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Primordial brusque bounce in Born-Infeld determinantal gravity
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We study a particular exact solution to the Born-Infeld determinantal gravity consisting of a
cosmological model which undergoes a brusque bounce. The latter consists of an event characterized
by a non-null (but finite) value of the squared Hubble rate H2 occurring at a minimum (non-
null) scale factor. The energy density and pressure of the fluid covering the whole manifold are
perfectly well behaved in such an event, but the curvature invariants turn out to be undefined
there because of the undefined character of Ḣ. It is shown that the spacetime results geodesically
complete and singularity free, and that it corresponds to a picture of an eternal Universe in which a
(somewhat unconventional) bounce replaces the standard Big Bang singularity. This example tends
to emphasize that, beyond Einstein’s theory of General Relativity, and in the context of extended
theories of gravity formulated by purely torsional means, the criterion of a singularity based on
pathologies of scalars constructed upon the Riemann curvature tensor, becomes objectionable.

I. INTRODUCTION

Since the early days of the new phase of the General
Theory of Relativity (GR), crowded by the singularity
theorems of Hawking and Penrose [1], [2], the very con-
cept of singularity was the subject of great concern for the
mathematical relativist. The root of this issue was mas-
tered discussed in the pioneer Galilean dialogue between
Sagredo and Salviati elaborated in Ref. [3]. What the
latter was trying to explain to the former (who inevitably
brought up what he thought was a good electromagnetic
analogy), was that the problem in defining a spacetime
singularity relies on the existence of points that,–most of
the time–are not necessarily part of the spacetime struc-
ture itself. This harmless and almost semantic property
raised enormous difficulties at the time of being concrete
regarding what a singularity is, for its mere existence
should be inferred from the points in the manifold close
to the conflictive point (in some appropriated mathemat-
ical sense).

One hundred years after its conception, there exists
now a wide repertoire of ideas on what can be consid-
ered to be a singular state within the context of GR1

[4]. Actually, it is remarkably easy to produce some sort
of singular state by cutting out and/or excising subsets
of a given (otherwise regular) spacetime, even though
the manifold so obtained might have a definitely dubi-
ous physical interpretation. For instance, by removing
a point from Minkowski spacetime we can clearly get
geodesics that abruptly end at such a removed point,
indicating that the observers represented by these curves
will impedingly cease to exist there. Even though this
example seems deliberately artificial, it teaches us an im-
portant lesson. In order to arrive to the concept of sin-
gularity, and irrespective of the potential bad behavior
of the metric tensor and its related curvature in or near
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the conflictive point, what turns out to be relevant is the
behavior of causal curves and geodesics in the spacetime.
As a matter of fact, the key idea of what now is widely
accepted as the most fruitful condition for a spacetime to
be defined as singular is that it be timelike (null) geodesi-
cally incomplete, i.e., if it contains a maximally extended
timelike (null) geodesic whose affine parameter does not
assume values in the full range from −∞ to +∞.
Even this quite accepted definition has its deficien-

cies. On the one hand, there exist examples of geodesi-
cally complete spacetimes that admit incomplete (non-
geodesic) curves. Although this is regarded as unimpor-
tant in the context of the usual spatially homogeneous
and isotropic cosmological FRW models, it is certainly
relevant in more generic spacetimes. In those cases, the
endpoint of the incomplete curves in M is incorporated
as a regular point in the boundary ∂ of an extended man-
ifold M̃ = ∂∪M, called the b-completion of M [8]-[9] (a
generalization of this seminal construction may be found
in [10]). On the other hand, more modern developments
show that other kinds of singularities are not based on
geodesic completeness. This is the case of the so called
sudden singularities [11]-[14], where the pressure of the
matter fields becomes divergent in a late event whose
fatality, however, is unseen by the geodesics [15].
In any case, it is clear that the singularities in all their

facets are an essential and inextricable part of the con-
ceptual body of GR, for a large class of solutions of Ein-
stein’s field equations are singular. One might regard
this abundance of singular spacetimes as a reminder that
GR has only a finite range of applicability. Although
the theory has successfully passed an important number
of experimental tests over a wide spectrum of scales, in-
cluding a couple concerning the emission of gravitational
radiation [16], [17], it is clear that further experimental
evidence in the strong gravitational field regime, where
GM/Rc2 = O(1) (here M and R are the characteristic
mass and length scale of the phenomenon under consid-
eration), is mandatory [18].
This suggests that one might look for a theory that

