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Organisms have evolved in a daily cyclic environment, developing circadian cell-autonomous clocks that
temporally organize a wide range of biological processes. Translation is a highly regulated process mainly
associated with the activity of microRNAs (miRNAs) at the translation initiation step that impacts on the
molecular circadian clock dynamics. Recently, a molecular titration mechanism was proposed to explain the
interactions between some miRNAs and their target mRNAs; new evidence also indicates that regulation by
miRNA is a nonlinear process such that there is a threshold level of target mRNA below which protein production
is drastically repressed. These observations led us to use a theoretical model of the circadian molecular clock
to study the effect of miRNA-mediated translational thresholds on the molecular clock dynamics. We model the
translational threshold by introducing a phenomenological Hill equation for the kinetics of PER translation
and show how the parameters associated with translation kinetics affect the period, amplitude, and time
delays between clock mRNA and clock protein expression. We show that our results are useful for analyzing
experiments related to the translational regulation of negative elements of transcriptional-translational feedback
loops. We also provide new elements for thinking about the translational threshold as a mechanism that favors the
emergence of circadian rhythmicity, the tuning of the period-delay relationship and the cell capacity to control
the protein oscillation amplitude with almost negligible changes in the mRNA amplitudes.
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I. INTRODUCTION

From bacteria to humans, organisms have evolved in a
daily cyclic environment and, as a consequence, developed
circadian (circa = near; dian = a day) cell-autonomous time-
keeping mechanisms (clocks) [1]. These clocks temporally
organize a wide range of biological processes in living be-
ings, optimizing their physiology and metabolism to improve
fitness and survival. For instance, the forcing of the cell cycle
by the circadian oscillator seems to increase cell variability in
clonal cell populations [2]. A common design across species
is observed in their molecular clockwork, involving a set
of clock genes and proteins that interact in transcriptional-
translational feedback loops (TTFL) [3,4]. In animals, positive
elements of the core loop (BMAL1 and CLOCK in mammals;
CYCLE and CLOCK in flies) activate the transcription of
target genes, including the negative elements of the loop (Per
1, 2, 3 and Cry 1, 2 in mammals; Per and Tim in flies).
Once negative elements are translated, they are the target
of post-translational modifications and can heterodimerize,
translocate into the nucleus, and repress the transcriptional
activity of positive elements by directly binding to them. Thus,
negative elements repress their own transcription. Turnover
of negative elements results in the eventual derepression
of the positive elements and the reactivation of clock gene
expression, starting the core loop again after approximately
24 h. Secondary loops, both in mammals and flies, confer
robustness and precision to the molecular clock, and a high
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robustness in the period implies higher plasticity in the phase,
which is important to adapt to sudden environmental changes
[5]. In addition, the molecular circadian clock is able to
regulate the expression of downstream genes (clock controlled
genes, ccg) and thus control cell physiology and metabolism
[6].

Although transcriptional regulation has been considered
the main mechanism involved in the maintenance of the
steady-state levels of mRNAs associated with clock genes,
recent evidence has shown that transcriptional modulation
is only one of many layers (i.e., splicing, termination,
polyadenylation, nuclear export, microRNA regulation, trans-
lation, and RNA decay) of circadian regulation in gene ex-
pression [7–9]. Specifically, translational regulation impacts
on the circadian clock and its outputs, contributing to the
fine-tuning of circadian rhythms dynamics [10].

Translational activation through regulators acting over
clock transcripts has been described for flies and mammals
[11–14]; and the dynamical changes of the clockwork derived
from their activity have been previously considered in the
context of a basic core clock theoretical model [15]. On the
other hand, translational repression is a much less understood
process, mainly associated with the microRNA (miRNA)
activity at the initiation step of translation, which is also the
rate-limiting step [16].

miRNAs are noncoding RNAs approximately 22 nu-
cleotides long that, through binding to specific sequences
within target mRNAs, mediate two main modes of gene
expression silencing: (i) mRNA decay and (ii) pure transla-
tional repression. Regarding the first, a detailed picture of the
mechanisms underlying the miRNA-mediated mRNA decay
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FIG. 1. (a) Our deterministic model. The model is based on Refs. [15,26] and contains five variables: per mRNA (M), unphosphorylated
PER protein (P0), monophosphorylated PER protein (P1), biphosphorylated PER protein (P2), and the nuclear PER protein (Pn). The scheme
also highlights the biochemical processes whose kinetics we model. (b) Scheme of the translation kinetics. We considered that the effective
kinetics of translation follows a sigmoidal relationship with the per mRNA concentration. The Hill exponent (nHill) effectively introduces a
threshold in the kinetics. The emergence of this threshold effect leads to two regimes: (i) at low mRNA concentrations the process exhibits
a slowdown of the kinetics as nHill increases; (ii) after reaching a given (threshold) mRNA concentration, the kinetics of the process changes
and accelerates with nHill until the saturation becomes evident. The threshold mRNA concentration is clearly observed in the extreme case
nHill = 50 (arrow).

has emerged from multiple experimental analyses [10,16,17]
and theoretical studies [18,19]. By contrast, pure miRNA-
mediated translational repression (i.e., without mRNA decay)
has been observed in flies, zebrafish, and humans [20], but the
precise mechanisms involved require further understanding
[10].

Recently, a molecular titration mechanism was proposed
to explain the interactions between some miRNAs and their
target mRNAs [21,22]. Evidence supporting this mechanism
suggests that regulation by miRNA is a nonlinear process
that yields a threshold level of target mRNA below which
protein production is drastically repressed, while above this
mRNA threshold protein production is active and sensitive to
the mRNA transcription [23,24]. Taking into account these
observations, we sought to study the effect of applying a
translational threshold on the molecular clock dynamics. To
accomplish this, we use a theoretical model of the circadian
molecular clock previously proposed to study other aspects of
the circadian molecular behavior [15,25,26]. By phenomeno-
logically describing the effective kinetics of PER synthesis
in terms of a Hill equation, we show that it is posible to
capture the main feature of a miRNA-mRNA titration-based
mechanism: the threshold-like behavior. In addition, we show
how the parameters associated with the Hill equation af-
fect the period, amplitude, and the time lags between clock
mRNA and clock protein expression (delays). Our results
are useful for analyzing previous experimental observations
related to translational regulation of negative elements of
transcriptional-translational feedback loops. We provide new
elements for thinking about the translational regulation as

a mechanism that favors the emergence of circadian rhyth-
micity, the tuning of the period-delay relationship and the
cell capacity to control the protein oscillation amplitude with
almost negligible changes in the mRNA amplitudes.

II. METHODS

A. Mathematical model

TTFL dynamics can be qualitatively described by a con-
ceptual model [Fig. 1(a)] that can be transformed into a
mathematical model by the selection of adequate equations
and parameters representing the biochemical processes in-
volved in the core molecular clock [27]. In a pioneering work,
Goldbeter showed how a Goodwin oscillator can be adapted
to describe the circadian cell biology, keeping the model as
simple as possible [25]. We based our study on a Goldbeter
structure-grounded model proposed by Gonze and co-workers
[26]. Gonze’s deterministic version has exactly the same func-
tional form (terms and equations) as the original model [25].
The differences are related to the parameter values, which we
took from a more recent paper [26] and we already used in a
previous work from our laboratory [15].

Briefly, the model takes into account core clock processes
involved in the negative feedback exerted by a protein (PER)
on its own expression by considering five variables: The
Per mRNA (M), the unphosphorylated PER protein (Po),
the monophosphorylated protein (P1), the biphosphorylated
protein (P2), and the the nuclear protein (Pn). The total protein
(Pt ) is calculated as the sum of all PER species (Pt = P0 +
P1 + P2 + Pn).
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Similarly to our previous work [15], here we assume that
the core processes involved in circadian rhythmicity occur
with same kinetics as in Ref. [26], except for PER translation,
which is assumed to follow a Hill-type dependence on the
mRNA concentration [Fig. 1(b)]. Thus, the differential equa-
tions of our model are as follows:
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A detailed description of parameter meaning and values, as
well as model assumptions, can be found in the Appendix.

