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Abstract

Background: The objective of this study was to look for a replacement to the radiosonde measurements that are
necessary for the construction of an index of potential wildfire severity (i.e, Haines Index, Hl) in areas of South America
that have had few to no radiosonde launches. To this end, we tested the application of GPT2w, an empirical model
originally developed for Global Navigation Satellite System (GNSS) meteorology. By using the GPT2w model, and
starting from measured surface meteorological data (air pressure, temperature, and relative humidity), estimators of air
temperature and dew-point air temperature at different pressure levels were generated. The selected testing area was
a region of South America that included most of the Rio de la Plata drainage basin, along with two hazardous areas:
Sierras de Cordoba in Argentina and Serra da Canastra in Brazil. This region was chosen due to the availability of the
radiosonde launches required for comparison during 2016.

Results: To characterize the regional performance of HI, we used data from the European Centre for Medium-Range
Weather Forecast's (ECMWEF) reanalysis model (ERA Interim; Dee et al, Quarterly Journal of the Royal Meteorological
Society 137: 553-597, 2011) for the period 2000 to 2016. A statistical analysis of the differences between the simulated
HI from GPT2w (HI_GPT2w) and the HI values derived from radiosonde measurements (H/_R) was performed.
The results showed that HI_GPT2w reproduced HI_R values about 50% of the time, most accurately for low-
severity HI values (2 to 3, on a scale of 2 to 6). In general, H_GPT2w exhibited an underestimation of HI
that increased as the index value increased. We analyzed how this underestimation affected the different

HI variants calculated. To this end, we recall that each HI variant results from the sum of the stability and
moisture terms. The stability term resulted from the temperature difference at different pressure levels while
the moisture term is represented by the dew-point depression. Thus, the pressure level limits in the stability
term define the HI variant. In this study, we used the Low-variant HI (950 and 850 hPa) and the Mid-variant
HI (850 and 700 hPa). If we analyze this underestimation according to the HI variants, the moisture term is
responsible for the Low variant underestimation and the stability term is responsible for the Mid variant.

Conclusion: The simple application of GPT2w to extrapolate the vertical values of temperature and its
dew-point depression is not enough to reproduce the Haines Index as it was measured from radiosonde
measurements. Nevertheless, an improved application of GPT2w and the extrapolated saturation water vapor
pressure by using the Integrated Water Vapor from Global Navigation Satellite System (GNSS-IWV) values
could improve the results.
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Resumen

Antecedentes: La idea principal de este trabajo es buscar un reemplazo a las mediciones de radiosondas que son
necesarias para la construccion de un indice de severidad potencial de incendios forestales (Indice de Haines, HI)
en dreas de América del Sur con escasos lanzamientos de radiosondas. Con este fin probamos la aplicacion de un
modelo empirico (GPT2w) originalmente desarrollado para la Meteorologia Global Navigation Satellite System
(GNSS). Se generaron estimadores de la temperatura y la temperatura del punto de rocio en diferentes niveles de
presion usando el modelo GPT2w y datos meteoroldgicos medidos en superficie (presion atmosférica, temperatura
y humedad relativa). El drea de prueba seleccionada comprende una regién de Sudamérica que incluye la mayor
parte de la cuenca del Rio de La Plata junto con dos dreas peligrosas en relacion a fuegos de vegetacion: las Sierras
de Coérdoba en Argentina vy la Serra da Canastra en Brasil. Esta region fue elegida gracias a la disponibilidad de
datos de radiosondas necesarios para la comparacion durante el afo 2016.