can provide a proper, more refined treatment in order
to avoid singularities, at least in the paradigmatic situa-
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tions arising in the strong fields mentioned above. Unfor-
tunately, the fact that the singularity theorems use Ein-
stein’s equations only in a very weak sense –essentially
only to conclude that gravitation is attractive– rather
suggest that the construction of a new theory without
singular behavior, may constitute a difficult task.
Bearing this in mind, and not long ago [19],[20], we ex-

posed how to construct a gravitational action following
the same guiding principles used many decades ago by
Born and Infeld (BI) in the context of electrodynamics
[21], [22]. BI-like structures for the gravitational field
were considered earlier in the literature. Historically
they appear throughout two generations, the first, inau-
gurated by [23] and followed by other articles along the
same line of research (see., e.g., Refs. [24]-[35]). In all
these constructions, the gravitational action is obtained
by combining higher order invariants built from the cur-
vature in a Riemannian context, namely,

IBI(1) =

∫

d4x
[
√

|gµν + aRµν + bXµν | −
√

|gµν |
]

, (1)

where |...| stands for the absolute value of the determi-
nant, and a, b are coupling constants. In (1) we have sep-
arated the linear Ricci term Rµν from the quadratic or
higher order terms in the curvature contained formally
in Xµν . The presence of all these curvature terms un-
der the square root in expression (1), is responsible for
the fourth-order character of the field equations for the
metric field gµν . This fact complicates enormously the
obtention of deformed exact solutions, i.e., solutions not
present in GR and capable of shedding some light on the
singularity problem.
In turn, in Ref. [36] another BI-like scheme based

on a Palatini approach (actually called Eddington-Born-

Infeld gravity), was considered and first thoroughly stud-
ied mostly in cosmological environments, where a number
of exact solutions without the big bang singularity were
found [37]-[45]. The action in this case reads

IBI(2) =

∫

d4x
[
√

|gµν + aRµν(Γ)| −
√

|gµν |
]

, (2)

where Rµν(Γ) represents the symmetric part of the Ricci
tensor built with the connection Γ, which is taken as an
independent field. In this second generation of BI theo-
ries, and due to the independent role played by the met-
ric and the connection, second-order motion equations
are obtained, even though they are different than Ein-
stein’s equations only when matter sources are present.
This unfortunate fact eliminates the possibility of obtain-
ing regular black hole states in pure vacuum. Very recent
studies concerning stellar models and charged black holes
within this framework can be found in Refs. [46]-[49].
In what follows, we shall discuss the emergence of

a geodesically complete bouncing cosmological solution
in the context of the theory presented in [19] and [20],
which, unlike the second generation of BI gravitational

theories just mentioned, is also able to deform vacuum
general relativistic solutions. The spacetime in consid-
eration represents an exact solution of the motion equa-
tions, which are second-order differential equations for
the vielbein field ea(x) (unlike the ones coming from the
first generation referenced above). The manuscript is or-
ganized in such a way that we briefly review the BI con-
struction in section II below. Afterwards, in section III,
we obtain the solution and present a detailed discussion
of its geometrical properties. Finally, we comment on its
nature and discuss the regularity properties underlying
the manifold thus obtained in section IV.
Throughout the paper, we will adopt the signature

(+,−,−, ...), and, as usual, Latin indexes a : 0, 1, ... refers
to tangent-space objects while Greek µ : 0, 1, ... allude to
spacetime components.

II. BORN-INFELD GRAVITY

Following references [19] and [20], we will assume that
the dynamic of the gravitational field is described by the
action in D spacetime dimensions

IBIG =
λ

16πG

∫

dDx
[
√

|gµν + 2λ−1Fµν | −
√

|gµν |
]

,

(3)
where the tensor Fµν , the agent encoding the gravita-
tional degrees of freedom, will be defined in brief (see eq.
(11) below).
The action thus constructed provides an alternative

dynamical behavior in the high energy regime, i.e, in sit-
uations where λ−1Fµν = O(1), where λ is the Born-Infeld
constant. In what follows, I shall briefly review the guid-
ing principles leading to (3). For details, the reader can
consult the references just mentioned.
In order for (3) to be a reasonable candidate for de-

scribing the gravitational field at length scales of order
ℓ2 = λ−1, we must ensure that the theory actually re-
duces to General Relativity in the low field limit. If we
factor out

