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Highlights

• Higher-order perturbation analysis of the nonlinear Schrödinger equa-

tion.

• Explicit formulas for the propagation of the mean spectral density of

white noise as a perturbation to a continuous-wave pump in a nonlinear

optical fiber.

• Excellent agreement with numerical simulations and experimental mea-

surements.

• The proposed formulas give some insights into the physics behind the

experimentally observed behavior.
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Abstract

A well-known and thoroughly studied phenomenon in nonlinear wave propa-

gation is that of modulation instability (MI). MI is usually approached as a

perturbation to a pump, and its analysis is based on preserving only terms

which are linear on the perturbation, discarding those of higher order. In

this sense, the linear MI analysis is relevant to the understanding of the on-

set of many other nonlinear phenomena, such as supercontinuum generation,

but it has limitations as it can only be applied to the propagation of the

perturbation over short distances.

In this work, we propose approximations to the propagation of a pertur-

bation, consisting of additive white noise, that go beyond the linear modu-

lation instability analysis, and show them to be in excellent agreement with

numerical simulations and experimental measurements.
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1. Introduction1

Pulse propagation in single-mode lossless nonlinear fibers is modeled by2

the Nonlinear Schrödinger Equation (NLSE) [1]3

∂A

∂z
− iβ̂A = iγ̂A |A|2 . (1)

A(z, T ) is the pulse envelope, z is the direction of propagation and T is4

the time referred to a co-moving frame with group velocity vg = β−1
1 (i.e.,5

T = t − zβ1). Linear dispersion is modeled by the operator β̂, while γ̂ is6

related to the third-order susceptibility:7

β̂ =
∑

k≥2

ikβk
k!

∂k

∂T k
, γ̂ =

∑

k≥0

ikγk
k!

∂k

∂T k
. (2)

We must note that, for the sake of simplicity, we have omitted the contri-8

bution of the stimulated Raman response of the medium. Furthermore, we9

have not included any noise source such as spontaneous Raman emission.10

Analytical solutions of Eq. (1) are known in a variety of simplified cases.11

For instance, solitonic solutions can be found by means of the inverse-scattering12

method originally proposed by Zakharov and Shabat [2] (see also, e.g., [3]),13

but only under some simplifications such as no higher-order dispersion (βk =14

0 for k ≥ 3). An important family of periodic solutions, known as Akhmediev15

breathers [4], has attracted attention in relation to supercontinuum genera-16

tion and rogue waves [5, 6]. Although Akhmediev breathers were originally17

found for low-dispersion cases, Eq. (1) has been found to be integrable in18

more complex cases (see, for example, [7–11] and references therein). How-19

ever, the number of exactly integrable variations of the NLSE is still very20

limited.21
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Although exact solutions of simplified versions of Eq. (1) provide impor-22

tant insight into many features of the propagation of pulses in nonlinear23

fibers, they do not provide a precise description in general. For this reason,24

the NLSE is usually studied by means of simulations based on efficient algo-25

rithms such as split-step Fourier (SSF) [1] or a fourth-order Runge-Kutta in26

the interaction picture (RK4IP) [12].27

In this work, we put forth a perturbation analysis of the Eq. (1) when a28

continuous-wave (CW) laser pumps the nonlinear fiber. The CW pump is al-29

ways accompanied by technical and quantum noise and we focus on the noise30

propagation along the fiber. Our goal is not to propose an efficient method-31

ology that can substitute numerical simulations of the nonlinear Schrödinger32

equation, but to introduce approximate expressions that can provide a more33

intuitive and comprehensive understanding of the main processes involved in34

higher-order modulation instability.35

One possibility is to study noise propagation as a perturbation to the36

CW. The first-order perturbation or linear stability analysis is related to the37

study of the modulation instability (MI) phenomenon [4, 5, 13–23, 23–29]38

(see also Chapter 5 of Ref. [1] and references therein.) Exact solutions of MI39

accounting for a full model of the NLSE, including the Raman response and40

the dependence of the nonlinear parameter with frequency, have been devel-41

oped [30, 31]. The particular case of the propagation of additive noise has42

been dealt with in the literature (see, e.g., [32, 33]). Note, however, that the43

wave propagation analysis of a noisy CW pump in a MI setting has several44

limitations. The continuous-wave pump is assumed undepleted and, hence,45

the results are only valid over short propagation distances. Furthermore, as46

4
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it is a first-order perturbation analysis, it disregards the ’cascading effect’ of47

