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Abstract

Brasilodon quadrangularis (Cynodontia, Probainognathia) is an iconic non-mammaliaform

cynodont from the Late Triassic of Brazil (Riograndia Assemblage Zone, Candelária

Sequence), being considered as the sister taxon of Mammaliaformes. Although its phyloge-

netic position is very important, several aspects of its postcranial anatomy remain unclear or

unstudied. Here, we present a detailed description of the postcranial elements referred to

Brasilodon, including previously mentioned specimens and new ones, which add relevant

information about its postcranial morphology and provide a new insight into the anatomical

transition between advanced non-mammaliaform cynodonts and early mammaliaforms.

Functional and ecological implications are also investigated, based on the postcranial mor-

phology and muscular reconstructions. The postcranium of Brasilodon differs from most

non-mammaliaform cynodonts and presents similarities with tritylodontids, early mammalia-

forms and extant therians, such as a ventrally oriented scapular glenoid facet, a distinct and

ossified greater humeral tubercle, lack of ectepicondylar foramen, olecranon process, hemi-

spherical humeral and femoral heads and a prominent intertrochanteric crest. The humeral

torsion, the length of the deltopectoral crest, the large bicipital groove and the well-devel-

oped lesser tubercle, indicate that the forelimb of Brasilodon was hold in a semi-sprawling

position, with well-developed adductor muscles to maintain the body off the ground. The

short femoral neck and the strong medial projection of the femoral head indicate the femur

was held in a more erect posture than in basal non-mammaliaform cynodonts. The antero-

dorsally projected iliac blade with reduced postacetabular process, reduction of the anterior

part of the pubis, medially located lesser trochanter indicate a basically mammalian pattern

of pelvic musculature, able to swing the femur in a nearly parasagittal plane.
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Introduction

Much attention has been paid to the craniomandibular changes in the non-mammaliaform

cynodont to mammaliaform transition (e.g., [1–8]). Comparatively, the postcranial skeleton of

derived non-mammaliaform probainognathians is less known, considering that non-mamma-

liaform cynodont systematic is mainly based upon dental and cranial features (e.g., [7, 9–10]).

Moreover, a general view is that the postcranial skeleton of non-mammaliaform cynodonts is

quite conservative compared to craniodental adaptations, having an “intermediate bauplan”

between basal therapsids and early mammaliaforms [11]. Nonetheless, the craniodental dispar-

ity among Triassic cynodonts also reflects postcranial diversity, with small to large body sizes,

possibly aquatic, or semi-fossorial to fossorial forms (e.g., [11–21]). In addition, the postcranial

anatomy in Triassic cynodonts permits to evaluate the main changes and locomotor advances

in mammalian evolution and provide information about the transition from the sprawling

posture of basal synapsids to a more erect posture. Probainognathian cynodonts, the clade

which include the crown Mammalia (e.g., [22–23]), have an extremely conspicuous fossil

record in South America, represented by chiniquodontids (e.g., Chiniquodon theotonicus,
Aleodon cromptoni), ecteniniids (e.g., Ecteninion lunensis, Trucidocynodon riograndensis), pro-

bainognathids (Probainognathus jenseni, Bonacynodon schultzi), ictidosaurians (e.g., Riogran-
dia guaibensis plus tritheledontids) and other prozostrodontians (e.g., Prozostrodon
brasiliensis, Therioherpeton cargnini, Brasilodon quadrangularis). Although the relevant phylo-

genetic position of Brasilodon quadrangularis as sister taxon of Mammaliaformes (e.g., [5, 7,

24–26]), many aspects of its postcranial anatomy remain unclear. Some postcranial elements

were briefly described and/or mentioned by Bonaparte et al. [5, 27], but in-depth studies were

never developed. Here, we present a detailed description of the postcranial elements of Brasilo-
don quadrangularis, including previously mentioned specimens and new ones. It adds more

information about its postcranial morphology and provides new insights into the anatomical

transition between the advanced non-mammaliaform cynodonts and early mammaliaforms.

Moreover, we also investigate functional implications of its postcranium to improve our

knowledge on posture and locomotion of mammalian precursors.

Materials and methods

Access to specimens

The specimens described here and those used for comparison belong to public collections and

were examined with the explicit permission of appropriate curators and/or collection manag-

ers (see Acknowledgments). Repository locations and abbreviations for all specimens cited in

the text are listed below. We followed all Brazilian regulations for fossil studies and we com-

plied with the PLoS Paleontological Ethics Statement. In Table 1, we listed selected cynodont

species and specimens here used for comparisons.

Materials

The following description is mainly based on twospecimens housed at the Departamento de

Paleontologia e Estratigrafia, Instituto de Geociências, Universidade Federal do Rio Grande do

Sul (UFRGS), Porto Alegre, Brazil. The specimen UFRGS-PV-0765-T includes an incomplete

skull, partial right and left lower jaws, a right ulna, phalanges and some fragments of metapods

and indeterminate bones. The ulna was figured and briefly commented by Bonaparte et al. [5],

and originally referred as to Brasilodon quadrangularis. The specimen UFRGS-PV-1043-T

consists of an almost complete skull, lower jaws and an incomplete and disarticulated axial

and appendicular skeleton, including incomplete vertebrae and ribs, right scapula, left
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humerus, left radius, ulnae, left acetabulum, right femur, left tibia, left calcaneum, left astraga-

lus, fragments of metapods and phalanges. It was originally described as Brasilitherium rio-
grandensis [27]. Some of its appendicular bones (humerus, ulna, radius, femur and tibia) were

figured but briefly described or not at all [27]. The skull of UFRGS-PV-1043-T was also used

for the reconstruction of the inner ear, brain and nasal cavities [28–30]. Most postcranial ele-

ments are well-preserved, including the epiphysis in long bones. Both UFRGS-PV-0765T and

UFRGS-PV-1043T were used in the histological study by Botha-Brink et al. [31]. Here, Brasi-
litherium riograndensis is considered as the junior synonym of Brasilodon quadrangularis, fol-

lowing Liu and Olsen, [7]. This hypothesis is also supported by the histological study (see

[31]).

These postcranial elements were compared to some non-mammaliaform cynodonts, Meso-

zoic mammal lineages (e.g., Vincelestes neuquenianus) and extant mammals (monotremes,

marsupials and placentals) listed in Table 1. Moreover, comparisons with other non-mamma-

liaform cynodonts (e.g., Procynosuchus, Andescynodon, Tritylodon), early mammaliaforms

(e.g.,Morganucodon (“Eozostrodon”), Haldanodon) and Mesozoic mammal lineages (e.g.,

Table 1. List of specimens used for comparisons.

Taxa Specimens

Non-mammaliaform

cynodonts

Aleodon cromptoni UFRGS-PV-0146-T

Brasilodon quadrangularis UFRGS-PV-1043-T

Cricodon metabolus UMZC T905

Cynognathus crateronotus NHMUK-R2571

Cynognathus sp. NHMUK-R3772a

Diademodon sp. NHMUK-R2803, R3581; UMZC T433, T436, T447-449, T455-456, T489-502, T503,

T971, T1017

Exaeretodon sp. MACN-PV s/n (col. 1958)

Galesaurus planiceps UMZC T823

Galesaurus sp. UMZC T820-821

Irajatherium hernandezi UFRGS-PV-599-T, PV-1068-T

Luangwa drysdalli OUMNH-TSK121

Oligokyphus sp. NHMUK-R7386-7491

Pascualgnathus polanskii MLP-65-V1-18-1

Prozostrodon brasiliensis UFRGS-PV-0248-T

Scalenodon angustifrons UMZC T925, T972

Scalenodon sp. NHMUK-R36802, R9391; UMZC T974

Therioherpeton cargnini MVP-05.22.04

Thrinaxodon liorhinus NHMUK-R15957; UMZC T1101

Trucidocynodon riograndensis UFRGS-PV-1051-T

Mammaliaforms

Megazostrodon rudnerae NHNUK M26407

Vincelestes neuquenianus MACN N01, N09, N37-N39

Ornithorhynchus anatinus MNHN 1906–484

Tachyglossus aculeatus MNHN 1903–537, 1903–538

Caluromys philander MNHN 1999–1061

Didelphis marsupialis MNHN 1978–538

Marmosa demerarae MNHN 1998–1832

Canis lupus familiaris UFRGS-PV-14-Z

https://doi.org/10.1371/journal.pone.0216672.t001
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Gobiconodon, Catopsbaatar, Akidolestes, Zhangheotherium) were also made on the basis of

detailed descriptions in the literature (e.g., [14, 19, 32–40]).

The postcranial measurements were taken directly on the specimens with a digital caliper

to the nearest 0.1 mm. Angle measurements were made with the software Inkscape, based on

pictures of the material (Table 2). Some structures (fossae, crests) present on the appendicular

skeleton of B. quadrangularis permit the determination of the approximate position of

Table 2. Angles and indices of non-mammaliaform cynodonts. TH, torsion of humeral shaft; ADC, angle of deltopectoral crest; LDC, length ratio of deltopectoral crest

(Length of deltopectoral crest / Humeral length � 100); DW, width ratio of distal end (Distal end width / Humeral length). The angle TH was measured between the trans-

versal axes of the proximal end (the axis “Lesser Tuberosity—Medial margin of the humeral head”) and the distal end (the axis “Ectepicondyle-Entepicondyle”), based on

the photography of the humerus in proximal view. The angle ADC was measured between the deltopectoral crest and the transversal axis of the proximal end, based on the

photography of the humerus in proximal view. The distal end width was measured between the two epicondyles, based on the photography of the humerus in anterior

view.

