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Abstract It is a well known fact that the usual complex
structure on the real Clifford Algebra (CA) of Minkowski
spacetime can be obtained by adding an extra time-like
dimension, instead of the usual complexification of the alge-
bra. In this article we explore the consequences of this
approach and reinterpret known results in this new context.
We observe that Dirac particles and antiparticles at rest can
be interpreted as eigenstates of the generator of rotations in
the plane formed by the two time-like coordinates and find
an effective finite scale for the extra dimension when no EM
fields are present (without postulating compactness). In the
case of non-vanishing EM fields, we find a gauge condition
to preserve such a scale.

1 Introduction

Since the theory of Kaluza-Klein was proposed [1,2], the idea
of a five dimensional spacetime has been widely explored in
physics. The Kaluza-Klein theory allows the unification of
the Einstein field equations and Maxwell electromagnetism
by considering a 5D manifold with a compact fifth coordi-
nate.

In the early nineties Wesson along with collaborators pro-
posed the existence of a non compact extra dimension and
presents the theory of space-time-matter (STM) or induced
matter theory (IMT) [3,4], as a way to induce 4D Einstein’s
equations from a 5D Ricci-flat manifold, making use of the
Campbell-Magaard theorem.

Following the ideas of IMT, applications to particle
physics and quantum mechanics have also been considered
[5–8]. In these regard, physical quantities (charge, mass) are
obtained as geometric parameters from a higher-dimensional
spacetime. Since one is adding an extra dimension to the
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spacetime, the nature of it (space-like or time-like) must be
taken into account. Spacetimes with time-like extra dimen-
sion (generally referred to as two-times spacetimes, e.g. [9]),
and space-like extra dimension (e.g. [10]), has been consid-
ered with different applications in cosmology and particle
physics.

In this article we are interested in analyzing the Dirac
theory and the consequences of an extra time-like dimension
in spacetime from a Clifford algebra point of view. We shall
also provide an interpretation for what we call the time plane
and relate it to the particle/antiparticle character of a Dirac
spinor field.

Theories with more than two time-like dimensions has
been proposed [11], and also plenty of work has been done
on spaces of signature (+ − − − +) in the context of anti de
Sitter spaces [12,13].

Previous studies has been made in 5D spinors [10,14–16],
but in this article we focus more on the nature of the extra
dimension and the structure of the Clifford algebra without
studying gravitational cases. A central part of the Dirac the-
ory, which sometimes is not thoroughly studied, is the Clif-
ford algebra (or geometric algebra) of spacetime [17–19].
Starting from this algebra, the spinors are defined as rep-
resentation spaces for it, and then we introduce the Dirac
equation.

Interestingly, an extra dimension naturally emerges on
the Dirac theory if we take into account the following fact:
the ordinary Minkowski complex Clifford algebra can be
obtained as a real algebra with an extra time-like dimension
[17,18], as will be detailed in the article. This is a very well
known fact in the theory of Clifford algebras. Indeed, we can
not distinguish (except for grading) between the complexi-
fied 4D Minkowski Clifford Algebra and the real 5D Clifford
algebra: they are isomorphic.

In this work we consider the existence of a time-like extra
dimension, we analyze its Clifford algebra and Spin group.
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Then, we obtain the related massive 4D Dirac equation (with
and without an electromagnetic potential) from a massless 5D
Dirac equation. We observe that the particles and antiparticles
rest solutions for the Dirac field, can be seen as eigenvectors
for the generator of a rotation in the defined time plane. We
also conclude that, when an electromagnetic field is present,
in addition to the time plane rotation we also have a gauge
transformation on the spinor.

In this article we don’t ask for the extra dimension to be
compact, but, when no electromagnetic fields are present,
we obtain an effective scale for this dimension. Additionally,
in the presence of electromagnetic fields we obtain a gauge
condition to keep the aforementioned scale.

2 Clifford algebras preliminaries

2.1 Definitions and general results

Given a real n-dimensional vector space V with a bilinear
symmetric form ϕ : V × V → R, we say that � : V → R,
defined by �(v) = ϕ(v, v), is the associated quadratic form
and we call the pair (V,�) a quadratic space. If the form ϕ is
non-degenerate we say the quadratic space is regular. Since
ϕ(a, b) = �(a+b)−�(a)−�(b)

2 , one doesn’t lost information
when passing from ϕ to �.

An important subgroup of the group of linear isomor-
phisms on this vector space is the group of isometries that
we shall denote by O(�), and define by

O(�) = { f ∈ Aut(V ) : �( f (v)) = �(v) ∀v ∈ V }.
An important subgroup of this group is that composed by
positive determinant transformations, SO(�):

SO(�) = { f ∈ O(�) : det( f ) > 0}.
For any quadratic space, one can build an associative uni-
tary real algebra Cl(�), called the Clifford algebra (CA) for
(V,�). It is possible to define that algebra in different equiv-
alent ways. Here, we shall do it as follows: Let {e1, . . . , en}
be a basis for the vector space V , and ϕi j the matrix elements
of the bilinear form ϕ in the given basis. The CA is defined
by the generators {E1, . . . , En}, with the relations:

Ei E j + E j Ei = 2ϕi j1, (1)

where 1 is the unit in Cl(�). We shall just mention that this
algebra can also be constructed as a quotient algebra of the
tensor algebra modulo certain ideal [19], but we shall not go
further in this subject. Since the tensor algebra is generally
considered a real algebra, the CA also happens to be a real
algebra. Because there is an injective function from V to the
CA, via ei �→ Ei , by abuse of notation we shall refer to the
generators of this algebra as ei . In the same way, we shall
refer to the subspace spanR{E1, . . . , En} ⊆ Cl(�), as V . It

happens that this algebra is finite dimensional with dimension
2n [18].

We have that a basis for this algebra is the set:

ei1 . . . eik : 1 ≤ i1 < i2 < · · · < ik ≤ n. (2)

Using this fact, we will say that an element of the form
∑

i< j A
i j ei e j is a bivector or 2-vector and in general a k-

vector is an element of the form:

∑

i1<···<ik

Ai1...ik ei1 . . . eik ,

and a 0-vector is an element proportional to 1. We call
∧

k(V )

or just
∧

k the vector space of k − vectors, which means
∧

1 = V . It can be seen that dim(
∧

k) = (n
k

)
. Hence there

is just one independent n-vector and also one independent
0-vector for every quadratic space. The unitary n-vector is
also called the pseudoscalar of the algebra.

We define the grade involution α on a basis element
ei1 . . . eik as: α(ei1 . . . eik ) = (−1)kei1 . . . eik , and extend it
to any element as an algebra homomorphism on Cl(�).

It can be proven that this morphism induces a Z2 grading
in the algebra, splitting it into Cl(�) = Cl(�)0 ⊕ Cl(�)1,
where Cl(�)i = {x ∈ Cl(�) : α(x) = (−1)i x}. It is true
that Cl(�)0 is a subalgebra of Cl(�) while Cl(�)1 is not.
Furthermore, it happens that

Cl(�)0 =
⊕

i even

∧

i
(V ) and Cl(�)1 =

⊕

i odd

∧

i
(V ).