four-wave mixing, in the sense that perturbations to the pump can as well act48

as pumps themselves once they have attained enough power. One alternative49

to incorporate such cascading effect is to solve the NLSE through Picard’s50

iterations. Resulting expressions are, nevertheless, not easily tractable and51

even their numerical evaluation may turn out to be an expensive computa-52

tional effort as compared to pure numerical solutions obtained from the usual53

SSF or RK4IP algorithms. For this reason, we put forth several simplifica-54

tions that allow an analysis of higher-order perturbations. The validity of55

these simplifications is tested through numerical simulation and experimental56

measurements.57

We must note that there are alternative approaches which are related to58

ideas presented in this work. In particular, many tools have been developed59

for the statistical analysis of optical wave turbulence (see, e.g., [34–38]).60

The remaining of this paper is organized as follows. In Section 2 we61

develop a higher-order perturbation analysis of the nonlinear Schrödinger62

equation and motivate the simplifications that allow tractability. We vali-63

date our approach with experimental results and numerical simulations in64

Section 3. Finally, we present some conclusions and lines of future work in65

Section 4.66

2. Perturbation analysis67

Let us again consider the nonlinear Schrödinger equation. It is useful to

normalize the propagation distance as ζ = γ0P0z. We study the propagation

of a small perturbation a(ζ, T ) to the stationary solution of Eq. (1), i.e.,

5
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we consider A(ζ, T ) =
√
P0 [1 + a(ζ, T )] eiζ . Fourier transformation (with

respect to time T ) leads to the following coupled differential equations

i∂ζ ã(ζ,Ω) +B(Ω)ã(ζ,Ω) + γ̃(Ω)ã(ζ,−Ω) = −γ(Ω)Ñ(ã(ζ,Ω)),

(3)

−i∂ζ ã(ζ,−Ω) +B(−Ω)ã(ζ,−Ω) + γ̃(−Ω)ã(ζ,Ω) = −γ(−Ω)Ñ(ã(ζ,−Ω)),

(4)

where ã(ζ,Ω) is the Fourier transform of a(ζ, T ), B(Ω) = β̃(Ω) + 2γ̃(Ω)− 1,68

β̃(Ω) =
1

γ0P0

M∑

m=2

(−1)m

m!
βmΩm, γ̃(Ω) =

1

γ0

N∑

n=0

(−1)n

n!
γnΩn, (5)

69

Ñ(ã) =ã(ζ,Ω) ∗ ã(ζ,−Ω) + ã(ζ,Ω) ∗
[
ã(ζ,Ω) + ã(ζ,−Ω)

]
+

ã(ζ,Ω) ∗ ã(ζ,Ω) ∗ ã(ζ,−Ω).
(6)

2.1. Linear stability analysis70

Analysis of modulation instability (MI) proceeds by neglecting the nonlin-71

ear terms in Eqs. (3)-(4). Let us assume that ã(0,Ω) is a noisy perturbation72

such that73

〈ã(0,Ω)〉 = 0,
〈
ã(0, µ)ã(0, ν)

〉
= sδµ−ν , 〈ã(0, µ)ã(0, ν)〉 = 0, (7)

for some positive constant s. It can be shown that the first-order MI approx-74

imation is given by (see [33])75

〈
|ã(ζ,Ω)|2

〉
≈ s · M

2(Ω) +G2
1(Ω) + γ̃2(Ω)

4G2
1(Ω)

· e2G1(Ω)ζ , (8)

where76

M(Ω) = β̃e(Ω) + 2γ̃e(Ω)− 1, (9)

Γ1(Ω) =
√
γ̃(Ω)γ̃(−Ω)−M2(Ω), (10)

6
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77

G1(Ω) =





Γ1(Ω) if Γ1(Ω) ∈ R,

0 otherwise,
(11)

and β̃e and γ̃e contain even terms of β̃ and γ̃, respectively.78

Equation (8) describes how white noise with mean spectral density s is79

amplified by an MI gain G1(Ω). Modulation instability analysis, however,80

suffers from several shortcomings. Since higher-order nonlinear interactions81

are neglected, expressions so far cannot capture the cascading effect of four-82

wave mixing.83

2.2. Perturbation ansatz84

Equation (8) motivates a perturbative approximation to the solution of85

the form86

ã(ζ,Ω) ≈
∞∑

n=1

s
n
2 ∆n(Ω)eiφn(ζ,Ω)eGn(Ω)ζ , (12)

where the following random-phase assumption is satisfied87

〈
eiφn(x,µ)e−iφm(y,ν)

〉
= δn,mδ(x− y)δ(µ− ν), (13)

Note that, to a first order, Eq. (12) agrees with Eq. (8) with G1 given by88

Eq. (11) and, for G1(Ω) 6= 0,89

〈
|∆1(Ω)|2

〉
=
M2(Ω) +G2

1(Ω) + γ̃2(Ω)

4G2
1(Ω)

. (14)

If we also assume that ∆n are independent of φm for all n,m, ∆n is indepen-90

dent of ∆m for m 6= n, and Gn is deterministic and real, the mean squared91

value of the perturbation must evolve as92

〈
|ã(ζ,Ω)|2

〉
≈

∞∑

n=1

sn
〈
|∆n(Ω)|2

〉
e2Gn(Ω)ζ . (15)

