the following Langevin equation of motion:

meff
dẊ
dt

+ Fext = F + ξ, (7)

where F = −
〈
∇̂Hs

〉
= i
〈
[Ĥs(X̂), P̂]

〉
and ξ account for the mean value and the fluctuation of the CIF,

respectively (throughout this manuscript, we take h̄ = 1 for simplicity). As we shall see later on,
the external force applied to the mechanical part of the local system, Fext, plays the role of an eventual
“load” force for a quantum motor or a “driving” force for a quantum pump. As this force will be
typically opposed to the CIF, we define Fext with a minus sign for better clarity in future discussions.
The main task, therefore, relies on the calculation of the CIFs from appropriate formalisms capable
of describing the dynamics of the electronic part of the system. Once these forces are calculated,
we can use Equation (7) to integrate the classical equations of motion and obtain the effective dynamics
of the complete electromechanical system.

In most previous works, F is expanded up to first order in Ẋ, i.e., F ≈ F(0) − γ · Ẋ. The resulting
CIF is then the sum of an adiabatic contribution F(0) and its first nonadiabatic correction F(1) = −γẊ,
respectively. Under this approximation, Equation (7) turns into:

meff
dẊ
dt

+ Fext = F(0) − γ · Ẋ + ξ. (8)

Explicit formulas for the calculation of F(0), γ, and ξ in terms of Green functions and scattering
matrices were derived in [10,11,34,35,37] and extended in [22,39] to account for decoherent events.
Although these expressions were obtained in the context of noninteracting particles, they can be used
in effective Hamiltonians derived from first principles calculations [62,64]. In [49–51], the CIFs
were obtained from the Floquet–Green’s function formalism. The role of Coulomb interactions was
addressed through different formalisms and methods like, e.g., many-body perturbation theory based
on nonequilibrium Green’s functions [44]; modeling the system as a Luttinger liquid [24]; and using
a time-dependent slave-boson approximation [26]. In [42], explicit expressions for the CIFs within
the Coulomb blockade regime of transport were obtained using a real-time diagrammatic approach [78],
which we present in more detail in Section 7 when considering the example of Figure 1c.

3. Mechanical Steady State

In this paper, we will restrict ourselves to systems that perform overall cyclic motions.
Immediate examples are shown in Figure 1a,c, where the rotation angle of the rotor can be assigned
as the natural mechanical coordinate. On the other hand, the examples shown in Figure 1b,d
may also, under certain circumstances, sustain cyclic motion, though the general coordinate could
be not so obvious. As a possibility for the quantum shuttle of Figure 1b, the cyclic motion would
involve a cyclic reversal of the bias voltage (AC-driven). This AC-driven case, though intriguing,
goes beyond the scope of the present manuscript, as we are not considering here time-dependent
biases. Another scenario would be that of Figure 1d, where the cyclic motion is in principle
attainable by periodically hitting the device. Note that we are not dealing with the steady-state
of sets of interacting nanomotors, such as those described in, e.g., [79–81]. Instead, here we are
interested in the steady-state of the mechanical part of isolated quantum motors and pumps that
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interact solely with the electrons of a set of reservoirs and where, at most, Coulomb interactions are
only taken into account within the local system.

To discuss the dynamics of cyclic motions in simple terms, we start by projecting Equation (7)
on a closed trajectory defined in the space of X. By assuming a circular trajectory, the dynamics can be
described by an angle θ, its associated angular velocity θ̇, the moment of inertia I , and the torques F ,
Fext, and ξθ . Using this, we obtain an effective angular Langevin equation equivalent to Equation (7),

dθ̇

dt
=

1
I [F −Fext + ξθ ] . (9)

We assume that after a long waiting time, the system arrives at the steady-state regime where
the mechanical motion becomes periodic, and it is then characterized by a time period τ such that
θ(t + τ) = θ(t) and θ̇(t + τ) = θ̇(t). Moreover, we will assume that the stochastic force plays a minor
role in the above equation, such that it does not affect the mean values of the dynamical variables
θ and θ̇, i.e., the mean trajectories with or without the stochastic force approximately coinciding.
This occurs, for example, at low temperatures or in mechanical systems with a large moment
of inertia [22,39,42]. In the following, we will just ignore ξθ for practical purposes (this is the opposite
regime of another type of nanomotors, the Brownian motors [1,82]). Under the above assumptions, we
integrate both sides of Equation (9) from an initial position θi to a final one θ f and obtain:

I
2

[
θ̇2

f − θ̇2
i

]
=

∫ θ f

θi

[F −Fext]dθ. (10)

The torques in this equation are, in general, intricate functions of both θ and θ̇.
Therefore, the calculation of the θ-dependent angular velocity usually requires the resolution

of a transcendental equation (see, e.g., [42]). Alternatively, one can obtain θ(t) from the numerical
integration of the equation of motion by standard techniques like, e.g., the Runge–Kutta method.
All this greatly complicates the study of quantum motors and pumps, to the point where it becomes
almost impossible to draw any general conclusion. For this reason, one common simplification
consists of taking the terminal velocity as constant during the whole cycle [13,22,24,26,39,49–51,56,74].
Indeed, this description is exact if the external agent compels the constant velocity condition to be
fulfilled in a controllable manner, as is often conceived in quantum pumping protocols. However,
this is not the case in general, and typically, one expects internal variations for θ̇ in one period. We
now address this interesting issue in more detail. First, we take the integral in Equation (10) over the
whole period. This gives:

Wext =WF, where WF =
∫ τ

0
F θ̇ dt, and Wext =

∫ τ

0
Fext θ̇ dt. (11)

The above stationary state condition thus establishes that the work originated from the CIF
is always compensated by the external mechanical work in the case that this regime can be reached.
Now, let us assume for a moment that the terminal velocity of a nanodevice is constant and positive
(we leave the discussion of the effect of the sign of θ̇ for later when treating a concrete example
in Section 7.1). If we now expand F in terms of θ̇, Equation (11) yields:

Wext = ∑
k

(∫ 2π

0

∂kF
∂θ̇k

∣∣∣∣∣
θ̇=0

dθ

k!

)
θ̇k. (12)

Two important conclusions can be extracted from the above formal solution. First, there may be
conditions where some roots of Equation (12) are complex numbers, meaning that the assumption
θ̇ = const. is nonsense, as the periodicity condition required for the steady-state regime would not be
fulfilled. Second, for real solutions, it was shown in [22,42] that the moment of inertia I not only affects
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the time that it takes the mechanical system to reach the stationary regime, but also the internal range
in the angular velocity, i.e., the difference ∆θ̇ = θ̇max − θ̇min in one period. According to Equation (12),
θ̇ is independent of I , while the variation of θ̇ scales with I−1, cf. Equation (10). Then, the ratio ∆θ̇/θ̇,
which is the relevant quantity in our analysis, should vanish for large I values, justifying the constant
velocity assumption for large or massive mechanical systems.

The value of Fext is supposed to be controllable externally, as well as the voltage and temperature
biases, which, in turn, affect the current-induced torqueF . Therefore, under the above discussed conditions,
θ̇ can be thought as a parameter that surely depends on the internal details of the system, but it is also tunable
by external “knobs”. Let us analyze a concrete example: Consider a local system connected to two leads
at the same temperature and with a small bias voltage eV = µL − µR. By considering the current-induced
torque up to its first nonadiabatic correction, i.e., F ≈ F (0) − γθ̇, and assuming that Fext is independent
of θ̇, the following relation must hold, according to the above discussion,

θ̇ ≈
QIR

2πγ̄

(
V − Wext

QIR

)
=

QIR Veff

2πγ̄
, (13)

where γ̄ is the average electronic friction coefficient along the cycle, QIR is the pumped charge
to the right lead, and we used Onsager’s reciprocal relation between F and the charge current IR
in the absence of magnetic fields [22,39,42,49]. Alternatively, if we assume that the external torque
is of the form Fext = γextθ̇, one finds:

θ̇ ≈
QIR V

2π

1
(γ̄ + γ̄ext)

=
QIR V
2πγeff

. (14)

Note in the above equations that, at least in the present order, the effect of the external forces can be
described as a renormalization of the bias voltage V or the electronic friction coefficient γ. Numerical
simulations in [22,42] showed that the above equations agree well in general with the steady-state
velocities found by integrating the equation of motion. However, at very small voltages, essential
differences may appear. There is a critical voltage below which the dissipated energy per cycle cannot
be compensated by the work done by the CIF, and thus, θ̇ = 0. We dubbed this the “nonoperational”
regime of the motor. Moreover, when increasing the bias voltage, there is an intermediate region
where a hysteresis cycle appears, and two values of the velocity are possible (θ̇ = 0 and those given
by the above equations). Although in Section 7.1, we will take θ̇ as constant when discussing a specific
example, the reader should keep in mind that this approximation does not always hold, especially at
very small voltages or I .

