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ABSTRACT 

The implementation of a lattice Boltzmann model for three-dimensional (3D) permeable 

media with localized drag forces is presented. The model was previously introduced for 

two-dimensional (2D) geometries and follows the basics of the immersed boundary 

method. Permeable flows are much less stable than their counterparts in porous media and 

generally produce large coherent flow structures, like vortex lines, rolls, and wakes. Also, 

in permeable media the small-scale geometry often needs to be represented to a high degree 

of detail in order to capture certain transport phenomena, like micro-convection or 

pollination. Hence, both, calculation speed and memory requirements are under strain. The 

present model was implemented in a Graphic Processing Unit (GPU) showing excellent 

performance in the calculation of stable and unstable flows in a rectangular channel 

partially obstructed by an array of parallel wires. In particular, the model is able to deal 

with small and medium spatial scales without losing the heterogeneous nature of permeable 

flows in the homogenization process. The algorithm to manage memory issues is described 

in detail, and the results of the test case for stable and unstable conditions show the 

capability of the method to simulate this type of flows. 

I. INTRODUCTION 

The Lattice Boltzmann method (LBM) has become a popular solver of the Navier-Stokes 

equations, particularly in the incompressible range at low and moderate Reynolds numbers. 

It has been successfully applied to solve oscillatory flows, heterogeneous geometries and 

multiphase flows, among other flows. A recent update on the advances in LBM can be 

found in Succi (2018). From the numerical perspective, LBM is a fully explicit method to 

solve transport equations using more variables than the strictly necessary to characterize the 

macroscopic flow. A set of population functions define the local state at an appropriate 

mesoscale, which represent the fluid dynamics via discrete kinetic equations, emulating 

molecular advection and interactions. Selected averages of the population functions are 

then construed as the macroscopic field variables, such as velocity, pressure and shear 

stress. In particular, it has been proved (Succi, 2018) that LBM recovers the Navier-Stokes 
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equations to second order accuracy, by means of the BGK approximation (Bhatnagar et 

al.,1954) and Chapman-Enskog technique (Chapman and Cowling, 1970). 

Fluid flow in heterogeneous highly permeable media has a wide range of applications, from 

heat exchange structures to pollination, forestation and water resources management.  

Permeable flows are much less stable than its counterparts in porous media. However, 

when the interaction between the fluid and sparse solid structures is characterized by a low 

Reynolds number, the permeable medium usually damps considerably the short wavelength 

fluctuations, and brings about instead large scale resonant coherent flow structures, like 

vortex lines, rolls and wakes (Chang and Constantinescu, 2012; Ledda et al, 2018). Much 

effort has been devoted to understand the characteristics of wakes behind permeable 

obstructions, like disks (Cummins et al., 2017) and arrays of cylinders (Tang et al., 2019). 

In these cases recirculation bubbles detaching from the obstructions and eventually 

disappearing have been reported, which is a phenomenon that is not observed in solid 

obstructions. The importance of the small scale phenomena in complex obstruction has 

been stressed by previous researchers. Bem Meftah and Mossa (2013) developed a 

theoretical model of the turbulent flow within a square array of objects. Tang et al. (2020) 

calculated numerically the flow in presence of a square cylinder array, investigating the 

interplay of instabilities at large and small scales. 

Unlike porous media, the application of LBM in permeable media has much less 

development. One of the reasons of this is that in most of the ranges and geometries of 

interest, the flow is unstable and develops sustained oscillations, which requires longer 

calculations given the usually short time steps required by LBM to simulate real fluids. The 

other barrier is the need to represent the small scale geometry to a certain degree of detail, 

which is relevant for certain transport phenomena, like micro-convection or pollination. 

Hence, both, calculation speed and memory requirements are under strain. 

Nevertheless, much of the methods developed to simulate porous media with LBM can be 

arguably extended to permeable media. Actually, the field-particle dual nature of LBM is of 

much advantage, since the particle-like dynamics fits elegantly to emulate preferential 

channeling typical of interstitial regions, whereas the field averaging homogenizes the 

small-scale information in a consistent fashion. These assets make LBM an excellent 

numerical framework for the treatment of flows in permeable media, which has 

progressively been extended to systems of increasing complexity, accompanying the 

growth of computing power. As a recent reference review states (Succi, 2018): “Indeed, the 

modeling of multiscale-heterogeneous media, whereby the local transport coefficients, such 

as the permeability, change from place to place, and from scale to scale, still poses an 

outstanding computational challenge.” 

The popular way to represent a porous medium in LBM is to couple the Boltzmann 

transport equation to some effective medium, whereby the spatial cells are provided with 

Darcy-like constitutive drag laws (Babu and Narasimhan, 2010).  This generally requires a 
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resistance tensor which turns into an effective anisotropic volume drag force (Kang et al, 

2002). Alternatively, the method of gray nodes treats the porous cells by means of partial 

boundary conditions, bouncing back only a fraction of the populations (Zhu and Ma, 2013). 

In a recent version of this model a fraction of the population is bounced back and another 

fraction is allocated to the null-velocity population, which proved to be more robust than 

the volume drag force scheme (Zhu and Ma, 2018). The mass-conserved volumetric LBM 

(Yu et al., 2014; An et al., 2017) is another proposed scheme for porous media, where the 

cells are categorized by means of an effective pressure whose evolution is dependent on the 

solid volume fraction of each cell. There are also numerous variants implementing similar 

effective laws (Guo and Shu, 2013). 

This work presents a LBM model that simulates the permeable medium with localized drag 

forces, which are designed following the immersed boundary method (Peskin, 2002). The 

method was introduced in previous works for two dimensional geometries, where it was 

shown that it is capable of reproducing oscillatory flows with great accuracy and acceptable 

computational costs (Boroni et al., 2015; Clausse et al., 2019). However, since most real 

case scenarios of permeable flows involve three dimensional phenomena (e.g., vortex lines 

bending), it remained to extend the model to a full three-dimensional (3D) scheme. The 

model was implemented in a Graphic Processing Unit (GPU) showing excellent 

performance in the calculation of stable and unstable flows in a rectangular channel 

partially obstructed by a permeable medium. The permeable medium represents an array of 

parallel wires, perpendicular to the flow direction, which can produce both stable and 

oscillatory flows. 