It is worth noting that this mathematical model has a
level of complexity intermediate between other either more
simplistic or more detailed models. The first have a low
number of variables and parameters, which makes them an-
alytically tractable but difficult to associate to real quantities.
The second may have a more direct biological interpretation
but their high number of variables and parameters reduces
their predictive capacity. As discussed previously, very de-
tailed mathematical models do not guarantee good consis-
tency between their predictions and experimental data, but the
Goodwin-based models, like the one proposed here, are closer
to capturing qualitatively the oscillatory system features [28].

1. Translational kinetics

The way in which some miRNAs interact with their targets
can be described in terms of a titration mechanism, char-
acterized by a threshold in the translation [23,24]. Here we
model this effect by considering a Hill equation [Fig. 1(b)]
for the PER translational kinetics. This phenomenological
modeling approach captures the main feature of the titration-
based mechanism, i.e., the threshold effect [29], while it keeps
the model simpler by not explicitly considering the miRNAs
concentration as an additional variable. The Hill equation,

vtranslation = VmirMnHill

KnHill
mir + MnHill

, (6)

is characterized by three parameters (that we call translational
parameters):

(i) nHill is the parameter that controls the sharpness of the
translational threshold: The bigger the nHill value, the sharper
the translational repression at low mRNA levels [Fig. 1(b)].
This parameter does not have a direct molecular interpretation
(i.e., as the miRNA concentration or the cooperativity of the

miRNA binding sites at the mRNA). Instead, it is a parameter
that indicates a general miRNA-based threshold effect.

(ii) Vmir is the parameter that controls the maximum PER
translation rate. We biologically interpret this parameter as
being proportional to the concentration of translational en-
hancers involved in the PER synthesis. For instance, in our
previous work [15] we interpreted this parameter as related to
the concentration of the TYF protein in the cell.

(iii) Kmir is the mRNA concentration at which the PER
synthesis is one half of Vmir.

In this work we mainly focus on understanding how the
translational parameters affect the dynamical properties of a
core clock model. For other biochemical processes involved
in the core clock we use the functions and parameter values
reported in Refs. [15,25,26] (see Appendix).

B. Numerical integration

The system of five coupled differential equations was
integrated using a fourth-order Runge-Kutta algorithm with
1 × 107 steps and a time step of 0.1 h. Before analyzing
the stationary behavior of the system we discard the first
999,800 h of computation in order to eliminate transient
effects. The results we present are the averages of 10 real-
izations, each one with random initial conditions. We have
numerically explored the Kmir-Vmir planes for each value of
nHill over, at least, nine orders of magnitude.

C. Period, delay, and amplitude estimation

For each value of Kmir-Vmir and nHill explored, an average
period length was calculated from consecutive peaks and
troughs within the M, P0, and Pt time series. Then, an average
over realizations was obtained and coded as pseudocolor in
the Kmir-Vmir diagrams shown in Fig. 2. The standard devi-
ation (SD) of the period in the colored regions was SD <

1 × 10−4 h for nHill = 1, SD < 0.012 h for nHill = 2, SD <

0.045 h for nHill = 3, SD < 0.015 h for nHill = 4, and SD <

0.2 h for nHill = 50. The same procedure was performed with
the peak-to-trough amplitudes and the time lags between the
M and P0 peaks (or the M and Pt peaks).

D. Area quantification

In order to estimate the total and circadian areas explored
in our simulations, we associate to each pair Kmir (i)-Vmir ( j) a
rectangular element of surface with sides:

Kmirl = Kmir (i) − Kmir (i − 1)

2
+ Kmir (i + 1) − Kmir (i)

2
, (7)

Vmirl = Vmir ( j) − Vmir ( j − 1)

2
+ Vmir ( j + 1) − Vmir ( j)

2
, (8)

where i and j are the indices used to represent specific Kmir

and Vmir values, respectively. This definition allows us to
associate a rectangular area Ai j = Kmirl × Vmirl to each pair
Kmir (i)-Vmir ( j). Depending on the system solution associated
with a given Kmir (i)-Vmir ( j) pair, it is possible to group the
corresponding areas Ai j in one of the following categories:

(1) The associated Ai j surface is included in the quantifi-
cation of the total self-sustained oscillatory area when pairs
Kmir (i), Vmir ( j) yield a system with a periodic solution;
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FIG. 2. The oscillation period (τ ) depends on the translational parameters Vmir, Kmir, and nHill. Phase diagrams in the Kmir-Vmir subspace for
nHill = 1 [(a) and (e)], nHill = 2 [(b) and (f)], nHill = 3 [(c) and (g)], and nHill = 50 [(d) and (h)] are shown. Top panels show the full explored
range of the Kmir and Vmir parameters. Bottom panels show magnifications of the corresponding top panels within the [0–10] Kmir range and
[0–50] Vmir range. White regions indicate pairs (Kmir-Vmir) that do not correspond to an oscillatory solution for the system. For those pairs
(Kmir-Vmir) for which a periodic solution is obtained, a pseudocolor was assigned indicating the period (τ ), as shown in the key.

(2) The Ai j surface is included in the quantification of the
total circadian area when pairs Kmir (i)-Vmir ( j) yield a system
with periodic solutions within the circadian range.

Both the total self-sustained oscillatory area and the the
total circadian area are normalized by the total explored
area, which is the sum of the Ai j for all the Kmir (i)-Vmir ( j)
numerically explored. This procedure is followed for each
realization at each explored nHill value. The corresponding
standard deviation was also obtained and plotted for each nHill.

III. RESULTS

A. Oscillatory properties of the system and intrinsic period (τ)

We numerically explored the translational parameter space
defined by Kmir, Vmir, and nHill (Fig. 2). For all the nHill values
studied we found two regions, one where the system oscillates
self-sustainedly (shown in pseudocolor) and the other where
the system presents damped oscillations, which eventually
evolve toward fixed points (white regions). Figure 3 reveals
details of these spaces at small Kmir-Vmir values. For nHill =
1 there is no translational threshold because the Hill equation
reduces to a simple Michaelis-Menten equation. Results for
this particular case were already reported [15].

Figure 2 qualitatively indicates that the oscillatory (col-
ored) region within the translational parameter space (defined
by Kmir, Vmir, and nHill) increases when nHill > 1. This is
quantitatively shown in Fig. 4 (black circles) which indicates
that a moderate increase in nHill (nHill = 2–4) leads to a maxi-
mum oscillatory region size within the translational Kmir-Vmir

parameter plane. Further increases in the nHill parameter lead
first to a decrease (nHill = 8–12) and then to a new increase
(nHill = 50) in the size of the oscillatory region. This result
strongly suggests that the inclusion of a moderate threshold

effect in the PER translation (achieved by a modest nHill in-
crease) promotes the emergence of self-sustained oscillations.

Circadian oscillations are defined as those with a period
near 24 h. Nevertheless, the circadian period range experi-
mentally measured in cells depends on animal species, cell
type, coupling strength between cells, and output measured,
among other factors [30–33]. Thus, for our purpose we de-
fine circadian periods as those whose length ranges from 20
to 28 h. Under this assumption, Fig. 4 (red circles) shows
that the region where oscillations have circadian periods
exhibits a maximal size when nHill = 2. In addition, the
probability of obtaining oscillations with long periodicities
(infradian rhythms) increases as the translation threshold
sharpens.

In summary, our results suggest that both the emergence
of self-sustained oscillations and the circadian periodicity are
favored by a moderate increase of nHill (i.e., a mild threshold).
This seems to be a general finding since we observed a
qualitatively similar behavior in a simpler, but similar, TTFL
model (see the LGG1999 model section in the Appendix).
Taking into account these results, our further analysis will
mainly focus on the elucidation of the differences between the
cases nHill = 1 and nHill = 2.