We define reversion, t , on a basis element ei1 . . . e1k as
t (ei1 . . . eik ) = eik . . . ei1 , and extend it as an algebra anti-
morphism (meaning t (a.b) = t (b).t (a), details can be found
in [17,19]).

Using the previous functions we define the Clifford conju-
gation on any CA element x as x = (t ◦ α)(x) = (α ◦ t)(x).
This is an algebra anti-morphism and in a basis element
ei1 . . . eik it can be seen to be ei1 . . . eik = (−1)keik . . . ei1 .

Last, we define the norm N (x) of an element x in the CA
as N (x) := xx = xx . An important feature of this function
is that N (v) = −�(v)1 for any v ∈ V .

Although the algebra is constructed as a real algebra, from
a real quadratic space, in occasions we need to work with
the complexified version of the algebra. Roughly speaking
complexifying the algebra consists in allowing scalars in the
linear combinations to be complex numbers, transforming an
R-algebra into a C-algebra. Mathematically this is attained
by building the algebra ClC(�) := C⊗Cl(�) with the prod-
uct trivially defined.

It can be shown that any regular quadratic space admits an
orthogonal basis, in the following sense: For every regular
quadratic space there’s a basis {e1, . . . , ep, ep+1, . . . , ep+q}
such that:
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ϕ(ei , e j ) =

⎧
⎪⎨

⎪⎩

0 i �= j

1 i = j ∈ {1, . . . , p}
−1 i = j ∈ {p + 1, . . . , p + q}

, (3)

with p + q = n. We say that (p, q) or {+,+, · · · ,+
︸ ︷︷ ︸

p−times

,

−,−, · · · ,−
︸ ︷︷ ︸

q−times

} is the signature of ϕ.

We will denote the quadratic form of signature (p, q) as �p,q

and its CA as Clp,q .

2.2 The Clifford–Lipschitz group and its Lie algebra

In the CA there are certain groups with special properties.
All of them are subgroups of the group of units, Cl(�)∗, of
the given Clifford Algebra. These groups are closely related
to the isometries of the quadratic space and to the well known
adjoint action of the CA. In this section we will briefly
define the Clifford–Lipschitz group and also give its Lie
algebra without proof. Detailed calculations can be found
in [17]. Let x ∈ Cl(�)∗, then there exists x−1 such that
1 = xx−1 = x−1x . The Clifford–Lipschitz group �(�) is
defined as follows:

�(�) = {x ∈ Cl(�)∗ : xvx−1 ∈ V ∀ v ∈ V }. (4)

Here we are using the injection V ↪→ Cl(�) from Sect. 2.1
for xvx−1 to be well defined.

As it is explained in [17] the Lie algebra of this Lie group
is the set:

γ (�) =
∧

2
(V ) ⊕ Z(Cl(�)) , (5)

with Z(Cl(�)) the center of the CA:

Z(Cl(�)) = {x ∈ Cl(�) : xa = ax ∀a ∈ Cl(�)}, (6)

and the Lie algebra bracket being the commutator in the CA,
[x, y] = xy − yx .

In particular, we have Z(Cl1,3) = R1 = ∧
0 and

Z(Cl2,3) = R1 ⊕ Ri ∼= C, with i = e0e1e2e3e4, the pseu-
doscalar of Cl2,3.

As in the previous section, we will call �p,q the Clifford–
Lipschitz group of the bilinear forms considered in 3.

Since we are dealing with Lie groups and given the dis-
crepancies between the physics and mathematics literature,
it is a good point to state what definition we are going to use
for a generator of an element S in a Lie group G.

Recall that if G is a Lie group, then it is a manifold, and its
Lie algebra g is defined as the tangent space of that manifold
at the point 1 ∈ G. Given an element S ∈ G connected to the
identity, there exists a path β : [0, 1] → G, with β(0) = 1
and β(1) = S. We say that dβ(t)

dt |t=0 is the generator of S.
Observe that the generators of elements in G belong to g the
Lie algebra of G. It can be seen that this is a good definition.

2.3 The Spin group and its Lie algebra

The Spin group of a certain CA, Spin(�), is a subgroup of the
Clifford–Lipschitz group. This group is defined as follows:

Spin(�)

= {x ∈ Cl(�)0 | xvx−1 ∈ V ∀v ∈ V ; N (x) ∈ {−1,+1}}.
(7)

We will call Spin(p, q) the Spin groups of the bilinear forms
defined in 3.

An important property of this group is that it is a double
cover of the isometry group for the quadratic form �. This
is stated in the following theorem:

Theorem 1 There exists a surjective group homomorpism
Ad : Spin(�) → SO(�) with ker(Ad) = {−1,+1}. The
mapping Ad is given by:

Ad(S)(v) = SvS−1,

recall that we use the injection in Sect. 2.1 in order to have
V ⊆ Cl(�).

This surjective group homomorphism can be extended to
the Clifford–Lipschitz group:

Ad : �(�) → O(�) i f dim(V ) is even, with ker Ad = R
∗1

Ad : �(�) → SO(�) i f dim(V ) is odd, with ker Ad

= R
∗1 ⊕ R

∗ I, where I = e1 . . . en
(8)

The function Ad is indeed a Lie group representation. Ad is
called the adjoint representation or adjoint action of Spin(�)

(or the Clifford–Lipschitz group).
It is well known that any real CA is isomoprhic to a finite-

dimensional matrix algebra over R, C or H (or direct sum
of these algebras), while any complex CA is isomoprphic to
a finite-dimensional matrix algebra over C (or direct sum of
these algebras) (see [17,18]).

In the framework of the Dirac theory one works with the
matrix form of the CA, and with what is called the regular
representation of the CA (which induces a representation of
the Spin group). In this case the representation space is the
space of spinors (actually algebraic spinors), which are the
column vectors for which the CA matrices represent a linear
transformation. For instance, if Cl(�) ∼= M(2,C) then, a
spinor is an element in C

2.
It happens that the space of spinors can be identified with

a minimal left ideal in the CA. We will not enter in the details
of this construction (see [17,18]) but this is a very well known
fact in the CA theory, and indeed it would be a more elegant
way to introduce spinors; however, for sake of simplicity, we
content ourselves with the definition given above.

Let 	 be a spinor, then an element in A ∈ Cl(�) acts on
	 just by left multiplication using the matrix representation
stated above, 	 �→ A	.
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The Theorem 1 is an important result because for every
isometry of the vector space V it provides an element (two,
actually) in the Spin group. If we further require the ele-
ment in the Spin group to be connected to the identity, we
get uniqueness. In this sense, the morphism Ad tells us how
does a spinor change when we perform certain coordinate
transformation in SO(�).

Reciprocally, if we decide to make a transformation in the
space of spinors 	 �→ S�, with S ∈ Spin then, Ad gives us
the corresponding transformation induced by it in V .

As will be clarified in the following sections, the vector
space V will model the coordinate spacetime, while the space
of spinors corresponds to a spin 1/2 physical field. Hence,
the relation between the adjoint representation and the reg-
ular one reflects the relationship between coordinate space-
time and internal space for the configuration of the field. In
this sense the elements in the kernel of Ad are somehow an
internal symmetry of the theory of spinors.

