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A study on the mechanochemical activation of the olivine in presence of H2O and

under CO2 atmosphere have been approached, focusing both on the structural nature

of the transformation and the conversion of CO2 to methane and light hydrocarbons.

The mechanochemical process was carried out by high energy laboratory mills, with

milling vials properly modified in order to be used as batch reactors. Chemical reactivity

and reaction rates were investigated under different experimental conditions, evidencing

increased performance with respect to the thermally activated process reported in

literature. Mechanical treatment induced H2O and olivine activation, with consequent

release of molecular H2 which, in turn, allowed hydrogenation of activated CO2.

This last reaction also led, through a competitive process, to the precipitation of

carbonate phases, whose composition and structural features were dependent of the

CO2/H2O ratio.

Keywords: CO2 utilization, olivine, methane, mechanochemical activation, hydrogen

INTRODUCTION

Fossil fuels are still the primary energy source in the world. However, the energy demand, in
continuous growth, has led to increased fuel consumption and then to the release of a huge
amount of carbon dioxide, CO2, into the atmosphere (Koukouzas et al., 2009). It is well-known
that CO2 is the greenhouse gas with the major contribution to global warming. It is also recognized
that natural processes cannot absorb all the anthropogenically produced carbon dioxide. As a
consequence, the development of new technologies for capture and conversion is urgently required
(Falkowski et al., 2000).

Global emissions of CO2 have been increasing steadily in the past decades and reached values
60% above 1990 levels, when the Kyoto Protocol was stated. In order to limit the global temperature
rise, CO2 emissions should be reduced by at least 50% by 2050 (Stocker et al., 2014; Cuéllar-Franca
and Azapagic, 2015).

Among the various strategies under investigation, Carbon Capture Storage (CCS) and, more
recently Carbon Capture Utilization (CCU), have attracted the attention of scientists worldwide.
The aim of such approaches is to capture emissions from point sources but the main difference is
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the destination of captured CO2. While in CCS it is
transferred to a suitable site for long-term storage, in
CCU it is converted into valuable products (e.g., chemicals
and fuels), contributing to mitigate climate change
(Metz et al., 2005; Weisser, 2007; Hertwich et al., 2008;
Cooper, 2009; Nagashima et al., 2011; Styring and Jansen, 2011;
Markewitz et al., 2012; Zapp et al., 2012).

As for the CCS, i.e., CO2 geological storage, it involves the
injection of CO2 into geological formations, such as depleted oil
and gas reservoirs at great depths. Such sequestration technique
is, at present, probably one of the most promising options
due to the previous experience by the oil and gas industry. In
fact, the industry has a good understanding of the structural
characteristics and behavior of depleted oil and gas reservoirs,
and the existing well-drilling and injection techniques can be
adapted for carbon storage applications (Metz et al., 2005) (e.g.,
CO2-injection at Sleipner) (Leung et al., 2014; Furre et al., 2017).
The main issues with CO2 storage are their possible leaks and
the related damage that would cause if a concentrated stream
escaped into the environment. This possibility depends on the
permeability of the geological structure and its faults or defects.
According to the literature, annual leakage rates are in the range
from 0.00001 to 1% (Metz et al., 2005; Pehnt and Henkel, 2009;
Singh et al., 2011).

Finally, mineral carbonation, also known as “mineral
sequestration,” can be considered as a storage and utilization
option, because it involves CO2 conversion into carbonates
through the reaction with metal oxides, such as magnesium or
calcium oxide (Metz et al., 2005; Von Der Assen et al., 2013). The
carbonation is an exothermic reaction that releases enough heat
to make the whole carbonation process, at least in theory, self-
sustaining (Von Der Assen et al., 2013). The main advantage of
mineral carbonation is the formation of stable carbonates capable
of storing CO2 for long periods, without the risk of CO2 leakage
as in CCS (Metz et al., 2005; Styring and Jansen, 2011; Von Der
Assen et al., 2013).