B. Time lag between per mRNA and total PER protein

Does a moderate threshold in PER translation significantly
affect the time lags (delays) between clock mRNAs and
proteins? In order to address this question, we measured
the delays between the acrophases of per mRNA and total
PER protein expression, both for nHill = 1 and nHill = 2. Fig-
ure 5(a) shows the results for nHill = 1, which are consistent
with those already reported in Ref. [15]: At constant Kmir (i.e.,
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FIG. 3. Phase diagrams in the Vmir-Kmir subspace for nHill = 1 (a), nHill = 2 (b), nHill = 3 (c), and nHill = 50 (d). Pseudocolor indicates the
Kmir-Vmir pairs for which a periodic solution is obtained. The τ length is shown in the key. White regions indicate Kmir-Vmir pairs that do not
correspond to an oscillatory solution for the system. These diagrams are exactly the same as those shown in Fig. 2 but in a logarithmic scale,
which allows us to observe details at small Kmir - Vmir values. The arrow in (b) was included as a comparison tool: It indicates the yellow region
of Fig. 2(b).

a Kmir isoline, plotted in a specific color), there is a monotonic
increase of the delays with the period length, a behavior that
is characteristic for most of the Kmir-Vmir pairs explored. An
exception to this behavior is shown in Fig. 6 [a magnification
of Fig. 5(a)], where we observe that in a region of high Kmir

and Vmir the delay is a decreasing function of the period
(note that in this region periods are well into the ultradian
regime).

When nHill = 2 [Fig. 5(b), see also Fig. 7] the delays
become nonmonotonic multivalued functions of the period
length. This means that for a single Kmir isoline there are
several delay values (defined by Vmir) that can generate the
same period length. The global comparison of both conditions
[nHill = 1 vs. nHill = 2, Fig. 5(c)] allows us to highlight that
nHill = 2 increases the number of Kmir isolines from which it
is possible to obtain an oscillatory system. This is consistent
with the results shown in Fig. 4. In addition, Fig. 5(c) reveals
that for nHill = 2 the Kmir isolines twist when the delay values
are small (roughly, below 5 h) or, in other words, when Vmir is
high.

Indeed, if we take into account that the delay ranges previ-
ously reported were between 6 and 8 h, [34,35], and confine
our analysis to periods within the previously defined circadian
range (20–28 h), we observe a monotonic increase of the delay
with the period length for nHill = 2 [Figs. 5(d)–5(f)], just as it
occurs for nHill = 1. Nevertheless, two qualitative differences
were observed between the cases nHill = 1 and nHill = 2. First,

while a big number of Kmir isolines are observed for nHill = 1
[Fig. 5(d)], only a subset of them are observed for nHill = 2
[Fig. 5(e)]. This means that the dynamic range of Kmir-Vmir

pairs enabling the experimentally observed circadian behavior
is reduced even if the oscillation diversity is favored by nHill =
2. Second, the monotonic relationship between delays and
periods exhibits a steeper slope for nHill = 2 than for nHill = 1
[Fig. 5(f)]. This has two consequences: On one hand, changes
in delays are associated with smaller changes in the period
length when nHill = 2 than when nHill = 1. We can interpret
this as meaning that nHill = 2 confers an increase in period
robustness in the presence of putative delay perturbations
generated by fluctuations in Vmir. On the other hand, nHill = 2
yields a subset of Kmir isolines [see the black lines in the
upper left corner of Fig. 5(f)] for which circadian oscillations
exhibit longer delays than those corresponding to any of the
Kmir isolines obtained with nHill = 1. This means that nHill = 2
opens the possibility of tuning the Kmir-Vmir values to obtain
circadian oscillations within the range of 20–26 h with long
delays (6–8 h).

The preceding global analysis does not allow us to examine
whether the increase in nHill introduces time delays by itself
(that is, when the same Kmir-Vmir pair is considered). In order
to shed light on this question, we compare individual Kmir

isolines for nHill = 1 and nHill = 2 (Fig. 8). Since the results
strongly depend on Vmir we analyze separately two regions of
the Kmir-Vmir plane, one within the range of experimentally
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FIG. 4. For each nHill (1, 2, 3, 4, 8, 12, and 50) examined,
it is possible to define the total surface associated with the pairs
(Kmir-Vmir) covered in our study. Once this is known, the relative
areas of the surfaces where self-sustained (black circles, upper line)
or circadian (red circles, bottom line) oscillations emerge can be
estimated. We observe that the probability of finding a pair (Kmir-Vmir)
that gives rise to a periodic solution is bigger when nHill > 1 and
that the emergence of circadian oscillations is highly favored when
nHill = 2.

observed delays and periodicities (i.e., within the violet rect-
angle of Fig. 8) and the other outside of the experimentally
observed periods and delays (i.e., outside the violet rectangle
of Fig. 8). Within the range of experimentally observed behav-
iors, an increase of nHill typically leads to a shortening of both
delay and period (red to black triangles in Figs. 8(b)–8(f)]. On
the other hand, outside of the experimentally observed ranges,
delay-period pairs present a diversity of behaviors when going
from nHill = 1 to nHill = 2: delay lengthening with period
shortening; delay and period lengthening [red to black squares
in Figs. 8(a)–8(f)]; delay and period shortening; period length-
ening with delay shortening, among other possibilities.

Summarizing, the inclusion of a moderate threshold effect
in the PER translation generates oscillations within the ob-
served range of periods and delays. Within this range, the
longer the delay, the longer the period, which is similar to
what is observed for nHill = 1. In addition, nHill = 2 opens the
possibility of obtaining a Kmir-Vmir region that yields circadian
oscillations with very long delays and increases the period
robustness against delay perturbations. Last, within the range
of observed delays and periods, an increase from nHill = 1 to
nHill = 2 shortens both delays and periods.

C. Temporal evolution and oscillation amplitudes

In order to understand the effects of nHill on the mRNA (M)
and unphosphorylated protein (P0) dynamics, we investigate
the correlations between the P0 and M peak-to-trough ampli-
tudes (Fig. 9) for the whole range of Kmir-Vmir pairs studied
in Fig. 2. This global analysis sheds light on the evolution of
the amplitude differences as nHill changes. As expected, we
observe that there is a nonlinear relationship between the am-
plitudes of P0 and M, even if nHill = 1 [Fig. 9(a)]. Each black
curve there represents the P0-M relationship at constant Kmir

(Kmir isoline). In cyan we highlight the P0-M amplitude points
corresponding to oscillations within the circadian range. As
nHill increases from nHill = 1 [Fig. 9(a)] to nHill = 2 [Fig.
9(b)], the range of P0 peak-to-trough amplitudes increases,
but there is no significant change in the M amplitude range
(compare the P0 scales in Figs. 9(a) and 9(b)]. This result
suggests that a threshold effect in PER translation leads to
a strong growth of the P0 amplitude with almost no changes
in the M amplitude. For both nHill = 1 and 2, most of the
Kmir isolines are concave functions, displaying a Vmir value
that maximizes the P0 amplitude for a given M amplitude.
Exceptions to this behavior are observed for very high values
of Kmir (see Fig. 10). In addition, when nHill = 2, but not when
nHill = 1, a subset of Kmir isolines exhibits a peak (maximal P0

amplitude) that corresponds to oscillations within the circa-
dian range [cyan dots in Fig. 9(b)]. Similar results were found
when we analyzed the geometrical amplitude, which gives an
estimation of the mean concentration of M and P0 (results not
shown).