It can be seen that the Lie algebra spin(�) of this Lie group
is given by:

spin(�) =
∧

2
(V ), (9)

and that by virtue of the previous theorem, the following Lie
algebra isomorphism holds: spin(�) ∼= so(�).

3 Clifford algebras in physics and applications to the
Dirac theory

3.1 The Minkowski real CA and its complexification from
an extra dimension

As stated in the previous sections, the CA is associated
to a particular quadratic space. In the realm of physics
we encounter this kind of spaces in different contexts. For
instance in Newtonian mechanics, space is modeled as the
quadratic spaceR3 with the Euclidean quadratic form (which
happens to be a norm), however, the case we will pay
more attention to in this article is that of special relativ-
ity. In this theory space-time is modeled as a Lorentzian
4-dimensional space. This is, the vector space R4, with coor-
dinates (x0, x1, x2, x3) (which we will generically refer to
as xμ) together with the Minkowski bilinear form, whose
components in the Cartesian basis are:

ημν =

⎧
⎪⎨

⎪⎩

1 μ = ν = 0

−1 μ = ν = j; j ∈ {1, 2, 3}
0 μ �= ν

. (10)

It is said that we adopt the signature {+ − −−} or (+ −
−−) or 1, 3. We will call this quadratic regular space the
Minkowski space-time, and refer to it as R1,3. Thus, the real
CA corresponding to this spacetime, Cl1,3(R), will be the

algebra generated by elements {eμ : μ ∈ {0, . . . , 3}} with
the relation:

eμeν + eνeμ = 2ημν1, (11)

According to the well known classification of CA, the real
algebra for the Minkowski spacetime with this signature is
isomorphic to the algebra of 2 × 2 matrices with entries in
the quaternions.

In this article we are going to work with the Dirac the-
ory of spinors. This theory is derived partially from quan-
tum mechanics, which postulates the existence of a complex
Hilbert space of physical states, hence we need to use the
complex CA, Cl1,3(C). This algebra is well known to be
isomorphic to the complex algebra of 4 × 4 matrices with
complex entries, M(C, 4). There are infinite matrix repre-
sentations for the generators as matrices in M(C, 4), but the
more popular are perhaps the Dirac and Weyl representations.

We will pay special attention to the following known fact:
the CA of R1,3 can be “complexified” in an alternative way
[18], which allow us to keep working with real Clifford alge-
bras. The complexification is accomplished by adding an
extra time-like dimension, x4, to the Minkowski spacetime
and taking the real CA of the 5D spacetime with signature
{+ − − − +}, R2,3. This is possible because the following
isomorphisms hold:

Cl2,3(R) ∼= M(C, 4) ∼= Cl1,3(C). (12)

In this case, the imaginary unit in Cl1,3(C) is identified with
the pseudoscalar e0e1e2e3e4 in the 5D real algebra. This iden-
tification works because the pseudoscalar squares to −1, and
it also lies in the center of the algebra, Z (Cl2,3). Thus, we
have that Z(Cl2,3) ∼= C.

It is important to be careful when working in Cl2,3(R),
since we shall use the name i to refer to the pseudoscalar, but
we are by no means complexifying Cl2,3(R). Reciprocally,
when we complexify the theory in the usual way, this fifth
dimension emerges naturally as the matrix element γ5, which
squares to 1 and is associated with the chirality of the Dirac
spinor fields. Since the isomorphism 12 holds, the represen-
tations of Cl1,3(C) and Cl2,3(R) are equivalent, and hence
the spaces of spinors are isomorphic.

In this article we shall explore the consequences of consid-
ering this extra dimension as a real physical one, particularly
in the subject related to the particle/antiparticle interpreta-
tion of the spinor field. Following the spirit of the theory of
Induced Matter [20,21], we will obtain the massive 4D Dirac
equation from a massless 5D Dirac equation.

In what follows we will name the 5D coordinates xA, and
the 5D Minkowski metric ηAB = diag(1,−1 − 1 − 1, 1),
hence uppercase latin scripts range from 0 to 4. The 4D
coordinates will be named xμ and the 4D metric ημν =
diag(1,−1 − 1 − 1), hence lowercase greek scripts range
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from 0 to 3. We shall use latin lowercase scripts (e.g. i, j, k),
that take the values 1, 2, 3.

Although 12 establishes that the algebras Cl2,3(R) and
Cl1,3(C) are isomorphic, the isomorphism is not univocally
determined. Hence we have to pick an isomorphism that will
allows us to do the calculations and provide physical inter-
pretations.

If we define the tilded elements:

ẽμ = −ie4eμ = −e0e1e2e3eμ (13)

for μ ∈ {0, . . . , 3}, then we have the following:

ẽ0 = e1e2e3 ; ẽ1 = e0e2e3 ; ẽ2 = e1e0e3 ; ẽ3 = e0e1e2.

(14)

Using this, we can see that the algebra generated by
{ẽ0, ẽ1, ẽ2, ẽ3} is a subalgebra of Cl2,3, and is equal to the
algebra generated by {e0, e1, e2, e3}.
Definition We will call a vector Ṽμẽμ, a tilded 4-vector, in
opposition to an ordinary 5-vector V AeA.

An interesting feature of this treatment is that the elements
i ẽμ now belong to the vector space

∧
2(R

2,3), which is the Lie
algebra of the group Spin(2, 3) and hence, the vectors gen-
erating the algebra can also be seen as generators of certain
coordinate transformations preserving the 5D metric tensor
in the Spin group. Recall that, for instance, e0e1 is the gener-
ator of a boost in the direction x1 and e1e2 is a generator of a
rotation in the plane x1 − x2. If we think of transformations
in a space of functions in R

n , then ∂
∂xk

is the generator of a
translation in the k direction.

Since i ẽμ = e4eμ ∈ ∧
2(R

2,3), i ẽ0 is the generator of a
rotation in the plane of the two time coordinates, and the ele-
ments i ẽi ∈ ∧

2(R
2,3), are the generators of Lorentz boosts

with respect to the extra time and in the spatial direction
xi . Furthermore, it can be easily seen that ẽμẽν = eμeν ,
and hence rather [ẽμ, ẽν] or [eμ, eν], can be considered as
a generator or a Lorentz transformation in the 4D space
(x0, x1, x2, x3). Also, if we consider a Lorentz transforma-
tion in the 4D spacetime (x0, . . . , x3) with x ′

μ = 
ν
μxν ,

we know that there exists an element S ∈ Cl, such that
SeμS−1 = 
ν

μeν . Now, if we do the same computation on
the ẽμ we have the same relation, namely, SẽμS−1 = 
ν

μẽν .
This is due to the fact that S = exp (εαβeαeβ), with εαβ skew-
symmetric. Thus, S commutes with e4 in ẽμ = −ie4eμ, and
we arrive to the stated conclusion. This is important because it
implies that, when restricted to the 4D space-time, a 4-vector
Vμeμ transforms in the exact same way as the element V μẽμ.
Note that since i ẽ0 = e4e0 commutes with e1e2, we can have
a spinor that is simultaneously a spin eigenvector and an
eigenvector for the 2-time plane rotation generator e4e0.