4. Order-by-Order Energy Conservation

In the previous sections, we introduced and discussed the role of the mechanical degrees
of freedom, emphasizing certain parameter restrictions, which allowed for the simplification
in their dynamics. In this section, we are going to derive, on general grounds, essential relations
between the electronic and mechanical degrees of freedom from the point of view of energy
conservation. Importantly, we will focus on systematic expansions beyond the standard linear regime
of nonequilibrium sources like, e.g., the mechanical velocity, the bias voltage, and the temperature
gradient in systems composed by an arbitrary number of reservoirs.

As already pointed out, we are treating the mechanical degrees of freedom classically, such that
their effect on the electronic degrees of freedom enters as a parametric dependence in the electronic
part of the total Hamiltonian, which now reads:

Ĥ = ∑
r

Ĥr + Ĥs + ∑
r

Ĥs,r. (15)
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The mechanical part of the local system, when treated classically in Equation (7), introduces an explicit
time dependence into Ĥs that, in turn, makes d 〈Ĥ〉/dt 6= 0. According to the above Hamiltonian,
the total internal energy of the electronic system, U = 〈Ĥ〉, can be split into energy contributions from
the reservoirs, the local system, and the tunnel couplings. The time variation of the internal energies
associated with the different partitions of the system is:

U̇β = JE
β +

〈
∂Ĥβ

∂t

〉
, where JE

β = i 〈
[
Ĥ, Ĥβ

]
〉 (16)

which is the mean value of the energy flux entering in the subsystem β = {r, (s, r), s}. The value of
〈∂tĤβ〉 is zero when we evaluate the energy flux in the reservoirs and the tunnel couplings, but equals
−ẆF when β is evaluated in the local system. Although, strictly speaking,WF is time independent
when considering a closed trajectory, we used the symbol ẆF to denote the power delivered by the CIF,
i.e., ẆF = − 〈∂tĤs〉 = F · Ẋ. The latter comes from the definition of the CIF given in Equation (7). Note
that the energy fluxes fulfill the condition ∑r(JE

r + JE
s,r) + JE

s = 0. Therefore, the variation of the total
internal energy of the electrons yields the following conservation rule:

U̇ = ∑
r

U̇r + ∑
r

U̇s,r + U̇s = ∑
r

(
JE
r + JE

s,r

)
+ JE

s − ẆF = −ẆF. (17)

Conservation of the total number of particles implies a relation between the particle currents
of the reservoirs Ṅr and that of the local system Ṅs:

Ṅtotal =
d
dt
〈N̂total〉 = ∑

r

d
dt
〈N̂r〉+

d
dt
〈N̂s〉 = 0 ⇒ ∑

r
Ṅr = −Ṅs. (18)

This is so since no particle can be assigned to the coupling region. Now, let us assume
the system is in the steady-state regime and integrate Equation (17) over a time period τ of the cyclic
motion. Under this condition, the above-defined local quantities only depend periodically on time,
i.e., Us(t + τ) = Us(t), Us,r(t+ τ) = Us,r(t), and Ṅs(t+ τ) = Ṅs(t). Therefore, the following quantities
should evaluate to zero, i.e.,∫ τ

0
U̇s,r dt = 0,

∫ τ

0
U̇s dt = 0, and

∫ τ

0
Ṅs dt = 0, (19)

as these are integrals of a total derivative of some periodic function. This means that no energy
(or particles) is accumulated/extracted indefinitely within the finite regions defined by the local system
or its coupling to the leads. Equation (19) can be used together with Equation (18) to prove the charge
current conservation between reservoirs, ∑r

∫ τ
0 Ir dt = 0, where the charge current of the r reservoir

is defined as Ir = eṄr, with e > 0 being minus the electron’s charge.
We will take the following definition for the heat current Jr in the reservoir r:

Jr = JE
r − µr Ṅr. (20)

In [43,50,83], the authors proposed a different definition for the heat current of the reservoirs, Jr =

JE
r +

(
JE
s,r/2

)
− µr Ṅr. However, the inclusion or not of half the heat current of the coupling region,(

JE
s,r/2

)
, does not make any difference in the present paper, as this quantity integrates to zero over a

cycle, Equation (19), and does not contribute to the rate of entropy production, as we will see in the
next section, Equation (30). Replacing Equation (20) in Equation (17) and integrating over a period
result in:

∑
r

(
QJr + QIr δVr

)
= −WF, where QJr =

∫ τ

0
Jr dt, and QIr =

∫ τ

0
Ir dt, (21)
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where δVr = (µr − µ0)/e and µ0 is an arbitrary reference’s potential. We, in addition, defined
the quantities QJr and QIr , which are, respectively, the total heat and charge pumped to reservoir r
in a cycle. Note that in the above equation, we used conservation of the total charge.

Before we continue, we would like to emphasize that the periodic motion imposed
by the steady-state regime can be further exploited to reduce the number of mechanical coordinates
to an effective description of the CIF. In principle, one can always recognize a generalized coordinate χ,
which parameterizes the closed mechanical trajectory. This, for example, can be accounted for by taking
χ = Ω mod(t, τ), such that χ̇ = Ω = 2π/τ. In other words, one can always find a natural scale,
Ω in the present case, for all mechanical velocities along the trajectory. We will take this natural
scale as the expansion variable for the CIF. The current-induced work then readsWF =

∫ τ
0 FΩ Ω dt,

where FΩ = F · ∂χX. Of course, with this χ-parameterization, the velocity is constant by definition,
but at the expense that now the calculation of FΩ requires the knowledge of the mechanical trajectory.
For circular trajectories and the conditions discussed in Section 3, the coordinate χ would be |θ|.
For other cases, it would not be that simple to find χ, and one should first solve the system’s equation
of motion.

In addition to the mechanical velocity Ω, the CIF and the currents can also be expanded in terms
of the remaining nonequilibrium sources, corresponding to voltage and temperature deviations
δV = (δV1, δV2, ...)T and δT = (δT1, δT2, ...)T, respectively, from their equilibrium values Veq and Teq.
For an arbitrary observable R, this general expansion takes the form:

R = ∑
|α|≥0

Rα = ∑
|α|≥0

(Ω, δV , δT)α

α!
(∂αR)eq , (22)

where we used the following multi-index notation: α =
(
nΩ, nV1 , ..., nT1 , ...

)
; α! = nΩ!nV1 !...nT1 !...;

(Ω, δV , δT)α = ΩnΩ δV
nV1
1 ...δT

nT1
1 ...; and:

∂α =
∂(nΩ+nV1+...nT1+...)

∂ΩnΩ ∂V
nV1
1 ...∂T

nT1
1 ...

. (23)

This, in turn, allowed us to recognize in the integral quantities of Equation (21) the following
expansion coefficients:

Wα
F =

∫ τ

0
Fα

ΩΩdt, Qα
Jr
=
∫ τ

0
Jα
r dt, and Qα

Ir
=
∫ τ

0
Iα
r dt, (24)

where Fα
Ω, Jα

r , and Iα
r all have the form given by Equation (22). To find a consistent order-by-order

conservation relation from Equation (21), we should first note that the involved terms enter in different
orders: Wα

F contains an additional Ω from the time-integral as compared with the pumped currents,
while the term Qα

Ir
δVr is one order higher in δVr than the other two. Therefore, the following relation

must hold for every order α of the expansion:

Qα
J · 1 + Qα(V)

I · δV = −Wα(Ω)
F , (25)

where 1 = (1, 1, ...)T, Qα
J = (Qα

J1
, Qα

J2
, ...), Qα(V)