 

II. LATTICE BOLTZMANN MODEL OF LOCALIZED PERMEABLE MEDIA  

The Lattice Boltzmann model of immersed permeable media (LBIPM) was introduced in a 

previous paper for two dimensional domains (Boroni et al, 2015; Clausse et al, 2019). In 

this section we present the direct extension of LBIPM to 3D geometries. LBIPM is 

designed to simulate flows in permeable media by means of localized drag forces, which 

are used to model immersed sparse structures.  

It is well known that LBM is a numerical method to solve transport equations that is ideal 

for parallelization, as it is fully explicit. The way the method manages to handle complex 

flows is by using more variables than the strictly necessary to characterize the macroscopic 

flow. This is achieved by means of a discrete kinetic representation supported on a regular 

grid. The basic form of LBM is the following: 

𝑓𝑖(𝒙 + 𝒆𝑖∆𝑥, 𝑡 + ∆𝑡) = 𝑓𝑖(𝒙, 𝑡) −
1

𝜏𝑖

[𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖
𝑒(𝒙, 𝑡)] + 𝑆𝑖(𝒙, 𝑡) 

(1) 
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where 𝑓𝑖(𝒙, 𝑡) and 𝑆𝑖(𝒙, 𝑡) stands for a distribution density and source at the grid coordinate 

𝒙 and time t, which is undergoing a spatial displacement 𝒆𝑖∆𝑥 in a time step t. The vectors 

𝒆𝑖 form a finite set of directions generally defined by a neighborhood in the underlying 

lattice. In the present study the D3Q19 model (Fig. 1) will be used, which has 19 

displacements 𝒆𝑖 labeled from 0 to 18.  

The magnitude 𝜏𝑖 is a relaxation parameter which is used to control the viscosity and 

stabilize the scheme. Here we used the simplest version, where a single value 𝜏 is used for 

all directions. Eq. (1) approaches the Navier-Stokes equations provided that the equilibrium 

function 𝑓𝑖
𝑒(𝒙, 𝑡) satisfies a set of constitutive conditions related to the moments of 𝑓𝑖(𝒙, 𝑡) 

respect to 𝒆𝑖. A popular scheme complying with these conditions is: 

𝑓𝑖
𝑒 = 𝜌𝜔𝑖 [1 +

3

𝑒2
(𝒆𝑖 ∙ 𝒖) −

3

2𝑒2
(𝒖 ∙ 𝒖) +

9

2𝑒4
(𝒆𝑖 ∙ 𝒖)2] 

(2) 

where 𝑒 = ∆𝑥 ∆𝑡⁄  is the so-called grid speed unit and: 

𝜌 = ∑ 𝑓𝑖

𝑖

 (3) 

𝒖 =
𝑒

𝜌
∑ 𝑓𝑖𝒆𝑖

𝑖

 (4) 

are interpreted as the fluid density and the flow velocity. The coefficients 𝜔𝑖 are 1/3 for the 

resting particles, 1/18 for the Cartesian directions and 1/36 for the diagonal directions. In 

such case, the relaxation parameter 𝜏 is related to the kinematic viscosity of the fluid by: 

𝜈 = (2𝜏 − 1)
∆𝑥2

6∆𝑡
 

(5) 

The permeable medium is represented by a drag force imposed in a neighborhood of 

each point in the domain that is part of an obstacle. The drag forces are incorporated 

following the immersed-boundary technique (Peskin, 2002; Boroni et al, 2015), via 

narrow, but smooth, spatial distributions 𝛿𝑘(𝒙) around each drag point 𝒙𝑘, which does 

not need to be a node of the lattice. Each 𝒙𝑘 introduces a Darcy volumetric force 𝑭𝑘 

upon its surround given by: 

𝑭𝑘 = −
𝜌𝜈

𝜅𝑙
𝒖𝑘          (6) 

where 𝒖𝑘 is the average velocity  in the neighborhood of 𝒙𝑘, and is defined as: 

𝒖𝑘 = ∑ 𝛿𝑘(𝒙)𝒖(𝒙)

𝒙

 
       (7) 

with: 

𝛿𝑘(𝒙) = C(𝑟)𝜙(𝑥 − 𝑥𝑘)𝜙(𝑦 − 𝑦𝑘)𝜙(𝑧 − 𝑧𝑘)         (8) 

 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
32

63
0



5 
 

𝜙(𝜉) = {1 + cos (
𝜋𝜉

𝑟
)   𝑖𝑓  |𝜉| < 𝑟

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
         (9) 

 

  

The functional form given by Eq. 8 was proposed and analyzed by Peskin (2002). C(r) 

is a normalization factor ensuring that 𝛿𝑘 satisfies (Peskin, 2002; Uhlmann, 2005): 

∑ 𝛿𝑘(𝒙)

𝒙

= 1 
       (10) 

The summations in Eqs. 7 and 9 are performed over all the cells of the grid, although 

the distribution 𝛿𝑘 restricts the effect only to the cells within the zone of influence of 

the reference point 𝒙𝑘. Accordingly, Eq. 7, 8 and 10 leads to: 

𝐶(𝑟) = [ ∑ (1 + cos
𝜋𝑛

𝑟
)

𝑛≤𝑟

𝑛≥−𝑟

]

−3

   ;       𝑛 ϵ ℤ 

       (11) 

Finally, the contribution of all the solid reference points 𝒙𝑘 to the grid cell located at 𝒙 

is given by the source term: 

𝑆𝑖(𝒙) =  3𝜔𝑖Δ𝑡  [
𝒆𝑖 − 𝒖(𝒙)

𝑒2
+ 3

𝒆𝑖 ∙ 𝒖(𝒙)

𝑒4
𝒆𝑖] ∙ 𝑭(𝒙) 

      (12) 

where 

𝑭(𝒙) = ∑ 𝛿𝑘(𝒙)𝑭𝑘

𝑘

 
(13) 

Eq. 12 is obtained by the second order expansion in Hermitte polynomials of the 

population functions (Shan et al., 2006). 