Given a general spinor field ψ we can define its bilinear
covariants [17,18], which are quantities that transform as

tensors under an isommetry of the quadratic space. Bilinear
covariants of order k with 0 ≤ k ≤ n can be defined in an
n-dimensional vector space, for instance, in 4D Minkowski
spacetime we define the scalar, vector, bivector, axial vector
and pseudoscalar covariants:

σ = ψ̄ψ, Jμ = ψ̄γ μψ, Sμν = i

2
ψ̄[γ μ, γ ν]ψ,

Kμ = ψ̄γ 5γ μψ, ω = iψ̄γ 5ψ, (15)

where γ 5 = iγ 0γ 1γ 2γ 3. It is known that in Minkowski
spacetime this quantities determine the spinor field up to a
complex factor [18]. Note that this are sixteen real numbers
while the real components of a spinor are only eight, hence
they can not be all independent. Indeed they are related by
the Fierz–Pauli–Kofink identities [18,22]:

− ωSμν + σε αβ
μν Sαβ = εμναβ J

αK β, (16a)

Jμ J
μ + KμK

μ = 0 = JμK
μ, (16b)

Jμ J
μ = ω2 + σ 2 . (16c)

Being able to express a spinor in terms of tensor quanti-
ties allows us to reduce their degrees of freedom by means
of Lorentz transformations on the base vector space. For
instance, provided that vector covariant Jμ in Eq. 15 is time-
like, we can perform a Lorentz boost on the spinor to remove
the spacial components of Jμ. Also, once the boost is made,
the axial vector transform to a pure spatial vector (due to
16b), and we can perform a rotation to align the axial vector
components to one of the axis of our frame, say the z-axis.
Hence, the components of the spinor are reduced from eight
to two, by removing six degrees of freedom (three from the
boost and three from the rotation). It can be shown that regu-
lar spinors (which implies Jμ is time-like) in four dimensions
can be written in the chiral basis in the form [14,22]:

ψ = φ

⎛

⎜
⎜
⎝

eiβ/2

0
e−iβ/2

0

⎞

⎟
⎟
⎠ . (17)

Thus, although a spinor in four dimensions (as well as in
five) have eight real components, not all of them are genuine
degrees of freedom, since they can be removed by Lorentz
transformations. As it can be seen from 22, the genuine
degrees of freedom of a regular spinor in four dimensions
are only two.

Let’s note that in five dimensions the set of bilinear covari-
ants amount to 32 quantities while they are only 16 in the
4D spacetime, however, since the spinor is determined up to
a complex factor by the 4D bilinear covariants there must
be some redundancy in the five dimensional case. Indeed,
the fact that we have a central pseudoscalar in the alge-
bra provides this redundancy. For instance the pseudoscalar
ψ Iψ = Iψψ of the 5D spinor is just the scalar multiplied by
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the complex unit. As a result, it is enough for us to consider
only the following bilinear covariants:

σ = ψ̄ψ, V A = −iψ̄eAψ, MAB = i

2
ψ̄[eA, eB]ψ, (18)

where σ is the scalar, V A the pseudovector and MAB the
bivector. We have picked these particular covariants because
they are all real. As we will explain later, we pick a matrix
representation satisfying γμ = ẽμ = −ie4eμ and e4 = γ5

(with γ0 and γ5 in the Dirac representation), which is equiv-
alent to picking f = 1

2 (1 + ẽ0)
1
2 (1 + i ẽ1ẽ2) as the primitive

idempotent generating the algebraic spinors (this also makes
ψ = ψ†γ 0 and hermitian adjoint coincide with Clifford con-
jugation). Hence, in terms of the gamma matrices the bilinear
covariants are:

σ = ψ̄ψ, Vμ = ψ̄γ 5γ μψ = Kμ,

V 5 = −iψ̄γ 5ψ = ω, Mμ4 = ψ̄γ μψ = Jμ,

Mμν = ψ̄[γ μ, γ ν]ψ = Sμν.

(19)

Lets note that the following equations hold:

VAV
A = −σ 2 (20a)

MABM
AB = −VAV

A = σ 2 (20b)

MABV
A = 0. (20c)

As we can see, the pseudoscalar is not an independent quan-
tity any more, but the fifth component of the pseudovec-
tor V A. Hence in addition to the removal of the six degrees
of freedom in four dimensions, we can eliminate the pseu-
doscalar by a time-time rotation, amounting to a total elimina-
tion of seven degrees of freedom. Note that the order of these
transformations is important. One possibility is to perform
a time-time rotation making ω = 0, and then continue with
the usual three boosts setting J i = 0 and the three rotations
aligning Ki with the z-axis. Because of 16b, performing the
time-time rotation after the other six transformations, would
create a non-vanishing space component for Jμ, interfering
with the work of the original boosts. In conclusion, we can
set the spinor 22 to have ω = 2φ2 sin β = 0, reducing it to
the form:

ψ = φ

⎛

⎜
⎜
⎝

1
0
1
0

⎞

⎟
⎟
⎠ , (21)

which is in agreement with the previous work [14].
Since we are in a 5D spacetime, we could also wonder if

we it would be possible to use the three boosts with respect
to the extra time to remove degrees of freedom from the
spinor 22. This would seem paradoxical since there are at
most only two degrees of freedom left to remove. In order to
perform such a boost, note that while U A will transform as a
vector under the transformation, Jμ = Mμ4 will transform

as the components of a rank two tensor. We have arrived at
the spinor 22 by aligning the space vector K j to the z-axis,
hence K 1 = K 2 = 0, also K 0 = 0 (because J i = 0),
which amounts to V A = (0, 0, 0, K 3, ω). Any boost involv-
ing directions x and y would ruin our alignment of Ki with
the z-axis, hence those are not free boosts for us to per-
form. However, we can perform an extra-time boost in the
z-direction in order to set V 4 = 0. This will then reduce the
form of the spinor 22 to 21, which sets ω = 0. Note that this
reduction would be equivalent to the one made using a time
plane rotation.

For singular spinors the discussion is very similar. Let’s
observe that σ = 0 is an independent condition, but ω = 0 is
not as strong as in four dimensions. If we assume σ = 0 and
ω = 0 then VμVμ = −V 4V 4 = −ω2 = 0, however we can
perform a rotation in the time plane to make V 4 = ω �= 0,
hence the case reduces to the case of regular spinors with
β = π/2, (since σ = 2φ2 cos(β) = 0). In accordance with
reference [14] we arrive at the conclusion that every singular
spinor can be written as:

ψ = φ

⎛

⎜
⎜
⎝

eiπ/4

0
e−iπ/4

0

⎞

⎟
⎟
⎠ . (22)

3.2 Dirac equation in Minkowski spacetime R
1,3 from R

2,3

for neutral matter

If we consider the four dimensional Minkowski spacetime
R

1,3. The Dirac equation in the complexified Clifford algebra
Cl1,3(C) is:

ieμ∂μ	 − mc

h̄
	 = 0, (23)

with 	 a Dirac spinor,m the mass of the spinor field and i the
complex imaginary unit. In this section we shall consider the
Minkowski 5D spacetime with an extra time-like dimension,
R

2,3 described in the previous section. An important thing
to state about the coordinates is that, although x0 and x4

are time-like, all the coordinates have dimensions of length;
hence x0 = ct0 and x4 = ct4. Since x0 and x4 are both
time-like, we will call the plane x0 − x4 the time-plane.