Figure 11 shows two examples of the temporal evolution of
the variables per mRNA (M), unphosphorylated PER protein
(P0), and total PER protein (Pt ) for nHill = 1 (red lines) and
nHill = 2 (black lines). Figures 11(a)–11(c) correspond to the
pair Kmir-Vmir = 0.3548–2.2387, represented with triangles
inside of the violet rectangle shown in Fig. 8(b). This exempli-
fies the general conclusion obtained from the global analysis
of Fig. 9: An increase of nHill leads to an increase of the
P0 and Pt peak-to-trough amplitudes without a significative
increase of the mRNA peak-to-trough amplitude. Besides, this
figure suggests that the period and delay shortenings when
nHill increases from 1 to 2 are consequences of the advanced
P0 and Pt accumulation phases for nHill = 2 as compared with
nHill = 1, which is revealed by the steeper slope observed for
nHill = 2 in the upswing phase of the protein dynamics.

Figures 11(d)–11(f) correspond to the pair Kmir-Vmir =
0.3548-3.5481, represented with squares outside of the violet
rectangle of Fig. 8(b). Unlike the M behavior shown in
Fig. 11(a), Fig. 11(d) shows that the M amplitude increases
with an increase of nHill. Moreover, this example indicates
that there is a parameter set for which the model displays
period and delay lengthenings when nHill increases from 1
to 2. Although the slope observed in the upswing phase of
the protein dynamics is steeper for nHill = 2 than for nHill =
1, the increase of nHill produces a flattening of the trough.
This latter effect probably contributes to elongate both the
period and the delay. Figure 12 shows similar results for
the pairs Kmir-Vmir = 1.5849-3.5481 [Figs. 12(a)–12(c)] and
Kmir-Vmir = 1.5849–22.387 [Figs. 12(c), 12(d), and 12(f)],
corresponding to the triangles (inside of the violet rectangle)
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FIG. 5. The translational threshold affects the period-delay relationship. Time lags between mRNA and total PER protein (delays) contribute
to define the periodicity (τ ) of the oscillations. The correlation between delays and τ for each Kmir-Vmir pair explored allows us to observe how
delays contribute to period length. Each colored curve represents a Kmir isoline, that is, the Kmir-Vmir pairs that share the same Kmir value. (a)
For nHill = 1 the delay increases monotonically with τ . Gray Kmir isolines represent Kmir values from 0.16 to 0.45; blue Kmir isolines represent
Kmir values from 0.5 to 3.2; green Kmir isolines represent Kmir values from 3.55 to 44.7; yellow-magenta Kmir isolines represent Kmir values from
50 to 177. (b) For nHill = 2, the period is a strongly nonlinear function of the delay. In Fig. 7 we show a detailed description of Kmir isolines
subsets when nHill = 2. (c) A combination of Kmir isolines shown in (a) (displayed in red) and Kmir isolines shown in (b) (displayed in black)
facilitates the comparison between nHill = 1 and nHill = 2. Pink arrow indicates the direction of Vmir increase whereas violet arrow indicates
the direction of Kmir increase. Panels (d), (e), and (f) are magnifications of the circadian regions in (a), (b), and (c), respectively.

or the squares (outside of the violet rectangle) shown in
Fig. 8(e), respectively.

D. Sensitivity analysis

Next, we discuss the sensitivity of the period to changes in
various relevant model parameters. Thus, we proceed to de-
termine how the period is altered when each parameter (other

FIG. 6. Detail of Fig. 5(a). High Kmir isolines exhibit a minimum
delay for ultradian cycles. The arrow indicates the direction of Vmir

decrease. Kmir decreases from the bottom up.

than Vmir and Kmir) is varied (one at a time) by, at least, ±100
of their original value (see Table 1) and we compare the results
for nHill = 2 to those for nHill = 1. Relevant results are shown
in Fig. 13 while the cases shown in Fig. 14 did not exhibit
significant changes between the two conditions tested here.

Figure 13 shows the dependence of the period with the
parameters related to mRNA dynamics. Figure 13(a) shows
the period sensitivity with the Hill exponent for the repres-
sion of mRNA transcription (nt ). For both values of nHill

the period decreases with nt , but the decrease has a smaller
slope for nHill = 2. This means that the period sensitivity to
nt decreases when a moderate threshold is included in the
translation kinetics. In addition, for nHill = 2 the window for
the occurrence of oscillations extends to lower values of nt .
This agrees with the results of Kurosawa et al., which indicate
that an increase in the nonlinearity augments the likelihood
of oscillatory behavior [36]. Figure 13(b) shows the period
sensitivity to the mRNA (M) transcription rate (vs). For both
values of nHill, the period length initially decreases, reaches a
minimum (near vs = 0.4), and then increases as vs increases.
For vs < 0.5 the increase in nHill leads to a slight shortening
of the period length, whereas for vs > 0.5 an increase in nHill

leads to period lengthening (with a higher slope for nHill = 2
than for nHill = 1). Thus, globally, the period sensitivity to
vs increases when nHill changes from 1 to 2. Figure 13(c)
shows the period sensitivity to the Michaelis constant for
mRNA degradation (Km) and indicates that the approximately
linear increase of the period with Km has a higher slope (more
sensitivity) for nHill = 2.
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FIG. 7. Details of Fig. 5(b) (Kmir isolines for nHill = 2). Evolution of Kmir isoline morphology. For very low values of Kmir (a), the isolines
do not intersect and increasing Vmir always leads to a period increase. For intermediate values of Kmir [(b) to (e)], the isolines twist and there is
a period domain for which we observe more than one possible value of the delay for each period length; increasing Vmir may lead to increases
or decreases in period length. For high values of Kmir (f) the isolines collapse on a strongly nonlinear curve. Pink arrows indicate the direction
of Vmir increase, whereas violet arrows indicate the direction of Kmir increase.

Figure 15 shows the dependence of the period with pa-
rameters related to protein degradation. Figure 15(a) shows
the dependence of the period with the maximum rate of
biphosphorylated protein degradation (vd ), whereas Fig. 15(b)
shows the period dependence with the Michaelis constant of
biphosphorylated protein (P2) degradation, Kd . Increasing vd

leads to a monotonical increase in the period, which is smaller
for nHill = 2. This means that the period sensitivity to vd

decreases when nHill changes from 1 to 2. On the other hand,
increasing the Michaelis constant Kd in the protein decay
term leads to a monotonical period shortening, which is softer
for nHill = 2, and therefore the period sensitivity to Kd also

FIG. 8. Individual Kmir isolines for nHill = 1 (monotonically crescent curves) and nHill = 2 (S-like curves). The rectangles enclose the
experimentally observed values of the period and delay. For all the values of Kmir considered, both the period and the delay shorten with
increasing Vmir inside of these rectangles. A more complicated picture is observed outside the rectangles (see text).
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FIG. 9. The peak-to-trough amplitude for the unphosphorylated
PER (P0, y axis) is correlated with the peak-to-trough amplitude of
the Per mRNA (M, x axis) for each pair (Kmir-Vmir) and nHill = 1 (a) or
nHill = 2 (b). An increase in nHill (from 1 to 2) leads to an increase in
the y-axis domain (P0 amplitude) with almost no change in the x-axis
domain (M amplitude). Concave regimes were observed for most of
the Vmir isolines, which means that for a given Vmir there is a Kmir

that maximizes the P0/M amplitude ratio. Cyan points display the
(Kmir-Vmir) pairs for which circadian periods emerge. Stars indicate
the boundaries of the circadian region. Triangles and squares were
used to indicate the highlighted (Kmir-Vmir) pairs showed in Fig. 8(b).
(c) Superposition (merge) of panels (a) and (b). Stars indicate the
boundaries of the nHill = 1 case.

decreases when nHill changes from 1 to 2. Summarizing, these
results indicate that a moderate threshold produces a global
shift of sensitivity from transcriptional repression and protein
degradation to mRNA production and decay.