The control parameters 𝜅𝑙 and 𝑟 in Eqs. 6 to 11 are used to represent the obstacle 

specifics, like shape, size and roughness. 𝜅𝑙 is a local permeability that should not be 

confused with the macroscopic permeability of the medium, 𝜅𝑚;  and 𝑟 is an influence 

length accounting for small-scale boundary layer effects (Clausse et al, 2019). An 

assessment of the relation between 𝜅𝑙 and 𝜅𝑚 is given in the Appendix. 

Regarding the boundary conditions, here we follow the scheme proposed by Hecht and 

Harting (2010), where the unknown variables from outside the domain are defined by the 

local distribution functions and appropriate correctors. 

 

 

III. GPU IMPLEMENTATION OF LBIPM D3Q19 

The LBM has several advantages over traditional methods from the computational point of 

view, the main one is that the method is highly parallelizable, which makes it ideal for high 

performance applications on GPU and for easily dealing with some practical issues like 
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complex boundaries and multi-components (Succi, 2018). In the last decade there were 

several works reporting different implementation approaches to LBM on GPU. Bailey et al. 

(2009) presented an interesting implementation increasing the occupancy of a GPU 

multiprocessor and introducing an efficient storage method that greatly reduces GPU RAM 

requirements. Rinaldi et al (2012) proposed a single-step LBM algorithm with a reversed 

collision–propagation scheme that maximizes the GPU memory bandwidth. Tran et al 

(2017) achieved a high performance parallelization by minimizing the memory access 

playing with the cache locality. Wen and Ma (2019) applied a LBM-GPU implementation 

for high-resolution motion of smoke in real time. A review of different memory access 

patterns for LBM-GPU implementation can be found in Herschlag et al. (2018). 

 

TABLE 1. Characteristics of the GPU NVIDIA Titan XP. 

PARAMETER VALUE 

Memory size 12 Gb 

Memory type GDDR5X 

Nominal memory clock 1426 MHz 

Effective memory clock 11408 MHz 

Memory interface width 384 bits 

Memory bandwidth 547.58 GB/s 

 

In the present work, the LBIPM D3Q19 model was implemented using a GPU NVIDIA 

compatible with the CUDA technology (NVIDIA®, 2020). The main parameters of the 

GPU are shown in Table 1. In this section, we describe the implementation of the algorithm 

LBIPM D3Q19, optimized for memory allocation efficiency and high speed computation. 

The structure of the implementation is based on an improvement of a previous 

implementation for the D2Q9 model, which requires much less memory (Boroni et al, 

2015). The same matrix representation used in 2D was maintained, although special care 

was taken in minimizing the data transfer between GPU and CPU. This is particularly 

important because the aim of the tool is to simulate unstable 3D flows, where information 

during transients is relevant. In fact, one of the purposes of the present work is to show the 

management of information extraction related to the variations of large quantities of data 

generated by the GPU. Under certain conditions the optimum performance of the GPU is in 

conflict with the production of accurate calculations, and so there are compromises to be 

done between both criteria. 

Although GPU calculations are much faster, certain tasks are more efficiently performed by 

the CPU. In order to avail ourselves of the advantages of both architectures, it was 

convenient to implement in the CPU all sequentially dominated functions typical of input-

output management, like input preprocessing, output post processing, and data rendering 

and visualization. In turn, the GPU should be dedicated to perform the core calculations of 

the LBM model. 
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A. BASIC ALGORITHM 

The basic algorithm of LBIPM D3Q19 is the following: 

1. Data preprocessing, including the configuration of the spatial grid and the location of 

the drag points, and setting of boundary conditions and external forces. 

2. Memory allocation on the host CPU and GPU device for 𝑓𝑖, 𝑆𝑖 and 𝑥𝑘, and copy of the 

contents of the host to the device. 

 

3. Loop the following sequence until a stop criterion is reached 

 

3.1. Calculation of the collision term using the current values of  𝑓𝑖 (Eq. 2). 

3.2. Calculation of the drag force (Eq.12) and the corresponding source (Eq.11). 

3.3. Streaming step (Eq. 1). 

3.4. Application of boundary conditions, and actualization of  𝑓𝑖. 

3.5. Generation of special outputs at predefined calculation steps of the loop. 

 

4. Post processing and rendering of output data. 

The stages 3.1 to 3.4 (in italic) are executed in the GPU, whereas all the other steps are 

executed by the CPU. Stage 3.5 extracts relevant data from the GPU during the calculation, 

and is defined by the user according to the objectives of the numerical study. Since 

communications between the GPU and the CPU are expensive in execution time, it is 

important to optimize the design of these outputs avoiding redundancies and conveying the 

maximum information possible. In the present case, we will show how transient features of 

the flow can be visualized and characterized by identifying strategic points around the 

permeable medium. Also, strategic data outputs of the instantaneous state of the variables 

are convenient, which may be used later to restart the calculation including changes of 

control parameters of interest.  

 

B. IMPLEMENTATION IN CUDA PYTHON 

CUDA is based on special kernel functions, which execute in the GPU (NVIDIA®, 2020). 

The key feature of the kernels is that the number of parallel execution threads can be easily 

controlled. Threads compound blocks, and blocks compound a grid. Thus, every kernel is 

executed in several threads per block, and several blocks per grid (Rinaldi et al., 2015). The 

algorithm was implemented on a GPU NVIDIA Titan Xp using CUDA Python and Numba 

(Python compiler from Anaconda for execution on CUDA). Numba allows programming 

CUDA compiling blocks of Python code in CUDA kernels.  

Python has become a very popular programming language and is currently used in a wide 

range of applications. Python is particularly successful in scientific computation, where 

several external libraries are used, such as PyCUDA (Klöckner et al., 2012), Numba-

Numpy (Van Der Walt et al., 2011) and SciPy (Virtanen et al., 2020). PyCUDA uses C++ 

code for the Nvidia's CUDA API and Python code for the general program flow in the CPU 

and access to the data of the GPU. Numba is an open source compiler that uses Python 
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syntax either on CPU or GPU, having the advantage that a single language is used 

throughout the whole implementation. The drawback is that Python is slower than C or 

C++, especially for heavy computations. However, recent studies report that, used 

appropriately, the performances of CUDA-Numba and C-CUDA are comparable (Oden, 

2020).  