√

|gµν | in (3) and use

√

|I+ 2λ−1F| = 1 + λ−1Tr(F) +O(λ−2), (4)

we get the action describing the low field limit

I↓ =
1

16πG

∫

dDx
√

|gµν |Tr(F), (5)

where I is the identity, and F ≡ F ν
µ . To elucidate the

nature of the tensor F and its relation with the scalar
curvature R characterizing the Hilbert-Einstein action,
we will require that the equations of motion for the fields
responsible of the spacetime dynamics be of second or-
der. Instead of being the metric tensor g(x), we shall
demand that the fundamental agent encoding the gravi-
tational degrees of freedom consist of a set of D 1-forms
{ea(x)}. A sufficient (though not necessary) condition
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for having second-order field equations is that the action
(3) includes up to first derivatives of ea(x), which means
that F itself should be made up from this field and its
first derivatives. This prescription, in view of the equiv-
alence between (5) and GR, poses what would appear at
first sight to be an insurmountable problem, because R
contains second derivatives of the metric field. This prob-
lem disappears if we turn the attention to the absolute
parallelism (or teleparallel) formulation of GR.
According to this point of view General Relativity can

be formulated in a spacetime possessing absolute paral-
lelism. This approach is usually known as the teleparallel
equivalent of General Relativity TEGR [50, 51], and it
relies on the existence of a set {ea(x)} of D 1-forms that
turn out to be autoparallel for the Weitzenböck connec-
tion

Γλ
µν = eλa ∂νe

a
µ, (6)

where eλa refers to the inverse matrix of eaµ. This connec-
tion is curvature free, and it is compatible with the metric
g(x) = ηab e

a(x)eb(x), in the sense that the Weitzenböck
covariant derivative of the metric vanishes. However, de-
spite the fact that the curvature tensor associated to the
Weitzenböck connection is null, the latter gives rise to a
non-null torsion, which in the present context is simply2

T a = dea, (7)

which means T ρ
µν = eρa (∂µe

a
ν − ∂νe

a
µ) in spacetime com-

ponents. This ingredient can be combined in quadratic
pieces in order to obtain a very remarkable identity,
namely

R[ea] = −T + 2 e−1 (T µ ρ
µ e), ρ , (8)

where e =
√

|g| is the determinant of the matrix eaµ, R
is the scalar curvature, and the invariant T is

T = S µν
ρ T ρ

µν . (9)

In this last equation we have introduced the important
tensor

S µν
ρ = −1

4
(T µν

ρ−T νµ
ρ−T µν

ρ )+
1

2
(δµρ T θν

θ−δνρ T
θµ

θ).

(10)
Eq. (8) is the central point in the equivalence between

GR and TEGR, because it states that the scalar curva-
ture constructed from the Levi-Civita connection can be
explicitly viewed as a purely torsional object T plus a
total derivative. This peculiar invariant (usually known
as the Weitzenböck invariant), is quadratic in the torsion

2 In general, the torsion 2-form is Ta = Dea
.
= dea + ωa

b
∧ eb,

where ωa

b
the spin connection. But TEGR fixes ωa

b
= 0. For

details, the reader is invited to consult Ref. [52].

tensor and, thus, is made up of the vielbein and its first
derivatives alone.
Coming back to eq. (5), we realize that in order to

obtain the proper low energy limit given by Einstein’s
theory, we need to demand Tr(F) = T . This establishes
the components of F according to3

Fµν = αF (1)
µν + β F (2)

µν + γ F (3)
µν , (11)

where α, β, γ are dimensionless constants such as α +
β +Dγ = 1 (hence, ensuring that Tr(F) = T ), and the

tensors F
(i)
µν are defined by means of

F (1)
µν = S λρ

µ Tνλρ , F (2)
µν = S ρ

λµ T λ
νρ , F (3)

µν = gµν T .

