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Abstract 

This work presents the effects of high energy milling with different Ni and Zr ratios on the 

amorphization of ternary Cu-Ni-Zr alloys (initially, Cu-43Ni-7Zr, Cu-12Ni-31Zr, Cu-33Ni-

7Zr, and Cu-12Ni-23Zr; and later, Cu-23Ni-15Zr and Cu-11Ni-7Zr). Microstructure was 

determined using X-Ray diffraction and electron microscopy.  Results were compared to 

thermodynamic models. In the ternary alloys under study, the lattice parameter of the Cu-

Ni solid solution was generally correlated to the amounts of nickel incorporated into the Cu 

lattice. However, longer milling times reduced that lattice parameter and facilitated Zr 

insertion into the solid solution. For example, after 5 h of milling time, microstructural 

analysis showed the formation of a solid solution with cubic structure in Cu-43Ni-7Zr. This 

pattern is consistent with the presence of a lattice parameter between that of Cu and Ni 

(α−phase); in contrast, the Cu-33Ni-7Zr alloy showed an α-phase and another similar to Zr. 

Results suggest that, as the amount of nickel increases, the ability to form an amorphous 

phase decreases. Additionally, experimental and thermodynamic data showed a solid-

solution formation stage, followed by an amorphous phase formation stage that occurred as 

milling time and Zr content increased. 

 

Keywords: Copper based alloys, Amorphous Alloys, Mechanical alloying, X-ray 

diffraction, Transmission electron microscopy, thermodynamic analysis. 

 

1. Introduction 

Since the discovery of metallic glasses in the 1960s [1], extensive experimental and 

theoretical efforts have been made to study the glass-forming ability of metallic alloy 
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systems. Interest has especially culminated in recent decades, and particularly on 

amorphous solid solutions, known as bulk metallic glasses (BMG) for their high glass-

forming ability and fabricated by rapidly quenching, melted metallic compounds to ensure 

random atomic arrangement in a non-equilibrium state [2]. That said, there are also 

methods of amorphizing solids without their passing through liquid states, such as 

irradiation, hydrogen-assisted amorphization, interdiffusion of elemental metals, and 

mechanical alloying (MA) [3]. These are known as solid-state amorphization reactions 

(SSARs).  Amorphous alloys have huge potential as advanced engineered materials due to 

diverse characteristics, such as high elasticity, hardness, and resistance to corrosion and 

wear [4]. Considering this potential, numerous studies have been performed in order to 

attempt to optimize fabrication processes (both traditional and new), thus improving these 

already unique properties. As such, the study of amorphous materials and alternative 

fabrication methods has become one of the most important fields in contemporary material 

science. 

Of these amorphous materials, Cu-based alloys, and their mechanical properties in 

particular, have been garnering interest in recent years [5], some Cu-based BMGs have 

been shown to have compressive strength of up to 2 GPa [6], while others may form BMG 

alloys with impressive ductility [7,8]. Cu-based amorphous materials are mainly made 

through conventional casting techniques, where the cooling rate of molten metal must be 

faster than the critical cooling rate for forming amorphous alloys. As such, the amounts of 

amorphous material produced as BMGs are limited. In looking at alternative methods, it 

has been demonstrated that milling processes produce a variety of microstructural changes. 

Indeed, this process has produced a variety of non-equilibrium phases, such as super-

saturated solid solutions, intermediate metastable phases, quasi-crystalline alloys, 
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nanostructured materials, and metallic glasses [9–11].  In other amorphous alloys of note, 

Cu-Zr based BMGs have attracted attention due to their high strength and high thermal 

stability against crystallization, with lower costs than Zr-based BMGs [12]. Previous 

studies [13–15] have shown crystallinity differences in Cu-Ni and Cu-Zr phases under the 

same high-energy milling processes. However, since many microstructural changes overlap 

during mechanical alloying, the exact nature of these changes remains unclear. In this 

regard, very few works have focused on two relevant aspects: i) obtaining microstructural 

information via X-ray diffraction analysis, such as crystallite size, microstrain, dislocation 

factor contrast, etc.; and ii) describing the thermodynamic relationship between solid 

solution formation and solid state amorphization.  

Therefore, the work discusses microstructural changes in mechanically alloying within 

systems of all three of the elements discussed above. The thermodynamic and X-ray profile 

analyses of the microstructural changes provided in this paper may thus lead to a better 

understanding of the formation stages in Cu-based amorphous alloys during mechanical 

alloying.  

 

2. Material and methods 

Mechanical alloying was performed with pure powders: Cu (99.7% at., < 63 mesh, Merck), 

Ni (99 % at., < 230 mesh, Merck), and Zr (99.8% at., < 50 mesh, Noah Technologies). 

Milling was carried out with different powder ratios: initially, Cu-43Ni-7Zr, Cu-12Ni-31Zr, 

Cu-33Ni-7Zr, and Cu-12Ni-23Zr; and later, Cu-23Ni-15Zr and Cu-11Ni-7Zr (at. %). The 

compositions were chosen according to thermodynamic analysis, which will be discussed 

later. High-energy milling was performed in a SPEX 8000D with stainless steel containers 

and balls (balls diameters: 12 and 9 mm). The BPR in all cases was 10:1. The containers 
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were filled in a glove box under argon atmosphere, and included 1 % wt. stearic acid as 

control agent. Each alloy was milled variably from 1 to 60 hours. After milling, powders 

were removed from the containers in an Ar-filled glove box.  