The main algorithm of LBIPM-D3Q19 is given in Figs. 2 and 3. The block LOAD 

CONFIGURATIONS shows the implementation of stage 1. To import cases, the code loads 

files containing the input/simulation parameters and the geometry of LBIPM D3Q19. The 

blocks ALLOCATE MEMORY ON THE HOST and ALLOCATE MEMORY ON THE 

DEVICE AND COPY HOST TO DEVICE correspond with stage 2. The data transmission 

from host to device and device to host uses the Numba instructions to_device(…) and 

copy_to_host(…) respectively.  

Using the abstract kernels of algorithm 3.1, the grid/block organization for each kernel call 

(spatial grid and permeable points) is defined in code block CONFIGURE BLOCKS, 

within the limits set by the GPU. For study cases where a single permeable point is 

associated to a single cell in the spatial grid, it is convenient to use the same block 

specification. In such case, the access to the permeable points should be also changed 

accordingly. The main difference between both specifications is the dimensions of blocks 

and threads. When the permeable points are associated to the spatial grid, blocks are 

defined multi-dimensionally, whereas a single dimension is used for allocating the 

permeable points with independent permeable blocks. 

The iterative loop of the stage 3 is implemented in the block SIMULATION LOOP, which 

includes calls of CUDA kernels of stages 3.1 to 3.4. Fig. 4 shows the code performing stage 

3.2, which considers a single thread for each permeable reference point xk. The 

communication of data between the stages articulated by kernels is performed by means of 

parameters. In order to keep the orders and types of the parameters, they are declared in the 

kernels and functions of the GPU by means of jit decorators (Lam et al., 2015). 

A worth-mentioning issue is the management of data output within the calculation cycle. 

There are two conditions. The first condition is used to extract information of interest at 

specific times of the calculation. The second is used to get an image of the whole set of 

variables necessary to restart the calculation in case needed. These communications should 

be minimized as much as possible, since they can increase dramatically the cost in 

computational time.  

Fig. 5 shows how the LBM grid (a) and the drag points (b) are distributed in the GPU. The 

grid size is (XMAX,YMAX,ZMAX). To allocate memory on the CPU the following 

NUMBA commands are used: 

 

f_host = np.zeros(shape=(19,XMAX,YMAX,ZMAX), dtype=np.float32)  //f_i 

ftemp_host = np.zeros(shape=(19,XMAX,YMAX,ZMAX), dtype=np.float32)  

//advencted f_i  

S_host = np.zeros(shape=(19,XMAX,YMAX,ZMAX), dtype=np.float32) //S_i 
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To allocate memory on the GPU and copy the CPU data to the GPU, the following 

MUMBA commands are used: 

 

f_device=cuda.to_device(f_host) 

ftemp_device=cuda.to_device(ftemp_host) 

S_device=cuda.to_device(S_host) 

 

The relation between the LBM cells and the id_threads in the GPU, which will describe 

how physical domain is distributed on the GPU, the following Python sentences: are used: 

 

griddimLBM = ZMAX, YMAX, 1         //blocks per grid 

blockdimLBM = XMAX, 1, 1           //threads per block 

 

In our implementation, each thread corresponds to a plane of constant X. Hence, the size of 

the thread block is XMAX. To ensure that there is one thread per cell, the grid is created 

with (ZMAX * YMAX) blocks. The cell and its id_thread relate to each other as: 

 

z = cuda.blockIdx.x 

y = cuda.blockIdx.y;  

x = cuda.threadIdx.x; 

 

Fig. 6 shows an example of the CUDA Python code for the kernel of the streaming step. 

The invocation of this kernel is: 

 

Streaming[griddimLBM,blockdimLBM](XMAX,YMAX,ZMAX,f_device,ftemp_device,S_

device) 

 

IV. APPLICATION STUDY  

To verify the performance of the proposed implementation we have chosen a straight 

rectangular channel partially blocked by a regular array of fine wires. Fig. 7 shows a 

diagram of the system configuration. The geometry was used in a previous work to validate 

the 2D implementation of the LBIPM against experimental measurements (Dalponte et al., 

2012; Boroni et al., 2015). One characteristic of this flow configuration is that it presents a 

linear instability that gives place to regular harmonic oscillations in the zone where free 

flow and flow through the permeable region coexist. This feature allows us to study 

unstable flow conditions without entering into fully turbulent flows. In all cases the 

boundary conditions are periodic in the streamwise direction, and bounce-back (i.e., null 

velocity) at the bottom and top walls of the channel. For the 3D case, the lateral walls also 

have bounce-back conditions.  
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The driving pressure head is ensured by imposing a constant and uniform volume force in 

every cell of the domain. The force is calibrated in each case in order to set the same flow 

rate in 2D and 3D. The corresponding Reynolds numbers are defined as: 

𝑅𝑒 =
𝑈𝐿

𝜈
 (13) 

where 𝑈 is the average velocity at the inlet, 𝐿 is the channel height, and 𝜈 the kinematic 

viscosity. This procedure matches with the imposition of a constant pressure gradient in the 

direction of the volumetric force in steady state and when compressibility effects are 

negligible. It is equivalent to the action of a constant and uniform gravity field in the flow 

direction.  

Two flow regimes were tested, laminar steady state and laminar unstable sustained 

oscillatory flow, corresponding to Reynolds numbers 100 and 200 respectively. In the 

oscillatory case, the Reynolds number is calculated with the inlet velocity averaged also in 

time. Table 2 details the Euler numbers for each case, defined as: 

𝐸𝑢 =
𝑝2 − 𝑝1

1
2

𝜌𝑈2
 (14) 

where 𝑝1 and 𝑝2 are the inlet and exit pressure, respectively, and 𝜌 is the average density.  

 

TABLE 2. Euler numbers resulting for each study case.  