Within the Induced Matter Theory (IMT) [3–8,20,21], a
way to treat mass in the 4D spacetime is to induce it from
a 5D spacetime, as a property of the particle motion in the
fifth direction. In our case, we shall apply this to the Dirac
equation. In order to arrive to a massive 4D Dirac equation,
we shall propose the massless 5D Dirac equation :

eB∂B	 = 0, (24)
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which can be written in the following form:

eμ∂μ	 + e4∂
4 = 0 ⇐⇒ (e4eμ)∂μ	 + (e4)

2∂4	 = 0

⇐⇒ (e4eμ)∂μ	 + ∂4	 = 0. (25)

Using the elements ẽμ defined in the previous section and

assuming ∂4	 = i p
4

h̄ 	 = −mc
h̄ 	, the equation is written:

i ẽμ∂μ	 − mc

h̄
	 = 0, (26)

and due to the fact that the elements ẽμ obey the rules for
the Clifford algebra Cl1,3, we recover the familiar 4D Dirac
equation.

Let’s solve the Dirac Eq. 26, subject to the condition
∂ i	 = 0 ∀i ∈ {1, 2, 3}. This is, the spinor field is homo-
geneous in space, but may change in time. Then the equation
is written:

i ẽ0∂
0	 + ∂4	 = e4e0∂

0	 − mc

h̄
	 = 0

�⇒ e4e0∂
0	 = mc

h̄
	. (27)

Multiplying by e0e4 on both sides we get:

∂0	 = mc

h̄
e0e4	. (28)

Let’s recall that ∂0 is the generator of time-translations and
e0e4 is a generator of a rotation in the plane x0 − x4. Hence,
this equation provides an equivalence between two trans-
formations of the spinor field that we are to explore. Since
we have ∂4	 = −mc/h̄	, it follows that 	(x0, . . . , x4) =
�(x0, . . . , x3) exp(−mc

h̄ x4). The 4D spinor solution �, can
be Fourier-expanded:

�(x0, . . . , x3)

=
4∑

i=1

∫

dpAi (p0, . . . , p3) exp

(

−i
pμ

h̄
xμ

)

ui , (29)

with {u1, u2, u3, u4} a basis for the spinor vector space and
Ai : R

1,3 → C, functions. The integral is taken on the
surfaces pμ pμ = m2c2(≡ pA pA = 0). The fact that ∂0

is the generator of translations in the (time) direction x0,
means that the operator defined by

exp
(
α∂0) =

∞∑

n=0

αn(∂0)n

n! , (30)

complies with

exp
(
α∂0)	(x0, . . . , x4) = 	(x0 + α, x1, . . . , x4). (31)

With some care we will write

exp
(
x0∂

0)	(0, x1 . . . , x4) = 	(x0, x1, . . . , x4), (32)

where the left hand side must be interpreted as: taking the
spinor 	 as a function of x0, applying exp(α∂0) (with α an
external parameter) and then substituting α by the value x0

and x0 = 0, in the initial state. This is important because
the operator exp(x0∂

0), where x0 is a variable, is NOT the
translation of magnitude x0 in the direction x0.

Since we are to work with rest solutions (∂k	 = 0), pk =
0 holds for every k in Eq. 29, and since the integral in the same
equation is taken over pA pA = 0 we get that (p0)

2 = m2c2,
which implies p0 = ±mc and we obtain for the full spinor:

	(x0, x4) =
4∑

i=1

[

Ai
0 exp

(

− i
mc

h̄
x0 − mc

h̄
x4

)

+Bi
0 exp

(

i
mc

h̄
x0 − mc

h̄
x4

)]

ui , (33)

and for x0 = 0:

	(0, x4) =
4∑

i=1

Ai
0 exp

(
− mc

h̄
x4

)
ui , (34)

with Ai
0 = Ai

0 + Bi
0, and all of these numbers are com-

plex constants. By virtue of Eq. 28, and due to the fact that
[∂0, e0e4] = 0, we have:

exp
(
α∂0)	 =

∞∑

n=0

αn(∂0)n

n! 	 =
∞∑

n=0

(
mcα

h̄

)n
(e0e4)

n

n! 	

= exp

(
mcα

h̄
e0e4

)

	. (35)

The quantity exp
(mcα

h̄ e0e4
) ∈ Cl2,3 can be computed via

the series expansion in Eq. 35. We know that (ie0e4)
2 = 1,

which implies

(ie0e4)
n =

{
1 if n is even

ie0e4 if n is odd
. (36)

Hence,we have

exp

(
mcα

h̄
e0e4

)

= cosh

(−imcα

h̄

)

1

+ sinh

(−imcα

h̄

)

ie0e4. (37)

Using the identities cosh(i x) = cos(x) and sinh(i x) =
i sin(x), together with the fact that cosh is even and sinh
is odd, we have

exp

(
mcα

h̄
e0e4

)

= cos

(
mcα

h̄

)

1 + sin

(
mcα

h̄

)

e0e4. (38)

Combining this result with Eq. 35 and recalling the definition
i ẽ0 = e4e0, we get for rest spinor solutions

	(x0, x4) =
[

cos

(
mcx0

h̄

)

1 − i sin

(
mcx0

h̄

)

ẽ0

]

	(0, x4).

(39)
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In this fashion we obtain the “coordinate-time evolution” for
the field from the initial value, using an element on the Spin
group of the 5D Minkowski space.

3.3 Time evolution in coordinate space-time

The advantage of the treatment here is that the “time-
evolution” operator represents also a coordinate transforma-
tion and not only an internal transformation of the spinor.
Since this operator is the exponential of a real multiple of
e4e0, it belongs to the real Lie group Spin(2, 3) and hence the
adjoint action will transform a vector V AeA into another vec-
tor V ′AeA, with V ′

AV
′A = VAV A. Let’s consider a 5-vector

Vμeμ + V 4e4 and see how it is transformed by the element
exp

(mcα
h̄ e0e4

)
via the adjoint representation. We have

exp

(
mcα

h̄
e0e4

)

(ei ) exp

(−mcα

h̄
e0e4

)

=
[

cos

(
mcα

h̄

)

1 + sin

(
mcα

h̄

)

e0e4

]

ei

[

cos

(
mcα

h̄

)

1

− sin

(
mcα

h̄

)

e0e4

]

=
[

cos

(
mcα

h̄

)

1 + sin

(
mcα

h̄

)

e0e4

][

cos

(
mcα

h̄

)

1

− sin

(
mcα

h̄

)

e0e4

]

ei = ei .