Taxa TH ADC LDC DW References

Procynosuchus - 145˚ 52% 49% Abdala, 1999

Galesaurus 20–40˚ 132˚-135˚ 50% 50% UMZC-T820/T823

Thrinaxodon 40–50˚ 135˚ 50% 50% Jenkins, 1971

Platycraniellus - 90˚ - - Abdala, 2007

Cynognathus 20˚ 125˚ 60% 51% NHMUK-R3772a

Diademodon 20˚ 105–120˚ 58% 44% UMZC-T492/T433

Cricodon 40˚ - 50% 42% Crompton, 1954

Scalenodon 5˚ 100˚ 50% 38% UMZC-T925

Massetognathus - 90˚ 52% 38–40% Jenkins, 1971; Abdala, 1999

Luangwa 5˚ 102˚ 53% 40% OUMNH-TSK121

Andescynodon - 90˚ 54–61% - Abdala, 1999

Boreogomphodon - 105˚ 50% 60% Liu et al., 2017

Exaeretodon 5˚-30˚� 150˚ 54% 56% �Bonaparte, 1963

Pascualgnathus 15˚ 95˚ 52% 45% MLP-65-V1-18-1

Santacruzodon 65˚ - - - Bertoni, 2014

Trucidocynodon - 90˚ 50% 30% UFRGS-PV-1051-T

Chiniquodon - 125˚ 54–57% 58–63% Abdala, 1999

Probainognathus - 135˚ 45–50% 34–37% Abdala, 1999

Prozostrodon 5˚ 95˚ 45% 58% UFRGS-PV-0248-T

Irajatherium - 90˚ 53% 55% UFRGS-PV-599-T

Riograndia 22˚ 100˚ 50% 54% UFRGS-PV-833-T

Bienotheroides 20–45˚ - - - Sun et al., 1985

Tritylodon 30–40˚ 100˚ 50% 48–51% Gaetano et al., 2017

Oligokyphus 40˚ 95˚ 52% 42% NHMUK-R7402; Kühne, 1956

Kayentatherium 40˚ - 53% 60% Sues and Jenkins, 2006

Brasilodon 15˚ 100˚ 48% 43% UFRGS-PV-1043-T

Morgancudon 50˚ - 44% 30% Jenkins and Parrington, 1976

Haldanodon 60˚ - - 61% Martin, 2005

Gobiconodon 33˚ - - 43% Jenkins and Schaff, 1988

Akidolestes 40˚ - - - Chen and Luo, 2012

Zhangheotherium 30˚ - - - Hu et al., 1997

Vincelestes 25˚ 120˚ 44% 38% MACN-N09

Tachyglossus 60˚ 95˚ 48% 95% MNHN-1903-537

Ornithorhynchus 75˚ 105˚ 54% 83% MNHN-1906-484

Didelphis <5˚ - 55% 30% MNHN-1878-538

Canis <5˚ - 41% 20% UFRGS-PV-14-Z

https://doi.org/10.1371/journal.pone.0216672.t002
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muscles. The origin and insertion of main muscles were estimated using homology models

including non-mammaliaform therapsids ([13, 41–43]) and studies dealing with osteology and

myology of living amphibians ([44–46]), squamates ([47–49]), crocodylians ([50–53]), mono-

tremes ([54–57]), metatherians ([58–61]), and eutherians ([62–67]).

“Mammalian” rather than “reptilian” terminology and orientation are used to designate

bone structures and muscles, but the “reptilian” homologue of each structure and muscle is

given the first time the structure/muscle is mentioned. Muscle nomenclature and homology

between mammals and reptiles are mainly based on the work of Ellsworth ([68]), Diogo et al.

([69]), and Abdala and Diogo ([70]).

Institutional abbreviations

MACN, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires,

Argentina; MLP, Museo de La Plata, La Plata, Argentina; MNHN, Museum National d’His-

toire Naturelle, Paris, France; MVP, Museu do Patronato Alves Ramos, Santa Maria, Brazil;

NHMUK, Natural History Museum, London, United Kingdom; OUMNH, Oxford University

Museum of Natural History, Oxford, United Kingdom; UFRGS, Universidade Federal do Rio

Grande do Sul, Porto Alegre, Brazil; UMZC, University Museum of Zoology, Cambridge,

United Kingdom.

Results

Systematic paleontology

CYNODONTIA Owen, 1861

PROBAINOGNATHIA Hopson, 1990

PROZOSTRODONTIA Liu and Olsen, 2010

BRASILODONTIDAE Bonaparte, Martinelli and Schultz, 2005

BRASILODON Bonaparte, Martinelli, Schultz and Rubert, 2003

BRASILODON QUADRANGULARIS Bonaparte, Martinelli, Schultz and Rubert, 2003

Holotype. UFRGS-PV-0611-T, incomplete skull with complete upper postcanine teeth.

Referred material. Many specimens of this species are known, originally referred to B.

quadrangularis ([5, 24, 71–72]), Brasilitherium riograndensis ([5, 24, 27, 71–72]), andMinicy-
nodon maieri ([27, 71]). Two latter species are considered junior synonym of B. quadrangularis
(see [7, 73]). A detailed list of main specimens can be found in Martinelli [73].

Emended diagnosis. Small-sized probainognathian cynodont (~20 to ~40 mm of basal

skull length) with the following association of features (autapomophies marked with an aster-

isk): upper postcanine teeth with a central, large cusp (A) and a mesial (B) and a distal (C)

cusp, symmetrically arranged on the lingual side of the crown, with small accessory mesiolabial

and distolingual cusps; “triconodont-like” lower postcanine teeth with lingual accessory cusps;

lower middle postcanine teeth with mesiolingual cusp e and lingual cusp g; presence of a ton-

gue (by cusp d) and groove-like (by cusps b/e) mesiodistal interlocking system among middle

lower postcanine teeth; upper/lower diastema between canines and postcanines in adult speci-

mens; lower first incisor small and procumbent; postcanines with constricted root, with two

separated nutritious canals; slender zygomatic arch; absence of postorbital bar; absence of pre-

frontal and postorbital bones; fused ophistotic and prootic (i.e., petrosal) with well-defined

promontorium; long secondary palate; presence of interpterygoid vacuities; separate foramina

for nerves V2 and V3; quadrate with a well-developed stapedial process; unfused lower jaw;

symphysis anterodorsally projected; articular process of dentary reaching a more posterior

position than the surangular, possibly reaching squamosal (but without a condyle); prominent

tuberosity forM. teres major; expanded distal end representing about 43% of humeral length;
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lack of ectepicondylar foramen in humerus; short femoral neck; salient intertrochanteric crest

(modified from Bonaparte et al. [5]; Martinelli [73]).

Locality and horizon. Specimens referred to B. quadrangularis were found on the Linha

São Luiz and the Sesmaria do Pinhal sites, from the municipalities of Faxinal do Soturno and

Candelária, respectively, Rio Grande do Sul state, Brazil (Fig 1). The stratigraphic level corre-

sponds to the Riograndia AZ [74] of the Candelária Sequence, Santa Maria Supersequence

[75–76], which is considered Norian, based on a recent dating of maximum deposition age of

225.42 ± 0.37Ma [77].

Description and comparisons

Axial skeleton. Vertebrae: The specimen UFRGS-1043-T includes four isolated and

poorly preserved presacral vertebrae, bearing the centra with eroded neural arches (Fig 2A).

The centra are flat on the anterior side and concave on the posterior side (platycoelous), as

seen in some tritylodontids such as Tritylodon and Bienotheroides [19] and in the early mam-

maliaformMorganucodon [32]. Centra are deeply amphicoelous in most non-mammaliaform

cynodonts (e.g., [12, 17–18, 38, 79–80]). The neural arches are poorly preserved, almost all ver-

tebral processes are broken. The neural arch is fused with the centrum with no evidence of

neurocentral suture, indicating the adult nature of the specimen (one of the largest known Bra-
silodon specimen; see also [31]). The neural canal is relatively large, with thin lateral walls. The

base of the diapophysis is present on one element, it is small and circular in cross-section. No

accessory zygapophyseal articulations (anapophyses) can be observed. Anapophyses occur in

all basal epicynodonts (e.g., Galesaurus, Thrinaxodon) and several cynognathians (e.g., Cynog-
nathus, Diademodon, Cricodon, Andescynodon, Luangwa, Protuberum; [17, 38]). They are not

observed in the axial skeleton of Procynosuchus [14], several traversodontids (e.g.,Menadon,

Massetognathus, Exaeretodon; [12, 81–82] and probainognathians [16, 80, 83]. The pre- and

postzygapophyses are eroded but postzygapophyses appear to have a nearly horizontal orienta-

tion and are placed in a relatively high position on the neural arch (Fig 2A). The base of the

neural spine suggests it is anteroposteriorly long and laminar, but its real high is unknown.

Ribs: The specimen UFRGS-1043-T includes four isolated fragments of presacral ribs. The

shaft is curved and anteroposteriorly flattened. All preserved ribs lack the expanded costal

plates or processes. Costal plates are represented in all basal epicynodonts in which the post-

cranium is known [13, 84] and most cynognathians (e.g., Cynognathus, Diademodon,

Luangwa, Andescynodon,Menadon, Protuberum, Pascualgnathus, and Scalenodon; [17, 38, 80,

82]). They were lost in several traversodontids (e.g., Exaeretodon, Boreogomphodon; [80, 85])

and all probainognathians (e.g., [18, 43, 83]).

Pectoral girdle and forelimb. Scapula: The specimen UFRGS-PV1043T includes the ven-

tral part of the right scapula. An associated and damaged bone could be the medial surface of

the dorsal part of the right scapula and a flange could be its anterior border (Fig 2B). The dor-

sal margin is slightly convex and the posterodorsal angle is posteriorly projected. A pointed

posterodorsal angle is also observed in Trucidocynodon, but not in other non-mammaliaform

cynodonts.

Although it is incomplete, the scapular blade appears to be thin and narrow (Fig 2C). An

anteroposterior constriction occurs on the base, above the glenoid, as seen in other epicyno-

donts (e.g., Thrinaxodon, Galesaurus, Cynognathus, Luangwa, Trucidocynodon, Riograndia).

The posterior margin of the blade consists of a laterally projected flange. The posterior surface

of this flange is damaged, so it is unsure if a postscapular fossa, as described for tritylodontids

and Riograndia, is present [16, 19, 21]. The flange on the anterior margin is also laterally pro-

jected. Ventrally, this flange is everted and faces anteriorly. Laterally projected anterior and
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Fig 1. Localities and stratigraphic level with Brasilodon quadrangularis. A, location map showing the Linha São Luis and Sesmaria do Pinhal sites, in Rio Grande do

Sul state, southern Brazil; B, chrono- and biostratigraphy of Triassic units with vertebrate assemblage zones (AZ); C, compositive phylogenetic position of Brasilodon
amongst Probainognathia (based on [6–7, 25]). Clade names: 1, Cynodontia; 2, Epicynodontia; 3, Cynognathia; 4, Gomphodontia; 5, Traversodontidae; 6,

Probainognathia; 7, Prozostrodontia; 8, Ictidosauria; 9, Tritheledontidae; 10, Tritylodontidae: 11, Mammaliaformes. The ages (Ma) of the column follow Ogg et al.