I = (Qα(V1)
I1

, Qα(V2)
I2

, ...), and we used the shorthand
α(Ω) = (nΩ − 1, nV1 , ..., nT1 , ...) and α(Vr) = (nΩ, nV1 , ..., nVr − 1, ..., nT1 , ...). Equation (25) results in
being important for a systematic study of far-from-equilibrium systems, as it helps to rationalize
how every order of the expansion of an energy flux is connected with the others. The equation is
completely general and valid for any value of the relevant quantities Ω, δV , and δT. Importantly,
the above conservation rule can be extended to other nonequilibrium sources like, e.g., spin polarization
in ferromagnetic leads, such that other types of currents could also be considered in the energy transfer
process between the electronic and mechanical parts of the system.
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5. Entropy Production And Efficiency

In 1865, Rudolf Clausius proposed a new state function, the thermodynamic entropy S, that turned
out to be crucial to study the limits and the efficiency of different physical processes. The thermodynamic
entropy is defined as the amount of heat δQJ that is transferred in a reversible thermodynamic
process, δS = δQrev/T. Here, we are assuming that each reservoir r is in its own equilibrium
at a constant temperature Tr and chemical potential µr (we are not going to treat time-dependent Tr or µr).
As the reservoirs are considered to be macroscopic, the aforementioned equilibrium state is not altered
by the coupling to the local system. This assumption allows us to associate the reservoirs’ heat flux with
the variation in their thermodynamic entropy, i.e., δQJr = TrδSr. Therefore, from Equation (16) and the
definition of the heat current given in Equation (20), we can write:

U̇r = TrṠr + Ṅrµr. (26)

The information theory entropy, known as the Shannon or von Neumann entropy, times the Boltzmann
constant equals the thermodynamic entropy for equilibrium states. There is a debate on whether this
equality can be extended to nonequilibrium states; see, e.g., [84–86]. However, for the purpose of this
article, only the change of the entropy of the reservoirs is needed, not that of the system. Besides, we
will not need to evaluate the entropy from the density matrix. Therefore, the thermodynamic definition
of entropy suffices in our case.

Now, let us consider the sum of the internal energy over the set of all reservoirs coupled
to the local system,

∑
r

U̇r = ∑
r

TrṠr + ∑
r

Ṅrµr. (27)

If we take Tr = δTr + T0 and µr = µ0 + δµr, add and subtract the change of the internal energy
of the local system U̇s and that of the couplings between the local system and the reservoirs ∑r U̇s,r,
one can rearrange the above equation to the following:

T0 ∑
r

Ṡr =

(
U̇s + ∑

r
U̇r + ∑

r
U̇s,r

)
−∑

r
Ṅrδµr −∑

r
ṠrδTr −

(
U̇s + ∑

r
U̇s,r

)
− µ0

(
∑

r
Ṅr

)
. (28)

Note that the values of µ0 and T0 are completely arbitrary, and there is no need to identify them
with the chemical potential and temperature of the central region, which can be ill-defined far from
equilibrium.

Replacing Ṡr by = Jr/Tr in the right-hand side of the above equation, using energy conservation (17)
and particle number conservation (18), allows one to rewrite Equation (28) as:

T0Ṡres = −FΩΩ−∑
r

IrδVr −∑
r

Jr

(
δTr

Tr

)
−
(

U̇s + ∑
r

U̇s,r

)
+ µ0Ṅs, (29)

where Ṡres = ∑r Ṡr is the variation of the entropy of the electrons of all reservoirs, and we used eṄr = Ir.
The CIF can be split into “equilibrium” and “nonequilibrium” terms, F(eq) and F(ne), respectively,
where one can prove that F(eq) is always conservative [13,22,42,63]. We are interested in the steady-state
situation of our local system. As discussed around Equation (19), the change of the internal energy
of the electronic part of the local system and that of the coupling region must be zero after a cycle,
as energy cannot be accumulated indefinitely within a finite region. The same argument is true for
the number of particles accumulated in a cycle, which should be zero. At steady state, we therefore
recognize the reversible component of the entropy variation as that given by:

Ṡ(rev)
res = − 1

T0

(
F(eq)

Ω Ω + U̇s + ∑
r

U̇s,r − µ0Ṅs

)
. (30)
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Obviously, this quantity will not contribute to the total entropy production. Therefore, the rate
of entropy production Ṡ(irrev)

res yields:

Ṡ(irrev)
res = − 1

T0

(
F(ne)

Ω Ω− I · δV − J · δT
)

, (31)

where δT = (δT1/T1, δT2/T2, ...)T, and the currents are defined through I = (I1, I2, ...)
and J = (J1, J2, ...). Integrating Equation (31) over a cycle and taking into account the second law
of thermodynamics, one finds:

0 ≥ WF + QI · δV + QJ · δT . (32)

The above general formula, also valid far from equilibrium, can be used to set efficiency bounds
for energy transfer processes between the electronic and mechanical degrees of freedom. For example,
if we take δT = 0, QI · δV < 0, andWF > 0, then the system should operate as a nanomotor driven
by electric currents, and the following relation holds:

1 ≥ − WF
QI · δV

, (33)

while for QI · δV > 0 andWF < 0, the system operates as a charge pump, and Equation (32) implies:

1 ≥ −QI · δV
WF

. (34)

Notice that, because of the steady-state condition, WF equals Wext, where Wext can be taken
as the output or the input energy, depending on the considered type of process. Therefore, the above
formulas describe the efficiency η of the device’s process, defined as the ratio between the output
and input energies per cycle. It is also interesting to note that the above equations reflect no more
than energy conservation in this particular case. A different situation occurs for δV = 0 and δT 6= 0,
where Equation (32) yields:

1 ≥ − WF
QJ · δT

, and 1 ≥ −
QJ · δT
WF

. (35)

The first equation thus corresponds to a quantum heat engine and the second one to a quantum
heat pump, respectively. Now, because of the factor δT , the above formulas differ from
what is expected from energy conservation solely. This is clear in a two-lead system, where η is limited
by Carnot’s efficiency of heat engines and refrigerators, respectively. To illustrate this, let us consider
a hot and a cold reservoir and set the temperature of the cold reservoir as the reference. For the heat
engine, this gives:

QJ · δT = QJhot

(
1− Tcold

Thot

)
< 0 ⇒

(
1− Tcold

Thot

)
≥ − WF

QJhot

, (36)

where the left-hand side of the second equation represents the Carnot limit for heat engines.
Other energy transfer processes mixing voltage and temperature biases can also be analyzed
in the context of Equation (32) to set the bounds of their associated efficiencies.

6. Pump-Motor Relations

It is clear from Equation (25) that there is an infinite number of relations that can be used
to connect the pumped heat or charge and the work done by the CIF. In this section, we give some
physical interpretation to the leading orders in the general expansion, which highlights the utility
of Equation (25).



Entropy 2019, 21, 824 12 of 30

We start from the order-by-order relations by taking |α| = 0. Importantly, Equation (25) with |α| = 0
seems to impose the evaluation of terms with negative coefficients. For example, in the exponent of QI ,
one would be tempted to evaluate α(V1) = (0,−1, 0, 0...), but this term is not defined in the expansions
of Equation (24), and then, it should be taken as zero. Therefore, Equation (25) yields,

Q0
J · 1 = ∑

r

∫ τ

0
(Jr)eq dt = 0. (37)

This simply reflects the fact that no net heat current occurs at equilibrium. For |α| = 1, all relations
are summarized in the following three cases:

∑
r

∫ τ

0

(
∂Jr

∂Ω

)
eq

Ω dt = 0, ∑
r

∫ τ

0

(
∂Jr

∂Vi

)
eq

δVi dt = 0, and ∑
r

∫ τ

0

(
∂Jr

∂Ti

)
eq

δTi dt = 0, (38)

where we used the fact that equilibrium forces are conservative [13,22,42,50,63], i.e.,
∫ τ

0 F(eq)
Ω Ωdt = 0,

and that there are no net charge currents in equilibrium, thus
∫ τ

0 (Ir)eqdt = 0. The above relations
mean that, at first order, there is a conservation of pumped heat between reservoirs. For |α| = 2,
there are many relations and cases, but we restrict ourselves to only a few of them. For nΩ = 2, nVi = 0,
and nTj = 0, Equation (25) gives:

∑
r

τ∫
0

Ω2

2

(
∂2 Jr

∂Ω2

)
eq

dt = −
τ∫

0

(
∂FΩ

∂Ω

)
eq

Ω2dt. (39)

Now, the quantity (∂ΩFΩ)eq is minus the electronic friction coefficient at equilibrium. Therefore,
this relation shows that the energy dissipated as friction in the motor is delivered as heat
to the reservoirs; more precisely, as a second-order pumped heat. For nΩ = 0, nVi = 1, nVj = 1,
and nTk = 0, Equation (25) yields:

∑
r

τ∫
0

δViδVj

(
∂2 Jr

∂Vi∂Vj

)
eq

dt = −2
τ∫

0

δViδVj

(
∂Ii
∂Vj

)
eq

dt, (40)

where we used Onsager’s reciprocity relation (∂Vj Ii)eq = (∂Vi Ij)eq [42,49]. The quantities (∂Vj Ii)eq

are the linear conductances in the limit of small bias voltages. Therefore, this relation shows that
these leakage currents, defined as those currents that cannot be used to perform any useful work,
are also dissipated as heat in the reservoirs, a phenomenon known as Joule heating or the Joule
law [27,43,50,83]. Finally, for nΩ = 1, nVi = 1, and nTk = 0, Equation (25) results in:

∑
r

τ∫
0

ΩδVi

(
∂2 Jr

∂Ω∂Vi

)
eq

dt +
τ∫

0

Ω
(

∂Ii
∂Ω

)
eq

δVidt = −
τ∫

0

δVi

(
∂FΩ

∂Vi

)
eq

Ωdt. (41)

Now, using Onsager’s reciprocity relation (−∂Vi FΩ)eq = (∂Ω Ii)eq [22,39,42,49], one finds that the
first term in the left-hand side of the above equation vanishes, which is an unexpected conservation
relation for this second-order pumped heat. We remark that the utility of Equation (25) relies on the
fact that it provides a physical interpretation for the connection between different order contributions
that participate in the energy conservation rule. One can continue analyzing the other relations for
|α| = 2 and beyond, but the number of relations and cases grows very fast with |α|, and each relation
may have its own physical interpretation. The study of higher-order terms in |α|may result in being
useful when addressing particular nonlinear effects in the involved energy currents. However, for the
purpose of the present article, we believe that the above analysis is enough to illustrate the approach
proposed by Equation (25) regarding multi-index expansions.
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As the full dynamics of the complete system typically involves a formidable task, many methods
in quantum transport treat this problem through a perturbative expansion in Ω. This is the case
of the real-time diagrammatic theory we use in Section 7, where the effective dynamics of the electronic
part of the system is described through a perturbative expansion in the characteristic frequency
of the driving parameters (which in our case is modeled by the mechanical system), while the voltage
and temperature biases are treated exactly. In this case, the expansion in Ω comes naturally from
the theory itself. In situations like this, it may result in being more useful to simplify the expansions
by restricting ourselves to those nonequilibrium sources whose perturbative treatment is inherent
to the formalism used, as in [42,87].

Regarding the above discussion, we now use Equation (25) to describe how the different energy
contributions are linked in an Ω expansion provided by the theory. The zeroth order terms in Ω reads:

Q(0)
J · 1 + Q(0)

I · δV = 0. (42)

This equation shows that the total amount of heat delivered by the leads comes from the bias
voltage maintained between them. Its interpretation is similar to that of Equation (40). The heat term
can be associated with the leakage energy current, i.e., the energy flowing from source to drain leads
without being transferred to the local system. The next order in this expansion yields:

Q(1)
J · 1 + Q(1)

I · δV = −W (0)
F , (43)

and can be understood as a generalization of the motor–pump relation, Q(1)
I · δV ≈ −W (0)

F ,
discussed in [13] for arbitrary bias voltages and temperature gradients. Therefore, according
to Equation (43), deviations of the mentioned relation at finite voltages are due to the pumped heat
induced by the mechanical motion of the local system. When we evaluate the currents in equilibrium
by setting δV = 0 and δT = 0, Equation (38) impliesW (0)

F = 0, meaning that no external work is done
in a cycle, and the pumped energy from the leads can again be considered as a leakage current since
no net effect on the mechanical system is performed. If, on the other hand, some bias is present
(either thermal or electric), the energy transfer from the leads to the local system imprints a mechanical
motion, which in turn, produces some useful work. The second-order term in Ω gives:

Q(2)
J · 1 + Q(2)

I · δV = −W (1)
F , (44)

and generalizes Equation (39) to finite voltage and temperature biases. The right-hand side
of Equation (39) can be interpreted as the dissipated energy of the mechanical system, which is
delivered to the electronic reservoirs. However, in the above equation,W (1)

F is not guaranteed to be
always negative, and from the point of view of the mechanical system, this can be interpreted as a
negative friction coefficient.

Now, we return to the multi-variable expansion of the energy currents to establish which orders
should be considered in a consistent calculation of the efficiency of quantum motors and pumps.
Assuming that in Equation (25), we take |α| up to some truncation value αmax, the order-by-order
scheme implies that, for example, the efficiency of the electrically-driven quantum motor should
be given by:

η = −
∑αmax
|α|=0W

α(Ω)
F

∑αmax
|α|=0 Qα(V)

I · δV
. (45)

To illustrate this, let us take the case of a local system coupled to left and right reservoirs
at voltages VL and VR, respectively. We assume the leads are at the same temperature, and we
set δVL = −δVR = δV/2 as the voltage biases. Depending on which kind of expansion we take,
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one can obtain different expressions for the efficiencies. On the one hand, when expanding in terms
of δV = VL −VR and Ω up to αmax = 2, the above general expression yields:

η = −
W (0,0)

F +W (1,0)
F +W (0,1)

F(
Q(0,0)

I + Q(1,0)
I + Q(0,1)

I

)
δV

= −
W (1,0)

F +W (0,1)
F(

Q(1,0)
I + Q(0,1)

I

)
δV

, (46)

where the superscripts indicate the order in the expansions in Ω and δV, respectively, and we defined
I = (IL − IR)/2. As we already mentioned, the zeroth order contributionsW (0,0)

F and Q(0,0)
I are simply

zero as they correspond to the work done by the conservative part of the CIF and the equilibrium
charge current, respectively. On the other hand, when performing an expansion up to αmax = 2 but
only in terms of Ω, Equation (45) turns into:

η = −
W (0)

F +W (1)
F(

Q(0)
I + Q(1)

I + Q(2)
I

)
δV

, (47)

where now W (0)
F and Q(0)

I are nonzero in general, since they are not necessarily evaluated
at equilibrium. Although we here restricted ourselves to the efficiency of a nanomotor driven by electric
currents, its extension to other operational modes of the device can be obtained from Equation (32)
in a similar way to that of Equation (45). This procedure then allows us to obtain efficiency expressions
for arbitrary expansions in the nonequilibrium sources, which could be useful in the evaluation
of the device’s performance far from equilibrium.

7. Quantum Motors and Pumps in the Coulomb Blockade Regime

In this section, we consider the CIFs in the so-called Coulomb blockade regime of transport. In this
regime, the strong electrostatic repulsion that takes place inside a small quantum dot (usually taken
as the local system) highly impacts the device’s transport properties, as for small bias voltages,
no additional charges can flow through the dot and the current gets completely blocked. The full system
dynamics in this strongly interacting regime cannot be described by, e.g., the scattering matrix approach,
and one needs to move to some other theoretical framework. A suitable methodology is given by
the real-time diagrammatic theory [78], which allows for an effective treatment of the quantum dot
dynamics by performing a double expansion in both the tunnel coupling between the dot and the leads
and the frequency associated with the external driving parameters. Since then, many extensions
and application examples appeared in the context of quantum pumps [12,57–59,87–94] and quantum
motors [42].