Olivine and Serpentine minerals are the most promising
candidates for carbon sequestration because of their high
contents of magnesium. The main carbonation reactions of
these two minerals are described by the following reactions
(Equations 1–3):

(Mg, Fe)2SiO4 + 2CO2 → 2(Mg, Fe)CO3 + SiO2 (1)

6(Mg, Fe)2SiO4 + 12H2O+ 6CO2 → 2(Mg, Fe)3Si2O5(OH)4

+ 2Fe3O4 + 8H2 + 6MgCO3 + 2SiO2 (2)

(Mg, Fe)3Si2O5(OH)4 + 3CO2 → 3(Mg, Fe)CO3 + 2SiO2 + 2H2O

(3)

In nature, around 100 million tons of carbon per year,
according to a slow weathering process, is bound by these
minerals (Oelkers et al., 2008). The CO2 sequestration in natural
silicates is sometimes accompanied by the occurrence of the
serpentinization process. This is a widespread phenomenon on
the Earth’s mantle that occurs generally at temperatures <300◦C
(Oelkers et al., 2008; McCollom and Bach, 2009; Neubeck et al.,
2011; Holm et al., 2015), and during which, mineral based
silicates of Fe and Mg react with water to give H2 and minerals

of the serpentine group [(Mg,Fe)3Si2O5(OH)4] (Equation 2).
This involves the formation of extremely reducing fluids, rich in
hydrogen, so any species present, such as inorganic C, can be
reduced. Therefore, CO2 can react with H2, through a Fischer-
Tropsch type (FTT) or Sabatier mechanism, to form CH4 and
light hydrocarbons (Holm et al., 2015) (Equation 4).

CO2 + 4H2 → CH4 + 2H2O (4)

Although the whole process is thermodynamically favored, the
rate of the reaction is very slow, and, accordingly, the natural
process does not allow control of CO2 emission levels into
the atmosphere. The possibility to increase the kinetics of such
processes deserves interest, and to this regard, preliminary
treatment of the olivine mineral, such as mechanical activation,
has been demonstrated to be successful. If, on the one hand, the
CO2 absorption process during olivine serpentinization had been
experimentally investigated, on the other hand, literature data
(Kleiv and Thornhill, 2006; Baláž et al., 2008; Fabian et al., 2010;
Sandvik et al., 2011; Power et al., 2013; Turianicová et al., 2013;
Li and Hitch, 2015; Rigopoulos et al., 2015) are not homogeneous
and refer to the effects of mechanical activation on olivine,
focusing mainly on its structural and surface transformation, in
order to facilitate CO2 storage. In particular, it has been shown
that the mechanical grinding of olivine significantly increases
its ability to form iron and magnesium carbonates making the
CO2 capture a potential stable storage method for long periods.
The mechanical activation was found to be more effective if
the treatment occurs in the presence of liquids, such as water
(Turianicová and Baláz, 2008) or ethanol (Rigopoulos et al.,
2015), as a consequence of the greater surface area generated
in wet conditions. Conversely, less attention has been paid, in
such studies, to the chemical reduction of CO2, to yield light
hydrocarbons and corresponding oxygenated compounds. The
present work just deals with such issues, and, for the first time
to the best of our knowledge, the attention has been focused
on the mechanically induced production of methane and light
hydrocarbons during the interaction between olivine and water
under CO2 atmosphere.

MATERIALS AND METHODS

Olivine powders were provided by SATEF-HA (Italy). Chemical
analysis reported by the supplier indicated the following relative
composition expressed as weight % of oxide of each element
contained in the material: 50.00% MgO, 41.50% SiO2, 7.30%
Fe2O3, 0.29% Cr2O3, 0.40% Al2O3, 0.30% NiO, 0.10% MnO,
0.10% CaO.

High purity Carbon dioxide gas (≥99.995%) was provided by
Sapio (Italy).

Materials Processing
The mechanical activation was carried out by a Spex Mixer Mill
mod.8000, which was suitably modified to control the milling
dynamic parameters (Delogu et al., 2004).

As a mechanochemical reactor, we employed a stainless-steel
vial (76 cm3) equipped with two circular bases which were
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fitted with sealing valves. On one side, these valves allowed the
connection to the gas reservoir (CO2), and on the other side,
to the GC apparatus for the analyses of gaseous reagents and
products. The mechanical treatments were carried out on fresh
powders at selected milling times. In order to remove the residual
air from the vial, a dynamic vacuum of 10−3 mbar for 10min
was applied, before introducing CO2. Gas sampling was then
performing 30min after stopping milling and the gases analyzed
by gas chromatography.