IV. DISCUSSION

We are interested in understanding how the dynamics of
the circadian clock could be affected by the presence of a
threshold in an essential process within the negative limb of
the TTFL: the PER translation.

Regulation by miRNAs seems to introduce a threshold
in the protein production process [23]. A molecular titration
mechanism for the interaction between the miRNAs and the
target mRNAs was suggested to explain these observations
[21,22,24]. Here we proposed a mathematical model with
a phenomenological Hill equation describing the kinetics of
the PER synthesis. The Hill equation introduces a threshold
on the translational process because it generates two kinetic
regimes: (1) a repressed translational activity below a given
mRNA concentration (threshold) and (2) a high translational
activity when the threshold mRNA concentration is attained.
One advantage of our modeling approach is that the sharpness
of the threshold is controlled by the Hill exponent (nHill):
The bigger the nHill, the stronger the threshold effect on
the translational process. In the extreme case, nHill � 1, the
translation can be thought of as an all-or-nothing process.

The numerical simulations presented here show that the
emergence of oscillations within the circadian range is fa-
vored by the presence of a moderate threshold on the PER
synthesis, which in our model is achieved when nHill = 2.
The introduction of this threshold changes the relationship
between periodicities and delays and produces an expansion
of the protein-amplitude domain with almost no changes in
the mRNA-amplitude domain.

A. Translational thresholds

Translation is a process occurring in several steps (i.e.,
initiation, elongation, termination, and ribosome recycling),
all of which are prone to be regulated, thus allowing the
modulation of gene expression in a wide range of biologi-
cal situations [37]. However, translational regulation is more
likely to be found during the canonical initiation step [38],
and there are also other, noncanonical, mechanisms of trans-
lation initiation and regulation [39]. Two general modes of
translational control were proposed [38,40,41]: (1) a global
regulation through modification of initiation factors (eIFs) and
secondary structures in the 5′UTR and presence of upstream
open reading frame (ORFs) and (2) a mRNA-specific mod-
ulation that can be driven by regulatory protein complexes
including specific RNA-binding proteins and/or micro RNAs
(miRNAs). Growing evidence suggests that both modes of
translational regulation can impact on the cellular circadian
physiology in animals [11–13,42–48], plants [49,50], and
fungi [51,52]. Thus, translational regulation adds complexity
to the multilayer post-transcriptional processes involved in the
cellular circadian behavior [53].

In particular, we are interested in the translational
regulation of clock components [46,47,54–56], since it
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FIG. 10. Correlation between Po and M peak-to-trough amplitudes for two Kmir values and nHill = 1 (a) and nHill = 2 (b). Squares indicate
the Kmir = 0.794 results. Independently of whether nHill = 1 or nHill = 2, for very high Kmir (c) and small Vmir there is a simultaneous increase
of both amplitudes until the M amplitude reaches its highest value. Then, the correlation curve bends back leading to a regime where the P0

amplitude increases while the M amplitude decreases. For nHill = 1, the P0 amplitude peaks and then both the M and P0 amplitudes decrease.
Square in panel (c) indicates the nHill = 1 result.

ultimately affects the kinetics of clock protein synthesis and,
as a consequence, the TTFL dynamics. The TTFL dynamics
derived from different effective translational kinetics can be
straightforwardly explored using mathematical modelling. In
fact, we previously used this approach to understand the
effects introduced by translational regulators that enhance the
translational rate of PER [15]. This seems to be the function of
the complex TWENTY-FOUR (TYF)–ATAXIN-2 (ATX2)–
PABP in Drosophila, which has been recently characterized as
a translation complex important for PER expression and cir-
cadian rhythms, since it activates the PER translation [11–13].

Regulation by microRNAs (miRNAs) is usually asso-
ciated with both induction of mRNA destabilization (fol-
lowed by decay) and translational inhibition of target mRNAs

[16]. While several lines of evidence suggest that mRNA-
decay comprises the major mode of miRNA-mediated repres-
sion of endogenous mRNAs [57,58], pure mechanisms of
translational repression have been recently reported in flies,
zebrafish, and humans [20]. These mechanisms are probably
affecting the early step of translation initiation and can occur
concurrently with different kinetics, leading to an overall
increase of the silencing effect [16].

The precise molecular processes involved in purely (i.e.,
without mRNA decay) translational repression mechanisms
are not fully understood, but one possibility may involve
titrative miRNA-mRNA interplay. Interaction via titration
mechanisms, which entails threshold-like behaviors [24], has
been previously described for small RNAs and target mRNAs

FIG. 11. Time evolution of mRNA [(a) and (d)], unphosphorylated PER [(b) and (e)], and total PER [(c) and (f)] for the Kmir isoline
= 0.3548 and Vmir = 2.2387 [(a), (b), and (c)] and Vmir = 3.5481 [(d), (e), and (f)]. In red we show the results for nHill = 1 and in black those
for nHill = 2. These time evolutions correspond to the (Kmir-Vmir) pairs highlighted as triangles or squares in Fig. 8(b). Squares indicate the
nHill = 1 results.
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FIG. 12. Time evolution of the mRNA [(a) and (d)], unphosphorylated PER [(b) and (e)], and total PER [(c) and (f)] for the Kmir isoline
= 1.5849 and Vmir =3.5481 [(a), (b), and (c)] and Vmir = 22.387 [(d), (e), and (f)]. The results are shown in red for nHill = 1 and in black for
nHill = 2. These time evolutions correspond to the Kmir-Vmir pairs highlighted as triangles or squares in Fig. 8(e). Squares indicate the nHill = 1
results.

in bacteria [59] and, remarkably, a miRNA-target interaction
compatible with a titration mechanism and a threshold-like
behavior has been reported in mammalian cells [23,60]. In-
terestingly, a titrative sRNA–miRNA-mRNA interaction has
been associated with indirect interactions (or cross-regulation)
among target mRNAs via the shared sRNAs-miRNAs, which
has been conceptualized within the competitive endogenous
RNA (ceRNA) hypothesis [21,22].

Here we describe the effective kinetics of PER synthesis
in terms of a Hill equation. Our choice of a Hill equation
to phenomenologically represent the effects of a molecular
titration mechanism was based on evidence showing that
molecular titration mechanisms can generate responses that
are equivalent to cooperative processes, typically described
by Hill equations [29]. This modeling approach captures the
main feature of a titration-based mechanism—the threshold
effect. Also, this approach is simpler than explicitly con-
sidering the miRNA concentration as an additional variable
(which would require an extra differential equation within
our model). Besides, the Hill equation allows us to control
the threshold by the nHill parameter, which does not have a
direct molecular interpretation but describes a general
miRNA-mediated threshold effect.

Since we observed that a moderate nHill increase (i.e., when
nHill changes from 1 to 2) allows us to maximize the prob-
ability of finding circadian oscillations, a prediction of our
model is that molecular mechanisms introducing thresholds
in the effective kinetics of translation could be important
to optimize the chances of emergence of circadian TTFL.
Moreover, a qualitatively similar behavior is observed with a
simpler Goodwin-based mathematical model (see Appendix,
section “LGG1999 model,” and Fig. 16), suggesting the

general nature of this finding. In fact, this prediction has
a solid mathematical support since the emergence of oscil-
lations is favored by increasing nonlinearities in the TTFL
model, as demonstrated in Ref. [36]. It could be interesting to
experimentally determine, for instance, through synthetic bi-
ology experiments [61,62], whether mechanisms introducing
thresholds in different processes facilitate the emergence of
circadian oscillations. At this point it is important to note the
usefulness of mathematical modeling and numerical simula-
tion as tools to explore different molecular mechanisms under-
lying biological processes and as generators of new hypothe-
ses that can be tested in the future. For instance, some exciting
possibilities, supported by experimental evidence [63,64],
would be to investigate (i) an oscillating miRNA effect, ei-
ther in- or out-of-phase with Per mRNA expression, and (ii)
a translational threshold effect acting on the expression of
TTFL positive elements. These scenarios may have dramatic
effects on the dynamical properties of TTFLs. In addition, our
parameter sensitivity analyses show that the introduction of
a moderate threshold (through nHill = 2) generates a global
sensitivity shift of the system from transcriptional repression
and protein degradation (which decrease sensitivity) to mRNA
production and decay (which increase sensitivity).

