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We study the Casimir energy due to a quantum real scalar field coupled to two planar, infinite, zero-
width, parallel mirrors with nonhomogeneous properties. These properties are represented, in the model we
use, by scalar functions defined on each mirror’s plane. Using the Gelfand-Yaglom’s theorem, we construct
a Lifshitz-like formula for the Casimir energy of such a system. Then we use it to evaluate the energy
perturbatively, for the case of almost constant scalar functions, and also implementing a derivative
expansion, under the assumption that the spatial dependence of the properties is sufficiently smooth. We
point out that, in some particular cases, the Casimir interaction energy for nonplanar perfect mirrors can be
reproduced by inhomogeneities on planar mirrors.
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I. INTRODUCTION

The evaluation of observables in the static Casimir effect
presents many interesting challenges, both from the point
of view of designing experiments capable of measuring its
features with finer resolutions, as well as regarding the
calculations involved in the prediction of those features [1].
In theoretical studies, the two main aspects usually con-
sidered in a system exhibiting the Casimir effect are the
geometry of the mirrors and the properties of the media
composing them.
In some special cases, for example when the mirrors

are assumed to satisfy “perfect” boundary conditions,1 the
ensuing simplifications allow one to study geometrical
aspects in a simpler way. The derivative expansion (DE) is
an approach that may be applied to the case of two
smoothly curved surfaces, such that at each point their
local separation is smaller than the curvature radii [2,3].
When the mirrors impose simple boundary conditions, the
DE predicts the form of the corrections to the proximity
force approximation (PFA), which is the leading term in the
expansion. Indeed, the next-to-leading-order (NLO) term is
completely fixed except for a single, global, dimensionless
factor. That factor depends exclusively on the kind of

boundary condition used, and it may be determined, once
and for all, from a calculation which is perturbative in the
departure from planar mirrors, to the second order in that
departure. Note that the DE so obtained is not perturbative
in the departure, yet it can be determined, for example, from
the knowledge of that perturbative expansion.
The opposite, complementary case, would amount to

systemswith the simplest possible, yet nontrivial, geometry,
like media having planar and parallel (inter)faces. Here, one
can focus on the effects of the media inhomogeneities on
the detailed properties of the Casimir force, in this case, its
dependence on the distance between the mirrors. We are
particularly interested in situations where the planar media
are inhomogeneous at a macroscopic or mesoscopic level,
that is, composed by regular patches or periodic arrays of
homogeneous media. On general grounds, we expect the
Casimir energy to exhibit a rich dependence on the inho-
mogeneities, similar to those that appear when considering
perfect conductors with nontrivial geometries, as trench
arrays and other periodic structures [4]. Such rich depend-
ence was measured in good agreement with calculations for
sinusoidally corrugated surfaces [5].
In this article, we consider the static Casimir effect for a

special class of system, consisting of a quantum real scalar
field in the presence of two zero-width, parallel and infinite
plates. The latter are not assumed to be homogeneous;
rather, each plate will be characterized, regarding its
properties, by a real scalar potential defined on the plane.
This can be considered as a toy model for the interaction of
the electromagnetic field with a thin mirror characterized
by position-dependent electromagnetic properties, and
generalizes previous works for scalar fields in the presence
of homogeneous thin plates, named δ-potentials [6].
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1Namely, boundary conditions which do not involve any
parameter or function; typically, Dirichlet or Neumann for the
case of a real scalar field, and perfect conductor conditions for the
electromagnetic field.
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Under those assumptions about the system, and using the
Gelfand-Yaglom’s (GY) theorem [7], we shall obtain a
Lifshitz-like formula [8], which yields the Casimir energy
as a functional having as arguments the “scalar potentials,”
i.e., the two functions which characterize the plates [9]. We
then use this generalized Lifshitz-formula to obtain more
explicit expressions, making further assumptions about the
potentials. We firstly consider the case of scalar potentials
describing small departures from homogeneity, implement-
ing a perturbative approach Casimir. We compare and relate
the results to those corresponding to two Dirichlet mirrors
with nonplanar geometries. On the other hand, if the space
dependence of the properties is smooth, a DE for the energy
becomes a useful tool. We use the perturbative results to
obtain the usual PFA and its NLO for this particular system.
This paper is organized as follows: In Sec. II, we derive

the would-be Lifshitz formula for the system. Then, in
Sec. III, we present the expansion up to the second order in
the departures from homogeneity, and discuss some par-
ticular limiting cases. In Sec. IV we apply the previous
result to the calculation of the DE to the second order in
derivatives. Section V contains our conclusions.