Three series of experiments have been performed by charging
the vial with 2 g of olivine, 0.3ml of deionized H2O, three
stainless steel balls of 3.80 g each, and a rotation speed of
875 rpm. The reactor was then closed under CO2 atmosphere
under different conditions: (a) applying a constant pressure
of 1.5 bar; (b) pressurizing the milling vial with an initial
pressure of 1.5 bar; (c) filling the reactor with 1.0 bar. All the
mechanochemical processes were conducted under low pressure
of CO2, in order to reproduce the reaction conditions expected
under a real environment.

Methane, Hydrogen, and Light
Hydrocarbons Evolution
Gas withdrawal from the reactor and injection in the gas
sampling valves of gas chromatographs (GC) were performed
by a gastight syringe. A GC Perkin Elmer 8600 equipped with
a capillary column (GSQ 115-3432-J&W Scientific) and an FID
detector, was used for CH4 and light hydrocarbons detection.
A Fisons 8000 equipped with a molecular sieves column (10
Å) and a hot wire detector (HWD), was used to evaluate H2

and permanent gases. The conversion of CO2, expressed as
percentage (%), was calculated using the following equation:

CO2 conversion (%) =
CO2initial − CO2final

CO2initial
∗100 (5)

where CO2initial and CO2final correspond to the area of the peak
showed by GC measurements before and after the mechanical
treatment, respectively.

Quantitative analyses were carried out through calibration
curves setup by resorting to analytical standards, provided by
Linde Gas Italia S.R.L.

Solid-State Samples Characterization
Powders were structurally characterized by means of a Rigaku
SmartLab X-ray Diffractometer (XRD) with a Bragg–Brentano
geometry using Cu Kα radiation (λ = 1.54178 Å) and a graphite
monochromator in the diffracted beam. Quantitative evaluation
of phase abundance and structural features were obtained for
all the XRD patterns, by non-linear least-square refinement
procedure, according to Rietveld method, and using the MAUD
(Materials Analysis Using Diffraction) software (Young, 1993).

The thermogravimetric analyses were carried out by a Setaram
Labsys DTA-TGA under Argon flux, by heating the specimens
from room temperature to 1,000◦C, at a scanning rate equal
to 5◦C/min.

RESULTS

The crystallographic characterization of the olivine powders
in the as-received state was performed by XRD using the
Rietveld refinement method (Figure 1). In this way, phases were
identified and their relative abundance and microstructural
features were evaluated (Table 1). The Mg-rich Olivine
used in these tests (from now Olivine) consists of three
phases: Forsterite (Fe0.2Mg1.8SiO4), space group (s.g.) Pbnm,
Enstatite ferroan (Fe0.2Mg0.8SiO3), s.g. Pbca, and Clinochlore
(Al1.84Fe0.5H8Mg4.5O18Si3.16), s.g. C-1. The Forsterite is the
majority phase in the as-received olivine powders (91 wt%), with
Enstatite as secondary phase (7.5 wt%).

FIGURE 1 | CuKα XRD pattern of the Olivine in the as received state. The structural refinement procedure by Rietveld method, allowed to quantitatively evaluate the

contribution of the three phases indicated in the Figure: Forsterite (green line), Enstatite ferroan (blue line), Clinochlore (red trace).
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TABLE 1 | Phase composition and structural parameters of Olivine in the

as-received state.

Phases a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦) r.m.s. (%)* Wt (%)

Forsterite 4.77 10.23 5.99 – – – 0.0000021 90.8

Clinochlore 5.31 9.23 14.39 90.76 96.68 89.63 0.00523 1.7

Enstatite ferroan 18.24 8.83 5.19 – – – 0.00119 7.5

*Root mean square microstrain.

All data were obtained by Rietveld analysis on the pattern reported in Figure 1, using

MAUD software.

FIGURE 2 | Gas-chromatographic analysis, by FID, of the gas phase sampled

from the mechanochemical reactor. Experimental data, reported as pink line,

are compared with the relevant standard mixture data (STD), relative to 1%

concentration value.