Re Geometry Eu 

100 
2D 4.6 

3D 6 

200 
2D 3.5 

3D 4.0 

 

TABLE 3. Assessment of the grid units. L is the channel length in metric units (1440 mm) 

and 𝜈 is the kinematic viscosity. ZMAX is the number of cells of the channel length. The 

current relaxation parameter is 𝜏 = 0.56.  

Fluid ∆𝑥 =
𝐿

ZMAX
 ∆𝑡 = (2𝜏 − 1)

∆𝑥2

6𝜈
 𝑢𝐿𝐵𝑀 =

∆𝑥

∆𝑡
 

Air (20o C) 
1 mm 

1.33 10-3 s 0.75 m/s 

Water (20o C) 2 10-2 s 0.05 m/s 
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All results are presented in dimensionless form. Table 3 shows the equivalence in metric 

units for air and water. 

Figures 8 to 11 show the contour maps of the streamwise component of the velocity 

calculated with the 2D model and the 3D model at the central vertical plane, for the stable 

case and the unstable case. In the latter, the map corresponds to the average velocity. The 

main features of the velocity fields are:  

• The velocity magnitude is much lower inside the permeable region. This is 

consistent with previous experimental and theoretical results (Silin et. al, 2011), and 

is caused by high viscous stresses inside the permeable region. 

• The free flow structure experiences a contraction and an expansion at the beginning 

and after the permeable region, respectively. 

• Downstream the permeable region, there is a recirculation in the lower part of the 

channel and a region of lower velocity nearby the upper wall. Both effects are more 

pronounced in the 2D case. The difference stems from the influence of the lateral 

walls in the 3D case, which reduces the momentum flux generating pressure 

gradients that diminish the boundary layer by the upper wall.  

• For Re = 200 the flow in the free region over the obstructed zone does not complete 

the development, whereas for low Re = 100 it develops in the first quarter of the 

obstruction length.  

• The LBIPM is able to resolve the channeling effects around the small obstacles in 

the permeable medium. This feature produces a more realistic flow around the 

positions occupied by the sparse solid structures, a feature that is generally more 

relevant in permeable media than in porous media. 

While velocity fields in the stable case are rather similar in both, 2D and 3D scenarios, 

important differences manifest in the dynamics of the unstable case (Re = 200). Figs. 12 

and 13 show the maps of the standard deviation of the streamwise and vertical velocity 

component, comparing the 2D results with the central plane in the 3D case. These maps 

evince the regions where the velocity fluctuations are higher. The fluctuations of the 

streamwise velocity peak in the recirculation behind the obstruction in both cases, but the 

spatial patterns differ, concentrating closer to the bottom in the 2D case. On the other hand, 

the pattern of fluctuations of the vertical velocity are much more complex in the 3D case, 

which is caused by the interaction of the lateral fluctuations which are absent in 2D. Fig. 14 

shows the map of the standard deviation of the lateral velocity component in the central 

plane of the 3D case. It can be seen that the spot of high lateral fluctuation coincide with 

corresponding spots on the maps of the other components, located about z = 110 and y = 

20. This spot is produced by a secondary flow induced by the lateral walls. Actually, there 

is also a second spot about z = 1250 and y = 30, which is also observed in the fluctuations 

of the three velocity component. 
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The secondary flow induced by the lateral components can be visualized in the current lines 

shown in Fig. 15. In order to capture the change of the flow structure triggered by the 

instabilities at the higher Re number, 3D contour maps of each velocity component were 

produced, showing the central plane together with three cross sections perpendicular to the 

stream located in the obstructed region, just after the obstruction and at the downstream in 

the expansion wake. Figs. 16 and 17 show the 3D color maps of the streamwise velocity at 

Re 100 and 200 respectively. It can be seen that at high Re a region of higher velocity 

appears in the lower central part of the channel, bespeaking of a jet concentration produced 

by the secondary flow. This effect is also reflected in the corresponding 3D maps of the 

vertical and lateral velocities, Figs. 18 to 21. Particularly striking is the complexity of the 

cross-section of the lateral velocity at the wake, where the antisymmetric patterns reveal a 

complicated pattern of vortices. 

 

Table 4. Performance metrics of the implementation of LBIPM. 

Grid size Number of 

spatial cells 

Number of 

permeable points 

Cell updates 

per sec 

Permeable point 

update per sec 

1541440 77760 183 4.6 E7 1.1 E5 

40541440 3.1104 E6 7320 1.9 E9 4.5 E6 

80541440 6.2208 E6 14640 3.4 E9 8.0 E6 

401141440 6.5664 E6 7320 4.1 E9 4.6 E6 

1801141440 2.9549 E7 60390 2.6 E9 5.2 E6 

220114900 2.2572 E7 49610 3.0 E9 6.7 E6 

 

It is worth mentioning that the patterns shown in Figs. 17, 19 and 21 (for Re = 200) were 

built using the average velocity field. The actual flow is unstable and oscillates around the 

values represented by the colors of these maps. Figs. 22 and 23 depict the temporal 

evolution of the velocity components along a vertical centerline located at z = 1000, just 

behind the obstructed pack where the intensity of the fluctuations peaks. It can be seen that 

the 2D oscillations are much more regular than those in 3D. Fig. 24 compares the Fourier 

spectra of the downstream velocity at three points along the vertical centerline at z = 1000, 

namely, at y = 10, 20 and 40, for both 2D and 3D simulation results at Re = 200. The power 

spectra present peaks in the range of frequencies from 10-3 to 10-2. For the 2D results the 

main oscillation peak is located at a slightly lower frequency as compared to the case of the 

3D results. In order to compare the local non-linear dynamics of the oscillations in 2D and 

3D, Fig. 25 depicts the phase-space trajectories taking coordinates of instantaneous 

downstream and vertical velocity components, corresponding to the same three points 

whose spectra are shown in Fig. 24. It can be seen that the shape of the attractors is 
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different in the 2D and 3D solutions, and the oscillations are more symmetrical in the 2D 

case, consistent with the temporal maps.  

The implementation of the LBIPM in GPU shows an excellent performance. The main 

metrics are presented in Table 4. The optimum performance for the GPU NVIDIA Titan 

XP use in the present study was registered for a grid of 220114900 cells, achieving a 

computation rate of 3000 MLUPS. 