II. LIFSHITZ FORMULA FOR
NONHOMOGENEOUS PLATES

We derive here an expression for the vacuum energy
corresponding to a quantum real scalar field φðxÞ in 3þ 1
dimensions, coupled to two nonhomogeneous zero-width,
infinite, parallel plates. It may be regarded as a Lifshitz
formula but for zero-width inhomogeneous plates, or even
as a special case of the so-called TGTG formula [10] (here
T stands for the Lippmann-Schwinger transition operator
and G for the propagator).
The kind of model we deal with may be defined in terms

of its Euclidean action SðφÞ, which is assumed to be of the
form

SðφÞ ¼ 1

2

Z
d4x½ð∂φðxÞÞ2 þ VðxÞðφðxÞÞ2�; ð1Þ

with spacetime coordinates x ¼ ðx0; x1; x2; x3Þ, and spatial
coordinates x ¼ ðx1; x2; x3Þ. The “potential” V accounts
for the presence of two plates, denoted by R and L, and
located on the planes x3 ¼ l

2
and x3 ¼ − l

2
, respectively.

Specifically, that function is assumed to be of the form

VðxÞ ¼ δ

�
x3 −

l
2

�
VRðxkÞ þ δ

�
x3 þ

l
2

�
VLðxkÞ; ð2Þ

where xk ¼ ðx1; x2Þ are coordinates on the mirrors. We
could also include a bulk potential Vbulkðx3;xkÞ between
mirrors. This is a very interesting problem that raises
mathematical and physical questions about the proper
derivation of finite Casimir forces [11]. We plan to address
this issue in a forthcoming paper. It is worth stressing that

the potentials VR;L on the plates mimic inhomogeneities of
the mirrors, that could be formed by a juxtaposition of
homogeneous materials. Other kinds of situations, like
frequency-dependent electromagnetic properties, would
require, to be modeled, the presence of terms in the action
which are nonlocal in time.
In the approach that we shall follow to derive the

generalized Lifshitz formula, the vacuum energy will be
obtained from the functional integral:

Z ¼
Z

Dφe−SðφÞ: ð3Þ

Indeed, assuming the system to be defined within a “time
interval”: − T

2
< τ < T

2
and considering the T → ∞ limit,

since the potential has been assumed to be time indepen-
dent, the leading behavior of the effective action Γ is
Γ ∼ T × E, E being the vacuum energy. Thus, we may
relate E to a functional determinant, by using the formal
result for Γ which, ignoring irrelevant factors, is given by

e−Γ ¼ ½detð−∂2 þ VÞ�−1
2; ð4Þ

with ∂2 ≡ ∂μ∂μ, μ ¼ 0; 1;…; d.
Therefore

E ¼ 1

2

Z þ∞

−∞

dk0
2π

logðdetKÞ ¼ 1

2

Z þ∞

−∞

dk0
2π

TrðlogKÞ; ð5Þ

where

K ¼ −∇2
x þ k20 þ VðxÞ; ð6Þ

and the determinant and trace are understood to be in the
functional sense, for operators acting on functions of x.
Our strategy to derive the generalized Lifshitz formula

consists of “dimensionally reducing” the determinant
appearing in (5). By this, we mean transforming it into
one where the x3 coordinate has been dealt with.
Equivalently, at the level of the functional trace, it amounts
to tracing out the x3 coordinate, writing the result in terms of
operators now acting on functions of xk ≡ ðx1; x2Þ [rather
than xk ≡ ðx1; x2Þ]. That can be done by a suitable appli-
cation ofGY theorem, as follows.We first assume the system
to be defined within a large “box” along the x3 direction,
namely, − L