As a general behavior, mechanical activation tests of olivine
with water under CO2 atmosphere led to the production
of different gas-phase products, which were detected by
gas chromatography. The main hydrocarbons produced
were methane, CH4, ethane, C2H6, and ethylene, C2H4.
As an example, the gas-chromatographic trace of olivine
mechanically treated for 150min is shown (Figure 2). The
relative concentration of light hydrocarbons and other gas phase
compounds, within the mechanochemical reactor, was evaluated
by a calibration line obtained using certificated standard gas
mixtures. Data plotted in Figure 2 indicate that the relative
amount is: 0.23% v/v of methane, 0.036% v/v of ethane, and
0.099% v/v of ethylene. Moreover, it is safe to say that, at
present, we cannot exclude the formation of traces of further
heavier products, which could be in condensed liquid phase, or
chemisorbed on the powder surfaces: this point is still under
investigation. However, concerning the present work, we focused
our attention mainly on the formation of methane. It should
also be noted that, in absence of CO2, there was no methane
formation, during two blank tests carried out by filling the jar
with air or Argon.

FIGURE 3 | Methane concentration values in the gas phase mixture, reported

as degree of conversion α, as a function of mechanical treatment time, t. Blue

dots refer to experimental data, while continuous line represents the fitting

curve according to the empirical equation reported in the text.

The evolution of methane during the experiments performed
under a constant pressure of 1.5 bar of CO2 (with continuous
flow) is presented in Figure 3. Data are reported in the graph
as a degree of conversion α, vs. the milling time. The kinetics of
evolution of methane concentration followed a sigmoidal shape,
a trend often observed in chemical reactions involving solids
as well as in gas-solid interaction processes, also activated by
mechanical treatment (Delogu et al., 2004; Ahmedabadi and
Kain, 2019). The data suggest that methane formation rate,
initially slow (α = 8.3 · 10−3), increased up to reaching its
maximum value after about 150min of milling, and then CO2

to CH4 conversion progressively slows down, asymptotically
approaching α = 1, which corresponds to the CH4 maximum
concentration value, between 0.18 and 0.2% v/v. Experimental
points can be fitted by the empirical equation α = 1 −
(

1+ kt
)

exp
(

−kt
)

, in which t represents the milling time, and k
represents the apparent kinetic constant of the process and has a
value of 1.484∗10−2 min−1. Apart from the empirical approach,
it should be noted that the actual process is rather complex, as
it involves several steps, including surface adsorption of H2O
and CO2, with molecular dissociation occurring over the surface,
or after diffusion phenomena through the bulk. Such steps are
accompanied by the creation of highly activated and freshly
renewed surfaces due to the milling process, corresponding
to sites where CO2 conversion can take place. Despite the
complexity of the process, which makes it difficult to reliably
define the different reaction steps, some hints can be obtained by
analyzing the experimental results, as described below.

In order to evaluate structural and microstructural changes
of the olivine during mechanical activation, XRD analyses were
performed (Figure 4). A decrease in the crystallite size of
the predominant Forsterite phase due to the milling process
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FIGURE 4 | The CuKα XRD patterns sequence displays, from the bottom, the analyses of the Olivine in the as received state, the one of the sample at the end of

90min of mechanical activation in the first series of runs, and the one further subjected to the thermogravimetric analysis. Experimental points are fitted by the Rietveld

refinement procedure.

was obtained by Rietveld refinement (Table 2). XRD patterns
presented in Figure 4 do not evidence the formation of a
Serpentine phase. However, these patterns display, together with
the residual Forsterite, the formation of two Mg-based phases,
which can be identified as the trigonal MgCO3, Magnesite,
s.g. R-3C, and the orthorhombic MgSiO3, Enstatite, s.g. Pbca.
Such phases were observed in all the samples at the end
of the mechanochemical trials, as displayed in Table 3. An
example is the XRD pattern of the olivine subjected to 90min
of mechanochemical activation (central trace of Figure 4). The

data suggest that the transformation process of olivine was
accompanied by CO2 adsorption on the mineral surface, and
further activation, which induces the formation of Magnesium
carbonates phases. No Fe-based carbonates were detected.
However, after heat treatment up to 1,000◦C of this as-activated
olivine (upper trace of Figure 4), the precipitation of two
crystalline Fe-oxide phases, namely Hematite Fe2O3, s.g. R-3C,
and Magnetite Fe3O4, s.g. Fd-3m was observed.