7
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In order to find expressions for 〈|∆n(Ω)|2〉 and Gn(Ω), we substitute93

Eq. (12) in Eqs. (3)-(4) and use Eq. (15). However, to make calculations94

tractable and final expressions simpler, we propose several simplifying hy-95

potheses which are detailed in Appendix A. Although the true extent of96

their effect can only be comprehended in the context of the detailed calcu-97

lations presented in the appendix, some of these simplifications are easy to98

understand:99

1. We assume that the functions Gn(Ω) are even. This assumption is100

motivated by the fact that G1(Ω) (the MI gain) is even.101

2. We also assume that
〈
|∆n(Ω)|2

〉
are even functions. Again, this sim-102

plification is motivated by the modulation instability case: as it can be103

shown, from Eq. (14), 〈|∆1(Ω)|2〉 is even.104

3. We neglect the interaction of higher-order MI terms: we only keep the105

interaction of n > 1 terms in Eq. (12) with the modulation instability106

(n = 1) term.107

4. We also neglect three-fold interactions of terms in Eq. (12).108

5. Substitution of Eq. (12) in Eq. (6) leads to a number of convolution109

integrals. We consider that the weight of the corresponding integrands110

is maximized when the exponents (G1(u) +Gn−1(u− v)) and G1(u) +111

Gn−1(v− u)) are maximized. This approximation is very important to112

obtain simple expressions for Gn, as it is explained in Appendix A.113

6. Finally, we repeatedly use Eq. (13), we use the fact that 〈∂ζφn(ζ,Ω)〉 =114

0 and neglect higher-order moments of ∂ζφn(ζ,±Ω).115

After some lengthy manipulations, we arrive at the following expressions:116

Gn(Ω) = max
u

G1(u) +Gn−1(u− Ω), (16)

8
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〈
|∆n(Ω)|2

〉
=

αn−1γ̃2(Ω) ·
[
|B(−Ω)− iGn(Ω)|2 + γ̃2(−Ω)

]

|(B(Ω) + iGn(Ω)) (B(Ω)− iGn(Ω))− γ̃(Ω)γ̃(−Ω)|2
. (17)

The positive constant α in Eq. (17) is related to the MI gain bandwidth.117

Although Eq. (15) correctly describes the evolution of the perturbation,118

it is not accurate at ζ = 0. Indeed, as it can be readily calculated,119

〈
|ã(0,Ω)|2

〉
≈

∞∑

n=1

sn
〈
|∆n(Ω)|2

〉
. (18)

This equation does not lead to the known value
〈
|ã(0,Ω)|2

〉
= s. Eq. (15) can120

be made accurate even at ζ = 0, that is, for the initial random pertubation,121

by making a minor correction to Eq. (12):122

〈
|ã(ζ,Ω)|2

〉
≈ s+

∞∑

n=1

sn
〈
|∆n(Ω)|2

〉 (
e2Gn(Ω)ζ − 1

)
. (19)

2.3. Discussion123

Equation (16) is a result of the cascading effect of four-wave mixing.124

Figure 1 shows an example of Gi for i = 1, 2, 3 that helps understand the125

cascading effect when perturbations attain enough power and themselves act126

as new pumps. The resulting higher-order MI sidebands have already been127

discussed in the literature. Erkintalo et al. [22], for example, describe how128

an Akhmediev-breather evolves and splits into subpulses using the Darboux129

transformation and demonstrate a good agreement with experimental results.130

While Ref. [22] develops higher-order solutions by iteratively applying the131

Darboux transformation, Zakharov et al. [29] present a class of multisolitonic132

solutions which may be used to describe MI development. Kimmoun et133

al. [39] study a similar higher-order cascading process in surface gravity waves134

in deep-water and Armaroli et al. [40] also analyze the second-order sidebands135

in the case of the Dysthe equation.136

9
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Figure 1: G1, G2 and G3. The cascading four-wave mixing process is readily observed.

For the sake of simplicity, we have omitted the influence of stimulated137

Raman scattering. However, simple modifications to the formulas presented138

here allow to incorporate in straightforward fashion the molecular Raman139

response of the medium.140

It must be noted that the proposed approximation assumes that the CW141

pump acts as an unlimited source of optical power. As a matter of fact,142

Eq. (19) predicts a continuous growth of the perturbation. Since the power143

of the perturbation cannot exceed that of the pump at the input end of the144

optical fiber, the proposed analytical model does not apply to an arbitrary145

long propagated distance ζ, a shortcoming also present in the linear modu-146

lation instability analysis. However, first-order MI analysis does not account147

for higher-order nonlinear interactions, such as the cascading four-wave mix-148

10
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Figure 2: First-order (dashed green line) and fourth-order (orange solid line) analytical

approximations vs. experimental results (blue solid line). A CW 30-dBm pump laser at

1590.4 nm was launched at the input end of the 770-m long dispersion-stabilized HNLF.

ing and, thus, it fails to give an accurate description of the evolution of the149

perturbation for even shorter propagation lengths. We verify this assertion150

in the next Section.151

3. Experimental and numerical results152

In order to test our approach we performed measurements on a 770 m-153

long, dispersion-stabilized Highly-Nonlinear Fiber (HNLF) [41]. A CW 30-154

dBm pump laser at 1590.4 nm was launched at the input end of the fiber.155

Figure 2 presents a comparison between the observed power spectral density156

11
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Figure 3: Analytical approximations (orange dashed lines) vs. simulation results (blue

solid lines). Numerical results correspond to the average of 100 noise realizations. Results

correspond to distances 5LNL, 6LNL, 7LNL, 8LNL.