(12)
Then, we conclude by using the fundamental tensor

(11) that the gravitational action (3) reduces to GR in
the low field limit. Additionally, due to the fact that it
is constructed upon ea and its first derivatives alone, the
motion equations coming from it are of second order.
What it makes action (3) more interesting, is that it

seems to incorporate a systematic treatment in order to
avoid singularities. This constitutes the original idea be-
hind the structures like (3), whose spirit was fully under-
stood first in the electromagnetic context by Born and
Infeld [21], [22]. Pictorially, the success of the determi-
nantal structure concerning the singularity problem can
be backtracked to the following simple fact: the tensor
F, by means of its symmetric part, allows us to think of
a “new” metric tensor g̃µν(e

a, ea,µ)

g̃ = g+ 2λ−1F[µν] (13)

Hopefully, this new metric can prevent the emergence of
a singular state by moving geodesics away in a sort of
repulsive regime at scales ℓ2 = λ−1, thus evading the
singularity theorems at such scales. Even though this
repulsive high energy regime might not be a general fea-
ture of the theory [53],[54], it was shown that it actually
exists under certain circumstances [19],[20]. In the next
section we shall provide another example of it.

III. A PRIMORDIAL BRUSQUE BOUNCE

Historically, FRW cosmological spacetimes have been
paradigmatic examples of singular behavior in GR. The
big bang singularity, much like the r = 0 Schwarzschild
singularity, is an archetypical strong curvature singular-

ity, as defined in [56] and [57] (see also [6] for further
comments on this concept). Undoubtedly, this kind of

3 An antisymmetric second-rank tensor containing up to first
derivatives of ea could be added to (11) without ruining the low
energy limit of the theory. We shall not consider such a term in
this work.
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singular state constitutes the most explicit and harmful
situation envisioned within the general relativistic con-
text.
Now we want to show how a radically different descrip-

tion of the very early stages of the Universe emerges out
as a consequence of action (3). For this reason we have to
prescribe a frame field ea for spatially flat isotropic and
homogeneous FRWmanifolds first. An appropriated par-
allelization of these spacetimes is provided by the frame
[55]

eaµ = diag(1, a(t), a(t), ...), e = aD−1. (14)

This frame not only leads to the metric tensor

g = diag(1,−a(t)2,−a(t)2, ...), (15)

but also constitutes a globally well-defined basis for the
cotangent space T ∗(M), being M = (R4, g). In order to
describe the cosmic evolution, we will assume a perfect
fluid with energy density ρ and pressure p as source of
the motion equations. We have then,

T µν = (ρ+ p)V µV ν + p gµν , (16)

where V µ is the tangent vector to the congruence of
causal curves defining the flow lines. Additionally we
shall suppose that such a perfect fluid is isentropic, so
that we will have p = ωρ, withω the barotropic index.
The energy-momentum tensor (16) adopts a very sim-
ple form in the comoving frame, where it simply reads
T µ

ν = diag(ρ,−ωρ,−ωρ, ...).
The motion equations are obtained by varying the ac-

tion (3) with respect to the vielbein components eaµ. In
the following, we will be interested in the case D = 4.
For the tetrad (14) we can easily check that the only
non-null components of Tµνρ and Sµνρ (see eqs. (7) and
(10) respectively), are

Sµ0µ = −Sµµ0 = − a(t) ȧ(t),

Tµ0µ = −Tµµ0 = a(t) ȧ(t), µ 6= 0, (17)

so, the Weitzenböck (9) results in T = −6H2, where H =
ȧ/a is the Hubble rate, and the dots refer to derivatives
with respect to the proper time t. With these components
in hand, we can evaluate the three pieces of Fµν according
to eqs. (12). These are

F (1)
µν = diag(0, 2 ȧ2, 2 ȧ2, 2 ȧ2),

F (2)
µν = diag(−3H2, ȧ2, ȧ2, ȧ2),

F (3)
µν = diag(−6H2, 6 ȧ2, 6 ȧ2, 6 ȧ2). (18)

The constraint equation (the one coming from the vari-
ation with respect to e00), reads

√
1−BH2

√
1−AH2

[1 + 2BH2 − 3ABH4]− 1 =
16πG

λ
ρ, (19)

where

A = 6(β + 2γ)/λ, B = 2(2α+ β + 6γ)/λ, (20)

As usual, the conserved character of T µν gives rise to

d

dt
(ρ a3) = −p

d

dt
(a3) → ρ̇+ 3(ρ+ p)H = 0. (21)