2
< x3 < L

2
where L ≫ l, and we shall take the

L → ∞ limit at the endof the calculation. Toproceed,wewill
need to assume some boundary conditions on x3 ¼ � L

2
. We

shall, for the sake of simplicity, use Dirichlet conditions.2

We first rewrite the operator K introduced above in a
way which makes it simpler to perform the dimensional
reduction:

2The specific choice of boundary conditions has no bearing on
the results, since we will take the L → ∞ at the end of the
calculation.
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K ¼ −∂2
3 þ Hðx3Þ; ð7Þ

where

Hðx3Þ≡ −∇2
k þ Vx3ðxkÞ þ k20; ð8Þ

with

Vx3ðxkÞ≡ VðxÞ; ∇k ≡∇xk : ð9Þ

The reason for this seemingly formal splitting is that x3 is
the variable about which the functional determinant of K
will be reduced. To each value of x3, we may associate an
operator kernel along the xk coordinates; indeed:

hxkjKjx0
ki ¼ Kx3ðxk;x0

kÞ
¼ −δðxk − x0

kÞ∂2
3 þHx3ðxk;x0

kÞ; ð10Þ

where

Hx3ðxk;x0
kÞ ¼ hxkjHðx3Þjx0

ki
¼−∇2

xkδðxk−x0
kÞþ ½Vx3ðxkÞþk20�δðxk−x0

kÞ:
ð11Þ

The corresponding result for the determinant is usually
presented in terms of its ratio with a “reference” operator
K0, which in our case we assume to correspond to a
vanishing potential. Using this ratio instead of just K in (5)
is indeed convenient, since it then produces the energy of
the system taking as a reference the energy of the vacuum in
the absence of the plates.
The ratio between determinants may be put in terms of

two determinants of dimensionally reduced operators [12]:

detK
detK0

¼ detψðLd
2
Þ

detψ0ðLd
2
Þ ; ð12Þ

where ψðxdÞ and ψ0ðxdÞ are operatorial solutions to the
homogeneous equations

KψðxdÞ ¼ 0; K0ψ0ðxdÞ ¼ 0: ð13Þ

The matrix elements of these solutions may naturally be
denoted by

hxkjψðx3Þjx0
ki ¼ ψx3ðxk;x0

kÞ ð14Þ

(and analogously for ψ0). The initial conditions on the
solutions to the homogeneous equations are

½ψx3ðxk;x0
kÞ�jx3¼−L

2
¼ 0;�∂ψx3

∂x3 ðxk;x0
kÞ
�����

x3¼−L3
2

¼ δðxk − x0
kÞ: ð15Þ

We need a more explicit solution to Eq. (13); that can be
done by first converting it to a first-order system, by
introducing

Ψðx3Þ≡
� ψðx3Þ

∂ψ
∂x3 ðx3Þ

�
≡

�Ψ1ðx3Þ
Ψ2ðx3Þ

�
; ð16Þ

which renders the original second-order equation into

∂Ψ
∂x3 ðx3Þ ¼ Hðx3ÞΨðx3Þ ð17Þ

with

Hðx3Þ ¼
�

0 I

Hðx3Þ 0

�
; ð18Þ

where I denotes the identity operator. Note that Eq. (17)
is a Schroedinger-like equation in which the coordinate x3
plays the role of time, andH the role of a “Hamiltonian.” In
terms of the evolution operator U, we then have the
solution:

Ψðx3Þ ¼ U
�
x3;−

L
2

�
Ψ
�
−
L
2

�
ð19Þ

with

Uðx003; x03Þ≡ P exp

�Z
x00
3

x0
3

dy3Hðy3Þ
�
ðx003 ≥ x03Þ; ð20Þ

with the path-ordering operator P, which acts in the same
way as the time-ordering operator, but with x3 playing the
role of the time.
Equipped with the solution for Ψ just presented, we

note that

�
ψðL

2
Þ

0

�
¼ U

�
L
2
;−

L
2

��
0

I

�
; ð21Þ

or, using indices A and B, which can assume the values 1 or
2, to distinguish the 4 (operatorial) blocks in UðL