(measured with 0.1-nm resolution) and the proposed analytical approxima-157

tion. The latter was obtained by using Eqs. (16), (17) and (19) (adding up158

to n = 4) with γ0 = 8.7 W−1Km−1, γk = 0 for k > 0, β2 = −3.9198 ps2/km,159

β3 = −0.1267 ps3/km, β4 = 1.7594 × 10−4 ps4/km and βk = 0 for k > 4.160

As it is readily observed, experimental and analytical results are in excellent161

agreement. Figure 2 also shows the first-order perturbative solution, that is,162

the solution predicted by the classical modulation instability analysis. MI163

cannot account for much of the detail observed as it only predicts two gain164

sidebands.165

12
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Figure 4: Total signal power for the analytical approximation (orange dashed line) vs.

simulation (solid blue line). The crossing at nearly 7 LNL (cf. Fig. 3) marks the maximum

propagated distance at which the analytical approximation remains valid.

In order to further explore the validity of the approximations, we per-166

formed computer simulations using the algorithm in [42]. Figure 3 shows167

results for the average of 100 realizations. The distance is normalized to168

the so-called nonlinear length LNL = (γ0P0)−1, where P0 is the input power,169

giving a parameter-independent distance metric. It is observed that the accu-170

racy of the approximation decreases with the propagation distance, although171

reasonable good results are obtained even after 7LNL (≈ 800 m).172

As it can be seen in the bottom-right panel of Fig. 3, analytical expressions173

fail to adequately represent the simulated behavior at 8LNL. In particular, a174

13
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limitation of the analytical model becomes apparent; namely, the analytical175

spectral density has a higher power than that from simulations. As discussed,176

the analytical model assumes an unlimited pump power source that enables177

continuous growth of the perturbation, as shown in Fig. 4 and in accordance178

with Eq. (19). However, since total power (pump plus perturbation) must179

remain constant, we can expect the analytical model to be valid as long as180

the calculated power of the perturbation remains lower than that of the input181

pump. As shown in Fig. 4, this condition is satisfied up to ∼ 7LNL, entirely182

consistent with results in Fig. 3.183

4. Conclusions184

Modulation instability in nonlinear wave propagation is either approached185

by means of a linear perturbation analysis to a continuous-wave pump, or by186

the numerical solution of the Nonlinear Schrödinger equation. While the for-187

mer approach gives some insight into the initial stages of propagation, it fails188

at providing an accurate picture over long propagated distances; the latter189

can provide accurate results over longer distances, but hides the underlying190

physics.191

In this work, we put forth a perturbation analysis that goes beyond the192

linear modulation instability, offering both a more precise analytical descrip-193

tion and meaningful physical insights that capture higher-order cascading194

four-wave mixing effects. We showed this analysis to be accurate by com-195

paring its predictions to actual experimental results. Furthermore, we suc-196

cessfully validated the approximations made with numerical simulations for197

propagated distances up to nearly 7LNL.198

14
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The mathematical derivation presented is complex and involves a number199

of simplifying assumptions but leads to simple and tractable formulas. It200

is a matter of future work to look for a shorter path and less restrictive201

simplifications.202

In this paper, we do not deal with the nonlinear stage of modulation203

instability, that is, when the energy of the MI sidebands is comparable to204

that of the pump. There is also the question of the effect of the particular205

statistics of the initial perturbation on this stage. These problems are a206

subject of future research. We study the case of an homogeneous, undoped,207

single-core and single-mode optical fiber. A more complex setting can be208

found in, e.g., dual-core [43] and resonant [44] optical fibers.209

Finally, we believe our results to be of value when tackling the study of210

the early stages of supercontinuum generation, and to contribute tools for the211

better understanding of nonlinear processes such as rogue-wave formation.212
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Appendix A. Mathematical derivation218

In order to find expressions for 〈|∆n(Ω)|2〉 and Gn(Ω), we substitute219

Eq. (12) in Eqs. (3)-(4) and use Eq. (15). However, to make the calculations220

15
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tractable and the final expressions simpler, we resort to several simplifications221

which were summarized in Section 2.2.222

Assuming that the series can be derived term by term, substitution of223

Eq. (12) into Eqs. (3)-(4)224

∞∑

n=1

s
n
2 eGn(Ω)ζ ·B ·


 ∆n(Ω)eiφn(ζ,Ω)

∆∗n(−Ω)e−iφn(ζ,−Ω)


 = −


 γ̃(Ω)Ñ (ã(ζ,Ω))

γ̃(−Ω)Ñ (ã(ζ,−Ω))


 , (A.1)

where225

B =


B(Ω) + iGn(Ω)− ∂ζφn(ζ,Ω) γ̃(Ω)

γ̃(−Ω) B(−Ω)− iGn(Ω) + ∂ζφn(ζ,−Ω)


 .