For the isentropic case under consideration, this last
equation acquires the familiar form

ρ(t) = ρ0

( a0
a(t)

)3(1+ω)

, (22)

where a0 and ρ0 are two integration constants.
From now on, we will focus on the important case

where A = B in (19), which is susceptible to an ana-
lytical treatment4. Due to (20), this implies α = β and a
free γ parameter in the action, which can be reabsorbed
in λ. Redefining λ  (2A)−1λ, the equation (19) reads
in this case

6H2
(

1− 9H2

2λ

)

= 16πG ρ. (23)

From this expression, the Hubble rate is easily ob-
tained as

H2 =
λ

9

(

1±
√

1− 3y
)

, (24)

where we have defined the non-dimensional variable

y =
16πG

λ
ρ(t). (25)

From this definition it follows that

ẏ = −3(1 + ω)H y. (26)

The branch with positive sign in Eq. (24) (referred
hereafter as the positive branch), reveals itself as a purely
high energy state, disconnected from the GR limit. This
is so because it leads to a maximum Hubble rate as the
density goes to zero, or equivalently, when a0/a(t) → 0.
It is clear then, that this configuration must be excluded
from the physically admissible solution space.
The negative branch (i.e., the one with negative sign

in Eq. (24)), behaves differently according to the sign
of the BI constant λ. Note that even when λ < 0 the
equation is well defined. However, we will show in short
that this situation leads us to no regularization process at
all, because the Hubble rate diverges as the scale factor

4 Different choices of α, β and γ in a cosmological context were
considered earlier in Ref. [20]



5

goes to zero just as in GR. In turn, if λ > 0, the nega-
tive branch shows that the Hubble parameter in terms
of the variable y reaches a maximum value given by
H2

max = λ/9, which corresponds to a maximum energy
density ρmax = (48πG)−1λ. This is the type of cosmic
evolution that we want to discuss thoroughly in the next
paragraphs.
Whatever the barotropic index is (excepting the case

ω = −1, which can be worked out by introducing a cos-
mological constant term in the action), the variable y

allows us to integrate the equation (24) in closed form.
As a matter of fact, we have from (24) and (26) that

ẏ = ±A y

√

1−
√

1± 3y,

where A = (1 + ω)
√

|λ| is a non-null constant. Note
that the ± on the right-hand side of this equation comes
from taking square root in (24), and should not be con-
fused with the ones coming from the different branches,
which appear in the radicand. This equation can be
straightforwardly integrated, leading to the following ex-
pressions according to the sign of λ:

± Ã t± c = (f−(y))−1 − arctan(f−(y)), λ < 0, (27)

± Ã t± c = (f+(y))−1 + arctanh(f+(y)), λ > 0, (28)

where c is an integration constant.
In these equations we have defined Ã = A/

√
2, and

the functions f+/−(y) are such that

f−(y) =
(−1 +

√
1 + 3y

2

)1/2

(29)

f+(y) =
(1−√

1− 3y

2

)1/2

. (30)

Starting from the exact expressions (27) and (28), we can
characterize the scale factors as functions of the proper
time t. Naturally, irrespective of the sign of λ we have
the GR limit when y → 0, i.e., when |λ| → ∞. In this
limit, equations (27) and (28) become

a(t)

a0
=

(3

2
H0(1 + ω) t

)2/3(1+ω)

, (31)

where H2
0 = 8πGρ0/3 according to the Friedmann equa-

tion. This last equation describes the dynamics of the
scale factor in GR.
From now on, and due to the fact that we are interested

in the very early stages of the cosmic evolution, we shall
focus on a radiation filled Universe (ω = 1/3). Similar
results are obtained for other values of the barotropic
index, provided ω 6= −1.