[78], chrono- and biostratigraphy were modified from Zerfass et al. [75] and Horn et al. [76], the age of Riograndia AZ was taken from Langer et al. [77].

https://doi.org/10.1371/journal.pone.0216672.g001
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posterior margins are typical in the scapulae of non-mammaliaform epicynodonts. The ante-

rior margin ends in a well-developed acromion. It consists of a tuberosity protruding anteri-

orly, as in Cynognathus, Diademodon, Luangwa,Menadon [82], Boreogomphodon [85],

Exaeretodon [86], Trucidocynodon, Probainognathus [87], Chiniquodon [87], Pachygenelus
[88] and tritylodontids [16, 19, 89]. According to Jenkins [13], there is no acromion process in

Thrinaxodon but only a local thickening on the ventral part of the anterior edge. Nothing is

preserved anteriorly to the anterior flange, and a supraspinous fossa was probably absent in

Brasilodon, as in most non-mammaliaform cynodonts. A deep infraspinous (supracoracoi-

deus) fossa is present on the lateral surface of the blade, enclosed by the anterior and posterior

borders.

The glenoid is preserved but separated from the blade (Fig 2C and 2D). The scapular gle-

noid facet is concave and hemi-ovoidal. It faces ventrally as in Riograndia, Kayentatherium
[13], Tritylodon [19], rather than posteroventrally as in Procynosuchus [14], Thrinaxodon [13],

Galesaurus [84], Cynognathus,Menadon [82] and Luangwa. The medial margin of the glenoid

is straight, representing the area of contact with the coracoid. Anterodorsal to the glenoid

facet, the base of the scapula extends slightly anteriorly to form a flange below the acromion.

This flange is broken and should be the articular surface for the procoracoid.

Humerus: The following description is based on the specimen UFRGS-PV1043T, which

includes a complete and well-preserved left humerus, available in all views. The bone is

described with a mammalian orientation, with the shaft held vertically and the deltopectoral

crest facing anteriorly.

The humerus is 15.6 mm long, with a slender shaft (Fig 3). It is slightly twisted with the

transversal axis of the proximal and distal ends forming an angle of 15˚ in proximal view. A

Fig 2. Vertebra and scapula of Brasilodon quadrangularis (UFRGS-PV-1043-T). A, photography (1) and drawing (2) of a fragmented vertebra; B, photography of

the possible dorsal part of the right scapula, in medial view; C, photography of the ventral part of the right scapula, in lateral view; D, photography of the glenoid, in

distal view. Abbreviations: ac, acromion; ang, posterodorsal angle; ant.m, anterior scapular margin; cor, area of contact with the coracoid; gl, scapular glenoid facet;

inf, infraspinous (supracoracoideus) fossa; pos, postzygapophysis; post.m, posterior scapular margin; pre, prezygapophysis. Scale bar = 2 mm.

https://doi.org/10.1371/journal.pone.0216672.g002
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Fig 3. Photography (1) and drawing (2) of the left humerus of Brasilodon quadrangularis (UFRGS-PV-1043-T). A, in anterior view; B, in lateral view; C, in

posterior view; D, in medial view; E, in proximal view; F, in distal view. Abbreviations: b.gr, bicipital groove; cap, capitulum; d.c, deltopectoral crest; ect,

ectepicondyle; ent, entepicondyle; ent.f, entepicondylar foramen; gr.tb, greater tubercle; h, humeral head; int.gr, intercondylar groove; l.tb, lesser tubercle; t.c, teres

crest; tub.tm, tuberosity for the origin of theM. teres major; ul.c, ulnar condyle. Scale bar = 3 mm.

https://doi.org/10.1371/journal.pone.0216672.g003
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twisted humerus is present in most non-mammaliaform cynodonts, the early mammaliaform

Morganucodon, the docodontHaldanodon, the eutriconodont Gobiconodon, the spalacotheriid

Akidolestes and Zhangheotherium, the cladotherian Vincelestes and monotremes (Table 2), but

the torsion is very small or absent in most therians [90].

The humeral head is perfectly hemispherical, as in mammaliaforms, including extant theri-

ans (e.g., [32, 36, 39]). In other non-mammaliaform cynodonts, the articular surface of the

head is more ovoid, with the long axis extending mediolaterally, and the dorsoventral curva-

ture is less extensive than that seen in B. quadrangularis. If the shaft is held with a vertical ori-

entation, the head faces posterolaterally, as in other non-mammaliaform cynodonts,

Morganucodon,Haldanodon and Vincelestes (e.g., [15, 18, 27, 91–92]) but differing from the

posteriorly facing humeral head of most living therians. The humeral head of B. quadrangu-
laris extends only on the posterior surface of the humerus, and does not protrude above the

proximal outline of the humerus. On the posterior surface, a ridge runs distally from the

humeral head and become confluent with the ectepicondylar crest at the distal end of the

bone.

The greater tubercle of B. quadrangularis is a very small but distinct tubercle, located

between the head and the proximal margin of the deltopectoral crest. It is confluent with the

deltopectoral crest, but separated from the humeral head by a small groove. In tritylodontids

and more basal non-mammaliaform cynodonts, the area representing the greater tubercle is

confluent with the humeral head (although the head may have been more prominent as part of

a cartilaginous epiphyseal cap). In contrast, the humerus of early mammaliaforms has distinct

bony tubercles, a pattern retained in more derived mammals [16, 32, 36]. The lesser tubercle is

a thick and bulbous bony tuberosity, which protrudes medially and stands apart from the

humeral head. The lesser tubercle is larger than the greater tubercle. This feature is a condition

observed in other non-mammaliaform cynodonts, early mammaliaforms (e.g.,Morganucodon,

Haldanodon) and monotremes, whereas the lesser tubercle is smaller than the greater one in

the spalacotheriids and extant therians [34, 36, 39]. The humerus of multituberculates is char-

acterized by a lesser tubercle that is only slightly smaller than the greater tubercle [93] and the

tubercles of Vincelestes have approximately the same size. On the posterior surface, a shallow

and oval fossa is located distally to the lesser tubercle.

The deltopectoral crest is a rectangular flange projected almost perpendicularly to the trans-

versal axis of the proximal end. The crest extends for approximately half the length of the

humerus, a common feature in non-mammaliaform cynodonts (Table 2). The crest is thicker

along its apex. It is greatly expanded anteriorly in B. quadrangularis compared to Vincelestes
and most therians [21, 43]. A robust deltopectoral crest is also present in other non-mamma-

liaform cynodonts, early mammaliaforms, monotremes and digging therians (e.g., Talpa,

Amblysomus, Desmana, Scalops; [36, 94]). On the lateral side of the crest, there is a well-

defined and deep fossa, becoming shallower distally.

The teres crest originates from the lesser tubercle and extends as far distally as the deltopec-

toral crest, near the mid-portion of the bone. A similar crest is seen in non-mammaliaform

cynodonts, early mammaliaforms and most mesozoic mammals, but not in Vincelestes and liv-

ing therians. A large and oval-shaped osseous process occurs at the distal extremity of the eres

crest, probably for the insertion of theM. teres major. Jenkins [12–13] observed a groove

located in the same area in Thrinaxodon, Cynognathus and the traversodontidMassetognathus.
A tuberosity is also present in Exaeretodon, Luangwa, Pascualgnathus [95], Riograndia [21],

Irajatherium, Oligokyphus,Morganucodon [32],Haldanodon [36] and Vincelestes. Such a

tuberosity is absent in multituberculates, spalacotheriids and extant therians [37, 39]. As in

other non-mammaliaform cynodonts, early mammaliaforms, multituberculates and Akido-
lestes, the deltopectoral crest and the teres crest enclose a wide and concave area, the bicipital
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or intertubercular groove, on the anterior surface of the humerus. This broad groove is well-

marked proximally but becomes indistinct by the mid-length of the shaft.

Distally, the deltopectoral crest decreases gradually and become a small but well-defined

ridge. This ridge is anteriorly projected but is everted distally toward the medial surface of the

bone, and connect the bridge of the entepicondylar foramen. The entepicondyle is robust and

prominent medially, representing one third of the distal articulation. Distally, it nearly reaches

the same level of the capitulum and ulnar condyle. The most medial part of the entepicondyle

is a process projecting proximally. The extremity of the entepicondyle represents a thick sur-

face in distal view. The ectepicondylar crest forms a wide surface extending along the distal

half of the humeral diaphysis, with a shallow fossa facing anteriorly. The ectepicondyle is nar-

rower and does not protrude as far laterally as the entepicondyle. The distal extremity is wide

and the width across the epicondyles is 43% of the total proximodistal length of the bone

(Table 2). The distal end is narrower than most non-mammaliaform cynodonts (e.g., Gale-
saurus, Thrinaxodon, Cynognathus, Exaeretodon, Prozostrodon, Boreogomphodon, Chiniquo-
don, Riograndia, Irajatherium, Kayentatherium),Haldanodon, Gobiconodon and monotremes,

but still wider than the distal end ofMorganucodon or Didelphis.
The entepicondylar foramen is oval and large. It is enclosed by a stout flange of the bone

and prolonged by a groove which continues to the distal end. This groove separates the promi-

nent entepicondyle and the distal articular facet. There is no ectepicondylar foramen. The ecte-

picondylar foramen is present in most non-mammaliaform cynodonts (e.g., [13–15, 38, 40, 84,

96]) but is lacking in tritylodontids [16, 19, 89, 97–99], Boreogomphodon [85], Probainognathus
[79], Trucidocynodon [18], early mammaliaforms [32, 36], and most mammals (e.g., [13]).

The distal articular surface is represented by two bulbous condyles. The ulnar condyle is

located on the middle of the distal extremity of the bone. Anteriorly, this condyle is transver-

sally compressed. It wraps around the distal end and extends onto both anterior and posterior

aspects of the humerus. A bulbous ulnar condyle is also observed in other non-mammaliaform

cynodonts [14, 16, 18, 27, 42, 79, 91–92], early mammaliaforms (e.g.,Morganucodon,Megazos-
trodon,Haldanodon; [32, 36]), and multituberculates [93, 100]. In the spalacotheriids, the

ulnar condyle is bulbous anteriorly but flattened posteriorly, to form an incipient trochlea [34,

39]. In Gobiconodon, Vincelestes and therians, the trochlea is grooved instead of bulbous [33].

The capitulum, or radial condyle, is located laterally to the ulnar condyle. The capitulum is

hemispherical and bigger than the ulnar condyle in anterior view. The capitulum is confined

to the anterior and ventral aspect of the distal end, as seen in other non-mammaliaform cyno-

donts. The condyles are close and separated from each other only by a narrow intercondylar

groove. Posteriorly, the olecranon fossa is very shallow as in non-mammaliaform cynodonts

and early mammaliaforms [16, 19, 36], contrasting with the deep olecranon fossa seen in mul-

tituberculates, Vincelestes and therians [100].