(A.2)

In the derivation of Eqs. (A.1)-(A.2) we have made use of the assumption that226

that the functionsGn(Ω) are even (simplifying assumption #1 in Section 2.2).227

Using Eqs. (6) and (12),228

Ñ (ã(x, µ)) =
∞∑

n=1

s
n
2

{
n−1∑

m=1

+∞∫

−∞

2∆m(u)∆n−m(u− µ)e(Gm(u)+Gn−m(u−µ))xei(φm(x,u)−φn−m(x,u−µ))du+

+

+∞∫

−∞

∆m(u)∆n−m(µ− u)e(Gm(u)+Gn−m(µ−u))xei(φm(x,u)+φn−m(x,µ−u))du+

+
n−m−1∑

k=1

+∞∫

−∞

+∞∫

−∞

∆m(u)∆k(v)∆n−m−k(u+ v − µ)

e(Gm(u)+Gk(u)+Gn−m−k(u+v−µ))xei(φm(x,u)+φk(x,v)−φn−m−k(x,u+v−µ))dudv
}
.

(A.3)

In order to make these equations tractable, we resort to the approximations229

3-5 spelled out in Section 2.2. First, approximation #3 implies that we230

16
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keep only the first term in the sum, that is, m = 1. Second, aproximation231

#4 means that we neglect the terms with double integrals as higher-order232

perturbations. Finally approximation #5 is, perhaps, the most relevant: we233

consider that the weight of the integrands is maximized when the exponents234

(G1(u) +Gn−1(u− µ)) and (G1(u) +Gn−1(µ− u)) are maximized. Since we235

have already assumed that the Gn are even,236

max
u

(G1(u) +Gn−1(u− µ)) = max
u

(G1(u) +Gn−1(µ− u))

= max
u

(G1(u) +Gn−1(µ+ u))

= max
u

(G1(u) +Gn−1(−µ− u)).

(A.4)

With all these simplifications, we obtain237

Ñ (ã(x, µ)) ≈
∞∑

n=1

s
n
2 · emax

u
(G1(u)+Gn−1(u−µ))x · {I1(x, µ) + I2(x, µ)} , (A.5)

where238

I1(ζ,Ω) =

+∞∫

−∞

2∆1(u)∆n−1(u− Ω)ei(φ1(ζ,u)−φn−1(ζ,u−Ω))du, (A.6)

239

I2(ζ,Ω) =

+∞∫

−∞

∆1(u)∆n−1(Ω− u)ei(φ1(ζ,u)+φn−1(ζ,Ω−u))du. (A.7)

Using Eqs. (A.4)-(A.7) in Eq. (A.1), we get

∞∑

n=1

s
n
2 · eGn(Ω)ζ ·B ·


 ∆n(Ω)eiφn(ζ,Ω)

∆∗n(−Ω)e−iφn(ζ,−Ω)


 =

∞∑

n=1

s
n
2 · emax

u
(G1(u)+Gn−1(u−Ω))ζ ·


 −γ̃(Ω) (I1(ζ,Ω) + I2(ζ,Ω))

−γ̃(−Ω)
(
I1(ζ,−Ω) + I2(ζ,−Ω)

)


 .
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This equation leads to240

Gn(Ω) = max
u

G1(u) +Gn−1(u− Ω), (A.8)

with Gn(Ω) an even function, and241


 ∆n(Ω)eiφn(ζ,Ω)

∆∗n(−Ω)e−iφn(ζ,−Ω)


 = −B−1


 γ̃(Ω) (I1(ζ,Ω) + I2(ζ,Ω))

γ̃(−Ω)
(
I1(ζ,−Ω) + I2(ζ,−Ω)

)


 . (A.9)

What remains is to take the mean squared value of ∆n(Ω) which can be242

found from Eq. (A.9). In the process, a useful simplification is to assume243

that
〈
|∆n(Ω)|2

〉
are even functions (as it can be shown, from Eq. (14), that244

〈|∆1(Ω)|2〉 is even). We also neglect higher-order moments of ∂ζφn(ζ,±Ω)245

and use Eq. (13) (see simplifying assumption #6 in Section 2.2).246

From Eq. (A.2),247

−iJ(Ω)∆n(Ω)eiφn(ζ,Ω) =
(
−B(−Ω) + iGn(Ω) +

∂φn(ζ,Ω)