Figure 5 shows the TGA curves of the pristine olivine
and the samples previously subject to different milling times.
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Whereas, for pristine olivine, which did not display significant
changes in weight, all the other TG curves are characterized
by two weight loss phenomena, occurring within three main
temperature ranges (20–100, 100–400, and 400–1,000◦C). The
comparison with literature data suggests that the weight loss
occurring at lower temperature ranges is related to H2O
desorption by the sample surface (Maroto-Valer et al., 2005); the
subsequent signal, whose onset is observable at about 107◦C can
be related to the dehydration of the bulk; the last weight loss
(around 450◦C) can be conversely related to CO2 evolution after
decomposition of carbonate phases (Bisbal et al., 2015; Stopic
et al., 2018). It can, thus, be argued that the heat treatment
allowed H2O and CO2 evolution from these compounds, and
that the decomposition of MgCO3 (Magnesite) induced the
increase of MgSiO3 concentration (Enstatite) up to about 8%.
The precipitation and grain growth of Hematite and Magnetite
phases, whose relative amount are reported in Table 3, deserve
further analysis.

It is noteworthy that the above findings are in agreement with
Klein (2014) and Jones et al. (2010) who reported the treatment
of olivine with H2O and CO2, under hydrothermal conditions,
at low-temperatures and in presence of an excess CO2−

3 ions.
In that case, Fe2+ ions were rapidly incorporated to form
carbonates, silicates and hydroxides, rather than being oxidized

TABLE 2 | Crystallite size of the Forsterite phase, evaluated by Rietveld analysis of

each sample, as a function of the milling time.

Milling time (min) Forsterite crystallite size (nm)

0 230

30 92

90 85

180 82

240 76

to Fe3+, and can also be included within the serpentine, thus not
leading to the precipitation of appreciable amounts of Magnetite.
According to this, it could be surmised that, in our tests, the
Magnesite carbonate phase, that formed as a consequence of
mechanical activation of olivine with H2O and CO2, is not a
pure Mg2+ based phase, but includes Fe ions. This is confirmed
by crystallographic features: values of lattice parameters a and
c of the R-3C carbonate phase, equal to 4,682 and 15,218 Å,
respectively, are consistent with a ca. equimolecular mixture
of the two Fe- and Mg-carbonate phases whose corresponding
lattice parameters are a = 4,686 Å, c = 15,383 Å, and a = 4,635
Å, c= 15,023 Å, respectively.

The driving force of the serpentinization process lies in the
oxidation of Fe2+ to Fe3+ that leads to the reduction of water
and the formation of molecular hydrogen. As a matter of fact, the
whole analysis of gaseous mixture, from the mechanochemical
reactor at the end of tests, allowed for confirmation of the
occurrence of a significant amount of gaseous H2. This hydrogen
appeared due to H2O activation and dissociation, and it was
made available, within the vial, as a consequence of its desorption
from powders. Its kinetic trend parallels the shape of CO2

to CH4 transformation (Figure 6), and its value is relevant to
samples mechanically treated up to 150min, which show that
the H2 concentration rises up to about 20% v/v. Assuming 1
atm pressure inside the vial, the amounts of H2 detected are
stoichiometrically possible (54% of the theoretical maximum)
based on the available Fe2+ amount. The CO2 conversion
(Figure 7) shows that the kinetic trend recalls that observed for
H2: the increasing rate has to be considered as the initial step of
a sigmoid-shaped curve, while the observed conversion values
indicate, on one hand, the efficiency of the mechanochemical
process as a tool for CO2 storage, and on the other hand,
confirm that CO2 absorption and activation steps are necessary
conditions that precede the reduction to form methane.

In order to evaluate the effect of the CO2 pressure, as
registered within the milling vial, on the transformation path

TABLE 3 | Phase composition, as evaluated by Rietveld analysis, of different samples after selected time of mechanical treatment, in the first series of tests.