To lowest order in the tunnel coupling, the dot’s reduced density matrix obeys the following
master equation:

d
dt

p = W p, (48)

where the vector p = {pi(t)} describes the dot’s occupation probabilities and W is the evolution
kernel matrix accounting for the transition rates between the quantum dot states, due to its coupling
to the leads. In the context of CIFs, we assume that the time scale of the mechanical motion,
characterized by Ẋ, is large as compared to the typical dwell time of the electrons in the local system.
This allows for an expansion of the reduced density matrix as p = ∑k≥0 p(k), with p(k) of order (Ω/Γ)k.
Here, Ω and Γ denote the characteristic scales for the velocity of the mechanical degrees of freedom
and the tunnel rate of the electronic system, respectively, and we always assume Ω < Γ. The above
master equation, in turn, takes the following hierarchical structure [12,78]:

W p(0) = 0, and W p(k) =
d
dt

p(k−1). (49)
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In the first equation, p(0)(X) represents the steady-state solution the electronic system arrives
at when the mechanical system is “frozen” at the point X. As the mechanical coordinate moves
in time, this order corresponds to the adiabatic electronic response to the mechanical motion.
This needs not to be confused with the steady-state regime of the mechanical system, which obviously
takes a much longer time to be reached. The second equation contains higher-order nonadiabatic
corrections p(k)(X, Ẋ) due to retardation effects in the electronic response to the mechanical motion.
In all these equations, the matrix elements of the kernel are of zeroth order in the mechanical velocities,
i.e., W = W(X). The normalization condition on the dot’s density matrix implies eT p(k) = δk0, with eT

the trace over the dot’s Hilbert space. This allows for the definition of an invertible pseudo-kernel W̃ ,
whose matrix elements are W̃ij = Wij −Wii, such that we can write:

p(k) =

[
W̃−1 d

dt

]k
p(0). (50)

Once we know the different orders of the reduced density matrix, it is possible to compute
the expectation value of any observable R after calculation of its corresponding kernel W R. This implies
the same expansion as before, and it reads:

R(k) = eTW R p(k). (51)

The observables we are going to address here are the charge and heat currents Ir and Jr associated
with the r lead and defined in Section 4. In lowest-order in tunneling and under the assumption that
coherences are completely decoupled from the occupations, it is possible to obtain simple expressions
for the current kernels in terms of the number of particles ni and energy Ei associated with the dot
state |i〉 [87,95]:

W Ir
ij = −e(ni − nj)[Wr]ij, W Jr

ij = −
[
Ei − Ej − µr(ni − nj)

]
[Wr]ij. (52)

The CIF was derived in Section 2 under the assumption that the mechanical part of the system,
characterized by coordinates X and associated momenta P, only interacts with local parameters
of the quantum dot through their many-body eigenenergies, cf. Equation (2). This implies that
the ν-component of the CIF operator, defined as F̂ν = −∂Ĥs/∂Xν, is local in the quantum dot basis.
For this local operator, then, we can simply define a diagonal kernel of the form:

WFν
ij = − ∂Ei

∂Xν
δij, (53)

such that Equation (51) gives the k order in the Ω expansion for any observable. Importantly,
when adding up all contributions from the leads, the above kernel definitions, together with the sum
rule ∑i Wij = 0, lead to the following conservation rule for all orders in Ω [87]:

∑
r

J(k)r = − d
dt
〈Ĥs〉

(k−1) − F(k−1) · Ẋ −∑
r

µr

e
I(k)r . (54)

This equation, equivalent to (17), thus expresses the first principle of thermodynamics,
which in this case relates the total heat flowing from/into the leads with the variation of the internal
energy of the dot and the power contributions due to both mechanical and electrochemical external
sources. By considering a system coupled to two reservoirs L and R, with periodic motion characterized
by a time period τ, and taking the time integral of the above equation, we recover the frequency
expansion of Equation (25):

Q(k)
J + Q(k)

I δV = −W (k−1)
F , (55)
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where the bias voltage δV is defined through µL = −µR = eδV/2, QJ = QJL + QJR

and QI = (QIL −QIR)/2. The sign convention employed here implies, for example, that if the left-hand
side of Equation (55) is positive, then there is some amount of energy entering into the leads in one
cycle, and work is being extracted from the local system.

7.1. Example: Double Quantum Dot Coupled to a Rotor

In this section, we illustrate the discussions of the previous sections in a concrete example
based on a double quantum dot (DQD) system locally coupled to a mechanical rotor (see Figure 1c).
We assume a capacitive coupling between the dots and the fixed charges in the rotor such that no charge
flows between the two subsystems. The DQD system is described as in [42,87,89],

Ĥs = ∑
`=L,R

ε`n̂` + Un̂Ln̂R +
U′

2 ∑
`=L,R

n̂`(n̂` − 1)− tc

2

(
d̂†

Lσ d̂Rσ + h.c.
)

, (56)

where ε` is the on-site energy and n̂` = ∑σ d̂†
`σ d̂`σ the number operator in the `-dot, U and U′ the inter-

and intra-dot charging energies, respectively, and tc the interdot hopping amplitude. We will work
in the strong coupling regime tc � Γ, such that non-diagonal elements (coherences) in the reduced
density matrix are decoupled from the diagonal ones (occupations) and can be disregarded in first
order in tunneling. To simplify the analysis (by reducing the number of states in the two-charge block),
we work in the limit U′ → ∞, such that double occupation in a single dot is energetically forbidden.

Diagonalization of the above DQD Hamiltonian yields the bonding (b) and antibonding
(a) basis for the single-electron charge block, and the reduced density matrix
reads p = (p0, pb↑, pb↓, pa↑, pa↓, p↑↑, p↑↓, p↓↑, p↓↓)T. These elements thus denote the probability
for the DQD to be either empty (p0), occupied by one electron in the ` = b (or a) orbital with spin σ

(p`σ), or by two electrons (pσσ′ ), one of them in the left dot and with spin σ and the other electron in
the right dot and with spin σ′. The many-body eigenenergies are therefore E0 = 0 for the empty DQD,

Eb/a =
εL + εR

2
∓

√(
εL − εR

2

)2
+

(
tc

2

)2
(57)

for single occupation in the bonding or the antibonding orbital and E2 = εL + εR + U for the
doubly-occupied DQD, respectively.

To account for the coupling between the electronic and mechanical degrees of freedom, we take
as the mechanical coordinate the angle θ describing the orientation of the rotor axis. We assume the
following dependence through the on-site energies:

εL(θ) = ε̄L + λxL = ε̄L + δε cos(θ), and εR(θ) = ε̄R + λxR = ε̄R + δε sin(θ), (58)

which defines a circular trajectory in energy space of radius δε = λr0 (r0 measures the actual radius
of the rotor) around the working point (ε̄L, ε̄R). For simplicity, in what follows, we will focus
on the tangential component of the force only, by assuming that the radial component is always
compensated by internal forces in the rotor (e.g., fixed charges along the rotor’s axis). By applying
this form in Equation (7), we obtain the equation of motion (9) for the angular velocity θ̇, where:
I = meffr2

0 is the rotor’s moment of inertia, F = ∑i(−∂θEi)pi = r0F · θ̂ is the current-induced
torque, Fext is the torque produced by the external force, which is assumed to be constant along the
whole trajectory, and ξθ accounts for the force fluctuations. The stationary regime is reached once
the rotor performs a periodic motion (characterized by a time period τ) with no overall acceleration,
i.e., when Equation (11) is fulfilled. We show in Figure 2 some examples of the evolution of the rotor’s
angular velocity for different initial conditions. This is plotted as a function of the number of cycles
performed by the rotor, instead of time, to unify scaling along the horizontal axis. Here, we take
a sufficiently large moment of inertia such that the variation ∆θ̇ over one period is small as compared
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to the average value of θ̇ in one cycle. This, in turn, implies a large number of cycles for the rotor
to reach the steady-state regime.
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Figure 2. Evolution of the rotor’s angular velocity (average over cycle) as a function of the number
of cycles for different initial conditions. In (a,b), we choose δε = 100 kBT and V = 2 kBT, and we take in

(a) Cext = 0.5 C(0)F , so the device operates as a motor, while in (b), we use Cext = 1.5 C(0)F , so the device
operates as a pump, cf. Equation (62). (c) A situation in which two stable velocities with opposite sign

are possible, for δε = 10 kBT, V = 15.42 kBT, and Cext = C(0)F + 0.05 kBT. The other parameters are:
δT = 0, U = 20 kBT, tc = 10 kBT, ΓL = ΓR = 0.25 kBT, while for the trajectories, we used as working
point ε̄L = ε̄R = −6 kBT + δε/

√
2.