The milled samples were then characterized by X-ray diffraction (XRD) to identify phase 

and assess phase purity. Characterization was performed with a Shimadzu XRD 6000 

diffractometer (40 kV, 30 mA) in Bragg-Brentano reflection geometry with Cu-Kα1 (λ = 

1.5406 Å) and Cu-Kα2 (λ = 1.5444 Å) radiation. The counting time for each pattern was 3 

h. Diffraction data were analyzed using the Rietveld method [16] with the FULLPROF 

program [17]. The line shape of the diffraction peaks was generated by a pseudo-Voigt 

function. The following parameters were refined: background points, zero shift, half width, 

pseudo-Voigt, thermal factor, scale factor, and unit-cell. Crystallite size and microstrain 

was determined via traditional/modified Williamson-Hall and traditional/modified Warren-

Averbach methods and model [18–20]. Iron content was measured using a GBS 905 atomic 

absorption spectrometer. Microstructure was analyzed by scanning electron microscopy 

(SEM) on a Zeiss EVO MA 10. Particle size was determined through image analysis using 

Image J software. In addition, transmission electron microscopy (TEM) was carried out in a 

FEI CM-200T TEM and a FEI Tecnai F20 field emission S/TEM, both operated at 200 

keV. 

 

3. Results and Discussion 

3.1 Scanning electron microscopy 

The microstructures of the starting powders, and alloyed powders after 5h of milling, were 

observed with scanning electron microscopy (Figure 1).  The shape and size of powders is 

initially different. Copper powders have a dendritic morphology (dendrite size of 8 µm to 
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113 µm). Figure 1b shows Ni powder morphology as spherulitic. In contrast, Zr powders 

are large agglomerates of small particles, the size of which average 300 µm. 

Mechanically milled powders underwent substantial changes, both in morphology and 

particle size. The milling process involves essential changes like deformation, cold-

welding, and fractures [10]. Despite Cu, Ni, and Zr morphology and size differences, 

mechanical alloying promotes the formation of flakes welded over each other in all alloys. 

This microstructure is indeed indicative of multiple fractures and cold welding. Ternary 

alloys with more nickel had larger particle sizes, such as alloy Cu-43Ni-7Zr (averaging 73 

µm). There was no significant correlation between particle size and composition (Table 1).  

 

Figure 1. SEM Images of: pure elements a) Cu, b) Ni, and c), Zr; and ternary alloys at 5 h 

milling time d) Cu-43Ni-7Zr, e) Cu-12Ni-31Zr, f) Cu-33Ni-7Zr and g), Cu-12Ni-23Zr  
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 Table 1. Particle sizes and morphology for pure and ternary alloy powders. 

Sample Cu Ni Zr Cu-43Ni-7Zr Cu-12Ni-31Zr Cu-33Ni-7Zr Cu-12Ni-23Zr 

Morphology Dendritic Spherical Agglomerate Flakes Flakes Flakes Flakes 

Size, µm 40 4 240 73 32 33 46 

Stand. Dev. 24 2 10 33 23 18 23 

 

3.2 X-Ray diffraction analysis 

The study of microstructural refinements in Cu-Ni-Zr ternary alloys following mechanical 

alloying was realized in order to identify the optimal conditions for system amorphization, 

as well as optimal amount of Zr.  This is especially relevant given that Cu-Zr and Ni-Zr 

systems present many similarities, not only in their intermetallic phases and invariant 

reactions [21,22], but also their limited solid solubility.  

Diffraction patterns for the ternary alloys are shown in Figure 2, where different behaviors 

under the same milling conditions can be observed.  For alloys with greater amounts of Ni 

(Figures 2a and 2c), the Cu and Ni diffraction peaks begin to overlap after 1 h of milling.  

At 5 h of milling, there is a diffraction peak at the 2θ position, where reflections for both 

elements had been.  The presence of this diffraction peak is evidence of the formation of a 

Cu-Ni solid solution, which has unlimited mutual solid solubility.  The diffraction peak 

associated with the Cu-Ni solid solution is similar to the diffraction peak of pure Cu, which 

is possibly due to Ni being introduced into the Cu lattice. As milling time increases, the 

diffraction peaks of the solution widen and lose intensity. This is associated with 

microstructural refinements and the incorporation of crystalline defects due to the 

mechanical alloying process [23]. Additionally, diffraction peaks associated with Zr 

disappear over time. This may be attributable to Zr being incorporated into the Cu-Ni solid 
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solution lattice. Super-saturated solid solutions produced by mechanical alloying have been 

widely studied [24–31]. This phenomenon can be elucidated by calculating the solid 

solution lattice parameter, realized after Rietveld refinement.   