Radius: The left radius UFRGS-PV-1043-T is complete and well-preserved, but it is embed-

ded in the rock matrix, leaving the lateral surface unavailable (Fig 4A). The radius is a slender

and elongate bone, with a length of 14.0 mm. Its morphology is similar to that of didelphid

marsupials, although the prominent bicipital tuberosity in therians is not observed in B. quad-
rangularis. As in tritylodontids,Morganucodon, and didelphids, the radius of B. quadrangu-
laris has a sigmoidal shape with the distal half slightly curved posteromedially to facilitate its

crossing over the anterior aspect of the ulna. Proximally, the shaft is circular in cross-section

and is nearly rectangular in the distal end, flattened and transversally widened. Distally, the

medial edge of the shaft becomes prominent. The head of the radius is nearly circular, and

consists of a circular and concave capitular facet, rimmed by a bulbous lip. The posterolateral

rim extends more proximally than the anteromedial one, resulting in an articular facet inclined

slightly anteromedially. A small articular facet for the radial notch of the ulna is present
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posteromedially to the proximal end. There is no distinctive radial tuberosity for the insertion

of theM. biceps brachii on the radius. The distal articular surface is damaged but shows a con-

cave and more rectangular morphology.

Ulna: The right ulna of UFRGS-PV-1043-T is well-preserved but is embedded in the rock

matrix with only medial surface visible (Fig 4B). In other prozostrodontians, the medial and

lateral surfaces of the bone are almost similar and the only dissymmetry is the facet for the

contact with the capitulum, located on the lateral side [16, 19]. As this facet is not observed,

the ulna is considered to be the right one. The shaft of the left ulna is also preserved and

embedded in the sediment, but the articular facets are lost and only the lateral surface is visible.

The right ulna of the specimen UFRGS-PV-0765-T lacks the distal midshaft and the olecranon,

but most part of the proximal articular facet is available (Fig 4C and 4D). The right ulna of

the UFRGS-PV-1043-T is 16.5 mm long. It is a slender bone with a sigmoidal shape in

medial view. In anterior view, the shaft is narrow. The sigmoidal shape and the mediolateral

narrowness of the shaft are common features in most mammals, but are also in most non-

Fig 4. Forearm of Brasilodon quadrangularis. A, photography (1) and drawing (2) of the left radius (UFRGS-PV-1043-T), in medial view; B, photography (1)

and drawing (2) of the right ulna (UFRGS-PV-1043-T), in medial view; C, photography of the right ulna (UFRGS-PV-0765-T), in posterior view; D, same

material, in lateral view. Abbreviations: anc, anconeal process; f.rad, facet for the radial head; not, notch for the ulnar condyle; ol, olecranon. Scale bar = 2 mm.

https://doi.org/10.1371/journal.pone.0216672.g004

Postcranial anatomy of Brasilodon quadrangularis

PLOS ONE | https://doi.org/10.1371/journal.pone.0216672 May 10, 2019 12 / 36

https://doi.org/10.1371/journal.pone.0216672.g004
https://doi.org/10.1371/journal.pone.0216672


mammaliaform cynodonts, as Galesaurus, Thrinaxodon, Cynognathus [13],Massetognathus
[12], Andescynodon [38], Pascualgnathus, Trucidocynodon, tritylodontids, and the mammalia-

formMorganucodon [32]. The anterior and posterior margins are thickened, enclosing one

longitudinal groove along the medial surface of the ulna. This groove extends from the proxi-

mal extremity to the distal one and represents the area of attachment for extensor muscles. A

similar longitudinal groove is present along the lateral surface and is interpreted as for the ori-

gin of flexor muscles.

The olecranon is well-developed and projected anteriorly. Among non-mammaliaform

cynodonts, only Trucidocynodon, B. quadrangularis, and tritylodontids have ossified olecranon

processes [19, 98–99], and most basal cynodonts had probably cartilaginous processes, as this

structure is not preserved in none of early taxa [12–13, 40, 81, 85, 87, 95]. Measured from the

center of the semilunar notch, the length of the olecranon represents slightly less than 20% of

the total ulnar length. Similar proportions are found in the basal probainognathian Trucidocy-
nodon and the early mammaliaformMegazostrodon, whereas in the tritylodontid Kayentather-
ium and Haldanodon, the olecranon represents respectively more than 30% and 47% of the

ulnar length [16, 36]. The olecranon process is wider transversally than the rest of the shaft.

The notch for the ulnar condyle of the humerus is large and remarkably semicircular. The

proximal end of this notch is situated more laterally than the more distal region. The anconeal

process (olecranon beak) is reduced. This condition is seen in other non-mammaliaform

cynodonts andHaldanodon [101], whereas a more prominent anconeal process is present as a

crest-like structure inMorganucodon, multituberculates, spalacotheriids, Vincelestes and theri-

ans, demarcating the olecranon from the semilunar notch [39, 100]. The distal portion of this

notch is anteriorly prominent relative to the ulnar shaft. A distinct facet for the radial head is

developed distal to the facet for the ulnar condyle. The distal articular facet is not preserved.

Pelvic girdle and hindlimb. The pelvic girdle is known from the complete left acetabu-

lum, the complete left pubis and incomplete left ilium and ischium of the specimen

UFRGS-PV-1043-T (Fig 5). The pelvis of B. quadrangularis differs considerably from those of

non-mammaliaform cynodonts but resembles those of extant therians. The acetabulum is a

deeply concave and spherical socket, facing laterally. As in most mammaliaforms, all three por-

tions are fused together, without any sutures. By contrasts, in non-mammaliaform cynodonts

with completely known acetabulum (e.g., Pascualgnathus, Luangwa, Scalenodon), the articulat-

ing faces of the three bones are more distinctly separated from one another by changes in

angles, and the acetabulum is ovoidal and elongated along the anteroposterior axis. All of the

three component bones contribute to moderately developed buttresses, extending laterally to

the main plane of the pelvis. The supraacetabular iliac, ischial, and pubic buttresses are highly

distinct, spaced 2–3 mm apart. The gap between the buttresses was presumably filled by fibro-

cartilage in life. This condition is also observed in tritylodontids, multituberculates [100, 102–

104] and Vincelestes, but differs from the acetabulum of extant therians, which have a continu-

ous bony rim (excepting the acetabular notch), without any dorsal emargination.

Ilium: Although the blade is not completely preserved in the specimen UFRGS-PV-1043-T,

the iliac blade of B. quadrangularis appears to project anterodorsally from the acetabular

region in life rather than anteriorly. A similar orientation is observed in Galesaurus,Menadon
[82], Pascualgnathus, Chiniquodon [87], Prozostrodon, Therioherpeton, tritylodontids [16, 99,

104], early mammaliaforms and mammals [32]. Considering the morphology of the iliac neck,

the postacetabular portion of the blade was reduced in B. quadrangularis, corresponding to a

small prominence, as in Prozostrodon [43] and tritylodontids [16, 104], or completely absent

as in Therioherpeton and the early mammaliaforms (e.g., Eozostrodon,Megazostrodon, Ery-
throtherium; [32]). In other non-mammaliaform cynodonts, the postacetabular region of the

blade is well-developed [12–13, 38, 80, 82, 86–87, 95, 105].
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The supracetabular buttress of the ilium is projected laterally to the main plane of the pelvis.

It lies anteriorly rather than dorsally to the acetabulum, leaving the dorsal region of the acetab-

ulum open. This condition is present in Aleodon [80], traversodontids [12, 82, 86], Prozostro-
don [43], and tritylodontids [104]. By contrast, in the basal cynodonts Procynosuchus [14],

Galesaurus, and Cynognathus, the iliac buttress has a dorsal position. As in therians, the iliac

facet of the acetabulum is semi-circular and facing laterally and posteroventrally rather than

ventrally. The iliac portion of the acetabulum is facing mainly ventrally in basal cynodonts

[13–14, 84], Pascualgnathus and Trucidocynodon [18].

Ischium: Only the anteromedial margin of the ischial blade of UFRGS-PV-1043-T is pre-

served. This margin is semi-circular and forms an extended and oval obturator foramen with

the pubis. In Luangwa [42], Andescynodon [38],Menadon [82], Exaeretodon [86], Chiniquodon
[87, 106], Therioherpeton, Trucidocynodon, tritylodontids [98, 104] andMorganucodon [32],

the obturator foramen is large, as seen in mammals. The basal cynognathians (e.g., Cynog-
nathus and Diademodon) and Pascualgnathus have a smaller foramen with the anteromedial

margin of the ischium projected more medially, as in basal therapsids [13]. Posteriorly to the

obturator foramen, the ischial plate becomes narrow and meets the posterior edge of the pubic

plate, anteromedially to the obturator foramen. The buttress is well-marked and located poste-

riorly to the acetabulum. The acetabular facet of the ischium is concave and facing anteriorly

and laterally.

Pubis: The pubis of UFRGS-PV-1043-T is almost complete and well-preserved (Fig 5),

other than the head of the pubis is slightly damaged. Below the head, the pubis constricts to

form a short and twisted neck ending with a pubic tuberosity, located ventral to the acetabu-

lum. Distally, the neck is everted and projected medially and posteriorly. The pubic tuberosity

Fig 5. Photography and drawing of the left acetabulum of Brasilodon quadrangularis (UFRGS-PV-1043-T), in lateral view. Abbreviations: acet, acetabulum;

IL, ilium; IS, ischium; ob, obturator foramen; PU, pubis; pu.t, pubic tuberosity. Scale bar = 2 mm.

https://doi.org/10.1371/journal.pone.0216672.g005
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is projected ventrally to the acetabulum and no part of the bone is projected anteriorly to the

acetabulum. In Luangwa, Pascualgnathus, other non-mammaliaform probainognathians, liv-

ing therians and all other Mesozoic mammal lineages with known pelves (including Zhan-
gheotherium,Maotherium, Vincelestes; [43, 107–109]), the pubic tuberosity is located ventrally

to the acetabulum. The pubic tuberosity is located anteriorly to the acetabulum rather than

ventrally in basal epicynodonts, living monotremes and Akidolestes [39]. The pubic blade of

B. quadrangularis is flat and relatively expanded transversally. The medioventral margin of the

blade is straight and represents certainly the symphysis with the opposite pubis. The dorsal

margin is concave, forming the obturator foramen with the ischium. The acetabular facet is

facing dorsally.

Femur: The right femur of UFRGS-PV-1043-T is completely preserved (Fig 6) and the left

one is represented only by the proximal end, embedded in the matrix. The bone is described

with the shaft held vertically, with a mammalian orientation. The femur is 15.9 mm long. The

shaft is straight except the most proximal part which is projected anteriorly. It is a condition

similar to that of other non-mammaliaform cynodonts and early mammaliaforms (e.g., [13,

32, 36]). The proximal portion of the shaft is only slightly dorsally projected in living mammals

[13].