2
;− L

2
Þ:

U
�
L
2
;−

L
2

�
≡

0
B@U11

�
L
2
;− L

2

�
U12

�
L
2
;− L

2

�

U21

�
L
2
;− L

2

�
U22

�
L
2
;− L

2
Þ

1
CA; ð22Þ

we see that
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detK
detK0

¼ detU12ðL2 ;− L
2
Þ

detUð0Þ
12 ðL2 ;− L

2
Þ
: ð23Þ

This is a more explicit form of the reduction, where we
still need to take the L → ∞ limit. To do this we note that,
since V vanishes for jx3j > l

2
, we may write

U
�
L
2
;−

L
2

�
¼ lim

ϵ→0þ

�
Uð0Þ

�
L
2
;
l
2
þ ϵ

�
U
�
l
2
þ ϵ;−

l
2
− ϵ

�

× Uð0Þ
�
−
l
2
− ϵ;−

L
2

��
ð24Þ

where the ϵ → 0þ limit has been introduced, since the
potential is discontinuous at � l

2
.

The explicit form of Uð0Þðx03; x003Þ may be found by
exponentiation, because it corresponds to an x3-independent
potential:

Uðx03; x003Þ ¼ eðx03−x003ÞH0 ¼ sinhððx03 − x003Þ
ffiffiffiffiffiffi
H0

p Þffiffiffiffiffiffi
H0

p
�

0 I

H0 0

�

þ coshððx03 − x003Þ
ffiffiffiffiffiffi
H0

p
Þ
�
I 0

0 I

�
:

ð25Þ

Using this result, a rather lengthy but otherwise straight-
forward calculation shows that, when L → ∞, the ratio
between determinants may be written in terms of μAB, a
shorthand notation for the matrix elements

μAB ¼ lim
ϵ→0þ

�
UAB

�
l
2
þ ϵ;−

l
2
− ϵ

��
ð26Þ

as follows:

detK
detK0

¼ det

�
1

2
e−

l
2

ffiffiffiffi
H0

p �
μ11 þ μ12

ffiffiffiffiffiffi
H0

p
þ 1ffiffiffiffiffiffi

H0

p μ21

þ 1ffiffiffiffiffiffi
H0

p μ22
ffiffiffiffiffiffi
H0

p �
e−

l
2

ffiffiffiffi
H0

p �
: ð27Þ

The vacuum energy, referred to the vacuum in the
absence of the plates, is then given by

E ¼ 1

2

Z þ∞

−∞

dk0
2π



log det

�
1

2

�
μ11 þ μ12

ffiffiffiffiffiffi
H0

p
þ 1ffiffiffiffiffiffi

H0

p μ21

þ 1ffiffiffiffiffiffi
H0

p μ22
ffiffiffiffiffiffi
H0

p ��
þ log det e−l

ffiffiffiffi
H0

p �
: ð28Þ

In the previous expression, no use has been made yet of the
precise form of the potential in the region occupied by the
plates: this will determine the objects we have denoted
by μAB. Dealing with the effect of the δ functions, one can
derive the explicit form

�
μ11 μ12

μ21 μ22

�
¼

�
1 0

VR 0

��
sinhðl ffiffiffiffiffiffi

H0

p Þffiffiffiffiffiffi
H0

p
�
0 I

H 0

�

þ coshðl
ffiffiffiffiffiffi
H0

p
Þ
��

1 0

VL 0

�
; ð29Þ

which, when inserted in (28), yields for the energy a result
with the structure

E ¼ EL þ ER þ EI ð30Þ
with EL (ER) denoting the self-energy of the L (R) plate,

EL;R ¼ 1

2

Z þ∞

−∞

dk0
2π

Tr log

�
I þ 1

2
ffiffiffiffiffiffi
H0

p VL;RðxkÞ
�
; ð31Þ

where, we recall, H0 ¼ −∇2
k þ k20, and EI is the interaction

energy, responsible for the Casimir force between mirrors.
It is given by a generalized form of the Lifshitz formula,