(40)

Therefore the transformation in SO(2, 3) does not affect the
three spatial components of a vector V i . Computing analo-
gously for e0 and e4, we obtain

e0 �→ exp

(
mcα

h̄
e0e4

)

(e0) exp

(−mcα

h̄
e0e4

)

= cos

(
2mcα

h̄

)

e0 − sin

(
2mcα

h̄

)

e4 (41)

e4 �→ exp

(
mcα

h̄
e0e4

)

(e4) exp

(−mcα

h̄
e0e4

)

= cos

(
2mcα

h̄

)

e4 + sin

(
2mcα

h̄

)

e0 (42)

. Using this, a vector V AeA transforms according to
[

V 0 cos

(
2mcα

h̄

)

+ V 4 sin

(
2mcα

h̄

)]

e0

+
[

V 4 cos

(
2mcα

h̄

)

− V 0 sin

(
2mcα

h̄

)]

e4 + V iei .

(43)

This transformation is a rotation of angle 2mcα/h̄ on the
plane of two times x0 −x4. Note that if we take the projection
of this 5-vector on the hyperplane orthogonal to the direc-
tion x4 (the 4D space {x4}⊥), Vμeμ and compute the adjoint
action on it, and then project again on the same hyperplane

we obtain

Vμeμ �→ cos

(
2mcα

h̄

)

V 0e0 + V iei (44)

. This is clearly not an isometry, since V ′μV ′
μ − VμVμ =

sin2(2mcα/h̄)V 0V0, which in general is not zero. This is not
a problem since the quantity that should be preserved by the
Spin(2, 3) group is the 5D norm.

3.4 The rest solution and the particle-antiparticle character

Let us recall that in the usual CA Cl1,3, the generators eμ

admit the Dirac matrix representation given by the gamma
matrices. In particular the matrix γ0 representing e0 is written
in the form

γ0 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟
⎟
⎠ , (45)

which clearly means that the basis of spinors {u1, . . . , u4} is
a basis of eigenvectors for the matrix γ0. The interpretation
of the Dirac spinor as a particle or antiparticle for the rest
solution (pi = 0) is given precisely by the eigenvalue of γ0,
associated to the eigenstate in consideration. If it’s +1, it is
a pure particle state and if it is −1, it is a pure antiparticle
state.

Now, the treatment given in this article is different. We
have decided to add an extra time-like coordinate and to inter-
pret the ordinary 4D Clifford algebra as a subalgebra of it.
In our case the elements appearing in the Dirac equation are
not eμ, but ẽμ = −ie4eμ, and because of this fact, the par-
ticle/antiparticle interpretation of the rest solution should be
given by the eigenvalues of ẽ0 instead of e0 alone. As was
stated before, seeing the 4D CA as this particular subalge-
bra generated by ẽμ, has the advantage that ieμ lies in the
Lie algebra of the Spin(2, 3) group and hence it is the gen-
erator of certain coordinate isometry. Due to the facts stated
above, and in order to work in a spinor basis of pure par-
ticle/antiparticle rest states, we need to change our matrix
representation: instead of taking e0 to be diagonal and equal
to γ0, we demand ẽ0 = −ie4e0 = γ0. By consistency of the
CA commutation relations, this implies also that ẽμ = γμ,
for every μ ∈ {0, . . . , 3}. Recall that e4 = γ5, hence we have
ẽμ = γμ = −iγ5eμ, and multiplying by iγ5 on both sides,
we have eμ = iγ5γμ. With this, the new representation for
the generators eA is given by

e0 =

⎛

⎜
⎜
⎝

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞

⎟
⎟
⎠ ; ek =

(−iσk 0
0 iσk

)

; e4 =

⎛

⎜
⎜
⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠ ,

(46)
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where the matrices σk are the well known Pauli matrices (with
σ 2
i = 1). Since ẽ0 is diagonal, we have that the basis

u1 =

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ ; u2 =

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ ; u3 =

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ ;

u4 =

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ (47)

is a basis of eigenstates of ẽ0 = −ie4e0 with u1 and u2 having
eigenvalue +1, and u3 and u4 having −1 as eigenvalue.

Let us use this fact for the rest solution 39, with the integral
expansion 34

	(0, x4) =
2∑

i=1

Ai
0e

−mc
h̄ x4ui +

4∑

j=3

A j
0e

−mc
h̄ x4u j . (48)

In the following, when writing ui we will be assuming i ∈
{1, 2} and when writing u j , j ∈ {3, 4}. Applying the operator

exp(−imcx0

h̄ ẽ0) on the ui and u j we have:

[

cos

(
mcx0

h̄

)

1 − i sin

(
mcx0

h̄

)

ẽ0

]

ui

=
[

cos

(
mcx0

h̄

)

1 − i sin

(
mcx0

h̄

)]

ui

= e−i
mcx0
h̄ ui ,

[

cos

(
mcx0

h̄

)

1 − i sin

(
mcx0

h̄

)

ẽ0

]

u j

=
[

cos

(
mcx0

h̄

)

1 + i sin

(
mcx0

h̄

)]

u j

= ei
mcx0
h̄ u j .

(49)

Putting this back in Eq. 39, and with 48, we have

	(x0, x4) =
2∑

i=1

Ai
0e

−mc
h̄ (x4+i x0)ui

+
4∑

j=3

A j
0e

−mc
h̄ (x4−i x0)u j . (50)

Hence, a full particle rest solution will be characterized by
A j

0 = 0, and a full antiparticle rest solution by Ai
0 = 0, as

usual. We can see that in both cases the solution oscillates
in ordinary time, while it’s damped in the extra-time. Let
us note, that we have solved only the rest case because it
was sufficient for us and it simplified the calculus. However,
one can build any solution in the series expansion 29 with
pi �= 0 by just taking a representant S in the Spin group
of the Lorentz transformation 


μ
ν that takes (mc, 0, 0, 0) to

certain (p0, p1, p2, p3), and then transforming the spinors
ui into the states u′

i = Sui .
The possibility of a possitive mass associated to neutrinos

and negative mass to antineutrinos was considered by Barut
and Ziino in [23]. In the article mentioned, they work under
the hypothesis that neutrinos obey a Dirac equation with pos-
sitive mass and antineutrinos the same equation but with a
negative mass term. Under this assumption a relationship
between these two types of particles is obtained, accounting
to an explanation of the parity violation for neutrinos and the
non-existence of a right-handed neutrino.

On the contrary, in this article, we only consider a positive
mass Dirac equation, which in the rest frame it reduces to the
ordinary Dirac equation for particles, and to the negative mass
Dirac equation for antiparticles. Since our treatment follows
classical single Dirac equation, the particle/antiparticle char-
acter of the fermion is an instrinsic property only defined
in the rest frame, which makes particles and antiparticles
not absolutely separable, meaning that a boost in a given
direction will in general mix positive eigenstates with nega-
tive eigenstates of ẽ0. Instead, the treatment provided in [23]
duplicates the fermion space, incorporating a mass opera-
tor which determines the particle/antiparticle quality, allow-
ing a strong symmetry between chiral fermions and Dirac
fermions.

Recall that the chiral decomposition of spinors is really
succesfull in four dimensions because the projections PR =
1
2 (1 + γ5) and PL = 1

2 (1 − γ5) commute with every element
of Spin(1, 3), hence neither the boosts nor the rotations mix
right and left chiral spinors. We see that in five dimensions
this spliting is lost since now we can perform boosts in the
extra time x4, mixing left and right chiral spinors. However,
particles and antiparticles do not constitute such an elegant
decomposition, since, as stated above, the boosts always mix
them. We may think though, that particles and antiparticles
wouldn’t mix under extra time boosts, and that would have
been the case if we had identified particles and antiparticles
with eigenvectors of e0, but since we considered ẽ0 instead,
this is not the case.