Brasilodon quadrangularis has a hemispherical femoral head [27] with a morphology simi-

lar to Tritylodon [19], early mammaliaforms [32, 36] and most mammals (e.g., [39, 100]). Most

tritylodontids have a hemi-ovoid head, elongated along the posterolateral-anteromedial axis

[16, 98, 104] and more basal non-mammaliaform cynodonts have a flattened and bulbous fem-

oral head, with less extensive dorsoventral curvature. The femoral head of B. quadrangularis is

located medially on the proximal end and projects somewhat anteriorly by virtue of the ante-

rior bowing of the proximal part of the shaft. The femoral head of B. quadrangularis is set off

from the shaft by a constriction although its lateral margin is not clearly distinct from the rest

of the proximal end. A short femoral neck is also observed in tritylodontids [19, 89, 98] and

mammaliaforms but is absent in other non-mammaliaform cynodonts. The head projects

strongly medially with an angle of about 60˚ relative to the longitudinal axis of the femur. The

medial projection seen in B. quadrangularis contrasts with the femoral head of ‘pelycosaurs’,

located on line with the axis of the shaft [13, 42]. Among other non-mammaliaform prozostro-

dontians, this angle is variable but never exceeds 45˚. The strong medial projection of the fem-

oral head as B. quadrangularis is also observed in multituberculates [37, 93, 100] and the

spalacotheriids [108], although the neck is shorter in B. quadrangularis than in these mam-

mals. The fovea capitis femoris seen in morganucodontids, multituberculates and extant mam-

mals [35, 100] is absent in B. quadrangularis, as in all other non-mammaliaform cynodonts.

The well-developed greater trochanter is a distinct tuberosity projected laterally and con-

nected to the femoral head by a narrow ridge. By contrast, the femoral head is confluent with

the greater trochanter in basal epicynodonts [84, 110], traversodontids [12, 38, 86, 91], Truci-
docynodon, Chiniquodon [87, 106], Prozostrodon, Therioherpeton, and Irajatherium. In tritylo-

dontids and early mammaliaforms, the greater trochanter is separated from the head of the

femur by a slight notch, as in mammals [16, 97– 98, 104]. The apex of the greater trochanter

reaches the midline level of the femoral head. This condition differs from multituberculates

and Zhangheotherium, which have a greater trochanter reaching well above the level of the

femoral head, but also from most basal eucynodonts (e.g., Cynognathus, Diademodon, Crico-
don, Andescynodon) which have a less prominent greater trochanter, not reaching the level of

the femoral head [38, 40, 100, 110–111].

The lesser trochanter is slightly eroded. It is a short crest, separated from the head and

located close to the intertrochanteric fossa. The lesser trochanter is projected medially and

remains visible in anterior view. This is a derived condition found in several non-
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Fig 6. Photography (1) and drawing (2) of the right femur of Brasilodon quadrangularis (UFRGS-PV-1043-T). A, right femur in anterior view; B, right

femur in lateral view; C, right femur in posterior view; D, right femur in medial view; E, right femur in proximal view; F, right femur in distal view.

Abbreviations: add, fossa for hip adductor muscles; gr.tr, greater trochanter; h, femoral head; int.c, intertrochanteric crest; int.f, intertrochanteric fossa; lat.co,

lateral condyle; l.tr, lesser trochanter; med.co, surface for the medial condyle; pop, popliteal fossa. Scale bar = 3 mm.

https://doi.org/10.1371/journal.pone.0216672.g006
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mammaliaform cynodonts (e.g., Prozostrodon, Therioherpeton, Trucidocynodon, Irajatherium,

Andescynodon, tritylodontids; [16, 38, 43, 98, 104, 112] and in early mammaliaforms (Morga-
nucodon,Megazostrodon,Haldanodon), but the later differs from B. quadrangularis having a

trochanter located proximally, reaching the level of the femoral head [32, 36]. In basal cyno-

donts, as Procynosuchus and Cricodon, the lesser trochanter is projected posteriorly [110, 14]

and in Thrinaxodon, Diademodon, Chiniquodon [106], Boreogomphodon [85, 91],Menadon
[82],Massetognathus [12], Exaeretodon [86], Pascualgnathus, and Santacruzodon [113] the

lesser trochanter has a posteromedial position but is not projected as medially as in B. quad-
rangularis and is not visible in anterior view. As in other non-mammaliaform cynodonts, a

third trochanter is absent.

The intertrochanteric fossa is narrow and deep instead of being circular as in other non-

mammaliaform cynodonts. It is located on the posterior surface of the shaft, immediately dis-

tally to the femoral head. The most characteristic feature is the prominent crest, forming the

distal margin of the intertrochanteric fossa and connecting the two trochanters. An intertro-

chanteric crest is observed in most living therians but is absent in other non-mammaliaform

cynodonts, early mammaliaforms and most Mezosoic mammal lineages (e.g., Akidolestes, Vin-
celestes). Distally to the crest, a triangular fossa extends until the distal extremity of the lesser

trochanter and represents the area of insertion for hip adductor muscles. This fossa is shal-

lower and wider than the trocantheric fossa. It is observed in most non-mammaliaform cyno-

donts, Vincelestes and living therians as Didelphis, but is lacking in Prozostrodon, Tritylodon
[19] and Oligokyphus.

The shaft of the femur is straight. It is approximately square in cross-section but becomes

more rectangular distally, being compressed anteroposteriorly. The distal extremity of the

femur gradually expands transversally. This extremity reaches the same width as the proximal

one. The proximal and distal ends are also broader than the shaft in other non-mammaliaform

cynodonts,Haldanodon, Gobiconodon, and Akidolestes [33, 36, 39]. The proximal and distal

ends are not such expanded transversally inMorganucodon [32] and are only slightly broader

than the shaft in multituberculates, Zhangheotherium, Vincelestes and extant therians [34, 37,

93, 100]. Distally, a well-defined and triangular popliteal fossa is present on the posterior sur-

face, near the medial and lateral condyles. Both condyles are facing mainly posteriorly. The

medial condyle is narrower than the lateral one, being transversally compressed, as seen in

most non-mammaliaform cynodonts (e.g., [12–13, 15–16, 104]), early mammaliaforms [35–

36], Mesozoic mammal lineages (e.g., [34, 108]) and didelphids.

Tibia: The left tibia of UFRGS-PV-1043-T is well-preserved and almost complete, except

the damaged shaft and the distal epiphysis (Fig 7). The bone has a preserved length of 16.1

mm. Its morphology, including the proximal articular surface, is similar to that of living theri-

ans. The proximal end is compound of two oval-shaped and slightly concave facets for the

femoral condyles. They are similar in anteroposterior length, but the medial facet is narrower

transversally than the lateral one. The two facets are separated by a low ridge. A projection

located on the anterior margin of the articular surface represents the tibial tuberosity for the

insertion of patellar ligament. The cnemial crest extends distally from the tibial tuberosity and

runs along the anterolateral margin of the shaft. As this surface of the tibia is embedded in the

matrix, the length of the crest is uncertain. A strong process is located on the lateral margin for

the contact with the fibula.

The shaft is slender. The diameter of the shaft decreases gradually distally and becomes

more flattened. Although the proximal shaft is very slightly curved medially, the tibia of B.

quadrangularis has a straight shaft, contrasting with most non-mammaliaform cynodonts

which have a medially bowed tibia [12, 14, 84–86]. The shaft is straight in the tritylodontid Bei-
notheroides [99] and Prozostrodon.
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Fig 7. Photography (1) and drawing (2) of the left tibia of Brasilodon quadrangularis (UFRGS-PV-1043-T). A, in

proximal view; B, in posteromedial view. Abbreviations: f.f, facet for the fibula; lat, facet for the lateral femoral

condyle; med, facet for the medial femoral condyle; RIB, fragment of rib; TIB, tibia; t.tub, tibial tuberosity. Scale

bar = 2 mm.

https://doi.org/10.1371/journal.pone.0216672.g007
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Tarsus: The left calcaneum and astragalus of UFRGS-PV-1043-T were found together but

not totally articulated. The calcaneum is dorsoplantarly compressed and transversely broad

(Fig 8A and 8B), with a peroneal shelf projected laterally to the calcaneal body, as in tritylodon-

tids,Morganucodon and Fruitafossor [32]. By contrast, Zhangheotherium, multituberculates

and therians have a transversely narrow calcaneum [111, 114]. In lateral view, it is slightly

arched, being concave plantarly and convex dorsally. The tuber calcis is prominent and pro-

jected posteroplantarly, as in other eucynodonts [13, 18, 85] whereas the calcaneum of Gale-
saurus and Thrinaxodon are oval, with no ossified or developed tuber calcis [13, 84]. Dorsally,

the lateral and medial margins of the calcaneum are inflected and enclose a wide fossa, for the

passage of tendons of digit extensor muscles. On the medial side of the calcaneum is a stout

Fig 8. Photography (1) and drawing (2) of the calcaneum and astragalus of Brasilodon quadrangularis (UFRGS-PV-1043-T). A, left calcaneum, in dorsal

view; B, left calcaneum, in plantar view; C, left astragalus, in dorsomedial view; D, left astragalus, in lateroplantar view. Abbreviations: f.cub, facet for the cuboid;

f.na, facet for the navicular; f.pc, facet for the proximal facet of the calcaneum; f.st, facet for the sustentaculum tali; f.tib, facet for the tibia; MET, metatarsus; pc,

proximal facet of the calcaneum for the astragal; psf, peroneal shelf; st, sustentaculum tali; su, sulcus of the astragalus (tarsal sinus); tbc, tuber calcis. Scale bar = 2

mm.

https://doi.org/10.1371/journal.pone.0216672.g008
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and bulbous process, lying approximately on the transverse midline of the bone. It is directed

dorsomedially and represents the posterior (proximal) facet for the contact with the lateral sur-

face of the astragalus. Anteroplantar to the proximal process is another distinct process, the

sustentaculum tali, projected medially. The sustentaculum tali articulated with the plantar sur-

face of the astragalus. It represents an incipient morphological reorientation of the two proxi-

mal tarsi, toward the mammalian condition, in which the astragalus overlaps the calcaneum.

This condition is observed in some eucynodonts [13, 18, 85], but no distinct sustentaculum

tali can be observed in basal epicynodonts (e.g., Thrinaxodon, Galesaurus), suggesting it was

cartilaginous or not developed yet [13]. The sustentaculum tali and the posterior process are

separated by a calcaneal sulcus. A groove is located plantar to the processes, oriented antero-

posteriorly, probably for the passage of a long flexor tendon. The rectangular, nearly flat

cuboid facet faces anteriorly.