B. Experimental evidences and their connection
with the numerical results

As we noted, the Hill equation introduced the possibility
of including thresholds in PER synthesis. Interestingly, the
probability of obtaining oscillations with long periodicities
(infradian rhythms) increases as the threshold in the transla-
tion becomes sharper. This result seems to be a general finding
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TABLE I. Parameters

vs per mRNA transcription rate 0.5
Ki Inhibition constant for repression of per mRNA transcription 2.0
nt Hill exponent for the repression of per mRNA transcription 4
Km Michaelis constant for per mRNA degradation 0.2
vm Maximum rate of per mRNA decay 0.3
Vmir Maximum rate of PER synthesis 10−2–10+6

Kmir mRNA concentration at half of the maximum translational rate 10−6–10+3

nHill Hill exponent for the PER synthesis 1–50
V1 Maximum rate of P0 phosphorylation 6.0
K1 Michaelis constant for P0 phosphorylation 1.5
V2 Maximum rate of P1 dephosphorylation 3.0
K2 Michaelis constant for P1 dephosphorylation 2.0
V3 Maximum rate of P1 phosphorylation 6.0
K3 Michaelis constant for P1 phosphorylation 1.5
V4 Maximum rate of P2 dephosphorylation 3.0
K4 Michaelis constant for P2 dephosphorylation 2.0
k1 Rate constant for entry of P2 into the nucleus 2.0
k2 Rate constant for exit of P2 from the nucleus 1.0
vd Maximum rate of P2 degradation 1.5
Kd Michaelis constant for biphosphorylated P2 degradation 0.1

since it was also observed with a simpler model (Fig. 16)
and it resembles the lengthened circadian periods obtained
from cultured suprachiasmatic nucleus slices in which a
transient protein synthesis inhibition was chemically induced
with cycloheximide [65]. Moreover, prolonged treatments
with protein synthesis inhibitors are even able to stop the
circadian oscillation [66]. It is well known that mutations
affecting the phosporilation state and/or the stability of the
TTFL negative elements can either produce arrhythmicity or
lead to altered periods [67,68]. The numerical simulations
presented here lend support to the proposal that translational
regulation involving thresholds can be another way to tune the
circadian period.

In our model the nHill parameter does not have a direct
molecular interpretation. Instead, the nHill value indicates
qualitatively whether a null (nHill = 1), moderate (nHill >

1), or sharp (nHill � 1) miRNA-mediated threshold effect is
present in PER synthesis. Since we have mainly focused our
analysis on the comparison between nHill = 1 and nHill = 2,
we have interpreted these two conditions as indicating the
absence or presence of a miRNAs effect, respectively.

In order to validate our model, we searched the literature
for experimental evidence comparing the oscillatory features
of the TTFL in the presence and absence of miRNA activity.
We found that this approach has been used to evaluate the
impact of global miRNA regulation on the mammalian molec-
ular clock [69,70]. These papers provide experimental support
for the idea that miRNAs are involved as an additional layer of
post-transcriptional regulation for the fine tuning of circadian
rhythms rather than be essential components of the molecular
core clock.

Although it is not possible to completely rule out the role of
pleiotropic effects indirectly influencing the clock dynamics,
either by deleting the pre-miRNA processing enzyme Dicer
in mouse embryonic fibroblasts (MEFs) [69] or by using
liver explants derived from the Dicer knockout (KO) mice
[70], these authors present several pieces of evidence strongly
suggesting a direct effect of miRNA over the Per1 and Per2
translation.

These studies showed, however, different results with
regards to the oscillatory features of the TTFL. On one
hand, in liver explants the miRNAs activity seems to

FIG. 13. Period sensitivity to changes in parameters related to mRNA production and decay: (a) The Hill exponent for the repression of
mRNA transcription, nt ; (b) the maximum rate of per mRNA synthesis, vs; and (c) the Michaelis constant for mRNA degradation, Km. Results
are shown for nHill = 1 (red squares) and nHill = 2 (black circles).
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FIG. 14. Period sensitivity to nontranslation-related model parameters. Inhibition constant for repression of Per mRNA transcription, Ki

(a); maximum rate of Per mRNA decay, vm, (b); maximum rate of unphosphorylated PER phosphorylation, V1, (c); Michaelis constant for
unphosphorylated PER phosphorylation, K1, (d); maximum rate of monophosphorylated PER dephosphorylation, V2, (e); Michaelis constant
for monophosphorylated PER dephosphorylation, K2, (f); maximum rate of monophosphorylated PER phosphorylation, V3, (g); Michaelis
constant for monophosphorylated PER phosphorylation, K3, (h); maximum rate of biphosphorylated PER dephosphorylation, V4, (i); Michaelis
constant for biphosphorylated PER dephosphorylation, K4, (j); rate constant for exit of biphosphorylated PER from the nucleus, k2, (k); rate
constant for entry of biphosphorylated PER into the nucleus, k1, (l). Red squares and black circles correspond to translation kinetics with
nHill = 1 and nHill = 2, respectively. Period profiles did not exhibit significant changes between these two conditions.

moderately shorten the period of the molecular clock, since
Dicer KO explants tend to exhibit longer periods than those
derived from wild-type (WT) mice [70]. In addition, the
miRNAs activity in liver also seems to produce a shortening
of the time delays, since the upswing of the PER2::LUC
bioluminescence rhythms was shortened in the WT liver
explants as compared to Dicer KO explants. On the other
hand, in MEFs the miRNAs activity seems to contribute

to the lengthening of the circadian period, since control
MEF’s exhibited longer periods than Dicer-deleted MEF’s
[69]. These experiments also suggested that miRNAs ac-
tivity introduces time delays by direct inhibition of PER
accumulation in the cytoplasm [69]. From an experimental
point of view, the differences between MEF’s and liver re-
sults were related to tissue specificities in miRNA function
[70].

022409-13



PAULA S. NIETO AND C. A. CONDAT PHYSICAL REVIEW E 100, 022409 (2019)

FIG. 15. Period sensitivity to changes in parameters related to protein degradation: (a) The maximum rate of PER degradation, vd , and
(b) the Michaelis constant for PER degradation, Kd . Results are shown for nHill = 1 (red squares) and nHill = 2 (black circles).

Since Dicer depletion leads to the absence of mature
miRNAs, and therefore to the absence of a miRNA-mediated
effect, we interpret this situation as being similar to the condi-
tion nHill = 1 in our model. Analogously, results derived from
the controls, where miRNAs are active, can be interpreted
in our model as following from the condition nHill > 1. This
interpretation allows us to make some qualitative comparisons
between our theoretical results and the results derived from
these experimental studies.