∂ζ

)
γ̃(Ω) (I1(ζ,Ω) + I2(ζ,Ω))

− γ̃(Ω)γ̃(−Ω)
(
I1(ζ,−Ω) + I2(ζ,−Ω)

)
, (A.10)

where J(Ω) = det (B). Multiplying this expression by its conjugate,248

|J(Ω)|2 |∆n(Ω)|2 = γ̃2(Ω)·
[(
−B(−Ω) + iGn(Ω) +

∂φn(ζ,−Ω)

∂ζ

)

(I1(ζ,Ω) + I2(ζ,Ω))− γ̃(−Ω)
(
I1(ζ,−Ω) + I2(ζ,−Ω)

)]
·

[(
−B(−Ω)− iGn(Ω) +

∂φn(ζ,−Ω)

∂ζ

)

(
I1(ζ,Ω) + I2(ζ,Ω)

)
− γ̃(−Ω) (I1(ζ,−Ω) + I2(ζ,−Ω))

]
.

(A.11)
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Eq. (13) and Eqs. (A.5)-(A.7) lead to249

〈
I1(ζ,Ω)I2(ζ,Ω)

〉
=
〈
I1(ζ,Ω)I2(ζ,−Ω)

〉
= 0, (A.12)

250 〈
I1(ζ,Ω)I1(ζ,Ω)

〉
=
〈
I2(ζ,Ω)I2(ζ,−Ω)

〉
= 0, (A.13)

251

〈
|I1(ζ,Ω)|2

〉
=

+∞∫

−∞

4
〈
|∆1(u)|2

〉 〈
|∆n−1(u− Ω)|2

〉
du, (A.14)

252

〈
|I1(ζ,−Ω)|2

〉
=

+∞∫

−∞

4
〈
|∆1(u)|2

〉 〈
|∆n−1(u+ Ω)|2

〉
du, (A.15)

253

〈
|I2(ζ,Ω)|2

〉
=

+∞∫

−∞

〈
|∆1(u)|2

〉 〈
|∆n−1(Ω− u)|2

〉
du, (A.16)

254

〈
|I2(ζ,−Ω)|2

〉
=

+∞∫

−∞

〈
|∆1(u)|2

〉 〈
|∆n−1(−Ω− u)|2

〉
du. (A.17)

Using simplification #2 in Section 2.2 (i.e, assume that 〈|∆n(Ω)|2〉 are even255

functions), we may write256

〈
|I1(ζ,Ω)|2

〉
+
〈
|I2(ζ,Ω)|2

〉
=
〈
|I1(ζ,−Ω)|2

〉
+
〈
|I2(ζ,−Ω)|2

〉
=

= 5

+∞∫

−∞

〈
|∆1(u)|2

〉 〈
|∆n−1(u− Ω)|2

〉
du.

(A.18)

Finally, using approximation #6 in Section 2.2,257

〈
|J(Ω)|2 |∆n(Ω)|2

〉
= γ̃2(Ω) ·

[
|B(−Ω)− iGn(Ω)|2 + γ̃2(−Ω)

]
·

5

+∞∫

−∞

〈
|∆1(u)|2

〉 〈
|∆n−1(u− Ω)|2

〉
du.

(A.19)

Although we may incur in an error, we approximate
〈
|J(Ω)|2 |∆n(Ω)|2

〉
≈258

〈
|J(Ω)|2

〉 〈
|∆n(Ω)|2

〉
. Using the fact that 〈∂ζφn(ζ,Ω)〉 = 0 and neglecting259
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higher-order moments of ∂ζφn(ζ,±Ω) (i.e., simplifying assumption #6 in260

Section 2.2), we obtain261

〈
|J(Ω)|2

〉
= |(B(Ω) + iGn(Ω)) (B(Ω)− iGn(Ω))− γ̃(Ω)γ̃(−Ω)|2 . (A.20)

Introducing Eq. (A.20) in Eq. (A.19),262

〈
|∆n(Ω)|2

〉
≈ γ̃2(Ω) ·

[
|B(−Ω)− iGn(Ω)|2 + γ̃2(−Ω)

]

|(B(Ω) + iGn(Ω)) (B(Ω)− iGn(Ω))− γ̃(Ω)γ̃(−Ω)|2
·

5

+∞∫

−∞

〈
|∆1(u)|2

〉 〈
|∆n−1(u− Ω)|2

〉
du.

(A.21)

By the way we defined ∆1 (see Eq. (14)), the integral is actually a definite263

integral. Since the integrands are nonnegative, by the mean-value theorem264

we may write265

+∞∫

−∞

〈
|∆1(u)|2

〉 〈
|∆n−1(u− Ω)|2

〉
du =

〈
|∆n−1(c(Ω))|2

〉 +∞∫

−∞

〈
|∆1(u)|2

〉
du.