Sample Phases (Wt%)

Forsterite

Fe0.2Mg1.8SiO4
orthorhombic

Clinochlore

Al1.84Fe0.5H8Mg4.5O18Si3.16
triclinic

Enstatite ferroan

Fe0.155Mg0.845SiO3
orthorhombic

Enstatite

MgSiO3
orthorhombic

Magnesite

MgCO3
trigonal

Hematite

Fe2O3
trigonal

Magnetite

Fe3O4
cubic

Olivina AR 90.8% 1.7% 7.5%

30min 79% 2.9% 18.1%

After TG 82.9% 8.1% 5.9% 3.1%

90min 85.1% 2.8% 12.1%

After TG 80.1% 7.6% 7% 5.3%

180min 80.6% 2.8% 16.6%

After TG 78.6% 5.8% 8.9% 6.6%

240min 79.9% 2.5% 17.6%

After TG 77.1% 7.6% 11.6% 3.7%

Constant pressure of 1.5 bar of CO2 (AR, as received; TG, thermogravimetric measurement up to 1,000
◦C).
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FIGURE 5 | TGA traces carried out over selected samples at the end of the

first series runs, i.e., mechanochemical tests carried out under a CO2 pressure

head equal to 1.5 bar.

FIGURE 6 | H2 concentration in the gas phase within the mechanochemical

reactor, as registered at different times of mechanical treatment, in the tests

carried out with a pressure head of 1.5 bar of CO2.

undermechanochemical activation, two subsequent series of tests
were carried out by changing the value of the CO2/H2O ratio, by
setting the CO2 initial pressure of the vial at 1.5 bar and at 1.0
bar, respectively.

The CH4 concentration values reported in Figure 8

correspond to the above series of experiments. It emerged
that CO2 conversion trend, as well as the H2 evolution, approach
the results of formerly presented runs at corresponding times
of mechanical treatment. The data of the two series have
similar trends and are in the same order of magnitude, with
a small increase observed in the tests carried out at an initial
pressure equal to 1.5 bar. For samples milled for 120min, the
lower conversion value marks a difference in the rising trend,

FIGURE 7 | Conversion data of CO2, plotted as a function of milling time, as

observed during the series of mechanochemical tests performed with a

pressure head of 1.5 bar of CO2.

FIGURE 8 | Methane concentration data relevant to the three different test

series. Blue dots: initial CO2 pressure equal to 1.5 bar. Red dots: initial CO2

pressure equal to 1.0 bar. The data are replicates of two runs and error bars

refers to standard deviation values.

and it parallels the corresponding data for H2 evolution at
the same time of treatment. Although the amount of gaseous
H2 available within the vial remains much higher than the
stoichiometric requirement for the hydrogenation process, the
dependence of the conversion on the H2/CO2 ratio may be a
relevant factor.

As for the solid phases, a difference in the evolution of the
phases was evidenced by XRD data (Table 3), which refer to
the first series of tests performed under constant CO2 pressure
value equal to 1.5 bar. These results revealed the formation of
the Mg-carbonate phase, the trigonal Mg(CO3), Magnesite, s.g.
R-3C, while no relevant signals of Nesquehonite were observed.
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TABLE 4 | Phase composition, as evaluated by Rietveld analysis, of different samples after selected time of mechanical treatment, in the second series of tests, run under

the initial CO2 pressure of 1 bar.

Sample Phases (Wt%)