As discussed in Section 3, when we take I sufficiently large, ∆θ̇ → 0, and it is possible to approximate
θ̇ as constant during the whole cycle. This allows us to take out this quantity from the integrals defining
the different orders of the energy currents, as we did in Equation (12). The problem is, however,
that the sign in θ̇ is not a priori known and, with it, the direction of the trajectory for the line integrals
defining W (k)

F . To become independent of this issue, we denote by s the sign of θ̇, and notice that

F (k) = f (k)θ θ̇k, where f (k)θ = ∂k
θ̇
F|θ̇=0/k! only depends parametrically on θ, so we have:

W (k)
F =

∮
C(s)

F(k) · dX =
∫ 2πs

0
F (k)dθ = s

[∫ 2π

0
f (k)θ dθ

]
θ̇k = sC(k)F θ̇k, (59)

where, importantly, the coefficients C(k)F are independent of s, so the θ̇k and the extra sign s

accompanying C(k)F in the right-hand side of the equation give the correct sign forW (k)
F . As discussed

in Section 3, the steady-state condition in Equation (11) can be viewed as the equation for the final
velocity that the rotor acquires as a function of the external force, which in the present case turns into:

0 = ∑
k
C(k)F θ̇k − Cext, (60)

where we defined Cext = 2πFext. The stability of the final solution is inherited from Equation (9), and
in our case with θ̇ constant, it is given by:

∑
k
C(k)F kθ̇k−1 < 0. (61)

Notice the specific case where Cext = C(0)F , i.e., the external work equals the bias work coming
from the first-order currents, cf. Equation (55) for k = 1. In this case, there is always a trivial
solution, given by θ̇ = 0. Of course, this solution is useless as the system becomes frozen, and there
is no energy transfer between the leads and the mechanical system. However, this situation marks one



Entropy 2019, 21, 824 18 of 30

of the transition points between the operation modes of the device. If we now consider an infinitesimal
difference between these two coefficients, we can faithfully treat Equation (60) up to linear order in θ̇,
such that the solution is:

θ̇ =
Cext − C(0)F

C(1)F

, (62)

together with the condition C(1)F < 0, in agreement with Equation (61). This implies that the integral
of the friction coefficient over a cycle needs to be positive; otherwise, the rotor cannot reach
the stationary regime. As the sign in C(1)F is fixed to this order, the sign in θ̇ only depends

on the relation between Cext and C(0)F . This, together with the stationary condition Wext = WF,
establishes the operation mode of the device, in the sense that with this information, we can deduce
the sign of Wext = sCext and, hence, the direction of the energy flow. If, for example, Wext < 0,
the external energy is delivered into the DQD, which in turn goes as energy current to the leads,
so the device acts as an energy pump. On the other hand, if Wext > 0, the energy current coming
from the leads goes into the DQD, and it is transformed into mechanical work, so the device operates
as a motor. These two scenarios are shown in Figure 2, where we take Cext > 0, such that the positive
sign in the final velocity implies that the device acts as a motor (see Panel a), while a negative sign
implies that the device operates as a pump (see Panel b). Of course, when regarding the device
as an energy pump, the above criterion only establishes those regions in Cext where we can expect
some kind of pumping mechanism. Depending then on the specific type of pumping we have in mind,
the ranges in Cext will be subject to additional conditions. For example, if we would like to have
this device acting as a quantum charge pump, then we should check those regimes in Cext where
the electrons flow against the bias voltage. This discussion will be reserved to the next section,
and for now, we will only define the operation mode from the direction of the energy flow.

Let us now consider second-order effects due to C(2)F in Equation (60), where we obtain:

θ̇± = −
C(1)F

2C(2)F

±

√√√√√( C(1)F

2C(2)F

)2

+
Cext − C(0)F

C(2)F

, (63)

together with the conditions:

(
C(1)F

2C(2)F

)2

>
C(0)F − Cext

C(2)F

, ±C(2)F < 0. (64)

The first inequality ensures a positive argument in the square root of Equation (63), so θ̇ is a real
number, while the second inequality comes from the stability condition given by Equation (61) and tells
us which branch one should choose in Equation (63) to get the stable solution: if C(2)F > 0, then θ̇−,

and if C(2)F < 0, then θ̇+. Importantly, far from equilibrium (e.g., δV � kBT), it is possible to arrive

at the odd situation where C(1)F > 0, and the “dissipated” energyW (1)
F = sC(1)F θ̇ = C(1)F |θ̇| is positive.

This, however, does not prevent the rotor from reaching the stationary regime (to this order in θ̇),
since the lower-order terms compensate this energy gain. Therefore, one can end up in a situation
where the second-order energy current comes from the leads and it is delivered into the mechanical
system (thus favoring the motor regime), contrary to the standard situation where the “dissipated”
energy flows to the leads. Regarding Equation (63), the sign of θ̇ now depends on the relation between
the first term and the square root, together with the sign of C(2)F , so this analysis is not that simple
as in the linear case. However, once we have the CF-coefficients, we can always determine if the
rotor is able to reach the stationary regime and infer whetherWext is positive or negative and, with it,
the operation mode of the device.
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For higher orders in θ̇, the above analysis for the operation mode of the device is the same,
but more ingredients may come into play due to the (order-dependent) specific solutions
for the stationary value of θ̇. Interestingly, by including higher order terms in Equation (60), it could
happen that for a fixed choice of the parameters (Fext, δV, δT, etc.), the system presents more than
one stable solution, and even with different signs in Wext, so the initial condition on θ̇ decides
the operation mode of the device once the rotor reaches the stationary regime. In Figure 2c, we show
this nonlinear effect in the dynamics of the rotor’s velocity. This was done by taking F up to third
order in the θ̇ expansion, where we find two stable solutions (θ̇ ∼ −7.4× 10−3 kBT and 6.7× 10−3 kBT)
and one unstable solution in between (θ̇ = 2× 10−3 kBT). Notice that, in this case, if the rotor starts
with a positive initial condition below the unstable solution (see gray arrow), then it cannot reach
the negative stable solution, as once θ̇ = 0, the rotor gets trapped in a local minimum.

In Figure 3, we show how the CF-coefficients contribute to the current-induced work as a function
of the bias voltage for different values of the orbit radius δε. According to Equation (59),
these coefficients can only be compared upon multiplication with the k-power of some frequency
of reference Ωx. We assess this frequency of reference by performing the following analysis:
from Equation (50), we can estimate the maximum allowed value for θ̇ compatible with the frequency
expansion. Since W̃−1 ∝ Γ−1, with Γ = ΓL + ΓR, and:

d
dt

= θ̇
∂

∂θ
= θ̇ ∑

i

∂εi
∂θ

∂

∂εi
, (65)

we obtain:

p(k) =

[
W̃−1θ̇ ∑

i

∂εi
∂θ

∂

∂εi

]k

p(0) ∝
[

Ω
Γ

δε

kBT

]k
, (66)

where we use the fact that ∂θεi ∝ δε and the energy derivative of both p(0) and W̃−1 are proportional
to 1/kBT. As the consistency of the frequency expansion relies on the convergence of the occupations,
this yields the adiabaticity condition [42,87]:

Ω
Γ
� kBT

δε
, (67)

from which we can estimate the maximum allowed frequency Ωmax as:

Ωmax =
kBT
δε

Γ. (68)

Obviously, this extreme value sets the point where the expansion could diverge, so to illustrate
the different order contributions to the current-induced work, we take, in Figure 3, an intermediate
reference frequency Ωx = Ωmax/2. As we can see, for a long range of the bias voltage (V . 10 kBT),
both the zeroth- and first-order terms contribute, while higher order terms are almost negligible.
The zeroth-order contributions (black) show a linear dependence whose slope increases with the orbit size,
up to some saturation value, related with the quantization of the pumped charge. The first-order terms
(red) remain almost constant and negative in this bias regime. This implies that the linear-order treatment
given in Equation (62) is enough, as long as Cext ∼ C(0)F . For V & 10 kBT, we can observe non-equilibrium
effects like “inverse dissipation”, i.e., a positive contribution from the first-order term (red) in Figure 3a.
Additionally, the higher order terms (blue and green) can become larger than the first two, and they need
to be included in the calculation of the final velocity through Equation (60) or in the current-induced force
appearing in Equation (9). This, in turn, could lead to several stable solutions whose validity should be
determined through a systematic convergence analysis, which is beyond the scope of the present work.
For the particular choice of parameters used in Figure 2c, we check if the next-order coefficient (C(4)F ) has
a negligible impact on the third-order solutions.
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Figure 3. Order-by-order contributions to the current-induced work as a function of the bias voltage
for different orbit radius: (a) δε = 10 and Ωx = 2.5× 10−2, (b) δε = 20 and Ωx = 1.25× 10−2, (c)
δε = 50 and Ωx = 5 × 10−3, and (d) δε = 100 and Ωx = 2.5 × 10−3, in units of kBT. We show,
in solid lines, the zeroth- (black), first- (red), second- (blue) and third- (green) orders in θ̇, respectively.