For the case of λ < 0, an expansion of (27) in the small
quantity a(t)/a0 give us at first order

a(t)

a0
∝

√
λ t, H ∝ t−1. (32)

From the point of view of singularities, the case λ < 0
and its underlying dynamics given by (32) are as unsat-
isfactory as they are in GR. The resulting spacetime is
geodesically incomplete, and the energy density and pres-
sure become unbounded as t → 0+. In other words, the
spacetime does not admit an extension in t = 0 and any
pair of events (t1, t2) with t1 < 0 and t2 > 0 cannot be
connected by any causal geodesic.
A quite different dynamic is obtained when one con-

siders λ > 0. Around y = 1/3, Eq. (28) can be approxi-
mated by

(a(t)

a0

)4

=
48πGρ0

λ(1± 4
√
λ t)

+O(λ t2), (33)

whereas the Hubble rate is

H(t) = ∓
√
λ

(1± 4
√
λ t)

+O(λ t2). (34)

It is important to note that in these equations (and in
the following throughout the paper) the minus sign cor-
responds to t > 0, and the plus to t < 0 in the term
(1 ± 4

√
λ t). All the remaining signs in the expressions

must preserve the right order. For instance, positive
times require the plus sign on the right hand side of Eq.
(34).
The event t = 0 is called a brusque bounce because

there exists a minimum scale factor

amin

a0
=

(48πGρ0
λ

)1/4

, (35)

for which H2 6= 0. Actually, H is not defined at t = 0 be-
cause limt→0± H(t) = ±

√
λ, even though H2 is perfectly

behaved there with value H2(0) = λ, see Eq. (34). This
pathology is not as dangerous as it might seem at first
glance, because it does not jeopardize the C1 character of
causal geodesics at t = 0. This can be explicitly checked
by means of the geodesic equation, or even easily, by tak-
ing advantage of the six conserved quantities associated
to the isotropy and homogeneity of FRW spacetimes. It
is not hard to see that in standard spherical coordinates
(r, θ, φ), the tangent vector of the geodesics is described
by [15]

(∂τ t)
2 = δ +

P 2

a(t)

∂τ r =
P1 cosφ+ P2 sinφ

a(t)

∂τφ =
L3

a(t)r2
, (36)
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where δ is 0 or 1 according to the null or timelike char-
acter of the geodesic respectively, and τ is an affine pa-
rameter. Note that, due to spherical symmetry, every
geodesic may be constrained to lay in the hypersurface
θ = π/2, and L1 = L2 = P3 = 0 by an appropriated

coordinate change. In Eq. (36), P 2 = P
2

1 + P
2

2 + P
2

3

is the total linear momentum and L2 = L
2

1 + L
2

2 + L
2

3,
the total angular momentum (being Pi and Li, i : 1, 2, 3
six constants of motion associated to the six-dimensional
group of isometries characteristic of FRW models). So,
due to the fact that a(t) 6= 0 for all t, the geodesics are
C1 curves.
According to (36) the acceleration vector involves first

derivatives of the scale factor, which are not defined in the
bounce. This means that the Riemann tensor itself and
the scalars constructed from it are not defined in t = 0.
Nonetheless, the behavior of the Riemann tensor as one
approaches the bounce for either side of the time variable
is not divergent. For instance, we can evaluate the scalar
curvature for the obtained solution in the vicinity of the
bounce. In order to do this we have to compute R =
6(2H2 + Ḣ) for the scale factor (33). It results

R =
12λ (1± 2)

(1± 4
√
λ t)2

+O(λ t2). (37)

Other invariants suffer from this indefiniteness at the
bounce too. Examples of these are the quadratic scalars
such as R2 = RµνRµν and K = Rµ

νλρR
νλρ

µ , because

they not only involve products of the form H4 and Ḣ2

(which are well defined), but also a term H2Ḣ (which is
not).
One may wonder, thus, what the effect of the bounce

is not only on point particles, but also on extended finite
objects. In order to examine this issue, we must note
that the event p0 given by t = 0 is not a strong curvature
singularity, as defined by Tipler in [56]. We can see this
explicitly by examining the expression

T = lim
t→0

∫

RµνK
µKν dt, (38)

where Kµ is the tangent vector of every null geodesic
generator λ(t) that intersects the point p0 at affine pa-
rameter value 0. It was shown that T < ∞ captures the
physical requirement that an extended finite object is not
crushed to zero volume by the effect of tidal forces. Con-
dition T < ∞ can be fulfilled if for every interval (0, t1)
there is an affine parameter t2 ∈ (0, t1) such that