 

Figure 2. XRD spectra of a) Cu-43Ni-7Zr, b) Cu-12Ni-31Zr, c) Cu-33Ni-7Zr, and 

d) Cu-12Ni-23Zr alloys at different milling times. (o Cu; + Ni; x Zr *; Cu-NiSS) 

 

In alloys with greater amounts of Zr (Cu-12Ni-31Zr and Cu-12Ni-23Zr), crystalline phases 

were not formed.  It was, however, observed that longer milling times after the first hour 

resulted in a notable decrease of peak intensities in Cu, Ni, and Zr elemental powders 

(Figures 2b and 2d).  This loss of intensity, common for elements in this process, is 

associated with a large number of defects and microstructural refinements [32–34]. After 5 
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hours, no diffraction peaks of the original elements were detected; only two diffracted 

peaks were observed: a less intense peak close to 32°, which corresponds to the widening 

of the Zr plane (110) as a result of the amorphization process (which has also been 

observed in other systems [33,35]); and another, wider peak located between 35 and 47° 

associated with the amorphous phase. This result, when considered with those obtained 

previously in a study of Cu-Zr binary alloy systems [15], suggests that, under the milling 

conditions employed, the system is amorphized; however, it is not totally amorphous.  

Rather, the system is composed of disordered zones of small crystallites. Significantly, in 

mixing Cu, Ni, and Zr, it is clear that the zirconium content is relevant in amorphization 

time.  

Rietveld analysis was possible after 5 hours of milling time, using an Fm-3m model of Cu-

43Ni-7Zr and Cu-33Ni-7Zr alloys (the other alloys with more Zr (Cu-12Ni-31Zr and Cu-

12Ni-23Zr) could not undergo Rietveld analysis due to the loss of crystallinity after 5 hours 

of milling). The peak around 32° remains after 60 hours of milling, implying some quantity 

of zirconium in crystalline form. The amount of Zr phase in the system was 2.51(2) % of 

weight. In these alloys, Cu, Ni, and Zr atoms are randomly distributed around site 4a(0 0 0).  

Figure 3 shows the main lattice parameters of the Cu-43Ni-7Zr and Cu-33Ni-7Zr alloys. 

For Cu-43Ni-7Zr, the value of a0 after 5 h of milling was 3.597(1) Å, which continued to 

diminish as milling time increased, towards a value of 3.592(1) Å after 30 hours of milling. 

This behavior can be attributed to the atomic radius of Ni, which is less than that of copper 

(Ni: 1.24 Å; Cu: 1.28 Å). With longer milling times, greater amounts of Ni are introduced 

into the copper lattice, lowering the lattice parameter of the solid solution. According to 

XRD observations, increased milling time (> 30 h) may cause Zr (atomic radius 1.60 Å) to 

be introduced into the lattice, since this is when the lattice parameter begins to increase, up 
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to 3.598(1) Å, at 60h. Additional contributions of increasing the lattice parameter may 

come from the incorporation of free volume [36,37].   

Cu-33Ni-7Zr alloy presents the same behavior, i.e., increased milling time increases the 

lattice parameter, though in this case up to 3.610 Å after 60h of milling. The difference in 

the lattice parameter may be due to the fact that the Cu-33Ni-7Zr alloy contains less Ni and, 

therefore, can incorporate a greater amount of Zr into the lattice.  

 

Figure 3.  Lattice parameter (a0) determined by Rietveld refinement 

 

To better determine the influence of Zr on amorphization in a Cu-Ni-Zr system, additional 

alloys, Cu-23Ni-15Zr and Cu-11Ni-7Zr, were also synthesized.  These were subjected to 5 

hours of milling time (the minimum necessary to form a solid solution or amorphous 

phase).  Figure 4 shows the diffraction patterns of these alloys, clearly demonstrating that 

the element that most influences Cu-Ni amorphization is Zr. The influence of Zr has also 

been reflected in other studies, e.g., recent developments of a series of multicomponent 
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alloys with excellent amorphization ability and high stability of formed amorphous phase 

against crystallization [38]. 

 

Figure 4. XRD spectra of Cu-Ni-Zr alloys at 5 h milling time under the same milling 

conditions. (o Cu; + Ni; x Zr *; Cu-NiSS). 

 

Of the alloys in this study, the lattice parameter of the Cu-11Ni-7Zr alloy is that which is 

closest to pure copper (see Figure 5).  This is due to the high percentage of copper present 

in the alloy – reducing the amount of copper reduces the lattice parameter, which is 

associated with the formation of the solid solution as mentioned before.  
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Figure 5. Lattice parameter (a0) of Cu-Ni-Zr alloys at 5 hour milling time determined by 

Rietveld refinement. 

 

The structural evolution of the Cu-based ternary alloys under study was determined through 

the application of traditional/modified Williamson-Hall and traditional/modified Warren-

Averbach methods.  

 

3.2.1. Traditional Williamson-Hall method 

This method considers that peak broadening is produced by variation resulting from both 

crystallite size and isotropic microstrain [39]. To separate these, we apply eq. (1), where 

ς/D and ∆Kd are crystallite size and microstrain, respectively, ∆K=2cosθ(∆θ)/λ, ∆Kd= η K 

(K=2sinθ/λ), θ is the Bragg angle, ∆θ is the full width at half maximum of each peak, λ is 

the wavelength of x-rays, ς is a geometrical constant that varies between 0.89 to 1.39 (for 

metals and alloys, a value of 1 is used), D is the average volume crystallite size, and η is 

the isotropic microstrain. 
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dK KD
ς∆ = + ∆  (1) 

 3.2.2. Traditional Warren-Averbach 

Information on grain size and strain can be extracted from diffraction peaks represented in a 

Fourier series of two coefficients, A(L) and B(L), where L is the normal distance to 

reflecting planes. If peaks are perfectly symmetric, then B(L) is 0. A(L) can be expressed as 

A(L)=A s(L)×Am(L) were As(L) is the contribution of crystallite size and Ad(L) the 

contribution of isotropic microstrain. Taking the logarithm and introducing the terms for a 

cubic crystalline system, the traditional Warren-Averbach equation is obtained, eq. (2) [20], 

where 2
Lε  is the mean square isotropic microstrain, 2 2 2 2

0h h k l= + + (h, k and l are the 

Miller indices), and a is the lattice parameter. 