 

V. CONCLUSIONS 

A GPU implementation of the 3D model LBIPM for flows through and around a permeable 

medium simulated by localized drag forces was presented. The parameters of the localized 

drag forces let the user adjust the resistance force and its spatial distribution to produce a 

realistic flow around the sparse solid structures. This enables retaining the heterogeneous 

nature of the flow while avoiding the high cost of modelling them in greater detail. Using 

drag points, which can be arranged both in regular or irregular arrays, permeable media 

with different shapes and permeabilities can be straightforwardly emulated. 

The algorithm was applied to simulate a straight rectangular channel partially occupied by a 

regular array of cylindrical wires that form a permeable obstruction. The 3D simulations are 

compared against a previously developed and validated 2D LBM model. Two conditions 

were simulated, the first corresponds to a laminar flow (RE = 100) while the second 

presents an instability that brings about growing waves over and in the wake behind the 

permeable medium (Re = 200). The results show that flow fields obtained from the two 

models largely agree, but the 3D model captures secondary flow structures that propagate 

downstream from the end of the obstruction. Also there are moderate differences in the 

growth of the boundary layer and on the recirculation bubble downstream from the end of 

the obstruction between the 2D and 3D cases. For the case of unstable flow it is observed 

that the flow oscillations obtained in 3D are less regular than in 2D. While the power 

spectra obtained in each scenario barely show significant differences, the time evolution 

produced in the 3D case exhibits frequent losses of coherence. In turn, the 2D case shows 

more persistent regularity during longer time intervals. The intensity of the velocity 

fluctuations at the end of the permeable obstructions is similar for both scenarios, but the 

fluctuations in the 3D case diminish significantly earlier than in 2D. These differences 

between indicate that, even for this relatively low Reynolds number, the fluctuations 

produced by the flow instability have a three dimensional nature that is captured by the 

present model. In general terms, it was shown that by modeling a permeable medium with a 

set of drag points it is possible to deal with small and medium spatial scales without losing 

the heterogeneous nature of permeable flows in the homogenization process. 
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The numerical results presented in Section 4 call for further experimental verification. 

Unfortunately this requires capturing features that clearly unveil the 3D nature of the flow, 

which in this case proved to be extremely challenging. Nevertheless, the present numerical 

predictions are a useful reference source for future benchmarks and for guiding the design 

of adequate experimental setups. In particular, modal decomposition techniques applied to 

experimental measurements and the corresponding numerical simulations can be 

significant. 
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APPENDIX: ESTIMATION OF THE EFFECTIVE PERMEABILITY OF THE 

MEDIUM 

An algebraic relation between the local permeability parameter of the model, 𝜅𝑙, and the 

permeability of the medium, 𝜅𝑚, can be estimated by considering a representative volume 

element (RVE) consisting of the minimum set of grid cells whose tessellation generates the 

medium. Each drag point 𝒙𝑘 contained in the RVE introduces a force 𝑭𝑘∆𝑥3, where 𝑭𝑘 is 

given by Eq. 6. The net force per unit volume in the RVE is then: 

𝑭𝑅𝑉𝐸 =
1

∆𝑥3𝑁𝑅𝑉𝐸
∑ 𝑭𝑘

𝒙𝑘∈ 𝑅𝑉𝐸

∆𝑥3 = −
𝜌𝜈

𝑁𝑅𝑉𝐸𝜅𝑙
∑ 𝒖𝑘

𝒙𝑘∈ 𝑅𝑉𝐸

 

where 𝑁𝑅𝑉𝐸 is the number of grid cells of the RVE. Assuming that the velocity field inside 

the RVE is approximately uniform, the summation of velocities can be written as: 

∑ 𝒖𝑘

𝒙𝑘∈ 𝑅𝑉𝐸

≅ 𝑁𝑘〈𝒖〉 

where 𝑁𝑘 is the number of drag points contained in the RVE and 〈𝒖〉 is the average velocity 

in the RVE. 

The effective permeability of the RVE is defined by the relation between 𝑭𝑅𝑉𝐸 and 〈𝒖〉, 

that is: 

𝑭𝑅𝑉𝐸 = −
𝜌𝜈

𝜅𝑚

〈𝒖〉 

Then the effective permeability of the media is approximately given by: 
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𝜅𝑚 ≅
𝑁𝑅𝑉𝐸  

𝑁𝑘
𝜅𝑙 

It should be stressed that this formula is merely a rough assessment, since the velocity is 

never completely uniform inside the RVE. Actually, strictly speaking, 𝜅𝑚 depends on the 

direction of the flow.  

In general, 𝜅𝑚 can be assessed by numerically calculating the average velocity 〈𝒖〉 in a 

periodic RVE, driven by an external constant and uniform volume force 𝑭. For example, 

the global permeability 𝜅𝑥 in direction x is: 

𝜅𝑥 =
𝜌𝜈〈𝑢𝑥〉

𝐹𝑥
 

Moreover, if the drag points are arranged in asymmetric configurations respect to the 

streamwise direction, transversal velocity gradients may appear inside the RVE, which in 

turn will induce lift forces in addition to drag. And of course, there is the matter of temporal 

variation of the spatial flow distribution inside the RVE, which would render 𝜅𝑚 time 

dependent. A recent formal treatment of these homogenization problems can be found in 

Blanco et al. (2017). 
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FIGURE CAPTIONS 

Figure 1. Diagram of the discrete velocity set corresponding to the LBM scheme D3Q19. 

Index 19 corresponds to stagnation. 

Figure 2. Main algorithm of LBIPM-D3Q19 (part 1) 

Figure 3. Main algorithm of LBIPM-D3Q19 (part 2) 

Figure 4. CUDA code implementing stage 3.2 (drag forces). 

Figure 5. Diagram of the memory allocation in the GPU. 

Figure 6. CUDA Python code for the kernel of the streaming step. 

Figure 7. Schematic diagram of the geometry of the application study. The zoom shows the 

detail of the permeable structure formed by a regular array of thin wires. All lengths are 

expressed in grid units given by the lattice cell size. 