EI ¼
1

2

Z þ∞

−∞

dk0
2π

Tr log½I − e−l
ffiffiffiffi
H0

p
rRe−l

ffiffiffiffi
H0

p
rL�; ð32Þ

with the operatorial “reflection coefficients:”

rL;R ¼ ð2
ffiffiffiffiffiffi
H0

p
þ VL;RÞ−1VL;R: ð33Þ

Note that, except when the potentials are uniform, i.e.,
independent of xk, these reflection coefficients involve
noncommuting objects in their definitions, since H0

depends on the planar Laplacian operator. That makes it
difficult to obtain more explicit expressions, unless extra
assumptions are made.

III. EXPANSION UP TO THE SECOND ORDER IN
THE DEPARTURE FROM CONSTANT

POTENTIALS

Let us now expand Eq. (32), the general expression for
the interaction part of the vacuum energy, up to the second
order in the departure from constant functions:

VLðxkÞ¼ vLþηLðxkÞ; VRðxkÞ ¼ vRþηRðxkÞ; ð34Þ

where vL and vR are constants. We assume they are chosen
in such a way that the spatial average of each departure
vanishes. The expansion for the energy is then

EI ¼ Eð0Þ þ Eð1Þ þ Eð2Þ þ… ð35Þ
where

Eð0Þ

L2
¼ 1

32π2l3

Z
∞

0

dρρ2 log½1 − σLðρÞσRðρÞe−ρ�; ð36Þ

where L2 is the area of the plates, and we have introduced

C. D. FOSCO and F. D. MAZZITELLI PHYS. REV. D 101, 045012 (2020)

045012-4



σL;RðρÞ≡ xL;R
ρþ xL;R

; xL;R ≡ lvL;R: ð37Þ

Note that the Dirichlet limit is obtained as σL;RðρÞ → 1.
Equation (36) is easily obtained from Eq. (32) by setting
VL;R ¼ vL;R in the reflection coefficients of Eq. (33).
The first-order term, on the other hand, vanishes. Indeed,

it has the form

Eð1Þ ¼
Z
xk

�X
α

δE
δηαðxkÞ

����
ηL≡0;ηR≡0

ηαðxkÞ
�
: ð38Þ

We have adopted above some conventions that we
shall continue to use: a shorthand notation for the integra-
tion over xk, and indices from the beginning of the Greek
alphabet to denote each one of the two mirrors,
namely, α ¼ L;R.
Now, the functional derivatives in (38) are evaluated for

(simultaneously) vanishing ηL and ηR, and are thus xk
independent. Therefore,

Eð1Þ ¼
X
α¼L;R

δE
δηα

����
ηL≡0;ηR≡0

Z
xk
ηαðxkÞ ¼ 0: ð39Þ

The second-order term, Eð2Þ, is a quadratic form in the
departures,

Eð2Þ ¼ 1

2

X
α;β

Z
xk;x0k

ηαðxkÞγαβðxk − x0
kÞηβðx0

kÞ; ð40Þ

where the γαβ, being second functional derivatives at
vanishing departures, can only depend on the differences
between the arguments. Moreover, one can also show that
they depend just on the modulus of xk − x0

k, since for
constant potentials the plates are homogeneous and
isotropic.
It is convenient to use, in what follows, Fourier trans-

forms. We use a tilde on the Fourier transformed version of
an object,

ηðxkÞ ¼
Z

d2kk
ð2πÞ2 e

ikk·xk η̃ðkkÞ; ð41Þ

and analogous conventions for Fourier transformation along
the three coordinates x0, x1, x2 (≡xk), on the space-time of
the mirrors. As a technical remark, note that it is convenient,
since the expressions become more symmetrical, to use
space-time dependent departures, and to regard them as time
independent at the end of the calculation.
Thus,