2
2 2 0

2
ln ( ) ln ( ) 2s

L

h
A L A L L

a
π ε= −      (2) 

 

3.2.3. Modified Williamson-Hall method 

Modified Warren–Averbach and Williamson–Hall methods were applied to analyze the X-

ray diffraction peaks [19]. These methods are used in the presence of anisotropic 

microstrain in materials, and incorporate one dislocation model of strain anisotropy based 

on the contrast of dislocations (C), which vary with the relative orientation of the Burgers 

vector (b), line vectors of dislocations (l), and the diffraction vector (g), similarly to 

transmission electron microscopy [23]. Eq. (3) gives the modified Williamson-Hall 

equation [19], where A is a parameter determined by the effective outer cut-off radius of 

dislocations (Re), ρ is the dislocation density, K=2sinθ/λ, and <C> is the average 

dislocation contrast factor for a particular reflection. Eq. (3) shows that if the dislocations 
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are the primary source of strain in a crystal, the proper scaling factor of the breadth of line 

profile is K<C>1/2 instead of K (K is equal to the diffraction vector at the exact Bragg 

position). 

( ) ( )
1

2 2 2 1 1 22 2

2

A b
K K C O K C

D

ς π ρ 
∆ = + + 

 
 (3) 

 

3.2.4. Modified Warren-Averbach method 

Eq. (4) is the modified Warren-Averbach method [19], where L=na3 is a distance normal to 

the reflecting planes {hkl}, n is the harmonic number, a3=λ/2(sinθ2-sinθ1), (θ2 - θ1), the 

angular range of the measured diffraction profile, B=πb2/2, and O is the correlation factor 

that stands for higher order terms in K4<C>2. 

( ) ( )22 2 4Re
ln ( ) ln ( ) lnsA L A L BL K C O K C

L
ρ  = − + 

 
 (4) 

 

The real part of the Fourier coefficients, A(L) are plotted against K2<C> and are fit to a 

parabolic equation for each L value. The intersections of the quadratic curves at K=0 

provide crystallite size (the values of AS(L) are plotted against L, from which crystallite 

size can be determined from the interception of the initial slope on the L-axis). The 

modified Warren-Averbach method provides an area-weighted average crystallite size. The 

dislocation density, ρ, can be determined from slopes of the quadratic curves [19]. 

Figure 6 shows a comparison of results obtained by both traditional/modified Williamson-

Hall methods for the Cu-33Ni-7Zr alloy milled at 5 h. The ∆K values of the {111} and 

{222} peaks are less than other peaks when the traditional Williamson-Hall method was 

applied (Figure 6a). This is due to the presence of anisotropic strain in the alloys; therefore, 

∆K is not a linear function of K and thus, the traditional Williamson-Hall method does not 
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approximate ∆K well. This behavior was observed in all Cu-based alloys. On other hand, 

when the modified Williamson-Hall method was used (Figure 6b), two effects were 

observed: i) ∆K values shift upwards and the slope increases as a function of milling time, 

indicating a decrease of crystallite size and an increase in microstrain; and ii), ∆K values 

follow smooth curves as a function of K<C>1/2, and thus ∆K does not increase 

monotonically with the order of reflections. Similar behavior was found for all alloys. This 

shows that Cu-based alloys contain anisotropic strain caused by dislocations. The 

traditional method assumes that strain in the materials is at random (where root-mean 

square is used); modified methods, that the relative atom displacement due to strain, is not. 

Thus, given the long range correlations between displacements, the contrast factor in the 

latter better represents the strain in the materials under study [19]. During MA, highly 

plastic deformation of Cu-based alloys occurs due to the impact of balls increasing the 

density of crystalline defects, like dislocations, crystallite size boundaries, stacking faults, 

twins, and vacancies [40]. Based then on this anisotropic strain produced by dislocations 

during milling, the modified Warren-Averbach and Williamson-Hall methods better 

interpret the information than do traditional methods. 
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Figure 6. (a) Plot of traditional Williamson-Hall method and (b) plot of modified 

Williamson-Hall method, for Cu-33Ni-7Zr milled at 5 hours. 