The astragalus is a hemispherical bone (Fig 8C and 8D), with a bulbous dorsomedial surface

and a flat lateroplantar surface, as seen in other non-mammaliaform cynodonts. It is notably

smaller than the calcaneum. A large, oval facet lies on the posterior half of the lateroplantar

surface for the proximal process of the calcaneum. On the anterior half is another facet for the

sustentaculum tali. The two facets have approximately the same size and are separated by a

deep, concave sulcus, which represent the astragalar half of the tarsal sinus. The dorsomedial

surface represents the articulation with the tibia. Anteriorly, the astragalus is constricted to

form a very short but distinct astragalar head, bearing a slightly convex facet for the articula-

tion with the navicular. In therians, the neck separating the astragalar head from the body is

longer [115–118].

Metapods and phalanges: Two partial metatarsals are preserved with the calcaneum of

UFRGS-PV-1043-T (Fig 8A). The first one, representing a proximal end, is ovoid and bears a

concave and circular fossa. The second one represents a distal end and bears two distinct and

symmetric condyles. Another fragment of a possible metapod is also preserved in UFRGS-PV-

0765-T (Fig 9A). The proximal portion is broadly expanded transversally and the shaft is nar-

row. Moreover, a few partial phalanges are preserved in UFRGS-PV-1043-T and UFRGS-PV-

0765-T. One phalange is almost complete (Fig 9B). It is short and represents probably the mid-

dle element of the digit. Its proximal surface is concave and its distal end is marked by two

small and distinct condyles.

Discussion

The humerus of B. quadrangularis bears a combination of plesiomorphic and derived features.

For example, posterolaterally facing humeral head, lesser tubercle larger than the greater one,

Fig 9. Photography (1) and drawing (2) of the metapod and phalange of Brasilodon quadrangularis (UFRGS-PV-

0765-T). A, fragment of a metapod; B, intermediate phalange, in dorsal view. Scale bar = 2 mm.

https://doi.org/10.1371/journal.pone.0216672.g009
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long and anteriorly expanded deltopectoral crest, wide bicipital groove, teres major tuberosity,

wide distal humeral extremity, shallow olecranon fossa and bulbous ulnar condyle are features

seen in other non-mammaliaform cynodonts. On the other hand, ventrally oriented scapular

glenoid facet, lack of ectepicondylar foramen and osseous olecranon process are similar to the

condition only present in more advanced prozostrodontians (e.g., tritylodontids), and hemi-

spherical humeral head and distinct and ossified greater tubercle are present in mammalia-

forms (Fig 10). The pelvic girdle and the femur of B. quadrangularis reveal derived feature as

reduced postacetabular region of the iliac blade, large obturator foramen, no part of the pubis

projecting anteriorly to the acetabulum, confluent parts of the acetabulum, hemispherical and

medially projected femoral head, head set-off the femoral shaft, distinct greater trochanter,

medially projected lesser trochanter, and prominent intertrochanteric crest, similar to early

mammaliaforms (e.g.,Morganucodon) or therians (Fig 11).

Limb posture of Brasilodon quadrangularis
Orientation of the glenoid. The scapular portion of the glenoid of this taxon faces ven-

trally but the coracoid and the procoracoid of B. quadrangularis remain unknown, leaving the

complete orientation of the glenoid ambiguous. Moreover, if a laterally facing glenoid can pre-

vent an adducted position of the humerus, a ventrally facing glenoid does not necessarily

imply an erect posture [119]. Living monotremes have a sprawling posture, but a major part of

their glenoid fossa (formed by the scapula) faces ventrally, with only a small coracoid portion

facing laterally.

Torsion of the humeral shaft

The torsion (or twisting) of the humerus is regarded as a very important character to determi-

nate sprawling or erect posture in fossil tetrapods [120–121]. Humeral torsion is indicative of

sprawling posture and occurs in terrestrial tetrapods which have an abducted humerus (e.g.,

monotremes, lacertilians) whereas it is absent in therians which have an erect posture [90].

The torsion measured on the humerus of B. quadrangularis is weaker than in monotremes,

most non-mammaliaform cynodonts and Mezosoic mammal lineages, but remains stronger

than in therians, indicating at least a semi-sprawling posture of the forelimb.

Importance of the adductor musculature

A long deltopectoral crest can increase the efficiency of theM. pectoralis. In basal tetrapods

and reptiles, theM. pectoralis is mainly an adductor of the forelimb and plays a substantial role

in maintenance of limb posture, elevating the body from the ground in animals which have an

abducted humerus [13, 51, 122]. By contrast, the adductor function is limited toM. pectoralis
superficialis in generalized therians, andM. pectoralis profundus is a powerful retractor, with a

reduced role in posture [64, 66, 123]. The length of the crest and its great anterior projection

seen in B. quadrangularis and all non-mammaliaform cynodonts suggest that the adductor

function of theM. pectoralis had an important role in posture and the humerus was held in a

sprawling or semi-sprawling position.

The bicipital groove of the humerus is well-marked and deep proximally in B. quadrangu-
laris. It is broad, providing a wide area for theM. coracobrachialis. This muscle could assist the

M. pectoralis to adduct the humerus, and sustain the body. In contrast, the bicipital groove is

narrow in therians with parasagittal posture, as only the tendon of theM. biceps brachii caput
longum passes along the groove [90].

In B. quadrangularis, the lesser tubercle is bigger than the greater tubercle and protrudes

strongly medially, increasing the lever arm ofM. subscapularis. The larger transverse diameter
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Fig 10. Main evolutionary patterns of the humeral structures through the probainognathian evolution. The left humeri are represented in anterior

and posterior view. 1, loss of ectepicondylar foramen; 2, hemispherical humeral head; 3, distinct and bony greater tubercle; 4, posteriorly flat trochlea

(instead of bulbous ulnar condyle) with deep olecranon fossa; 5, less anteriorly expanded deltopectoral crest with narrow bicipital groove; 6, lesser tubercle

smaller than the greater one; 7, posteriorly facing humeral head.. The ectepicondylar foramen is also absent in Boreogomphodon, Trucidocynodon and

Probainognathus, but it is not represented in this phylogeny. The ulnar condyle is bulbous posteriorly in multituberculates, but it is not represented in this

phylogeny. Abbreviations: b.gr, bicipital groove; cap, capitulum; delt, deltopectoral crest; ect.f, ectepicondylar foramen; gr.tb, greater tubercle; h,

humeral head; l.tub, lesser tubercle; ol.f, olecranon fossa; tro, trochlea; ul, ulnar condyle.

https://doi.org/10.1371/journal.pone.0216672.g010
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Fig 11. Main evolutionary patterns of the pelvic and femoral structures through the probainognathian evolution. The right pelvis and femora are

respectively represented in lateral and posterior view (with exception of the femur of Irajatherium, which is represented in anterior view�). 1, reduced

postacetabular region of the iliac blade; 2, medial projection of the lesser trochanter; 3, distinct greater trochanter; 4, head set-off from the shaft by a short

femoral neck; 5, confluent acetabular facets of the three bones composing the acetabulum; 6, hemispherical femoral head; 7, narrow intertrochanteric

fossa instead of wide and circular; 8, well-marked intertrochanteric crest; 9, presence of the fovea capitis; 10, narrow distal end of the femur; 11, rim of the

acetabulum without dorsal emargination; 12, femoral head strongly projected medially and long femoral neck. The hemispherical femoral head is only

Postcranial anatomy of Brasilodon quadrangularis

PLOS ONE | https://doi.org/10.1371/journal.pone.0216672 May 10, 2019 23 / 36

https://doi.org/10.1371/journal.pone.0216672


of the lesser tubercle than of the greater tubercle reflects the importance of this humeral

adductor muscle. This is typical for animals with abducted forelimbs, such as lacertilians,

monotremes and some fossorial mammals with sprawling (talpids) or semi-sprawling (chryso-

chlorids) posture [90]. In therians with parasagittal limb, the lesser tubercle is smaller and nar-

rower than the greater tubercle.

Ectepicondylar foramen

The ectepicondylar foramen present in early synapsids and reptiles is for the passage of radial

nerve [124]. The absence of this foramen in B. quadrangularis and mammaliaforms indicates

presumably a change in position of origins of extensor muscles of the hand, which evolved a

shift in the course of the radial nerve. According to Romer [125], this shift can be correlated

with a position of the humeral distal end under the body. However, the absence of the ectepi-

condylar foramen in monotremes, which have a sprawling forelimb posture, argues against

this hypothesis. This foramen has disappeared very early during the pre-mammalian evolution

(within tritylodontids, Brasilodon, and early mammaliaforms), certainly before the adaptation

to an erect posture.

Ulnar condyle

All tetrapods with a primary sprawling posture have a condylar structure of the elbow joint. In

lacertilians, the ulnar condyle is bulbous, to permit rotation of the forearm, which is necessary

for sprawling locomotion [90, 126]. The ulnar condyle is confined only in anterior and distal

view. This is consistent with the horizontal orientation of the humerus during the whole pro-

pulsive phase. As the elbow extension is relatively small [48], the condyles will be useless on

the posterior part. In contrast, in therians, the ulnar condyle is cam-shaped, being flat anteri-

orly and overlapping the distal end until the posterior surface of the humerus [119, 127]. The

intercondylar groove separating the ulnar and radial condyles is also enlarged. With the ulnar

condyle, this groove forms the trochlea, which contains and embraces the motion of the elbow

joint in a parasagittal plane [128–129].

The presence of a bulbous ulnar condyle (rather than a trochlea as in therians) suggests that

the rotation of the forearm was still an important element of the locomotion of B. quadrangu-
laris. The ulnar condyle of B. quadrangularis is compressed and extends until the posterior

part of the humerus, indicating an incipient origin of the trochlear structure and wider flex-

ion-extension capability of the elbow joint. It should be remembered, however, that such capa-

bility does not necessarily imply parasagittal locomotion and is observed in fossorial and

semifossorial mammals, which secondarily acquired sprawling or semi-sprawling posture [94].

Moreover, in spite of the posterior extension of the ulnar condyle, the narrow intercondylar

groove, and the reduced ulnar anconeal process of B. quadrangularis could not contain effi-

ciently the motion in a parasagittal plane.

Olecranon process

The olecranon process of the ulna is the area of insertion for theM. triceps brachii in all tetra-

pods (e.g., [64, 66]). This process is well-developed in B. quadrangularis, differing with most

non-mammaliaform cynodonts, and indicating extension of the elbow was an important

present in Tritylodon among Tritylodontidae, but it is not represented in this phylogeny. Abbreviations: ac, acetabulum; f.h, femoral head; gr.tr, greater

trochanter; int.cr, intertrochanteric crest; int.f, intertrochanteric fossa; l.tr, lesser trochanter; ob, obturator foramen; post.ac, postacetabular region of the

iliac blade; pre.ac, preacetabular region of the iliac blade; p.tb, pubic tuberosity.

https://doi.org/10.1371/journal.pone.0216672.g011
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element of the locomotion of this cynodont. This condition differs from animals with sprawl-

ing locomotion [48, 126].