RµνK
µKν |t=t2< t−q

2 , (39)

for any fixed q < 1 [56]. We proceed now to prove that
(39) (and then T < ∞), actually holds.
The Ricci tensor for spatially flat FRW cosmologies

reads

R00 = 3(H2 + Ḣ) R̂µν = (3H2 + Ḣ)ĝµν , (40)

where R̂µν and ĝµν refer to purely spatial Ricci and met-
ric tensors respectively. In a neighborhood of t = 0, we
can make use of expressions (33) and (34), and by means
of the velocity vectors (36), we can compute the left-hand
side of Eq. (39). For t > 0 it reads

RµνK
µKν =

C1

(1− 4
√
λ t)2

− C2

(1− 4
√
λ t)7/4

, (41)

where C1 and C2 are positive functions of the constants of
motion and of the spatial coordinates, but not functions
of the proper time. We clearly have then

RµνK
µKν <

C1

(1− 4
√
λ t)2

. (42)

We immediately note that

C1

(1− 4
√
λ t)2

< t−q, (43)

for any t sufficiently close to zero and any q < 1, as
a consequence of the divergent character of t−q as t →
0+. This establishes (39), and the fact that the brusque
bounce does not crush extended finite objects to zero
volume by the effect of tidal forces.
This means that the spacetime, regarded as the pair

(T ∗(M), ea), admits a C0 local extension at p0. This con-
sists in taking the two signs in (28) and gluing together
the two scale factors at the event p0, i.e., T ∗(M) =
T ∗(M1) ∪ T ∗(M2), where M1 = (R4, g, t ≤ 0), and
M2 = (R4, g, t ≥ 0), with g = dt2−a2(t)(dx2+dy2+dz2).
This procedure, of course, will encompass the right elec-
tion of the integration constant appearing in (28).
Finally, the maximal extension so constructed is glob-

ally hyperbolic. In terms of the conformal time

τ̃ =

∫

a−1(t) dt, (44)

which is well defined for −∞ < t < ∞ by virtue of the
everywhere non-null (and C0) character of a(t), the ex-
tension is conformal to Minkowski spacetime. Any hyper-
surface of constant time (t = 0 among them), constitutes
a Cauchy surface.
The scale factor thus obtained from Eq. (28) is

visualized in Figure 1, where curves with four differ-
ent values of the Born-Infeld constant λ are depicted.
From top to bottom, the solid lines represent the values
λ = 3, 10, 102, 103, where for simplicity we have taken
16πGρ0 = 1. Furthermore, we have included in Figure
1 the corresponding GR curve for a radiation-dominated
Universe (dashed line), namely a(t)/a0 =

√
2H0 t (see

Eq. (31)).

IV. FINAL REMARKS

In Einstein´s Theory of General Relativity no physical
process exists in order to avoid the inevitable fact that,
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FIG. 1: The scale factor that emerges from Eq. (28), for four
different values of the BI constant. From top to bottom in the
solid curves: λ = 3, 10, 102, 103. The dashed curve represents
the ω = 1/3 GR Universe.

far back in time, the energy density and pressure of the
matter fields were infinite as a consequence of the vanish-
ing of the scale factor at the Big Bang. We have shown
throughout the preceding paragraphs, that Born-Infeld
gravity offers a quite different description of the very
early stages of the cosmic evolution, for it was shown in
this article that the dynamical equations (19) for A = B
lead to a bounce of the scale factor where the Universe
possesses a minimum size given in (35) for a radiation-
like Universe. In general, for ω 6= −1 it is easy to show
that the minimum 3-volume associated to the bounce is

(amin

a0

)3

=
(48πGρ0

λ

)1/(1+ω)

. (45)

Throughout this work we have advocate for not con-
sidering the event t = 0 as a singularity, at least, not
in any of the widely accepted senses. This viewpoint is
supported by at least two strong arguments:

a) On the one hand, we stressed in the last section that
the geodesics are well behaved at the bounce, in the sense
that they are C1 curves there. Actually, the spacetime is
geodesically complete, and all the causal geodesics are
of class C∞, except at the bounce itself. Moreover, the
Tipler condition T < ∞ assures us not only that pointlike
particles traveling along causal geodesics do not experi-
ence any kind of singular behavior, but that extended ob-
jects of finite size do not crush to zero volume in passing
the bounce. Nonetheless, these two minimum conditions
are also satisfied, for instance, by the so-called sudden
singularities [11]-[14].