First, consistently with the results from liver [70], we
showed that some Vmir conditions in our model generated
TTFL’s period and delay shortenings when nHill changed
from 1 (similar to the DICER KO condition: absence of
miRNA activity) to nHill = 2 (similarly to the WT condition:
presence of miRNA activity). Interestingly, these Vmir values

also produced delays between 6 and 8 h and periods between
20 and 28 h (inside the violet rectangle of Fig. 8), which are
the ranges previously reported [30–35,71]. Under other Vmir

conditions, our model yields a diversity of behaviors among
which we can find the situation reported in MEF’s in Ref. [69]:
TTFL period and delay lengthenings. However, in this case,
even after time delays were introduced (by increasing the nHill

parameter from 1 to 2) the resulting delays are short (about
4–6 h) in comparison to those previously reported [34,35,71].
Thus, by only assuming a moderate miRNA-mediated thresh-
old in PER synthesis, our model is able to reproduce the
changes in period and delay reported in both liver and MEF’s
Dicer KO experiments, providing a framework that conciliates
these experimental observations. Indeed, when we increase
nHill from 1 to 2 in a simpler but similar TTFL mathematical

FIG. 16. Phase diagrams in the Vmir-Kmir subspace obtained with the LGG199 model for nHill = 1 (a), 2 (b), 5 (c), 10 (d), 20 (e), and 50 (f)
obtained with the LGG199 model. Pseudocolor indicates the Kmir-Vmir pairs for which a periodic solution is obtained. The period length (τ ) is
shown in each key and increases from the bottom up. White regions indicate Kmir-Vmir pairs that do not correspond to an oscillatory solution
for the system. Axes are in logarithmic scale, which allows us to observe details at small Kmir-Vmir values.
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FIG. 17. Individual Kmir isolines for nHill = 1 (red line and points, top) and nHill = 2 (black line and points, bottom) when Kmir was fixed
at Kmir = 0.1 (a) or Kmir = 1 (b) in the LGG1999 model. Pairs of triangles, squares, and diamonds correspond to the same Vmir values in each
Kmir isoline.

model (see Appendix, section “LGG1999 model,” and
Fig. 17) we find that a mild threshold also produces diverse
changes in the delay-period relationship (i.e., delay and period
lengthening, period lengthening with delay shortening, delay
and period shortening). This feature is mainly determined by
the specific value of Vmir. Importantly, we observed TTFL’s
period and delay shortenings when nHill changed from 1 to
nHill = 2 [red to black squares and red to black diamonds
in Fig. 17(a)] and some of these Vmir values also lead to
circadian periods with delays between 6 and 8 h [for example,
red to black diamonds in Fig. 17(a)]. Moreover, we also find
Vmir values producing oscillations with short delays (about
4–6 h) for which a nHill change from 1 to 2 leads to TTFL
period and delay lengthenings [for example, red to black
triangles in Fig. 17(b)], similarly to the findings showed in
Fig. 8 (squares). Therefore, these seems to be general findings,
supporting two predictions of our model: (i) The observed
tissue differences may be related to translational enhancers
involved in the PER synthesis (associated with Vmir) and
(ii) delays in MEF’s may be shorter than in liver. It is worth
noting, however, that the comparison of our main results with
those emerging from the simpler TTFL mathematical model
(Appendix, section “LGG1999 model”) also highlighted those
effects that were produced by the interaction between the
nonlinearities describing the different kinetic processes. This
is therefore a useful approach for structurally analyzing to
what extent the processes relate to each other and we will
explore it in depth in the future.

Second, the PER2::LUC free-running rhythms measured
from liver explants of Dicer knockout animals (analogously
to the nHill = 1 in our model) exhibit a less-steep upswing
slope than controls (analogously to the nHill = 2 in our model)
[70]. Similarly, the introduction of the threshold in translation
changes the functional waveforms. Specifically, an increase
of nHill produces a flattening of the P0 troughs, which intro-
duces time delays since it takes a longer time to trigger the
upswing phase of the protein dynamics. The same feature
is observed as Vmir increases. In addition, the slope of the
upswing phase becomes steeper as nHill increases, which is
another qualitative similarity between the experiments and our
model and seems to affect the time delays, because it deter-
mines the rate of P0 accumulation. Therefore, the balance of

these two effects is probably influencing the period and delay
lengths.

Third, the PER2::LUC peak-to-trough amplitude in both
MEF’s and liver increased in the presence of miRNA ac-
tivity. Consistently, we also observed an increase of PER
peak-to-trough amplitude when nHill > 1. Nevertheless, the
stationary PER1 and PER2 protein levels were systematically
higher throughout the day in Dicer mutants (in MEF’s and
liver) as compared with controls. In our simulations, this
observation is true only at the troughs but not at the peaks.
We think that this difference between the experiments and
our simulations is associated with the previously discussed
miRNA-mediated destabilization and decay of target mRNAs,
which are likely to be present in these experiments. Indeed, it
was recently found that the Per2 mRNA 3′UTR has binding
sites for miR-24 and miR-30, which contribute to increase
Per2 mRNA destabilization [17]. This effect is likely to be
abolished in Dicer KO, yielding systematically high station-
ary PER’s levels. Qualitatively similar are the results of a
mathematical model developed by Nandi and collaborators
[18]. In that model they studied a scenario in which miR-
NAs can effectively increase the mRNA degradation rate and
thereby shorten the Per mRNA half-life. They found that the
introduction of miRNA drastically reduces the amplitude of
protein oscillations and shortens the circadian period. So a
combination of miRNA-mediated mRNA destabilization and
translational regulation may explain the circadian amplitude
profile.

In summary, miRNAs have important and diverse roles
in circadian clock regulation; the mechanism by which they
exert their function may include a combination of mRNA
destabilization and translational regulation. These may de-
pend on tissue specificities, mice strain, and light regimen
(environmental or experimental conditions) [72]. By assum-
ing a moderate miRNA-mediated threshold in PER synthesis,
our model allows us to explain previous experimental ob-
servations related to the translational regulation of negative
elements in the TTFL. We provide new elements for thinking
of the translational threshold as a mechanism that favors the
emergence of circadian rhythmicity, tuning the delays and the
cell capacity to control the protein amplitude domain with
almost negligible changes in the mRNA domain.

022409-15



PAULA S. NIETO AND C. A. CONDAT PHYSICAL REVIEW E 100, 022409 (2019)

ACKNOWLEDGMENTS

We thank Dr. Lucas Valdez for useful discussions. This
work was supported by SECyT-UNC (Project No. 05-B457)
and CONICET (PIP 11220150100644), Argentina.

APPENDIX

1. The TTFL model

The conceptual molecular clock model shown in Fig. 1(a)
can be transformed into a mathematical model by the selection
of adequate mathematical equations and parameter values in
order to represent the biochemical processes involved [27].
Since the exact functional forms of each process are not
experimentally known, the model relies on the following
assumptions:

(1) The per mRNA (M) is transcribed in the nucleus and
transferred to the cytoplasm at a rate vs (nM h−1), where it
decays in a Michaelis-Menten fashion with rate vm (nM h−1)
and Michaelis constant Km (nM).

(2) In the cytoplasm, the per mRNA can be translated
to produce the PER protein. In previous models the PER
translation rate was assumed to be proportional to the per
mRNA concentration and characterized by the first-order rate
constant ks (h−1), [18,25,26]. Here we assumed that a Hill
equation represents the rate of PER synthesis based on the
following considerations:

(a) It is well known that multiple regulators and factors
are involved in the effective kinetics of protein synthesis,
and therefore it is likely that this process occurs with
nonlinear kinetics [73,74].

(b) PER translation is modulated by regulators that
enhance the PER translation [11,13,14,45]. In our previous
work [15] we have interpreted the global effect of such
regulators as enzymatic catalyzers that enhance the trans-
lational rate and impose a maximum velocity of reaction
achieved at saturating mRNA concentration. A Michaelis-
Menten kinetics was proposed to represent these features.

(c) In the last few years an increasing amount of evi-
dence has suggested that microRNAs (miRNAs) regulate
several aspects of circadian clock function [75], and in
particular, that the mRNA of Per1 and Per2 are targets of
miRNA function, [69,70].

(d) The way in which some miRNAs interact with their
targets can be described in terms of a titration mechanism,
characterized by a threshold effect, hypersensitivity of
the system around the threshold, and cross-talk among
miRNAs-targets. This kind of miRNA-mediated transla-
tional regulation, then, establishes a threshold level of
target mRNA below which protein production is highly
repressed, [23,24,76].