(A.22)

This equation motivates our last simplification. Let us define266

Λn = 5

+∞∫

−∞

〈
|∆1(u)|2

〉 〈
|∆n−1(u− Ω)|2

〉
du. (A.23)

We assume that267

Λn ≈ αΛn−1 for n > 1, Λ1 = 1. (A.24)

Using this approximation, we have268

〈
|∆n(Ω)|2

〉
≈ αn−1 · γ̃2(Ω) ·

[
|B(−Ω)− iGn(Ω)|2 + γ̃2(−Ω)

]

|(B(Ω) + iGn(Ω)) (B(Ω)− iGn(Ω))− γ̃(Ω)γ̃(−Ω)|2
.

(A.25)

In practice, αmay help compensate some of the approximations in the deriva-269

tion of Eq. (A.25) and needs to be estimated for each particular scenario.270

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References271

[1] G. Agrawal, Nonlinear Fiber Optics, Optics and Photonics, fifth ed.,272

Academic Press, 2012.273

[2] V. E. Zakharov, Collapse of langmuir waves, Soviet Physics JETP 35274

(1972) 908–914.275

[3] M. A. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations276

and Inverse Scattering, Cambridge University Press, 1991.277

[4] N. Akhmediev, V. Korneev, Modulation instability and periodic solu-278

tions of the nonlinear schrödinger equation, Theoretical and Mathemat-279

ical Physics 69 (1986) 1089–1093.280

[5] J. M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, Modulation281

instability, Akhmediev breathers and continuous wave supercontinuum282

generation, Opt. Express 17 (2009) 21497–21508.283

[6] N. Akhmediev, J. M. Soto-Crespo, A. Ankiewicz, How to excite a rogue284

wave, Phys. Rev. A 80 (2009) 043818.285

[7] N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere286

and disappear without a trace, Physics Letters A 373 (2009) 675–678.287

[8] A. Ankiewicz, J. M. Soto-Crespo, M. A. Chowdhury, N. Akhmediev,288

Rogue waves in optical fibers in presence of third-order dispersion, self-289

steepening, and self-frequency shift, J. Opt. Soc. Am. B 30 (2013) 87–94.290

[9] A. Ankiewicz, N. Akhmediev, Higher-order integrable evolution equa-291

tion and its soliton solutions, Physics Letters A 378 (2014) 358–361.292

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[10] A. Ankiewicz, Y. Wang, S. Wabnitz, N. Akhmediev, Extended nonlinear293

schrödinger equation with higher-order odd and even terms and its rogue294

wave solutions, Phys. Rev. E 89 (2014) 012907.295

[11] A. Ankiewicz, D. J. Kedziora, A. Chowdury, U. Bandelow, N. Akhme-296

diev, Infinite hierarchy of nonlinear schrödinger equations and their297

solutions, Phys. Rev. E 93 (2016) 012206.298

[12] J. Hult, A fourth-order runge-kutta in the interaction picture method299

for simulating supercontinuum generation in optical fibers, Journal of300

Lightwave Technology 25 (2007) 3770–3775.301

[13] T. B. Benjamin, J. E. Feir, The disintegration of wave trains on deep302

water part 1. theory, Journal of Fluid Mechanics 27 (1967) 417–430.303

[14] A. Hasegawa, Observation of self-trapping instability of a plasma cy-304

clotron wave in a computer experiment, Phys. Rev. Lett. 24 (1970)305

1165–1168.306

[15] V. Zakharov, A. Shabat, Exact theory of two-dimensional self-focusing307

and one-dimensional self-modulation of waves in nonlinear media, Soviet308

Physics JETP 34 (1972) 62–69.309

[16] A. Hasegawa, W. Brinkman, Tunable coherent IR and FIR sources310

utilizing modulational instability, IEEE Journal of Quantum Electronics311

16 (1980) 694–697.312

[17] P. A. E. M. Janssen, Modulational instability and the fermi-pasta-ulam313

recurrence, Physics of Fluids 24 (1981) 23–26.314

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[18] D. Anderson, M. Lisak, Modulational instability of coherent optical-315

fiber transmission signals, Opt. Lett. 9 (1984) 468–470.316

[19] P. K. Shukla, J. J. Rasmussen, Modulational instability of short pulses317

in long optical fibers, Opt. Lett. 11 (1986) 171–173.318

[20] K. Tai, A. Hasegawa, A. Tomita, Observation of modulational instability319

in optical fibers, Phys. Rev. Lett. 56 (1986) 135–138.320

[21] M. J. Potasek, Modulation instability in an extended nonlinear321

schrödinger equation, Opt. Lett. 12 (1987) 921–923.322

[22] M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J. M.323

Dudley, G. Genty, Higher-order modulation instability in nonlinear fiber324

optics, Phys. Rev. Lett. 107 (2011) 253901.325

[23] D. Solli, G. Herink, B. Jalali, C. Ropers, Fluctuations and correlations326

in modulation instability, Nature Photonics 6 (2012) 463–468.327

[24] D. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, H. Fragnito, Modulation328