The question of discrete symmetries in this theory is a
very interesting point. In the work of Barut and Ziino, the
fact that particles and antiparticles are parity eigenstates is
central to the inference of other discrete transformation laws.
If we imitate that principle in our formalism, the parity trans-
formation would have to be ψ �→ ẽ0ψ , but this will only be
the parity transformation for tilded vectors.

Another possibility is to consider the ordinary parity trans-
formation ψ �→ e0ψ , which on vectors reads:

e0 �→ e0, ei �→ −ei and e4 �→ −e4. (51)

We see that when restricted to the first four coordinates, it
is the ordinary parity transformation. This parity transforma-
tion would produce an inversion in the sign of rest mass, since
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p4 = imc/h̄ would change to −imc/h̄. This accounts for a
parity violation in the Dirac equation which doesn’t show up
in four dimensions, but that is compatible with [23]. A dis-
advantage of choosing this parity transformation is that we
lose the identification of particles and antiparticles as parity
eigenstates.

From the reasoning above, we see that some of the discrete
transformations may have no straight forward definition in
the five dimensional approach. The topics of parity, charge
conjugation and time reversal are very interesting topics to
study, in particular in relation with [23], where they obtain
a covariant charge conjugation operator. Nonetheless, this
treatment would be too extensive to be treated here, and we
plan to explore it thoroughly in future work.

3.5 The effective scale of the spinor field in the extra
dimension

Since ∂4	 = −mc/h̄	 holds for any spinor solution, all
massive spinors decay exponentially in the extra dimension.
We see that if we assume that the extra coordinate doesn’t
extend to −∞, then after some extra-time the field val-
ues get very small, the exponential damping constant being
mc/h̄, the inverse of the reduced Compton wavelength for
the particle. Then for a given particle after a time of order
h̄/mc2 = �/c the field is 90% smaller than initially. This
would mean that even though we didn’t propose the extra
dimension to be bounded, the field would only extend over
a finite region of it, of the order of the Compton wavelength
(or �/c in units of time).

3.6 Charged Dirac fields with an electromagnetic field

The 5D massless Dirac equation has the globalU (1) symme-
try given by	 �→ eiα	, whereα is a real number. QED intro-
duces the electromagnetic field as the gauge field required to
make this symmetry a local one. This is, the theory is invariant
for 	 �→ eiα(x)	, with α(x) a function on the coordinates of
the space-time. Usually α is a function of the four variables
of space-time, but since now our spacetime has five coor-
dinates, let’s consider α = α(xB). This induces the gauge
covariant derivative:

DB = ∂B + i
q

h̄
AB ,

with the transformation for the spinor and gauge field AB :

	 �→ eiα	,

AB �→ AB − i h̄

q
∂Bα,

(52)

where q is the charge of the field 	 in consideration. In
this way we get an electromagnetic 5-vector potential. In
consequence, we have the massless Dirac equation

eBD
B	 = 0, (53)

with DB := ∂B + i qh̄ A
B . Proceeding as in the previous sec-

tion we multiply on the left by e4 and get

i ẽμD
μ	 + D4	 = 0, (54)

with ẽμ = −ie4eμ, as in the previous sections. In order for the
4D Dirac equation to be fulfilled, we require D4	 = −mc

h̄ 	.
We see that the 4-electromagnetic vector potential in the 4D
induced CA is the tilded vector Aμẽμ, since it is the quantity
appearing in the Dirac equation. If we further require the
solution to comply with Di	 = 0, then what is left is the
equation

i ẽ0D
0	 − mc

h̄
	 = 0. (55)

Multiplying by −i ẽ0 = −e4e0 = e0e4 on both sides, and
using D0 = ∂0 + i qh̄ A

0 we obtain

∂0	 =
(
mc

h̄
e0e4 − i

q

h̄
A0

)

	. (56)

Let’s note that the condition we are asking for (Di	 = 0)
doesn’t make the field homogeneous. Hence now we have
	 = 	(x0, x1, x2, x3, x4).

In the previous section we went from Eqs. 28–35 very
easily, because [∂0, e0e4] = 0. Here we have mc

h̄ e0e4 − i qh̄ A
0

in the right hand side of 56, instead of just mc
h̄ e0e4. This

leads us, unless A0 doesn’t depend on x0, to the fact that
[∂0, mc

h̄ e0e4 − i qh̄ A
0] �= 0. Hence, the equation in the Lie

algebra representation doesn’t pass so easily to the Lie group
representation.

3.6.1 The case ∂0A0 = 0.

In this case, we are in the conditions of neutral matter and by
the same procedure we write:

	(xA) = exp

(
mcx0

h̄
e0e4 − i

q

h̄
A0x0

)

	(0, xi , x4) (57)

In the previous section we interpreted the right hand side of
Eq. 39 as an equation in the algebra

∧
2(R

2,3) which is the
Lie algebra so(2, 3), however, we see now in Eq. 56 that
the right hand member doesn’t lie in

∧
2(R

2,3) but rather
in

∧
2(R

2,3) ⊕ Z(Cl(2, 3)), which is the Lie algebra of the
Clifford–Lipschitz group �2,3 (cf. Sect. 2.2). This group con-
tains all the elements that under the adjoint action on the CA
transform vectors into vectors. Indeed the adjoint action of
exp(−i qh̄ A

0x0) on every element of the CA is the identity,
since this element sits on the center of the CA. This can be
put as follows: Additionally to the coordinate transforma-
tion that we have in the absence of electromagnetic field,
there is also an internal transformation, which has no coordi-
nate consequences, and that corresponds to the internal local
gauge freedom of the theory. Note that this case contains
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every electrostatic potential A0(x1, x2, x3, x4). If we further
ask for the cyclic condition to hold [20,21] (potentials not
depending on the 5th coordinate), we have A0 = A0(xi ).
Now, if we decide to use a basis of eigenvectors of e0e4 for
the spinor, as in Sect. 3.4, we have that a +i eigenvector
solution is

	(x0) = exp

(
imcx0

h̄
− i

q

h̄
A0x0

)

	0, (58)

and a −i eigenvector solution

	(x0) = exp

(

− imcx0

h̄
− i

q

h̄
A0x0

)

	0. (59)

This is quite different from what we obtained in Sect. 3.4,
where the eigenvalue of e0e4 alone determined the parti-
cle/antiparticle state. Now this interpretations has to change,
since an antiparticle state has an opposite charge and, as we
see in the equations above, solutions associated to differ-
ent eigenvalues of e0e4 have the same charge. It happens
that the interpretation of a particle/antiparticle in the charged
case has not only to do with the coordinate rotation in the
time-plane, but also with the local gauge transformation of
the spinor in 57. In the neutral matter case, it was sufficient
with changing the sense of a rotation in the time-plane, but
now we also have to change the sense of “rotation” in the
local gauge transformation, passing from exp(−i qh̄ A

0x0) to
exp(i qh̄ A

0x0). Of course, the antiparticle covariant derivative
is now different, with the opposite sign charge, and in con-
sequence the Dirac equation satisfied is different. Note that
when putting q = 0, we recover everything in Sect. 3.4.