 

Figure 7 gives the evolution of crystallite sizes and root-mean-squared microstrains for Cu-

33Ni-7Zr and Cu-43Ni-7Zr alloys determined by modified Williamson-Hall and Warren-

Averbach methods. Cu-12Ni-31Zr and Cu-12Ni-23Zr alloys were not analyzed using this 

method, since they did not have crystalline phases. Crystallite size decreases and 

microstrain increases as a function of milling time in both alloys. The trend of crystallite 

size for both alloys observed is: i) between 0 to 15 h of milling, size decreases from 80, to 

around 10 and 20, nm; and ii), after sufficiently long milling times, crystallite size remains 

constant. On other hand, microstrains increase until 10 h of milling, to around 2.2 (<ε2>1/2), 

and afterwards remain constant. The <ε2>1/2 values are slightly higher for the Cu-43Ni-7Zr 

alloy than for the Cu-33Ni-7Zr alloy. Furthermore, the difference in crystallite size between 

both alloys is negligible, which suggests that Zr content does not influence crystallite size. 
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Next, microstrain is produced by the presence of dislocations due to solute atoms having 

entered the solution and moving the atoms closest to the crystal lattice into equilibrium 

positions. Indeed, microstrain causes an increase in local energy and, therefore, of the 

internal energy of the system; this, in turn, attracts solute atoms into the solid solution to 

decrease the local energy, and produces a fault. The presence of Zr greatly promotes 

crystalline defects in the structure, inducing more defects in the systems in which it is 

present – these crystalline defects are what promote amorphization system, and it is 

expected that greater amounts of Zr creates greater structural disorder.  

 

Figure 7. Evolution of crystallite size and root-mean-squared microstrains of (a) Cu-33Ni-

7Zr and (b) Cu-43Ni-7Zr determined through of modified Williamson-Hall (MW-H) and 

modified Warren-Averbach (MW-A). 
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3.3 Transmission electron microscopy 

Figure 8 shows bright field, dark field, and selected area diffraction (SAD) images of Cu-

43Ni-7Zr and Cu-12Ni-31Zr alloys at 5 h milling time. The bright field and dark field 

micrographs (Figures 8a and 8b) reveal compact microstructure with very uneven 

crystallite sizes (between 0.6 and 25.6 nm, with an average crystallite size of 7.1 (± 3.7) nm 

over a total of 350 measured crystallites). The measurements here are smaller than those 

made with X-Ray (Figure 7). However, this disparity could be attributed to two different 

effects. First, the detectability limit of X-Ray is above 5 nm. Therefore, crystallite sizes 

smaller than 5 nm could not be taken into account in X-Ray measurements.  The histogram 

of crystallite size distribution measured by TEM indicates that 103 of 350 crystallites 

measured were smaller than 5 nm. Second, particles measured by TEM cannot be thicker 

than 400 nm. If larger crystallites were to have been distributed preferentially in areas of 

particles thicker than this value, they could not be taken into account in TEM 

measurements. The Energy Dispersive Spectroscopy (EDS) of the particles is also 

consistent with the presence of Cu, Ni, and Zr.  Quantifying particles gives average values 

of 57% Cu, 37% Ni, and 6% Zr (% at.). This value is very close to the nominal value, and 

expected given TEM errors; overestimation of Cu, for example, may be due to the presence 

of Cu in the grid holding the sample or the inner parts of the TEM.  Next, Figure 8c shows 

a typical selected area diffraction (SAD) of Cu-43Ni-7Zr particles. The indexation of the 

ring pattern is consistent with the presence of an α−phase (Fm3m). The lattice parameter 

measured using SAD yields a value between those of Cu and Ni, and within the 

experimental errors of the value measured via X-Ray diffraction. Some isolated diffractions 

are observed as well, which are attributable to the presence of Cu2O in lesser amounts, an 
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impurity not detected by X-ray diffraction (indicated by solid white arrows). The dashed 

white arrow in the figure points out a partial thickening of one of the rings, attributable to 

the texture of, or strong internal tensions in, the material.  

Of the Cu-12Ni-31Zr particles observable by TEM, the bright field and dark field images 

show well-defined crystallites, as can be seen in Figures 8d-e. Although some well-faceted 

crystallites of 200 nm diameter are present, there are also crystallites orders of magnitude 

smaller, ranging from 5 to 270 nm. It should be also mentioned that 30 % of particles 

showed no contrast at all, whose EDS indicated larger amounts of Zr than average. The 

average crystallite size is of 47 (± 39) nm, taken from a total of 300 crystallites measured. 

All rings in the SAD (Figure 8f) can be consistently indexed with the presence of Cu and 

Zr. Ni was not indexed, since its lattice parameter is close to that of Cu. Although Zr was 

not detected in some particles, the great majority of them had an average compositional 

value of 71% Cu, 12% Ni, and 17% Zr (% at.). The discrepancy between the nominal value 

and the one measured by EDS could be attributed to those particles that were outside of the 

measureable range having higher amounts of Zr. These particles could be associated with 

an amorphization process that selects for particles with higher amount of Zr, and could also 

explain the lack of well-defined peaks in the X-Ray diffractogram in Figure 2b. Moreover, 

some particles that contribute to the SAD pattern in Figure 8f are outside XRD detectability 

range. 
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Figure 8. Images of bright field, dark field, and SAD of ternary alloy particles at 5 h milling 

time.  For Cu-43Ni-7Zr: a) bright field, b) dark field, c) SAD.  For Cu-12Ni-31Zr: d) bright 

field e) dark field, and f) SAD. 