Molecular titration mechanisms can generate responses that
are equivalent to cooperative processes [29]. Therefore, we
propose a Hill equation [Eq. (2)] to phenomenologically
model a miRNA-mediated thresholding in PER synthesis. By
taking into account a Hill kinetics for PER translation, we
have incorporated three parameters to the model: the Kmir

(nM) constant; the maximum rate of the translational process
Vmir (nM h−1) and the the Hill exponent (nHill). As noted under
Methods, Vmir is the parameter that controls the maximum

PER translation rate, biologically interpreted as being propor-
tional to the concentration of multiple translational enhancers
involved in the PER synthesis; Kmir is the parameter that
indicates the mRNA concentration at which the PER synthesis
is one half of its maximum rate, and the Hill exponent, (nHill),
is the parameter that controls the sharpness of the translational
threshold. It indicates qualitatively whether a null (nHill = 1),
moderate (nHill > 1) or sharp (nHill � 1) miRNA-mediated
threshold effect is present in PER synthesis. When nHill =
1 the Hill equation becomes a Michaelis-Menten equation
[15]. When nHill � 1 (i.e., nHill = 50), the translation can
be thought of as an all-or-nothing process, which may seem
biologically unrealistic, but we have included it in some of our
simulations since analyzing extreme cases may be useful to
identify some tendencies that are not so evidently expressed at
low values of nHill. Nevertheless, we have mainly focused our
analysis on the comparison between nHill = 1 and nHill = 2,
and we have interpreted these two conditions as absence or
presence of a moderate miRNAs threshold effect, respectively.

(3) The unphosphorylated PER (P0) is phosphorylated
twice in a consecutive and reversible fashion, resulting in
the monophosphorylated PER (P1) and the biphosphorylated
PER (P2). The first phosphorylation-dephosphorylation step is
modeled by a Michaelis-Menten mechanism with a maximum
rate V1 (nM h−1) and a Michaelis constant K1 (nM) for the
forward reaction and with a maximum rate V2 (nM h−1) and
a Michaelis constant K2 (nM) for the reverse reaction. The
same kinetics is assumed for the second phosphorylation-
dephosphorylation step, with maximum rates V3 (nM h−1) and
V4 (nM h−1), and Michaelis constants K3 (nM h−1) and K4

(nM h−1), respectively.
(4) Only biphosphorylated PER (P2) can be degraded with

a Michaelis-Menten kinetics with maximum rate vd (nM h−1)
and Michaelis constant Kd (nM).

(5) Nuclear translocation of the biphosphorylated PER is
considered as a reversible step with first-order rate constants
k1 (h−1) and k2 (h−1) for the forward and reverse processes,
respectively.

(6) To simplify the model it was assumed that nuclear PER
(Pn) itself is the repressor exerting the negative feedback on
per expression. The feedback term is described by a Hill-like
equation with Hill exponent nt . The bigger the nt value, the
more cooperative is the repression of per transcription. A
study about the effect of nt was included in our previous work
[15]. Here we assumed nt = 4, which is consistent with the
idea that repression must be a cooperative process [77].

Summarizing, the model consists of a set of five ordinary
differential equations describing the time evolution of five
components of the molecular circadian clock: M, P0, P1, P2,
and Pn. The system requires 20 parameters, whose definitions
and values are listed in Table I and are the same as those
reported in Ref. [26].

It is worth noting that this model has an intermediate
complexity (5 variables and 20 parameters), but other more
simplistic or complex (detailed) models have also been pro-
posed to study different aspects of TTFL dynamics, [78–82].
Very detailed models may be helpful to establish direct
comparisons with experimental data at the expense of their
predictive capacity. Indeed, increasing the number of variables
and parameters does not significantly improve the description

022409-16
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TABLE II. Parameters of the LGG1999 model

vs per mRNA transcription rate 1.6
Ki Inhibition constant for repression of per mRNA transcription 1.0
nt Hill exponent for the repression of per mRNA transcription 4
Km Michaelis constant for per mRNA degradation 0.5
vm Maximum rate of per mRNA decay 0.505
Vmir Maximum rate of PER synthesis 10−4–10+6

Kmir mRNA concentration at half of the maximum translational rate 10−4–10+3

nHill Hill exponent for the PER synthesis 1–50
k1 Rate constant for entry of P2 into the nucleus 0.5
k2 Rate constant for exit of P2 from the nucleus 0.6
vd Maximum rate of P2 degradation 1.4
Kd Michaelis constant for biphosphorylated P2 degradation 0.13

of the basic properties of a TTFL. Instead, it obscures the
mathematical and computational analysis because many of the
parameters have unknown experimental values.

Units: Ki, Km, K1, K2, K3, K4, Kd , and Kmir are in nM; vs,
vm, V1, V2, V3, V4, vd , and Vmir are in nM h−1; k1 and k2 are
in h−1.

2. LGG1999 model

We implemented the Hill translation kinetics in a sim-
pler Goodwin-based model, previously described by Leloup,
Gonze, and Goldbeter [25]. This model, which we call
LGG1999, is quite similar to the one we chose for the present
article, except for the specific parameter values (listed in
Table II) and the two reversible phosphorylation processes,
absent in this simpler version. The differential equations are

dM

dt
= vs

Knt
i

Knt
i + Pnt

n
− vm

M

Km + M
, (A1)

dP0

dt
= Vmir

MnHill

KnHill
mir + MnHill

− vd
P0

Kd + P0
− k1P0 + k2Pn,

(A2)

dPn

dt
= k1P0 − k2Pn. (A3)

Thus, the LGG1999 model contains only three differen-
tial equations, which resemble the original Goodwin model
and its more precise Griffith implementation [83,84]. The
differences are related to the mRNA and protein degradation
kinetics: While in the LGG1999 model we described them by
Michaelis-Menten functions, in the Goodwin and Griffith they
were assumed to have first-order kinetics. In order to test the
generality of the results shown in Fig. 2, we explored numer-
ically the translational parameter space defined by Vmir, Kmir

and nHill and found that the oscillatory (colored) region within

the translational parameter space increases when nHill > 1
(Fig. 16). This result is qualitatively similar to that shown in in
the Fig. 2. Circadian periodicity is also favored by a moderate
increase of nHill.

In addition, we tested the generality of the delay-period
relationships described in Figs. 5 and 8. Figure 17 shows the
comparison between representative Kmir isolines for nHill =
1 and nHill = 2 obtained with the LGG1999 model. When
we compare this result with Fig. 8, we recognize similari-
ties and differences. The main similarities are related to the
delay-period relationship, which is strongly dependent on
Vmir. It presents a diversity of behaviors when going from
nHill = 1 to nHill = 2: delay and period lengthening [red and
black triangles in Fig. 17(b)]; period lengthening with delay
shortening [red and black squares in Fig. 17(b)] and delay
and period shortening [red and black squares and diamonds
in Fig. 17(a)]. The main difference we observe is that the
LGG199 model does not yield twisted isolines, such as those
observed in Fig. 8. Instead, the delays are monotonic functions
of the period length for the whole delay and period range.
Indeed, the delay-period relationships found with the LGG199
model exhibit a steeper slope for nHill = 1 than for nHill = 2,
while the opposite effect is observed in the almost linear
delay-period relationship region of Fig. 5(f) (i.e., within the
violet rectangle of Fig. 8). Therefore, the LGG199 model
presents less period robustness for nHill = 2 than for nHill = 1.
In addition, the range of periodicities found with the LGG199
model never extends beyond 25 h. On the contrary, in Fig. 8
the periodicities extend to more than 30 h. These differences
are likely to be related to the interaction between the two
reversible phosphorylation processes (absent in the LGG199
model) and the mild threshold introduced in the translation
process. Certainly, all these aspects could be better explored
in future works.

Units: Ki, Km, Kd , and Kmir are in nM; vs, vm, vd , and Vmir

are in nM h−1; k1 and k2 are in h−1.
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