Forsterite

Fe0.184Mg1.816SiO4
orthorhombic

Clinochlore

Al1.84Fe0.5H8Mg4.5O18Si3.16
triclinic

Enstatite ferroan

Fe0.155Mg0.845SiO3
orthorhombic

Enstatite

MgSiO3
orthorhombic

Magnesite

MgCO3
trigonal

Nesquehonite

Mg(CO3)·3H2O
monoclinic

Hematite

Fe2O3
trigonal

Magnetite

Fe3O4
cubic

Olivina AR 90.8% 1.7% 7.5%

30min 89.8% 2% 8.2%

After TG 86.6% 8.1% 4.3% 1%

60min 84.1% 2.8% 9.5% 3.7%

After TG 83.9% 6.5% 7.1% 2.5%

90min 84.4% 3.8% 6.8% 5.5%

After TG 84.2% 6.4% 6.6% 2.7%

120min 86.5% 3.8% 3.1% 6.6%

After TG 83.2% 5.6% 8.6% 2.6%

150min 83.6% 2.9% 13.5%

After TG 80.2% 5.2% 11.9% 2.7%

Different finding was observed in the third series of tests (carried
out at initial CO2 pressure of 1 bar) the Nesquehonite phase
appeared in all the samples except for the one milled for 150min,
and it is consistent with the reduced value of the CO2/H2O
ratio (Table 4). This suggests the sensibility of the chemical
transformation to the adopted conditions. In this regard, it is
interesting to note that our findings agree with the literature
data, referred to the process in a liquid medium, which indicate
that the precipitation of Magnesite at room temperature is
not observed, despite being the stable carbonate form. Most
commonly, only the Nesquehonite mineral can precipitate from
aqueous solution at 25◦C and with a partial pressure of CO2 close
to ambient pressure. At higher temperatures, above 40◦C, several
basic carbonates were observed to precipitate, in the form of
hydromagnesite. Conversely, Magnesite production takes place
only if the temperature is around 60–100◦, and at high CO2

pressure (Fernández et al., 2000; Zhang et al., 2000; Kloprogge
et al., 2003; Giammar et al., 2005; Hänchen et al., 2008).

A further point deserves a comment: the Clinochlore phase,
observed in the above tests, was present in a low amount
(about 1.7 wt%) in the as-received Olivine and it was not
found in the first series of experiments, where the mixed
carbonate, Magnesite-type, was recovered. However, its content
increased in the other series, where hydrated Nesquehonite
compound was formed. In other words, during the process,
decreasing the CO2/H2O ratio, the concentration of the resulting
carbonate form decreases, and under such conditions, the formed
carbonate phase is hydrated. Therefore, the absence in XRD
data of the signals, related to the Serpentine, at the end of
the mechanochemical runs, could be related to a possible
phase amorphization during the process. A further possible
interpretation is the occurrence of a consecutive process. The
former step is related to olivine hydrolysis, with the induced
formation of Serpentine minerals, which still evolve, in the
latter step, to give carbonates when CO2 is available in the
proper amount. Otherwise, in the tests carried out with a

lower value of CO2/H2O ratio, the kinetics of the latter step
slows down, allowing to observe the rise of the Clinochlore
phase concentration.

Finally it is noteworthy that Magnetite, reported as the
active catalytic phase in situ generated during FTT after
olivine hydrolysis under hydrothermal conditions (Giammar
et al., 2005; Jones et al., 2010), was not observed during our
mechanochemical runs, but only after thermal annealing at TGA.
However, it is safe to say that, undermechanochemical activation,
a necessary condition for the occurrence of FTT after olivine
weathering process, is the presence of Fe3+ ions more than actual
Magnetite particles.

CONCLUSIONS

The mineral carbonation technology is capturing wide interest
as a useful strategy for both CO2 storage and its utilization,
and in this context, the chemical transformations driven by
olivine weathering process appear worthy of investigation. In
particular, while the very slow kinetics of the natural process
are not practical for CO2 storage and conversion purpose, the
activation by mechanical treatment of olivine in the presence of
H2O and CO2 has been demonstrated to be efficient to promote
both the solid phases evolution and the gas-phase synthesis of
light hydrocarbons, in particular of methane. The formation of
carbonate solid phases and the methanation reaction, displayed
faster kinetics compared to the hydrothermally activated ones
and similar or higher conversion data. The whole pattern of
physical and chemical transformations activated by mechanical
treatment requires further deepening, but the results allowed to
clarify some mechanistic aspects and suggested a possible line
of future investigation. This process promoted H2O dissociation
with consequent H2 formation, which in turn can promote FTT
reactions over the mineral surface, and CO2 hydrogenation rate
can then increase, after an induction period related to CO2 and
H2 activation, according to a sigmoidal trend often observed in
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mechanochemical processes. Structural evolution of solid phases
suggests the occurrence of a complex process that appears to
be defined by the CO2/H2O ratio values. The presence of a
“mechanochemical effect” is evident, i.e., the occurrence of an
increased system reactivity specifically related to the activation
by mechanical treatment.

The observed concentration values of methane and
hydrocarbons may be influenced by the experimental set up: the
analyses of the effects of parameters like the geometry reactor, as
well as the milling dynamic parameter, i.e., frequency of collision,
will be the focus of future work aimed at improving chemical
results and deepening the knowledge of the whole process.
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