instability induced resonant four-wave mixing in WDM systems, IEEE329

Photonics Technology Letters 11 (1999) 379–381.330

[25] D. Grosz, J. C. Boggio, H. Fragnito, Modulation instability effects331

on three-channel optically multiplexed communication systems, Optics332

Communications 171 (1999) 53–60.333

[26] K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot,334

N. Akhmediev, J. M. Dudley, Spectral dynamics of modulation insta-335

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

bility described using Akhmediev breather theory, Opt. Lett. 36 (2011)336

2140–2142.337

[27] S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen,338

O. Bang, Influence of pump power and modulation instability gain339

spectrum on seeded supercontinuum and rogue wave generation, J. Opt.340

Soc. Am. B 29 (2012) 2875–2885.341

[28] J. M. Soto-Crespo, A. Ankiewicz, N. Devine, N. Akhmediev, Modulation342

instability, cherenkov radiation, and fermi-pasta-ulam recurrence, J.343

Opt. Soc. Am. B 29 (2012) 1930–1936.344

[29] V. E. Zakharov, A. A. Gelash, Nonlinear stage of modulation instability,345

Phys. Rev. Lett. 111 (2013) 054101.346

[30] P. Béjot, B. Kibler, E. Hertz, B. Lavorel, O. Faucher, General approach347

to spatiotemporal modulational instability processes, Phys. Rev. A 83348

(2011) 013830.349

[31] S. M. Hernandez, P. I. Fierens, J. Bonetti, A. D. Sánchez, D. F. Grosz, A350

geometrical view of scalar modulation instability in optical fibers, IEEE351

Photonics Journal 9 (2017) 1–8.352

[32] P. Fierens, S. Hernandez, J. Bonetti, D. Grosz, On the spectral dy-353

namics of noise-seeded modulation instability in optical fibers, in:354

V. In, P. Longhini, A. Palacios (Eds.), Proceedings of the 4th Inter-355

national Conference on Applications in Nonlinear Dynamics (ICAND356

2016), Springer, 2016, pp. 265–276. doi:10.1007/978-3-319-52621-8_23.357

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[33] J. Bonetti, S. M. Hernandez, P. I. Fierens, D. F. Grosz, Analytical study358

of coherence in seeded modulation instability, Phys. Rev. A 94 (2016)359

033826.360

[34] V. Zakharov, F. Dias, A. Pushkarev, One-dimensional wave turbulence,361

Physics Reports 398 (2004) 1–65.362

[35] A. Picozzi, S. Pitois, G. Millot, Spectral incoherent solitons: A localized363

soliton behavior in the frequency domain, Phys. Rev. Lett. 101 (2008)364

093901.365

[36] A. Picozzi, S. Rica, Condensation of classical optical waves beyond366

the cubic nonlinear schrödinger equation, Optics Communications 285367

(2012) 5440–5448.368

[37] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Mil-369

lot, D. Christodoulides, Optical wave turbulence: Towards a unified370

nonequilibrium thermodynamic formulation of statistical nonlinear op-371

tics, Physics Reports 542 (2014) 1–132.372

[38] J. M. Soto-Crespo, N. Devine, N. Akhmediev, Integrable turbulence373

and rogue waves: Breathers or solitons?, Phys. Rev. Lett. 116 (2016)374

103901.375

[39] O. Kimmoun, H. C. Hsu, B. Kibler, A. Chabchoub, Nonconservative376

higher-order hydrodynamic modulation instability, Physical Review E377

96 (2017) 022219.378

[40] A. Armaroli, M. Brunetti, J. Kasparian, Recurrence in the high-order379

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

nonlinear schrödinger equation: A low-dimensional analysis, Phys. Rev.380

E 96 (2017) 012222.381

[41] B. P.-P. Kuo, J. M. Fini, L. Grüner-Nielsen, S. Radic, Dispersion-382

stabilized highly-nonlinear fiber for wideband parametric mixer synthe-383

sis, Opt. Express 20 (2012) 18611–18619.384

[42] J. C. Travers, M. H. Frosz, J. M. Dudley, Nonlinear fibre optics overview,385

in: J. M. Dudley, J. R. Taylor (Eds.), Supercontinuum generation in386

optical fibers, Cambridge University Press, 2010, pp. 32 – 51.387

[43] R. Ganapathy, B. A. Malomed, K. Porsezian, Modulational instability388

and generation of pulse trains in asymmetric dual-core nonlinear optical389

fibers, Physics Letters A 354 (2006) 366–372.390

[44] B. Kalithasan, K. Porsezian, P. T. Dinda, B. A. Malomed, Modula-391

tional instability and generation of self-induced transparency solitons in392

resonant optical fibers, Journal of Optics A: Pure and Applied Optics393

11 (2009) 045205.394

26