The circles accompanying the lines correspond to (C(k)J + C(k)I δV)Ω(k−1)
x , with C(k)I and C(k)J defined

in Equation (70), and numerically confirm Equations (55) and (71). The remaining parameters coincide
with those of Figure 2.

To clarify the role of CF-coefficients in the operation regime of the device, let us take for example
δε = 100 kBT (see Figure 3d) and δV ∼ 2 kBT. As the sign in C(1)F is negative, the linear-order solution

given by Equation (62) is stable. If we start with Cext = 0, then θ̇ is positive, so for 0 < Cext < C(0)F ,

the device acts as a motor (see Figure 2a). When Cext > C(0)F > 0, θ̇ becomes negative, and hence,
the device operates as a pump (see Figure 2b). Additionally, when Cext < 0, the angular velocity
is still positive, but as we changed the sign in Cext, we have that Wext < 0, so the device operates
as a pump. This is the other transition point between the two operation modes of the device, i.e., the sign
inWext = sCext changes with s and the sign of Cext. It is also interesting to notice how the operation
regimes change with the sign of the bias voltage. For the force coefficients, we can see in the figure that
they have definite parity with respect to the bias voltage:

C(k)F (−δV) = (−1)k+1C(k)F (δV), (69)

since Ωx remains constant for a fixed orbit radius. For the chosen parameters ε̄L = ε̄R, ΓL = ΓR,
and δT = 0, the transformation δV → −δV can be regarded as the inversion operation (L, R)→ (R, L),
which changes the sign of θ̇, i.e., θ̇(−δV) = −θ̇(δV). In this sense, if there is some finite temperature
gradient, this operation should also involve the sign inversion of δT. To infer how this bias inversion
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affects the final velocity of the device, we can replace Equation (69) in Equation (60). We can therefore
recognize the transformation θ̇(−δV) = −θ̇(δV) if we also change the sign of the external force,
such that Cext(−δV) = −Cext(δV). The even/odd parity in the k-order coefficient thus implies that
the current-induced work is invariant under such a transformation, cf. Equation (59), and the ranges
for the operation regimes of the device remain the same if we invert the sign of the external force.
Of course, this analysis is no longer valid in more general situations where ε̄L 6= ε̄R or ΓL 6= ΓR,
such that the change in the sign of δV (or δT) cannot be related to the left-right inversion operation.

As an additional test for Equations (55) and (25), we define equivalent coefficients for the amount
of transported charge and heat in a cycle:

C(k)I =
∫ 2π

0

∂k Iθ

∂θ̇k

∣∣∣∣∣
θ̇=0

dθ

k!
, C(k)J =

∫ 2π

0

∂k Jθ

∂θ̇k

∣∣∣∣∣
θ̇=0

dθ

k!
, (70)

such that Q(k)
I = sC(k)I θ̇k−1, and Q(k)

J = sC(k)J θ̇k−1. These contributions can be evaluated independently
from the CF-coefficients, and in Figure 3, these are shown in circles, which gives numerical agreement
for the energy conservation principle:

C(k)J + C(k)I δV = −C(k−1)
F , (71)

in the considered orders of θ̇. For the considered example in Figure 3, the current coefficients CI and CJ
also show (independently) a definite parity with respect to the bias voltage. In fact, as Equation (71)
suggests, the heat current coefficients C(k)J present the same parity as C(k−1)

F , while the charge current

coefficients C(k)I need to have the opposite parity since they are multiplied by δV.

Motor-Pump Efficiencies

As we stated above, the sign of the external force, together with the rotor’s stationary condition
and the first law of thermodynamics, determines the direction of the energy flow and, with it,
the operation mode of the device. Obviously, as no other power sources are involved in this example,
the efficiency of this energy conversion, defined as η = (output power)/(input power), is always equal
to one. This, however, only establishes those regions in the parameter space where we can expect
the device operating as a quantum motor or a quantum energy pump. In this section, we discuss
the particular conditions that appear when the device operates through a specific type of current.
In this sense, the motor regime corresponds to the situation in which a transport current (e.g., charge,
heat, spin, etc.) flowing through the leads in response to a bias (voltage, temperature, spin polarization,
etc.) delivers some amount of energy into the local system, which can be used as mechanical
work. The pump regime, on the other hand, corresponds to the inverse operation in which the
external work is exploited to produce a current flowing against the imposed bias. This topic was also
discussed in [87] for charge and heat currents in a DQD device, where limitations to the efficiency
of the considered processes were attributed to the different orders appearing in the frequency expansion
of the currents. We here provide a similar analysis in terms of our explicit model for the mechanical
system. The inclusion of the external force in the description of the model, as we shall see next, appears
as the key ingredient in bridging the motor and pump regimes for a given choice of the bias.

For the device acting as a motor, the output power should be given byWext/τ, under the condition
Wext > 0, but we still need to specify the input power. If we consider that the mechanical rotor is driven
by the electric current, i.e., due to some applied bias voltage and no thermal gradient applied, the input
power is given by −QI · δV/τ, and hence, the efficiency of this type of motor is:

η = − Wext

QI · δV
= 1 +

QJ

QIδV
. (72)



Entropy 2019, 21, 824 22 of 30

Equation (33) establishes that the maximum efficiency for this device is η ≤ 1, and the above
equation tells us that the heat current produced by the bias voltage reduces the motor’s performance.
As in this work, we calculate such currents through an expansion in the angular velocity, the efficiency
is also limited by this expansion. If in the calculation of θ̇, we consider Equation (60) up to first order
in C(k)F , then, as discussed in Section 6, order-by-order energy conservation demands that the currents
are to be considered up to second order, and in terms of the current coefficients, this takes the form:

η = − Cext/δV

C(0)I θ̇−1 + C(1)I + C(2)I θ̇
. (73)

In the limits of the motor’s operation regime, given by Cext = 0 and Cext = C(0)F , it is easy
to see that the efficiency goes to zero, since for Cext = 0, the numerator in the above expression
is zero, and for Cext = C(0)F the rotor’s velocity goes to zero, so the denominator grows to infinity due

to the contribution C(0)I /θ̇ from the leakage current. The same happens if we consistently include
higher order terms in this expression. For example, if we use Equation (63) for the rotor’s angular
velocity, then we should add C(3)I θ̇2 in the denominator.

Away from this region, we enter in the “pumping domain” characterized by a charge current,
which opposes the “natural” direction dictated by the bias voltage and Wext < 0. In this sense,
the input power and the output power are inverted with respect to the motor region, and consequently,
the efficiency of this “battery charger” device is given by:

η = −
C(0)I θ̇−1 + C(1)I + C(2)I θ̇

Cext/δV
. (74)

In this regime there is, however, an additional condition to be fulfilled, which is QIδV > 0.
Regarding the different orders in QI , it usually happens that close to the transition point Cext = C(0)F ,
the charge current still flows in the bias direction, since it is dominated by the leakage current.
In this region, we say that the pumping mechanism is “frustrated” as the energy delivered by the rotor
is not enough to reverse the direction of the charge current. Going away from this region, the angular
velocity acquires some finite value, reducing the zeroth-order contribution C(0)I /θ̇ to the point where

it is equal to the higher order contributions C(1)I + C(2)I θ̇, thus marking the activation point of the charge
pump. In Figure 4a, we show the efficiency of the device as a function of the external force for different
orbit sizes and fixed bias δV = 2kBT. In all cases, the device starts from Cext = 0 as a motor, and
its efficiency reaches a maximum, which increases with the orbit size. Soon after this point, the motor’s
efficiency decreases to zero due to the leakage current effect, which becomes dominant at Cext = C(0)F .
From this point, we can observe the gapped region for the frustrated pump, which is more pronounced
for small orbits, since the first-order pumped charge Q(1)

I is smaller than its quantized limit, and

thereby, it takes a larger value of Cext to compensate the amount of pumped leakage current Q(0)
I in

a cycle.
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Figure 4. Normalized efficiencies as a function of the normalized external work (Cext/C(0)F ) and orbit
radius: δε = 10 (red), 20 (blue), 50 (green), and 100 (orange), in units of kBT. Panel (a) shows the electric
motor/pump lowest order efficiencies (solid lines) for the device driven by a bias voltage δV = 2kBT and
δT = 0. The next-order efficiency for the smallest orbit is shown in the dotted red and in the inset for
negative Cext. Panel (b) shows the heat engine/refrigerator lowest order efficiencies for the device driven
by a temperature gradient δT = 0.5T and δV = 0. The other parameters coincide with those of Figure 2.