Eð2Þ ¼ 1

2

X
α;β

Z
d2kk
ð2πÞ2 η̃αð−kkÞγ̃αβðjkkjÞη̃βðkkÞ; ð42Þ

where, having in mind the static limit mentioned above,

γ̃αβðjkkjÞ ¼ lim
k0→0

½γ̃αβðkkÞ�: ð43Þ

To compute the γ̃αβ, we need to expand the reflection
coefficients in Eq. (33) up to second order in ηL;R, then
insert the result in Eq. (32), and keep the quadratic terms.
The expansion of the reflection coefficients, which has of
course the same form for each plate, may be written as
follows (we only write the one for theL plate, the expansion
for the other plate is obtained by replacing L → R below):

rL ¼ rð0ÞL þ rð1ÞL þ rð2ÞL þ… ð44Þ
where

rð0ÞL ¼ ð2
ffiffiffiffiffiffi
H0

p
þ vLÞ−1vL;

rð1ÞL ¼ 1

v2L
rð0ÞL ηLr

ð0Þ
L 2

ffiffiffiffiffiffi
H0

p
;

rð2ÞL ¼ −
1

v3L
rð0ÞL ηLr

ð0Þ
L ηLr

ð0Þ
L 2

ffiffiffiffiffiffi
H0

p
: ð45Þ

The form of the order n term, for any n ≥ 1, is in fact

rðnÞL ¼ ð−1Þn−1 1

vnþ1
L

½rð0ÞL ηL�nrð0ÞL 2
ffiffiffiffiffiffi
H0

p
: ð46Þ

Inserting the previous expansion for each one of the
plates to the second order, and expanding the logarithm
accordingly, we may write down the different components
of γ̃αβ more explicitly. The first ones we write down involve
a departure in just one of the mirrors, to the second order:

γ̃LLðkkÞ ¼
1

23x3Ll

Z
d3pk
ð2πÞ3

jpkjσRðpkÞσ2LðpkÞσLðpk þ 2lkkÞ
ejpkj − σLðpkÞσRðpkÞ

−
1

24x4Ll

Z
d3pk
ð2πÞ3

jpkjσRðpkÞσ2LðpkÞ
ejpkj − σLðpkÞσRðpkÞ

jpk þ 2lkkjσRðpk þ 2lkkÞσ2Lðpk þ 2lkkÞ
ejpkþ2lkkj − σLðpk þ 2lkkÞσRðpk þ 2lkkÞ

; ð47Þ

γ̃RRðkkÞ ¼
1

23x3Rl

Z
d3pk
ð2πÞ3

jpkjσLðpkÞσ2RðpkÞσRðpk þ 2lkkÞ
ejpkj − σRðpkÞσLðpkÞ

−
1

24x4Rl

Z
d3pk
ð2πÞ3

jpkjσLðpkÞσ2RðpkÞ
ejpkj − σRðpkÞσLðpkÞ

jpk þ 2lkkjσLðpk þ 2lkkÞσ2Rðpk þ 2lkkÞ
ejpkþ2lkkj − σRðpk þ 2lkkÞσLðpk þ 2lkkÞ

; ð48Þ
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and then we have the ones where each departure appears to the first order, which are symmetrical: γ̃LR ¼ γ̃RL:

γ̃LRðkkÞ ¼ −
1

24ðxLxRÞ2l
Z

d3pk
ð2πÞ3

e
1
2
jpkj−1

2
jpkþ2lkkj

ejpkj − σRðpkÞσLðpkÞ
jpkjjpk þ 2lkkjσRðpkÞσLðpkÞ

× σRðpk þ 2lkkÞσLðpk þ 2lkkÞ
�
1þ σRðpk þ 2lkkÞσLðpk þ 2lkkÞ

ejpkþ2lkkj − σRðpk þ 2lkkÞσLðpk þ 2lkkÞ

�
: ð49Þ

The term proportional to γ̃LLðRRÞ describes corrections
to the Casimir energy produced by the inhomogeneities of
the LðRÞ plate, while the term proportional to γ̃LR is the
relevant one for the computation of lateral forces and
torques induced by the interaction between the inhomoge-
neities on both mirrors.
The rather complex expressions can be simplified for