 

Figure 9 shows images of bright field, dark field, high resolution transmission electron 

microscopy (HRTEM) and selected area diffraction (SAD) of alloys Cu-33Ni-7Zr and Cu-

12Ni-23Zr at 5 h milling time. The Cu-33Ni-7Zr alloy is essentially composed of two types 

of particles.  The most abundant have SAD similar to that of Cu-43Ni-7Zr (Figure 8f); 

however, the presence of two sets of rings and two tenuous halos may be observed (Figure 

9b). The set of complete rings can be consistently indexed with the presence of an FCC-

type phase (Fm3m). Only three rings of higher intensity are present, attributable to the 

presence of amorphous-associated halos that dim the intensity of the remaining rings. The 

other set of rings can be consistently indexed with the presence of Zr. As a remarkable 
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difference, rings in this set are not complete. This is perhaps due to mass differences 

between the Cu-Ni (which produces the Fm3m symmetrical crystallography phase) and Zr 

systems. Lower Zr mass produced lower reflections, so diffracted rings tend to be 

incomplete.  The EDS of these particles revealed a stoichiometry of 66% Cu, 26% Ni, and 

8% Zr (% at.).  The amount of Cu measured by EDS is higher than the nominal value. 

Again, this may be due to the presence of Cu in the grid holding the sample or the inner 

parts of the TEM. The dark field shows crystallite size on the order of 6 nm.  Average 

crystallite diameter was given through statistics as noted among different dark field 

micrographs of Cu-Ni-Zr particles. The average crystallite size is thus 5.9 (± 3.3) nm over a 

total of 166 measures.  
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Figure 9.  Images of bright field, dark field, and SAD of ternary alloy particles at 5 h 

milling time: Cu-33Ni-7Zr, a) dark field, b) left half SAD, c) bright field, and d) SAD; Cu-

12Ni-23Zr, e) bright field, f) high resolution, g) SAD, h) dark field, i) SAD (crystalline 

zone), and j) SAD (amorphous zone) 

 

The second type of particle (Figure 9c-d), though not as common, had SAD similar to that 

of Figure 9b. This SAD is formed by two sets of rings: one, which can be identified as 

belonging to the Fm3m spatial group; and another, belonging to spatial group P63/mmc, 
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similar to those of Zr.  The morphology of this latter type of particle is also quite different– 

seemingly flat, i.e., at an average of 6 µm x 5 µm with a depth of only 300 nm. In addition, 

crystallite size is above 200 nm with many dislocations (dashed arrow, Figure 9c).  

Again, X-Rays gave statistical information about the sample, which revealed an average 

crystallite size of 70 nm, and no crystalline Zr up to the range of detectability. However, 

since the TEM SAD were able give information about crystallites smaller than 5 nm, some 

Zr crystallites could be still detected in crystallite state (Figure 9d). The image in Figure 9b 

is in stark contrast with the amorphization suggested by the lack of Zr detected via XRD 

(Figure 2c).  Moreover, the presence of some other particles with crystallite domains larger 

than 300 nm (Figure 9c) helps to explain the average crystallite size calculated using X-Ray 

diffractograms. The discrepancies between statistical XRD techniques and techniques with 

lower detectability ranges are common for intermediate milling stages [11].  

In the case of Cu-12Ni-23Zr alloy at 5 h milling time, two types of particles were also 

present. The first type of particle was mainly composed of Cu, in which Zr oscillated 

between 1% at. and 23% at., and Ni was almost non-existent. Crystallite size for these 

particles was between 7 and 70 nm.  They present zones with significant accumulation of 

dislocations close to crystallite boundaries (Figure 9e). The HRTEM image of this particle 

also showed the compact disposition of grains (Figure 9f).  

The SAD for the first type of particles is shown in Figure 9g. The diffraction pattern has 

two sets of rings: one belonging to the FCC spatial group; the other, HCP, just like Zr. The 

second type of particle is equally abundant as the former. EDS shows Ni content variations 

between 11 at. % and 33 at. %.  Generally, higher Ni content is in detriment to Zr content. 

The SAD of these particles suggest more or less amorphization as a function of Ni and Zr 
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present in each particle, as shown in Figures 9i and j. In other words, the SAD of particles 

with more Zr are consistent with the presence of an amorphous phase. Moreover, the first 

kind of particles, with no Zr, had crystallites under XRD detection limit or with high 

dislocation increasing tension in the material. Increased tensions increase the <ε>  value in 

X-Ray measurements. All these factors combined are compatible with the X-Ray 

diffractogram of an amorphous material, as shown in Figure 2d.  

 

3.4 Thermodynamic model 

3.4.1. Solid solution 

The Gibbs free energy of mixing (∆Gm) of one system can be obtained by ∆Gm=∆Hm -

T∆Sm, where T is the temperature; and ∆Hm and ∆Sm are the enthalpy and entropy of 

mixing. ∆Hm can be obtained as the sum of three terms, ∆Hm = ∆Hc + ∆Hel + ∆Hst, where 

∆Hc is the chemical contribution of formation and breaking of atomic bonds, ∆Hel is the 

elastic contribution (elastic mismatch energy) in solid solutions, and ∆Hst is the 

contribution of lattice stability energy due to differences in valence electrons of solute and 

solvent atoms. The ∆Hc and ∆Hel contributions are much larger than the ∆Hst contribution, 

and so ∆Hst was negligible. ∆Sm is configurational entropy, and can be calculated as 

∆Sm=−RΣxilni, where R is the universal gas constant, and xi is the mole fraction of element 

i. Chemical contributions to mixing enthalpy in a multicomponent alloy can be estimated 

by applying the semi-empirical model proposed by Miedema [41], which is widely used 

due to its simplicity. In that model, ∆Hc for each binary system can be determined by 

means of eq.(5), where VA, VB are the molar volumes of atoms A and B, respectively; φ*  is 

the work function of the constituent elements; nws is the electron density; P, Q, and R’ are 
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constants related to the constituent elements; and f(CS) = CA
SCB

S ,where CA
S and CB

S are 

determined by eq. (6). Systematic deviation between the enthalpy of mixing obtained from 

Miedema’s model and experimental data in binary systems is expected, and so a pre-factor 

S(x) has been proposed to take significant atomic size difference effects into account, eq. 