Up to this point, we have discussed only the effect of the lowest order terms of the expansion
in θ̇, given by Equations (62), (73), and (74). For the smallest orbit, in addition, we show in the
dotted red line the next-order efficiency, obtained from Equation (63) and adding the Q(3)

I term to
Equations (73) and (74). We can see that for the motor regime, there are no significant changes, but for
the pump regime, important differences appear. Firstly, in the Cext > 0 region, there is a cut-off
for the external force in which the pumping mechanism is again frustrated, i.e., the charge current
again points in the bias direction. As can be seen in Figure 5a,c, this decreasing in the efficiency is
not attributed to the extra heat dissipated to the reservoirs, as one may expect. Note in the figure
that the extra contribution to the pumped heat, Q(3)

J , is negligible as compared to the lowest order

terms. What happens here is that the third-order contribution to the pumped charge Q(3)
I rapidly

becomes dominant in the charge pump region, causing a sudden drop in the efficiency and, with it,
the appearance of a second frustrated-pump region. Secondly, another higher order effect appears
in the Cext < 0 region. There, the efficiency is nonzero for Cext/C(0)F < −8 (see the inset in Figure 4a),
meaning that the pumping mechanism can be activated even when the external force points in the same
direction as that of the current-induced force. Given the convention used for Fext in Equation (7)
and the chosen parameters, in this region, the sign of θ̇ remains the same as that when Fext = 0.
There, the zeroth- and first-order contributions to the charge current flow in the same direction. In
the analyzed case, again the third-order term is the one that reverses the direction of the total charge
current; see Figure 5b. It is important to mention that the purpose of the present discussion is only to
highlight deviations from the linear solution of Equation (62), not to analyze the convergence of the
total pumped current. For the larger values of δε used in Figure 4a, we do not show the next-order
corrections, as they are negligible in the shown range of Cext.

An analysis similar to the above one can be carried out for the device driven by a temperature
gradient δT, defined through TL = T + δT/2 and TR = T− δT/2 and no bias voltage applied, such that
for δT > 0, we have Thot = TL and Tcold = TR. When Wext > 0, we have a motor device driven
by a heat current in response to a thermal gradient (heat engine), then the input power should be given
by −QJhot /τ, and Equation (35) implies:
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η = −Wext

QJhot

= 1 +
QJcold

QJhot

≤ 1− Tcold
Thot

= ηcarnot. (75)
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Figure 5. Different order contributions to the pumped charge and heat as a function of the normalized
external work for the case δε = 10 kBT (dotted red in Figure 4a). Panels (a,b) show the kth-order

pumped charge Q(k)
I = (Q(k)

IL
−Q(k)

IR
)/2. The sum of all these contributions is shown in solid black and

denoted as Q(total)
I . (c) Pumped heat contributions to the left and right reservoirs Q(k)

J = Q(k)
JL

+ Q(k)
JR

,

divided by Q(total)
J , i.e., the sum of all contributions from k = 0 to k = 3. The vertical gray lines mark

different transition points: Cext/C(0)F = 1 is the motor/pump (energy pump) transition, while the other

lines correspond to transitions between frustrated-pump/charge-pump regimes, i.e., when Q(total)
I

changes its sign.

As compared with Equation (73), we can see that the efficiency of the quantum heat engine,
now given by:

η = − Cext

C(0)Jhot
θ̇−1 + C(1)Jhot

+ C(2)Jhot
θ̇

, (76)

is defined in the same range for Cext as in the electric motor. Regarding Figure 4b, the engine’s
normalized efficiency η/ηcarnot looks similar to that of the electric motor. Perhaps the only difference
here is that for the smallest orbit δε = 10kBT, the efficiency maximum is very low, such that it cannot
be appreciated on the employed scale of the plot.

Now, we move to the heat pump region where the device acts as a refrigerator, as we demand
that the heat current flows against the direction dictated by δT. Therefore, in addition to theWext < 0
condition, the overall amount of pumped heat in the cold reservoir should be negative, i.e., QJcold < 0.
The efficiency of the refrigerator, or coefficient of performance (COP), is then given by:

COP =
QJcold

Wext
=

QJhot

QJ
− 1 ≤ Tcold

Thot − Tcold
= COPcarnot, (77)

where we can consistently expand QJcold in terms of θ̇. In Figure 4b, we show the lowest
order contribution from Equation (62), as the next-order calculation does not change significantly
the efficiencies in the considered regimes of the parameters. Again, we can observe in Figure 4b a gap
region where the device is frustrated since the work delivered by the rotor is not enough to reverse
the direction of the heat current. One of the differences with the electric counterpart is that,
for the refrigerator, the normalized COP develops a maximum that is always smaller than that
of the quantum heat engine, while the obtained efficiency maxima (motor and pump) for a fixed orbit
in Figure 4a are very similar. Additionally, for the chosen value δT = 0.5 T and small orbit radius,
the device can only work as a heat engine, and the refrigerator cannot be activated even if the external
force is large, as happens for δε = 20 kBT (solid blue line). The reason for this relies on the competition
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between the different orders in the pumped heat QJcold : the reduction of the leakage pumped

current, Q(0)
Jcold

, by increasing the magnitude of θ̇, is accompanied by an increase of the second-order

contribution, Q(2)
Jcold

, such that the first-order term, Q(1)
Jcold

, may not be able to compensate these two
and the requirement QJcold < 0 cannot be fulfilled; see Figure 6.
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Figure 6. Different order contributions to the pumped heat as a function of the normalized external work

for the case δε = 20 kBT (solid blue line in Figure 4b). Here, Q(total)
J refers to the sum of all contributions.

8. Summary

Throughout this manuscript, we revisited some fundamental aspects related to the physics
of quantum motors and pumps. Previous results based on the steady-state properties and energy
conservation law were extended to deal with arbitrary nonequilibrium conditions in a systematic
way. By considering the dynamics of the mechanical degrees of freedom through a Langevin
equation, we were able to treat the motor/pump protocols on the same footing. This allowed us
to describe the related energy transfer processes through a single parameter: the external force done
on the local system.

In the steady-state regime, we treated in general terms the validity of the constant velocity
assumption, in Section 3. For arbitrary orders of the nonadiabatic expansion in the CIFs, this was
linked to the separation between the electronic and mechanical dynamic scales through a large moment
of inertia. We then performed a general expansion (in terms of nonequilibrium sources) of the energy
fluxes that took part in the quantum transport problem. This enabled us to derive an order-by-order
scheme for the energy conservation law, Equation (25). This equation may be of help in recognizing
the physical processes that enter at each order in the expansion, thereby providing a useful tool
for the analysis of nonlinear effects. To illustrate this, we discussed the leading orders of the global
expansion and showed how different types of expansions of the energy fluxes change the expressions
for the efficiency of quantum motors and pumps.

In Section 7, we introduced a specific example of a quantum motor/pump based on a double
quantum dot. There, we discussed in more depth how higher order terms of the CIFs affect
the stationary state conditions. We found that multiple solutions for the device’s terminal velocity could
in principle be available for a fixed choice of parameters (voltage and temperature biases and external
force). In such a case, the stability of such solutions imposes an additional constraint on the force
coefficients, and the final steady state strongly depends on initial conditions. Interestingly, it is possible
to obtain more than one stable solution, each of them belonging to a different operation mode
of the device. The treated example is also appealing as it is possible to study the transition between
different operational modes by continuously moving the external force. This corresponds to the point
at which the steady-state velocity changes its sign and, with it, the direction of the energy flow.
When considering a specific type of pumped current (charge or heat), there is an intermediate region
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where the pumping mechanism is “frustrated”. In this situation, the energy delivered by the external
force is not enough to reverse the natural direction of the charge or heat currents. We found other
interesting features of the studied example such as negative friction coefficients at finite voltages
or a definite parity of the expansion coefficients with respect to the bias voltage and the temperature
gradient, which is a manifestation of the inversion symmetry in the total energy flux. We also used
this example to confirm numerically the order-by-order energy conservation law up to third order
in the final velocity. Finally, for heat currents, we found parameter conditions under which the device
can never work as a “refrigerator”, even for large values of the external force. We explained this
behavior in terms of the competition between the different orders that participated in the pumped
heat of the cold reservoir, highlighting the importance of the order-by-order conservation laws.
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