3.6.2 The case ∂0A0 �= 0.

In this case we have:
[

∂0,
mc

h̄
e0e4 − i

q

h̄
A0

]

= −i
q

h̄
∂0(A0)1,

which makes a little harder to see the interpretation of the
time evolution as a coordinate transformation. However, it is
simple to solve directly the Eq. 56, and then interprete the
time evolution accordingly. Combining 56 with Di	 = 0
and D4	 = −mc/h̄	, we have the solution

	(xA) = exp

(
mcx0

h̄
e0e4 − mcx4

h̄
− i

q

h̄
F(xA)

)

	0, (60)

with ∂B F = AB . If we assume the solution to be separable,
then F is written as F(xA) = F0(x0)+ Fi (xi )+ F4(x4) and
consequently we can separate the dependence on x0, from
the rest of the coordinates

	(xA) = exp

(
mcx0

h̄
e0e4 − i

q

h̄
F0(x0)

)

	0(xi , x4). (61)

Therefore, we recover the interpretation given in the previ-
ous case: the time evolution is a rotation in the time plane,

together with an internal local gauge transformation, which
now is not linear in time. And also, the antiparticle solution is
obtained by changing the sense of rotation in the time-plane
and in the internal transformation. The same observations
about particle and antiparticles for the case ∂0A0 = 0 can be
made here.

3.7 Propagation in the extra dimension and 5D gauge fixing

Since D4	 = (∂4 + iq/h̄ A4)	 = −mc/h̄	 holds for the
charged spinors, then

∂4	 = −
(

i
q

h̄
A4 + mc

h̄

)

	,

and in addition to the exponential decay in the case of neutral
matter, there is also a propagation in the extra dimension. The
only possibility that would forbid propagation in the extra
time would be the 5th component of the vector potential being
zero or imaginary. In order to have the same confinement as
in the non-charged case we could ask for the gauge condition
A4 = 0, and in this case the extra dimension has the same
effective extension for both the charged and the neutral case.
Let’s note that this condition, would imply that the theory is
invariant only under the local gauge transformation exp(iα),
with ∂4α = 0. This is, the field have the same phase along
any line (x0, xi , x4 = λ), with λ ranging over R. Note also
that if in addition we ask for ∂4Aμ = 0 ∀μ then F AB FAB =
FμνFμν and we recover the classical QED Lagrangian.

4 On ghosts and tachyons in this two-times physical
theory

The typical problems in theories with more than one timelike
dimension are the existence of tachyons and the existence of
ghost fields (negative norm states). This two issues makes it
difficult to quantize the theory [11].

As exposed in [9], the momentum in the extra dimension
is related to the mass of the particle, hence tachyons are not
a problem since there’s no superluminical propagation in the
4D spacetime.

Regarding ghost fields, if we assume the following
Lagrangian density:

L = 	†γ0eA∂ A	 − ∂ A	†γ0eA	 , (62)

then the corresponding 5-current associated to the phase
shift symmetry is given by:

JA = i	†γ0eA	, (63)

and if we look at the 0th component, we get J0 =
i	†γ0e0	 = 	†γ5	, which is not positive definite. Indeed,
none of the components JA equals the probability density
	†	.
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However, recall that we have defined the 4D induced CA,
as the one having generators {ẽμ}. In this context, the same
equations of motion can be obtained from the following
Lagrangian density:

L = 	†γ0ẽμ∂μ	 − ∂μ	†γ0ẽμ	

2

+ i

2
(	†γ0∂

4	 − ∂4	†γ0	)) , (64)

which, after imposing ∂4	 = −mc
h̄ 	 is written as:

L = 	†γ0ẽμ∂μ	 − ∂μ	†γ0ẽμ	

2
+ im	†γ0	 . (65)

This is the usual Dirac Lagrangian, since ẽμ = γμ, and
hence we have the usual conserved 4-current:

J̃μ = 	†γ0γμ	 = 	†γ0ẽμ	. (66)

In this way, the problem of ghosts is solved by considering J̃
as the physical quantity, and not J. Of course, JA is a 5-vector,
while J̃μ is a 4-vector. This means that when performing
a Lorentz transformation involving the extra coordinate, in
general J̃μ won’t obey a vector transformation rule, while
JA will. Indeed, using this tilded current, the Dirac theory is
completely unchanged.

Note that although J̃μ is not obtained as the vector bilinear
covariant of the field, it is a projection of the 3-vector bilinear
covariant of the 5D CA (since each ẽμ is a 3-vector), hence,
the information is present in a bilinear covariant of the theory.
This change from the, let’s say, “vector current” to this “3-
vector current” is related to the equivalence of Lagrangians
(62) and (64) once we impose the constraint ∂4	 = −mc

h̄ 	.
This also implies that the 5 current JA is always conserved,
while J̃μ is only conserved once we introduce the aforemen-
tioned constraint.

5 Conclusions and prospects

In this article we have obtained the 4D Dirac equation for
spinors from a 5D massless equation. In order to do so, we
have exploited the fact that the Dirac theory naturally comes
equiped with an extra timelike dimension. Hence, follow-
ing the principles of induced matter theory [3,4,20,21] we
have studied the Dirac equation in a 5D spacetime of sig-
nature 2, 3. Analyzing the Dirac equation for neutral matter
(or absence of EM fields) and the Clifford algebra structure
of the 5D space-time, we have provided an interpretation for
a particle/antiparticle states, as eigenstates of the generators
of rotations in the time-plane. In the charged case (with the
presence of an EM field), by performing a similar analysis
we have seen that in addition to the rotation in the time-plane,
there is an internal gauge transformation in two opposite
directions that separates particles from antiparticles. Addi-

tionally, we have observed that although the extra dimension
was not proposed to be bounded, the effective extension of
the field over it is of the order of the Compton wavelength of
the particle.

In the absence of EM fields, the interpretation of particles
and antiparticles given in this article could be analyzed by
studying high order representations of the group SO(2, 3).
In just the same way spin up and down are the two states
associated to the s = 1/2 representation of the SO(3) group,
the particle and antiparticle states could be the two states of
a particular representation of the group (or some subgroup
of) SO(2, 3). If the extra dimension is a physical one and
representation theory predicts more states of matter (other
than matter/antimatter), it should be possible to try to observe
them in experiments.

The relation of our work with [23] is still to be further
explored, particularly in relation to C, P, T and CPT sym-
metries. An interesting proposal would be to combine our
analysis with the formalism of positive mass particles / neg-
ative mass antiparticles.

The main success of the Kaluza-Klein theory lies on its
unification of Einstein field equations and Maxwell electro-
magnetism. It also introduces the Lorentz force on a test
particle in the geodesic equations of motion. Due to these
facts an interesting approach to induce an EM field in the
Dirac theory (alternative to the used above) would be given
by working with the original Kaluza-Klein metric [20,21].
In this way, we would have a non trivial 5D manifold and
by working on the Clifford and spinor bundles we could try
to obtain QED in absence of gravity. This is something we
would like to do in the future since it would also allows us to
work with gravitational fields.
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