(7) [42]. There, C is an empirical parameter describing the effect of atomic size differences 

semi-quantitatively; it is given as 0.5 and 2.0 for liquid alloys and ordered compounds, 

respectively, and a value of 1 is given for disordered solid solutions. 

( ) ( ) ( )
( ) ( )

( ) ( )
2/3 2/3

2 2 ,A A B BS * 1/3
ws-1/3 -1/3A B

ws ws

x V +x V Q R∆Hc=2Pf C S x x -∆ + ∆n -P P
n + n

φ 
  

 (5) 

 
2/3

S A A
A 2/3 2/3

A A B B

x V
C =

x V +x V
 

2/3
S B B
B 2/3 2/3

A A B B

x V
C =

x V +x V
 (6) 

 

( )
A B

A B A B

2 2
A B

x x V -V
S x =1-C

x V +x V
 (7) 

     

∆Hel can be calculated as in Bakker et al. [43], eq. (8), where ∆EA in B is the elastic mismatch 

energy caused by element A dissolved in element B, and ∆EB in A is the elastic mismatch 

energy caused by element B dissolved in element A. The ∆Ei in j values can be calculated 

using eqs. (9), where K, G are the bulk and shear moduli, respectively. 

( )A B A A in B B Bin A∆He=x x x ∆E +x ∆E  (8) 

 

( )2

A B
A in B

A B B A

2K G V V
∆E =

3K V +4G V
B A−

 ( )2

B A A B
Bin A

B A A B

2K G V V
∆E =

3K V +4G V

−
 (9) 

 
3.4.2. Amorphous phase 

The Gibbs free energy of amorphization is given by ∆Gam=∆Ham +T∆Sm, where ∆Ham is the 

enthalpy of amorphization. The enthalpy of amorphization can be calculated by eq. (10), 
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where ∆Hc is the chemical contribution and ∆Htopo is the topological enthalpy. In an 

amorphous alloy, chemical and structural contributions to enthalpy of mixing are negligible 

due to lack of crystal structure; rather, topological enthalpy takes the difference between 

crystalline and amorphous states into account. Therefore, ∆Htopo =3.5 (xATA
m + xBTB

m) [44], 

where Tm is the melting temperature of elements A and B. 

am topoH Hc H∆ = ∆ + ∆  (10) 

  

3.4.3. Extension to ternary systems 

A general approach to obtain thermodynamic information in ternary systems is to 

extrapolate from its constitutive binary systems. Extrapolation to ternary systems has been 

used to reasonable success in previous papers [45,46]. In this work, Toop’s model was 

chosen due to its being an asymmetrical model and for its mathematical simplicity; it was 

used to determine thermodynamic properties (Gibbs free energy and enthalpy) of the 

ternary system (A-B-C) under study. This model is given in eq. (11), where Γ represents a 

thermodynamic property, and ∆Hm
A-B, ∆Hm

B-C, ∆Hm
C-A are the thermodynamic properties of 

mixing three binary systems. Parameters required to solve eqs. 5 to 11 for the Cu-Ni-Zr 

system are listed in Table 2. In this work, crystallite size effects were not included; for 

works including crystallite size effects on Gibbs free energy, see Bera et al.  [46]. 

( ) ( )

( )

A-B A-C

2

B-C

xx
∆ = ∆ x ,1-x + ∆ x ,1-xx + x x + x

xx+ x +x ∆ ,x +x x +x

m m mCB
A A A A

A B A C

m CB
B C

B C B C

H H H
  

   
   

 Γ  
 

 (11) 

 

Table 2. Parameters for thermodynamic analysis of Cu-Ni-Zr system [41] 
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 n
ws

 1/3 

(cm-1) 

Φ* (V) K 

(1010 Nm-2) 

G 

(1010 Nm-2) 

V 

(cm3 mol-1) 

T
m

(K

) 

P 

(kJV-2 cm-1) 

Q 

(kJV-1) 

R’/P 

Cu 1.47 4.45 13.7 4.83 7.1 1357 14.1 132.54 0 

Ni 1.75 5.20 18.0 7.6 6.59 1728 

Zr 1.39 3.40 9.1 3.3 14.06 2128 

 

 

Figure 10. Gibbs free energy for (a) formation of solid solutions and (b) formation of 

amorphous phase of Cu-Ni-Zr systems. Compositions are in atomic percentages. ○: Cu-

43Ni-7Zr, ∆: Cu-12Ni-31Zr, : Cu-33Ni-7Zr, and ◊: Cu-12Ni-23Zr. 