Acetabulum and femoral head

The acetabulum and femoral morphologies of B. quadrangularis are very similar to those of

living therians. The hemispherical femoral head permits a higher range of motion than the flat-

tened head of ‘pelycosaurs’ synapsids or basal non-mammaliaform cynodonts, and could pro-

vide the same range of motion than early mammaliaforms and living therians [15, 27, 32]. The

center of the head is not located in line with the axis of the shaft as in ‘pelycosaurs’, but is

strongly projected medially, with an angle of 60˚ to the shaft, as in living therians. The position

of the femoral head of B. quadrangularis indicates the shaft was held close to the parasagittal

plane and a shift toward a more erect hindlimb posture. However, the short neck suggests a

less erect posture than in living therians.

Femoral condyles

Femoral condyles of B. quadrangularis are confined to the posterior aspects of the bone, and

do not extend around the distal extremity. This feature can be found in mammals with either

sprawling or parasagittal posture, but indicates a crouched posture, with a flexed lowerleg

[100]. The asymmetrical knee joint in B. quadrangularis, with the medial condyle narrower

than the smaller lateral one, can lead to several interpretations. First, it could suggest a sprawl-

ing hindlimb posture for this cynodont. The monotremes have an asymmetrical distal femur,

and this configuration is necessary as their sprawling locomotion implies horizontal swinging

of the femur, and thus rotation of the knee joint [108]. However, cineradiographic records of

walking Didelphis and other non-cursorial mammals give some evidence of rotation at the

knee during the propulsive movement [130]. The femur, oriented obliquely to the sagittal

plane at the beginning of a step, abducts during the propulsive movement, whereas the lower

leg, remains in a nearly sagittal plane. Such a change in relative orientation of the femur and

tibia may be accommodated by a mechanism permitting rotation at the knee joint and thus an

asymetric joint. Within didelphid marsupials, the more asymmetrical knee joint is associated

with more habitually flexed knee (crouched position), for better climbing locomotor capability

[131]. In contrast, more symmetric knee joint tends to be associated with the didelphid species

with terrestrial habits [61].

Hip musculature

The hip muscular organization changed considerably during the evolution of non-mammalia-

form cynodonts (e.g., [43]). In ‘pelycosaur’ synapsids, the retraction was driven mainly by the

M. caudifemoralis, which was assisted also by the posterior part of theM. obturator externus
(homologue of theM. pubo-ischio-femoralis externus in non-mammalian tetrapods), as in

early amniotes and reptiles [41, 132]. In ‘pelycosaurs’ and other basal synapsids, theM. glutei
(homologue of theM. iliofemoralis in non-mammalian tetrapods) originated on the lateral sur-

face of the posterior and middle parts of the iliac blade (Fig 8), as seen in living squamates and

urodelans [41]. These areas were the most appropriate to the function of abduction and rota-

tion of the femur about its long axis during sprawling locomotion [42]. In most non-mamma-

liaform cynodonts such as Cynognathus or Chiniquodon, the preacetabular portion of the iliac

blade is extended anteriorly permitting the reorientation of the gluteal musculature, closer to

mammals than to ‘pelycosaurs’. The posterior fibers of theM. glutei retained an abductor func-

tion but the most anterior fibers can pass dorsally and posteriorly to the center of rotation of

the hip joint to insert on the greater trochanter, permitting the gluteus musculature to retract
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the hindlimb. The most anterior fibers could permit to increase the posterior extent to which

the femur could retract compared to that of basal synapids [14]. Although incomplete, the

ilium of B. quadrangularis was clearly more similar to derived non-mammaliaform cynodonts

(e.g., Prozostrodon and tritylodontids) and therians than to the basal non-mammaliaform

cynodont morphology, having a rod-like shaped iliac blade with a reduced postacetabular por-

tion. The reduced postacetabular portion and the prominent and distinct greater trochanter

observed in B. quadrangularis and tritylodontids suggest the mechanism of gluteus-driven

retraction had replaced the reptilianM. caudifemoralis as the main retractor muscle of the leg.

In ‘pelycosaurs’, theM. iliacus (homologue of theM. pubo-ischio-femoralis internus in non-

mammalian tetrapods) originated from the anterodorsal portion of the puboischial plate, as

seen in basal amniotes and monotremes [41, 46, 56]. TheM. iliopsoas could not insert on the

internal trochanter taking account of the posterior position of this trochanter. The insertion of

theM. iliopsoas (fusion of theM. iliacus and theM. psoas major) was more likely located on

the anterior surface of the femur, as in basal amniotes [13, 133]. The anterior position of the

pubic tuberosity and the posterior position of the lesser trochanter is observed in Procynosu-
chus, Galesaurus, Diademodon and Cynognathus and indicates that most basal cynodonts had

similar muscular configuration to basal synapsids. In B. quadrangularis and other non-mam-

maliaform probainognathians, theM. iliacus originated from the ventral part of the lateral sur-

face of the well-developed preacetabular portion of the iliac blade, as seen in Didelphis [61], as

no part of the pubis is projected anteriorly to the acetabulum. The dorsal migration of the ori-

gin of theM. iliacus was accentuated by the projection of the iliac blade, which is more antero-

dorsal than anterior in prozostrodontians. In therians, theM. iliopsoas insert on the lesser

trochanter [61, 65, 67] which protrudes medially. The medial projection of lesser trochanter

seen in B. quadrangularis and most derived non-mammaliaform probainognathians suggests

the new insertion for theM. iliopsoas occurred in basal prozostrodontians, before the origin of

Mammaliaformes. This muscle is a protractor of the hindlimb in many tetrapods, including

amphibians, reptiles, and mammals. The new origin and insertion of theM. iliopsoas seen in

B. quadrangularis indicates an important shift of the movement generated. Indeed, the origin

and insertion of this muscle are approximately at the same horizontal level in basal synapsids

such as ‘pelycosaurs’. With this disposition, the muscle protracted the femur in a horizontal

arc, instead of parasagittally. In B. quadrangularis, with its new area of origin and insertion,

theM. iliopsoas was protracting the femur in a nearly parasagittal plane, as in living therians.

In basal synapsids and non-mammaliaform cynodonts, theM. obturator externus origi-

nated from the lateral surface of the pubis and the ischial plate, as seen in living reptiles and

therians [41, 52]. In ‘pelycosaurs’ and basal non-mammaliaform cynodonts, this muscle

inserted in the intertrochanteric fossa and on the apex of the lesser trochanter, as this trochan-

ter is a crest located near the fossa and is posteriorly projected [13–14, 110]. In ‘pelycosaurs’,

this muscle was probably able to retract the femur, but its main function was adduction, to ele-

vate the body from the ground during locomotion, as seen in living reptiles [41, 52]. In mam-

mals, theM. obturator externus is restricted to the intertrochanteric fossa because the apex

of the lesser trochanter is medially located and used for the insertion of theM. iliopsoas. The

morphology and the position of the lesser trochanter suggest this was also the case in B. quad-
rangularis and other prozostrodontians (e.g., Prozostrodon, Therioherpeton, Irajatherium, tri-

tylodontids). Moreover, the morphology of the intertrochanteric fossa of B. quadrangularis is

more similar to that of therians, being narrow instead of wide and circular as in other non-

mammaliaform cynodonts. With the femur oriented in a nearly parasagittal plane, the adduc-

tor musculature plays a less important postural role to elevate the body from the ground and

theM. obturator externus can be restricted to the intertrochanteric fossa.
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Lifestyle of Brasilodon quadrangularis. Fossorial adaptations

Burrow complexes containing Galesaurus, Thrinaxodon and Langbergia in outcrops of the

Lower-Middle Triassic of South Africa suggest that fossorial activities were a common behav-

ior in these basal non-mammaliaform cynodonts [134–136]. Moreover, complex tetrapod bur-

rows discovered in several Lower Triassic to Jurassic continental sequences of South America,

Africa and Antarctica are considered as being produced by non-mammaliaform cynodonts

[137–140]. The thickened bone in the femur of the Andescynodon was interpreted as sugges-

tion of a fossorial lifestyle [141]. A fossorial lifestyle for Irajatherium, Riograndia, and Kayen-
tatherium was also suggested, based on scapular and humeral morphology [15–16, 21].

The humerus of B. quadrangularis lacks the prominent processes in some fossorial mam-

mals (e.g., talpids; [94]) but several humeral features are indicative of powerful retractor mus-

cles. The prominent teres major tuberosity indicates a massiveM. teres major and this feature

is seen in fossorial rodents which need great retraction capabilities to burrow [142]. Both the

deltopectoral crest and the teres crest are reaching mid-shaft in B. quadrangularis, resulting in

an increase of the lever arm of theM. pectoralis andM. latissimus dorsi. These muscles assisted

theM. teres major to retract the humerus to the scapula. However, the ulnar olecranon process

of B. quadrangularis is shorter than in Kayentatherium andHaldanodon, falling out the range

of proportion (from 20% to 75%) determined by Hildebrand [123] for 27 extant genera of fos-

sorial mammals. Moreover, the distal end of the humerus of B. quadrangularis is more gracile

and narrower than the distal humeral end of Irajatherium, Riograndia, and Kayentatherium.

In these three taxa, the distal width represents more than 50% of the humeral length (Table 2)

and is associated with large muscles for borrowing [21]. This does not imply lack of burrowing

capabilities for B. quadrangularis, but this cynodont had probably a more generalized lifestyle

than Irajatherium, Riograndia and Kayentatherium.

Scansorial adaptations

The hemispherical head of the humerus and femur indicates a higher range of rotational

movements of the shoulder and the hip compare to other non-mammaliaform cynodonts, sug-

gesting scansorial adaptations for B. quadrangularis. A more hemispherical humeral head is

commonly seen in scansorial or arboreal didelphids [143] and primates [144], rather than ter-

restrial ones.