b) On the other hand, in the brusque bounce both, the
energy density and the pressure of the matter fields are
perfectly well behaved and they result finite because we
assume throughout the analysis a very simple equation
of state of the form p = ωρ. Actually, we have from (22)
and (33) that sufficiently close to the bounce the energy
density (for ω = 1/3) scales as

ρ(t) =
λ

48πG
(1± 4

√
λ t), (46)

so a maximum energy density ρmax = λ/48πG, and a
maximum pressure pmax = λ/144πG are reached at the
very bounce. This is not the case, for instance, in the
sudden singularities, where the energy density is finite
but not the pressure, but it is the case for the type IV
singularities. In the latter the matter fields are finite,
but divergences in higher order derivatives of the Hubble
rate occur (even though H and Ḣ are finite) [58].
However, a word of caution should be said about this

optimistic point of view concerning the bounce as a reg-
ular event. If we insist on viewing the metric tensor as
the dynamical field that encodes the geometrical prop-
erties of the spacetime, the very fact that the Riemann
curvature tensor is not defined at the bounce –as well as
the whole repertoire of curvature invariants constructed
from it– is certainly unsatisfactory. As long as we pro-
fess this Riemannian philosophy, it is inevitable to think
about the bounce as a singularity.
But the theory here exposed is not based on Rieman-

nian concepts, even though the metric emerges as an
agent that confers orthonormality to the vielbein field
ea, which embodies the spacetime geometrical structure
by means of a parallelization process. This global ba-
sis of the cotangent bundle constitutes a preferred refer-
ence frame that can be used to define the space struc-
ture, in the sense that we can define a given spacetime
as the pair (T ∗(MD), ea(x)) instead of (MD, gµν(x)).
This preferred frame is, nonetheless, not unique. In ref.
[52] it was established the existence of a remnant group
of Lorentz transformations in the so-called f(T ) gravity,
which constitutes a modified scheme for the description
of the gravitational field based upon the same geomet-
rical structure of the theory here considered. Prelimi-
nary results show that this is actually the case also in
the present context, which means that for every space-
time (T ∗(MD), ea(x)) there exists a subgroup A(ea) of

the Lorentz group such that ea
′

(x) = Λa ′

a ea(x) describes

the same spacetime, for Λa ′

a ∈ A(ea). In any case, it
is clear that the motion equations of the theory under
consideration determine the full tetrad components (up
to transformations of the potential remnant group), and
not just the metric tensor. To look for pathologies con-
cerning the Riemann tensor and the scalars coming from
it (i.e., coming from the metric and its first and second
derivatives), seems manifestly misleading 5.

5 However, the energy-momentum tensor of spinless matter cou-
ples to the metric g = eaebηab and not to the tetrad in the present
formalism. In the case of FRW spacetimes, and by virtue of the
exceedingly simple state equation p = ωρ, eq. (22) holds, so
the matter field couple to the scale factor (which is defined ev-
erywhere), and not to its derivatives. Care should be taken in
supporting this point of view under more general circumstances.
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These comments tend to emphasize that, beyond Ein-
stein’s Theory of General Relativity, and in the context
of extended theories of gravity formulated by purely tor-
sional means, the criterion of a singularity based on un-
bounded large (or even undefined) values of scalar poly-
nomials in the Riemann curvature, becomes strongly ob-
jectionable. One should pay attention to the tensors and
scalars constructed in Weitzenböck spacetime instead. If
we focus on invariants containing just first derivatives
of the vielbein, we have that they behave as H2n, with
n a positive integer. Precisely, we know from (17) that
T = −6H2, and with the help of (11) and (12), we obtain

Tr(Fn) ∝ H2n, F
n ≡ Fµ

ν1F
ν1
ν2...F

ν(n−1)
ρ . (47)

All these Weitzenböck scalars are well behaved through-
out the whole cosmic evolution, because so it is H2. The

same is true for the action itself, which is nothing more
than combinations of terms of the form (47).

The results we have obtained support the idea that
the Universe did not begin a finite time ago. This is not
actually a new idea, for in many alternative approaches to
the description of the very early Universe we find similar
outcomes (see, for instance [59], and references therein
contained). Remarkably, this conclusion is obtained here
as a consequence of assuming a dynamic for the matter
fields as simple as p = ωρ and barotropic indexes with
a very diaphanous physical interpretation, such as ω =
0, 1/3.
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