Figure 8. Color contour maps of the streamwise component of the velocity calculated with 

the 3D model at the central vertical plane in the flow direction, for the stable case (Re = 

100). All magnitudes are expressed in grid units. Note the heterogeneous nature of the 

velocity field inside the permeable region. 

Figure 9. Color contour maps of the streamwise component of the velocity calculated with 

the 3D model at the central vertical plane, in the flow direction, for the unstable case (Re = 

200). All magnitudes are expressed in grid units. Note the heterogeneous nature of the 

velocity field inside the permeable region. 

Figure 10. Color contour maps of the streamwise component of the velocity calculated with 

the 2D model at the central vertical plane, in the flow direction, for the stable case (Re = 

100). All magnitudes are expressed in grid units. Note the heterogeneous nature of the 

velocity field inside the permeable region. 

Figure 11. Color contour maps of the streamwise component of the velocity calculated with 

the 2D model at the central vertical plane, in the flow direction, for the unstable case (Re = 

200). All magnitudes are expressed in grid units. Note the heterogeneous nature of the 

velocity field inside the permeable region. 

Figure 12. Color maps of the standard deviation of the streamwise velocity component, for 

the unstable condition (Re = 200), comparing the 2D results (top) with the central plane in 

the 3D case (bottom). All magnitudes are expressed in grid units. 

Figure 13. Color maps of the standard deviation of the vertical velocity component, for the 

unstable condition (Re = 200), comparing the 2D results (top) with the central plane in the 

3D case (bottom). All magnitudes are expressed in grid units.  
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Figure 14. Color maps of the standard deviation of the lateral velocity component, for the 

unstable condition (Re = 200) in 3D. All magnitudes are expressed in grid units. The spot 

of high lateral fluctuation coincide is located about z = 110 and y = 20. 

Figure 15. Current lines for the unstable 3D case (Re = 200). The color maps show the 

magnitude of the average vertical velocity component at each plane (see. Fig. 15). The 

current lines are particle trajectories. 

Figure 16. 3D color map of the streamwise velocity component at Re = 100 (stable). 

Compare with the unstable case in Fig. 13. 

Figure 17. 3D color map of the average streamwise velocity component at Re = 200 

(unstable). Compare with the stable case in Fig. 12. 

Figure 18. 3D color map of the vertical velocity component at Re = 100 (stable). Compare 

with the unstable case in Fig. 15. 

Figure 19. 3D color map of the average vertical velocity component at Re = 200 (unstable). 

Compare with the stable case in Fig. 14. 

Figure 20. 3D color map of the lateral velocity component at Re = 100 (stable). Compare 

with the unstable case in Fig. 17. 

Figure 21. 3D color map of the average lateral velocity component at Re = 200 (unstable). 

Compare with the stable case in Fig. 16. 

Figure 22. Map of the temporal evolution of each velocity component along a vertical 

centerline located at z = 1000, for the 3D case. All magnitudes are expressed in grid units. 

Although the oscillations are chaotic, transients of regular oscillations are observed (see 

between times 280 and 380). 

Figure 23. Map of the temporal evolution of each velocity component along a vertical 

centerline located at z = 1000, for the 2D case. All magnitudes are expressed in grid units. 

Comparing with Fig. 18, the oscillations are much more regular in the 2D case. 

Figure 24. Fourier spectra of the downstream velocity at three points along the vertical 

centerline at z = 1000, namely, at y = 10 (black), 20 (blue) and 40 (red), for both 2D and 

3D simulation results at Re = 200. 

Figure 25. Phase-space trajectories of instantaneous downstream and vertical velocity 

components, corresponding to the same three points whose spectra are shown in Fig. 20. 
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//Algorithm LBIPM-D3Q19 v.2020 

def LBM_PM_Simulation(): 

  

"""LOAD CONFIGURATIONS""" 

 //Grid size (XMAX, YMAX, ZMAX),  PMMAX 
permeable reference points 

 load_LBM_configuration("""XMAX,YMAX,ZMAX,M
AXITERATION,boundary,inlet,outlet,rho,tau,.
""") 

 load_PM_configuration("""PMMAX,X,...""") 

 load_history_results("""means,velocity 
respect to time,...""") 

 

 """ALLOCATE MEMORY ON THE HOST""" 

 f_host= 
np.zeros(shape=(19,XMAX,YMAX,ZMAX), 

dtype=np.float32) //�� 

 ftemp_host= 
np.zeros(shape=(19,XMAX,YMAX,ZMAX), 
dtype=np.float32) //�� advected 

 S_host= 
np.zeros(shape=(19,XMAX,YMAX,ZMAX), 

dtype=np.float32) //�� 

 external_forces_host= 
np.zeros(shape=(3,XMAX,YMAX,ZMAX), 
dtype=np.float32) //define other types of 
external forces 

 X_host = np.zeros(shape=(3,PMMAX), 

dtype=np.float32)//	Permeable points 

 load_partial_results(f_host,S_host)    

 ftemp_host[:,:,:,:]=f_host[:,:,:,:]; 

 X_host[0:PMMAX,:]=X[0:PMMAX,:]    

 

 """ALLOCATE MEMORY ON THE DEVICE AND COPY 
HOST TO DEVICE""" 

 f_device=cuda.to_device(f_host) 

 ftemp_device=cuda.to_device(ftemp_host) 

 S_device=cuda.to_device(S_host) 

 external_forces_device=cuda.to_device(exte
rnal_forces_host) 

 X_device=cuda.to_device(X_host) 

 

"""CONFIGURE BLOCKS""" 

griddimLBM = ZMAX, YMAX, 1 

blockdimLBM = XMAX, 1, 1 

txbPM = 32 

griddimPM = int((PMMAX+txbPM-1)/txbPM), 1, 1 

blockdimPM = txbPM, 1, 1  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

//MAIN ALGORTITHM cont. 