 

Figure 10a gives the calculated Gibbs free energy of mixing (∆Gm) for the formation of 

solid solutions of the Cu-Ni-Zr system, whereas Figure 10b shows the Gibbs free energy 

(∆Gam) for the formation of amorphous phase in the same ternary system. The main 

features of the Gibbs free energy of the formation of solid solution shown by Figure 10a 

include: i) higher Gibbs free energy values are in the corners (green/yellow zone), with 

values around 2 kJ mol-1; ii) the triangle graph has a large area indicating negative ∆Gm 
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values (blue zone), i.e., there is a driven force to form solid solution from elemental 

powders; and iii), the smallest ∆Gm is at approximately Cu-50Ni-18Zr (at.%). On other 

hand, the features of the Gibbs free energy for the formation of amorphous phase are: i) the 

highest Gibbs free energy values are similarly in the corners (red zone), with values 

between 5 and 14 kJ mol-1, in the Zr corner; ii) a large zone of negative ∆Gam values, 

indicating amorphous phases can be formed from elemental powders, with a minimum of -

25 kJ mol-1 at approximately Cu-35Ni-50Zr (at.%); and iii) increases in Zr content 

decreases ∆Gam values, suggesting amorphous phase formation increases as a function of 

Zr, which is in agreement with XRD results. 

The ∆Gm and ∆Gam values for the alloys with the highest nickel content are, for Cu-43Ni-

7Zr: ∆Gm= -12 kJ mol-1 and ∆Gam = -5 kJ mol-1; and, for Cu-33Ni-7Zr: ∆Gm= -16 kJ mol-1 

and ∆Gam = -10 kJ mol-1. These values indicate that there is a driving force for the 

formation of a solid solution for alloys with higher nickel content. The ∆Gm and ∆Gam 

values for greater Zr-containing alloys are, for Cu-12Ni-31Zr: ∆Gm= -16 kJ mol-1 and ∆Gam 

= -20 kJ mol-1; and, for Cu-12Ni-23Zr: ∆Gm= -12 kJ mol-1 and ∆Gam = -15 kJ mol-1. These 

values indicate that there is a driving force for the formation of an amorphous phase for 

alloys with higher Zr content. 

The thermodynamic data are in agreement with the XRD (Figure 2) and TEM (Figures 8 

and 9) results. The XRD patterns showed that the amorphous phase is formed at shorter 

milling times when Zr content increases. The MA of the Cu-Ni-Zr system can be explained 

in three stages (I, II, and III), as shown in Figure 11. In stage I, the energy of system is 

given by mixing of elemental powders. The peaks of elemental powders are clearly 

observed in the XRD patterns and TEM images, showing larger and crystalline grains. In 
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stage II, powders are milled with increasing crystalline defect density. As milling time 

increases, XRD patterns exhibit peak broadening, peak shift, and disappearance of peaks 

(for solutes) due to severe plastic deformation [23]. At shorter milling times, the cold 

welding process is more prominent than is the fracture process, so particle size increases; as 

milling time increases, cold welding and fracture processes compete. At the end of stage II, 

a solid solution of Cu, Ni, and Zr is formed due to decreases in Gibbs free energy. Finally, 

in stage III, powder suffers severe plastic deformation as milling continues, due to the 

collision of balls producing crystalline defects like dislocation, stacking faults, twins, 

vacancies, and grain boundaries [47]. In this stage, the fracture process is predominant, 

decreasing particle size. Strain energy increases as a function of milling time, until lattice 

strain reaches a critical value and the formation of an amorphous phase is more favorable 

than the formation of a solid solution (crystalline phase). The formation of an amorphous 

phase is facilitated by high crystalline defect density promoting a faster diffusion process 

through smaller atomic volume ratios [48]. The XRD patterns have a hump (Figure 2), and 

the TEM diffraction patterns show diffuse rings, both indicating an amorphous phase. 
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Figure 11. Schematic correlation between thermodynamic data and XRD and TEM results, 

explaining the formation of an amorphous phase. 

 

CONCLUSIONS 

The influence of quantities of nickel and zirconium on the amorphization of the Cu-Ni-Zr 

ternary alloy system was determined.  In addition, the order of formation (Cu-Ni solid 

solution and the subsequent incorporation of Zr) was established.  The crystallinity of this 

solution is influenced by the amount of Ni in the system, or rather, greater quantities of Zr 

results in less crystallinity; in brief, Zr promotes amorphous formation in the system.  

The X-Ray patterns show a loss of crystallinity after 5 h of milling, though dependent on Zr 

content; nevertheless, TEM demonstrated that 5 hours of milling results rather in 

simultaneous and varied states of milling.  Thus fabrication of Copper-based alloys 

prepared via mechanical alloying are not homogeneous, but occurs in stages. 

Thermodynamic calculations with extended Miedema’s models are in agreement with XRD 

and TEM results. Experimental and thermodynamic data showed that solid solutions are 

formed in a first stage, followed by the formation of an amorphous phase as milling time 

and Zr content increased. 

With these results, milling conditions, and ternary alloys in mind, the most important 

variable in the production of amorphous structures is zirconium content.  
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Highlights 

 

• Study of phase evolution of elemental powders Cu, Ni and Zr by mechanical 
alloying 

• Formation of Cu-Ni solid solution and then the incorporation of Zr was 

established  

• The influence of Zr on the amorphization of Cu-Ni alloys has been established.  

• Thermodynamic calculation confirms the results of XRD and TEM was 

performed. 

 