“quasi-Dirichlet” mirrors for which xL;R ≫ 1. In this limit
we have σL;RðρÞ ≃ 1 − ρ=xL;R and therefore the form
factors γ̃αβ can be approximated by

x4Lγ̃LLðkkÞ ¼ x4Rγ̃RRðkkÞ

¼ −
1

8l

Z
d3pk
ð2πÞ3

jpkjjpk þ 2lkkj
ðejpkj − 1Þð1 − e−jpkþ2lkkjÞ

×

�
1 −

e−jpkþ2lkkj

2

�
ð50Þ

and

ðxLxRÞ2γ̃LRðkkÞ

¼−
1

16l

Z
d3pk
ð2πÞ3

e
1
2
jpkjþ1

2
jpkþ2lkkjjpkjjpk þ2lkkj

ðejpkj−1Þðejpkþ2lkkj−1Þ ; ð51Þ

where we omitted a kk-independent term in γ̃LL and γ̃RR.
We can see that in this limit the γαβ are all of the same order
of magnitude if xR ≃ xL.
It is interesting to compare these results with the one for

curved Dirichlet mirrors. For simplicity we will compare
the interaction energy between Dirichlet mirrors (a curved
mirror in front of a planar one) with that of a Dirichlet
mirror (R) in front of a quasi-Dirichlet planar mirror with
inhomogeneities (L). The form factor for the former
configuration, that we will denote here by γ̃GðkkÞ is similar
to γ̃LL [13]:

γ̃GðkkÞ¼−
1

16l5

Z
d3pk
ð2πÞ3

jpkjjpk þ2lkkj
ðejpkj−1Þð1−e−jpkþ2lkkjÞ : ð52Þ

Note that the integrands of γ̃LL and γ̃G differ in a term
proportional to e−jpkþ2lkkj, and therefore they have the same
behavior in the limit jkkjl ≫ 1. Indeed, one can easily show
that both are proportional to jkkjl in this limit. Therefore,
one can mimic a perfect mirror with nonplanar geometry
with inhomogeneities on a planar mirror. The departure
from the planar geometry of a Dirichlet mirror, ηGðxkÞ,

should be proportional to the departure from the constant
potential ηLðxkÞ. This is valid when the scale of variation of
the geometry (and of the inhomogeneities) is much smaller
that the distance between mirrors. The opposite limit will
be studied in the next section.

IV. DERIVATIVE EXPANSION

Let us now consider the case in which the inhomoge-
neities are smooth, that is, its scale of variation is much
larger than l. We may extract from the results of the
previous section the would-be zero order in the DE (“PFA”)
term. Indeed, from Eq. (36) we find

EPFA½VL; VR� ¼
Z

d2xkEðlVLðxkÞ; lVRðxkÞÞ; ð53Þ

with

EðxL;xRÞ¼
1

l3
fðxL;xRÞ;

fðxL;xRÞ¼
1

32π2

Z
∞

0

dρρ2 log

�
1−

xL
ρþxL

xR
ρþxR

e−ρ
�
:

ð54Þ

In Fig. 1 we plot the function fðxL;∞Þ, that describes the
PFA to the interaction between a Dirichlet (R) and an

FIG. 1. The function fðxL;∞Þ that describes the interaction
between a Dirichlet mirror and an inhomogeneous mirror. It is
negative and monotonically decreasing, vanishes linearly as
xL → 0, and tends to −π4=45 as xL → ∞.
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inhomogeneous mirror (L). As expected, f vanishes in the
limit of transparent mirrors ðxL → 0Þ, and tends to its
Dirichlet value (−π4=45) for xL ≫ 1. It interpolates mono-
tonically between these two extreme cases.
To obtain the second-order term in a DE, which we

denote by Eð2Þ
DE, we follow our previous works [2,3]. We

need to extract the term which is quadratic in kk from each
γ̃αβ. Namely, for small kk:

γ̃αβðkkÞ ¼ cαβk2k þOðk3kÞ: ð55Þ

We have found

cRR ¼ 1

48π2x3RvR

Z
∞

0

dρρ2
�
½gðpÞ�2 − 4xLx5R

ðρþ xLÞðρþ xRÞ4
1

ðρþ xRÞeρ − xLxR
ρþxL

�
; ð56Þ

where

gðρÞ ¼ −
xLx2Rðeρðρþ xRÞðρ3 þ ρ2ðxL þ xR þ 2Þ þ ρxLðxR þ 1Þ − xLxRÞ þ xLx2RÞ

ðρþ xRÞ2ðxLxR − eρðρþ xLÞðρþ xRÞÞ2
ð57Þ

cLL ¼ cRRjR↔L, and

cLR ¼ l
48π2ðxLxRÞ2

Z
∞

0

dρρ2


∂ρ

�
e
ρ
2ρσLðρÞσRðρÞ

eρ − σLðρÞσRðρÞ
��2

:

ð58Þ

Therefore, going back to configuration space, the correc-
tion to the PFA reads

Eð2Þ
DE ¼ −

1

2

X
α;β

Z
d2xkcαβðlVL; lVRÞ∇Vα · ∇Vβ: ð59Þ

It is again instructive to analyze the case of quasi-
Dirichlet mirrors. As before, we will consider the case in
which the R mirror is perfect (xR → ∞), and the L mirror
is quasiperfect. Expanding the leading-order result for
xL ≫ 1 we obtain

EPFA ¼ −
Aπ2

1440l3

�
1 −

3

l

�
1

VL

�
; ð60Þ

where h…i denotes the mean value over the surface. On the
other hand, in this limit

cLL ≃
k

48π2l3V4
L
; ð61Þ

with

k¼
Z

∞

0

dρρ2
��

1þeρðρ−1Þ
ðeρ−1Þ2

�
2

−
4

eρ−1

�
≃−9.14 ð62Þ

As a consequence, the NLO correction reads

Eð2Þ
DE ≃

9.14
96π2l3

Z
d2xk

ð∇VLÞ2
V4
L

: ð63Þ

These results can be written in a simpler way by introduc-
ing a sort of “conductivity” ρL ¼ V−1

L (note that ρL → 0 for
perfect mirrors)

EDE

A
¼ −

π2

1440l3

�
1 −

3

l
hρLi

�
þ 9.14
96π2l3

hð∇ρLÞ2i: ð64Þ

V. CONCLUSIONS

In this paper we evaluated the vacuum energy for a
scalar field in the presence of two inhomogeneous thin
plates. The interaction between the field and the plates
is modeled by potentials localized on the plates. The
calculation generalizes previous works on δ-potentials
and can be considered as a toy model for the interaction
of the electromagnetic field with microstructured flat
mirrors.
From a mathematical point of view, we used the GY

theorem to compute the corresponding functional determi-
nant, and arrived to a formal result for the vacuum energy,
Eq. (32), that can be thought of as a generalized Lifshitz
formula, in which the reflection coefficients are replaced
by nonlocal operators that become local for homogeneous
plates.
We have obtained explicit integral expressions for the

vacuum energy in two different situations that involve
either small or smooth inhomogeneities. For small inho-
mogeneities, we compared the result with the correspond-
ing one for Dirichlet plates with nontrivial geometries,
pointing out that when the scales of variation of the
geometry and the inhomogeneity are much smaller than
the distance between mirrors, geometry can be traded off by
inhomogeneity. For smooth inhomogeneities, we used the
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DE as a expansion to obtain the NLO correction to the PFA
approximation.
The formalism developed in this paper can be adapted to

compute the vacuum energy in the electromagnetic case,
including an inhomogeneous medium between plates. The
calculation of Casimir-Polder forces on atoms near an

inhomogeneous plate is also of interest. We plan to address
these issues in a forthcoming work.
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