 

"""SIMULATION LOOP""" 

iteration=0 

while (iteration < MAXITERATION): 

collision[griddimLBM,blockdimLBM](XMAX,YMAX,Z
MAX,f_device,ftemp_device, 

external_forces_device,"""tau,rho,...""") 

fluid_pm_interaction[griddimPM,blockdimPM](XM
AX,YMAX,ZMAX,PMMAX,ftemp_device, 

S_device,X_device,"""radio,drag force 
parameters,...""") 

streaming[griddimLBM,blockdimLBM](XMAX,YMAX,Z
MAX,f_device,ftemp_device,S_device) 

inlet_outlet_boundary_conditions[griddimLBM,b
lockdimLBM](XMAX,YMAX,ZMAX,ftemp_device, 

external_forces_device,"""boundary,inlet,outl
et,rho,tau,...""") 

 

if condition_1 is true partial results are 
displayed: 

"""copy to host""" 

ftemp_device.copy_to_host(ftemp_host) 

"""plot(...,ftemp_host,...)""" 

 

if condition_2 is true partial results are 
saved: 

"""copy to host""" 

ftemp_device.copy_to_host(ftemp_host) 

"""save(...,ftemp_host,...)""" 

iteration+=1 

 

"""COPY TO HOST""" 

ftemp_device.copy_to_host(ftemp_host) 

S_device.copy_to_host(S_host) 

  

"""SAVE OUTPUT""" 

save_intermediate_results(...,iteracion_acumu
lada,ftemp_host,S_host) 

save_local_results(XMAX,YMAX,ZMAX,ftemp_host) 

save_vtk_fluid_pm(...) 

save_history_results(...) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kernel: compute fluid_pm(...){ 

k = point of reference index of PM 

iniX=Max(1,int(Xx(k)-radius)) //cell index of 
radius-neighbor 

 iniY=Max(1,int(Xy(k)-radius)) 

 iniZ=Max(1,int(Xz(k)-radius)) 

 endX=Min(Lx,int(Xx(k)+radius)) 

 endY=Min(Ly,int(Xy(k)+radius)) 

 endZ=Min(Lz,int(Xz(k)+radius)) 

 x=iniX..endX{ 

 y=iniY..endY{ 

 z=iniZ..endZ{ 

 

if (|x-Xx(k)|<radius)&(|y-Xy(k)|<radius)&(|z-
Xz(k)|<radius){ //Eq. () 

δh=calculateδh([x,y,z],[Xx(k),Xy(k),Xz(k)])//
Eq. ()  

ukx=ukx+calculateulbx(fi,x,y,z)*δh //Eqs. () 

uky=uky+calculateulby(fi,x,y,z)*δh //Eqs. () 

ukz=ukz+calculateulbz(fi,x,y,z)*δh //Eqs. () 

}}}} 

Fkx=-visclb*ukx/K //Eq. () 

Fky=-visclb*uky/K //Eq. () 

Fkz=-visclb*ukz/K //Eq. () 

x=iniX..endX{ 

y=iniY..endY{ 

z=iniZ..endZ{ 

 

if (|x-Xx(k)|<radius)&(|y-Xy(k)|<radius)&(|z-
Xz(k)|<radius){//Eq. () 

δh=calculateδh([x,y,z],[Xx(k),Xy(k),Xz(k)])//
Eq. () 

fpx=Fkx*δh //Eq. () 

fpy=Fky*δh //Eq. () 

fpz=Fkz*δh //Eq. () 

i=0..Q{//Q possible velocity directions 

auxSilb=calculateSilb(fi,[fpx,fpy,fpz],x,y,z,
i) //Eq. () 

atomicAdd(Silb(x,y,z,i),auxSilb) 

}}}}}} 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

def streaming(XMAX,YMAX,ZMAX,f,ftemp,S): 

z = cuda.blockIdx.x 

y = cuda.blockIdx.y;  

x = cuda.threadIdx.x; 

if ((x<XMAX) and (y<YMAX) and (z<ZMAX)): 

x_e = ((x+1) % XMAX) 

y_n = ((y+1) % YMAX) 

z_t = ((z+1) % ZMAX) 

x_w = (x-1+XMAX) % XMAX 

y_s = (y-1+YMAX) % YMAX 

z_b = (z-1+ZMAX) % ZMAX 

ftemp[0,x,y,z] = f[0,x,y,z] + S[0,x,y,z] 

ftemp[1,x_e,y,z] = f[1,x,y,z] + S[1,x_e,y,z] 

ftemp[2,x_w,y,z] = f[2,x,y,z] + S[2,x_w,y,z] 

ftemp[3,x,y_n,z] = f[3,x,y,z] + S[3,x,y_n,z] 

ftemp[4,x,y_s,z] = f[4,x,y,z] + S[4,x,y_s,z] 

ftemp[5,x,y,z_t] = f[5,x,y,z] + S[5,x,y,z_t] 

ftemp[6,x,y,z_b] = f[6,x,y,z] + S[6,x,y,z_b] 

ftemp[7,x_e,y_n,z] = f[7,x,y,z] + 
S[7,x_e,y_n,z] 

ftemp[8,x_e,y_s,z] = f[8,x,y,z] + 
S[8,x_e,y_s,z] 

ftemp[9,x_e,y,z_t] = f[9,x,y,z] + 
S[9,x_e,y,z_t] 

ftemp[10,x_e,y,z_b] = f[10,x,y,z] + 
S[10,x_e,y,z_b] 

ftemp[11,x_w,y_n,z] = f[11,x,y,z] + 
S[11,x_w,y_n,z] 

ftemp[12,x_w,y_s,z] = f[12,x,y,z] + 
S[12,x_w,y_s,z] 

ftemp[13,x_w,y,z_t] = f[13,x,y,z] + 
S[13,x_w,y,z_t] 

ftemp[14,x_w,y,z_b] = f[14,x,y,z] + 
S[14,x_w,y,z_b] 

ftemp[15,x,y_n,z_t] = f[15,x,y,z] + 
S[15,x,y_n,z_t] 

ftemp[16,x,y_n,z_b] = f[16,x,y,z] + 
S[16,x,y_n,z_b] 

ftemp[17,x,y_s,z_t] = f[17,x,y,z] + 
S[17,x,y_s,z_t] 

ftemp[18,x,y_s,z_b] = f[18,x,y,z] + 
S[18,x,y_s,z_b] 
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