A reduced ulnar olecranon beak is observed in arboreal didelphids, whereas terrestrial ones

have prominent olecranon beak to contain movement of flexion/extension in a strictly parasa-

gittal plane [145]. High mobility of the elbow is also suggested by the subspherical capitulum

and the nearly circular head of the radius. The oval-shaped head of the radius is a feature that

can be found in more terrestrial or scansorial mammals whereas arboreal mammals have a cir-

cular shape [146]. Although the distal humeral end is narrower than in other derived non-

mammaliaform probainognathians, the entepicondyle is as developed as in these taxa, repre-

senting one third of the distal end. Medially extensive entepicondyle is associated with well-

developed wrist and digit flexors. The ectepicondylar (or supinator) crest is well-developed in

B. quadrangularis and extends more proximally along the shaft than in Riograndia or Kayen-
tatherium. This crest provides a large area of origin for theM. brachioradialis, which is a flexor

of the antebrachium. This muscle is particularly active when the hand is in a semi-prone posi-

tion and during flexion against resistance, giving it an active role during climbing [145]. It

may also act as a supinator of the lower arm to bring the hands into semi-prone position so

that the palmar side faces toward the medially lying arboreal substrate [62, 145]. In didelphid

marsupials and tree shrew species, the entepicondyle and supinator crest are more developed

in species with better climbing capability than the terrestrial species (e.g., [145, 147]).
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The morphology of their shoulder, elbow and hip indicate this animal having a greater

range of mobility than in other non-mammaliaform probainognathians. However, the scan-

sorial features of B. quadrangularis shared with mammals are not necessarily correlated with

arboreal habits because even dwelling on the ground, the small-sized mammals need signifi-

cant climbing locomotor adaptations to overcome the irregular substrate.

Other postcranial elements referred to Brasilodon quadrangularis
Postcranial remains referred to Brasilodon (or “brasilodontids”) but not associated with skull

and jaw elements in the UFRGS collection include: UFRGS-PV-0778-T, UFRGS-PV-0853-T,

UFRGS-PV-0922-T, UFRGS-PV-1042-T, UFRGS-PV-1361-T (Fig 12).

The specimens UFRGS-PV-0778-T and UFRGS-PV-0853-T include poorly preserved

humeri and small fragments of indeterminate bones. They both are referred to Brasilodon, due

to the lack of an ectepicondylar foramen. The specimens UFRGS-PV-0600-T and UFRGS-PV-

1361-T include respectively the distal end of a left and a right humerus. Both humeri are

smaller in size than that of UFRGS-PV-1043-T, and their entepicondyles are less prominent.

These slight differences can be due to ontogenetic stage, considering the small size of UFRGS-

PV-0922-T, UFRGS-PV-0600-T and UFRGS-PV-1361-T, in comparison to the specimen

UFRGS-PV-1043-T of B. quadrangularis.
The specimen UFRGS-PV-1042-T includes the distal end of a small left humerus articulated

with the proximal part of the left ulna. The distal end differs considerably from that of B. quad-
rangularis in having an ectepicondylar foramen and a well-marked olecranon fossa. This

humerus also differs significantly from those of Irajatherium hernandezi [15] and Riograndia
guaibensis [21], which have stout humeri, with possibly semi-fossorial adaptations. This mate-

rial may represent a new species of basal probainognathian from the Riograndia AZ.

The specimen UFRGS-PV-0922-T includes a small and isolated right femur, which is simi-

lar to the femur of UFRGS-PV-1043-T, with a narrow intertrochanteric fossa, the presence of

a short femoral neck and salient intertrochanteric crest. The femur of UFRGS-PV-0922-T dif-

fers from that of UFRGS-PV-1043-T, in having a less distinct greater trochanter and a

Fig 12. Materials previously cataloged as indeterminate brasilodontids. A, specimen UFRGS-PV-0600-T; B,

specimen UFRGS-PV-1361; C, specimen UFRGS-PV-0922-T; D, specimen UFRGS-PV-1042-T, representing a new

morphotype of probainognathian. Abbreviations: ect, ectepicondylar foramen; ent, entepicondylar foramen; int.cr,

intertrochanteric crest; UL, ulna. Scale bar = 2 mm.

https://doi.org/10.1371/journal.pone.0216672.g012
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narrower distal end. However, these differences can be due to ontogenetic variation, consider-

ing their difference in size.

Conclusion

The postcranium of B. quadrangularis differs from other non-mammaliaform cynodonts and

is similar to early mammaliaforms and extant therians (e.g., hemispherical humeral and femo-

ral head, distinct greater tubercle of the humerus, circular acetabulum, salient intertrochan-

teric crest of the femur). The morphology of the ulnar condyle of the humerus and olecranon

process of the ulna suggests more abilities for extension and flexion of the elbow, a necessary

component for a parasagittal locomotion. However, the humeral torsion, the length of the del-

topectoral crest, the large bicipital groove and the well-developed lesser tubercle, indicate that

the forelimb of B. quadrangularis was hold in a semi-sprawling position, with well-developed

adductor muscles to maintain the body off the ground. The short femoral neck and the strong

medial projection of the femoral head indicate the femur was held in a more erect posture

than in basal non-mammaliaform cynodonts. The anterodorsally projected iliac blade with

Fig 13. Paleoartistic reconstruction of Brasilodon quadrangularis (left) and Riograndia guaibensis (right), two abundant probainognathian cynodonts from the

Riograndia AZ of the Candelária Sequence, Santa Maria Supersequence (Brazil), which exhibits different morphologies in skull, dentition and locomotor

apparatus. Made by Jorge Blanco.

https://doi.org/10.1371/journal.pone.0216672.g013
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reduced postacetabular process, enlarged obturator foramen, reduction of the anterior part of

the pubis, prominent and distinctive greater trochanter, medially located lesser trochanter,

narrow intertrochanteric fossa represent a further continuation of trends that indicates a basi-

cally mammalian pattern of pelvic musculature, able to swing the femur in a nearly parasagittal

plane.

Although fossorial or semifossorial habits appear to have been common in derived non-

mammaliaform probainognathians (i.e., Riograndia, Irajatherium and Kayentatherium), the

postcranial study of B. quadrangularis shows more generalized adaptations and highlights that

distinctive ecological strategies (Fig 13) were developed among small-sized non-mammalia-

form cynodonts.
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pectoral and forelimb of Caiman crocodilus crocodilus (Linnaeus, 1758) (Crocodylia: Alligatoridae).

Ciência Animal Brasileira. 2016; 17, 285–295.

54. Howell AB. Morphogenesis of the shoulder architecture. Part V. Monotremata. The Quarterly Review

of Biology. 1937; 12: 191–205.

55. Walter LR. Appendicular Musculature in the Echidna, Tachyglossus aculeatus (Monotremata, Tachy-

glossidae). Australian journal of zoology. 1988; 36: 65–81.

56. Gambaryan PP, Aristov AA, Dixon JM, Zubtsova GY. Peculiarities of the hind limb musculature in

monotremes: an anatomical description and functional approach. Russian Journal of Theriology.

2002; 1: 1–36.

57. Gambaryan PP, Kuznetsov AN, Panyutina AA, Gerasimov SV. Shoulder girdle and forelimb myology

of extant Monotremata. Russian Journal of Theriology. 2015; 14: 1–56.

58. Howell AB. Morphogenesis of the shoulder architecture. Part VI. Therian Mammalia. The Quarterly

Review of Biology. 1937; 12: 440–463.

59. Jenkins PA, Weijs WA. The functional anatomy of the shoulder in the Virginia opossum (Didelphis vir-

giniana). Journal of Zoology. 1979; 188: 379–410.

60. Stein BR. Comparative Limb Myology of Two Opossums, Didelphis and Chironectes. Journal of Mor-

phology. 1981; 169: 113–140. https://doi.org/10.1002/jmor.1051690109 PMID: 30111008

61. Argot C. Functional adaptive analysis of the hindlimb anatomy of extant marsupials and the paleobiol-

ogy of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology.

2002; 253: 76–108. https://doi.org/10.1002/jmor.1114

62. McEvoy JS. Comparative myology of the pectoral and pelvic appendages of the North American por-

cupine (Erethizon dorsatum) and the prehensile-tailed porcupine (Coendou prehensilis). Bulletin of the

AMNH. 1982; 173: 4.

63. Thorington RW Jr, Darrow K, Betts AD. Comparative myology of the forelimb of squirrels (Sciuridae).

Journal of Morphology. 1997; 234: 155–182. https://doi.org/10.1002/(SICI)1097-4687(199711)

234:2<155::AID-JMOR4>3.0.CO;2-B PMID: 9360319

64. Fisher RE, Scott KM, Naples VL. Forelimb myology of the pygmy hippopotamus (Choeropsis liberien-

sis). The Anatomical Record. 2007; 290: 673–693. https://doi.org/10.1002/ar.20531 PMID: 17516432

65. Fisher RE, Adrian B, Elrod C, Hicks M. The phylogeny of the red panda (Ailurus fulgens): evidence

from the hindlimb. Journal of Anatomy. 2008; 213: 607–628. https://doi.org/10.1111/j.1469-7580.

2008.00987.x PMID: 19014366

66. Fisher RE, Adrian B, Barton M, Holmgren G, Tang SY. The phylogeny of the red panda (Ailurus ful-

gens): evidence from the forelimb. Journal of Anatomy. 2009; 215: 611–635. https://doi.org/10.1111/j.

1469-7580.2009.01156.x PMID: 19930516

67. Fisher RE, Scott KM, Adrian B. Hind limb myology of the common hippopotamus, Hippopotamus

amphibius (Artiodactyla: Hippopotamidae). Zoological Journal of the Linnean Society. 2010; 158:

661–682.

68. Ellsworth A. Reassessment of muscle homologies and nomenclature in conservative amniotes: the

echidna, Tachyglossus; the opossum Didelphis; and the tuatara Sphenodon. RE. Krieger Pub. Co;

1974.

69. Diogo R, Abdala V, Aziz MA, Lonergan N, Wood BA. From fish to modern humans–comparative anat-

omy, homologies and evolution of the pectoral and forelimb musculature. Journal of Anatomy. 2009;

214: 694–716. https://doi.org/10.1111/j.1469-7580.2009.01067.x

70. Abdala V, Diogo R. Comparative anatomy, homologies and evolution of the pectoral and forelimb mus-

culature of tetrapods with special attention to extant limbed amphibians and reptiles. Journal of Anat-

omy. 2010; 217: 536–573. https://doi.org/10.1111/j.1469-7580.2010.01278.x PMID: 20807270

71. Bonaparte JF, Schultz CL, Soares MB, Martinelli AG. La fauna local de Faxinal do Soturno, Triásico

Tardı́o de Rio Grande do Sul, Brasil. Revista Brasileira de Paleontologia. 2010; 13: 233–246.

72. Martinelli AG, Bonaparte JF. Postcanine replacement in Brasilodon and Brasilitherium (Cynodontia,

Probainognathia) and its bearing in cynodont evolution. Paleontologı́a y Dinosaurios desde América
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