Resultados: Para caracterizar el comportamiento regional del HI, usamos los datos del modelo de re-anélisis ERA
Interim generados por el European Centre for Medium-Range Weather Forecast (ECMWF) durante el periodo 2000
—2016. Luego realizamos un andlisis estadistico de las diferencias entre los valores de HI simulados con el uso de

GPT2w (HI_GPT2w) y los valores de HI calculados desde las mediciones con radiosondas (H/_R). Los resultados
mostraron que el H/_GPT2w reprodujo los valores de HI_R casi el 50% de las veces, siendo més preciso para los
valores de HI que indican baja severidad (2—3). En general, el H_GPT2w muestra una subestimacion del HI que se
incrementa a medida que el indice del valor crece, especialmente para la variante Baja. Ademas, el término de
humedad es el causante las subestimacién de los valores de la variante Baja del HI mientras que el término de
estabilidad es el responsable de la falta de coincidencia para los valores de la variante Media del HI.

Conclusiones: La aplicacion del GPT2w para extrapolar los valores verticales de temperatura y temperatura del
punto de rocio no es suficiente para reproducir el HI calculado desde mediciones con radiosondas. Sin embargo,
una aplicacion mejorada del GPT2w, usando valores de vapor de agua en saturacion extrapolados desde el vapor
de agua integrado GNSS (GNSS-IWV), podria mejorar los resultados.

Background

Haines (1988) first published an empirical index called
Lower Atmospheric Severity Index (LASI) to detect the
potential for a plume-dominated fire to become large or
erratic (Potter et al. 2008; Lu et al. 2011). LASI is now
referred to as the Haines Index (HI), and is a useful tool
to manage existing fires when surface winds do not
dominate fire behavior (Haines 1988). Today, HI is
widely used in wildfire forecasting and monitoring in the
United States (Winkler et al. 2007, Potter et al. 2008, Lu
et al. 2011), although Winkler et al. (2007) also reports
its usage by the Servicio Meteoroldgico Nacional of
Argentina.

Moreover, a number of studies have investigated HI over
the recent past in various parts of the world (e.g, Mills
and McCaw 2010; Tatli and Tirkes 2014). Mills and
McCaw (2010) identified that the original HI was too
often at severity level 5 or 6 over large areas in Australia
because HI was developed for conditions in the northwest
United States; it was not configured to identify the most
extreme conditions in Australia. The two continents have
different temperature lapse rates and humidity climat-
ology. Consequently, Mills and McCaw (2010)) developed
an alternative extended version of HI named the Continu-
ous Haines Index (C-Haines). The C-Haines Index

converts the discrete inputs to the traditional HI into lin-
ear functions of the temperature lapse rate and dew-point
depression, thereby eliminating abrupt transitions between
categories and differentiating better between elevated
values of the index.

Neither HI nor C-Haines have any direct physical rela-
tionship to fire activity or behavior. The strength of both
indices may be that they encapsulate a wider range of
physical processes that may enhance fire activity (Mills
and McCaw 2010). It is difficult to distinguish which
physical processes these are; hence, HI forecasts should
be used as alerts rather than as phenomenological ex-
planation of the physics behind the fire activity (Mills
and McCaw 2010).

Tatli and Tirkes (2014) studied the climatic pattern of
HI for the period 1980 to 2010 by using the hourly data
from the National Centers for Environmental Predic-
tion/National Center for Atmospheric Research in
several countries on the Mediterranean Sea. They com-
puted HI values at 12:00 GMT, despite the fact that
temperature and atmospheric instability can be at their
maximum at this time, creating possible inversions in air
temperature at the Earth’s surface (Enz et al. 2017). The
authors also applied the Koppen-Geiger climate classifi-
cation and found that the highest-level risks were in B
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type regions (desert areas of the Sahara and Libya, and
semi-arid steppe of the Middle East), and moderate-level
risks were at the mid-latitude warm, temperate, C type
regions (Greece, Italy, Turkey, Syria, Lebanon, Cyprus,
Macedonia, Albania, Serbia, Slovenia, France, Portugal,
Spain, Morocco, and Tunisia) (Tatli and Tiirkes 2014).

The information provided to fire managers by HI can
be used to estimate the danger of a given fire event,
allowing them to apply suitable fire-fighting strategies.
To that end, climatological characteristics of HI in a
given region are needed to estimate the likelihood of
having high index values (Winkler et al. 2007), along
with an additional analysis showing temporal persistency
and frequency of dangerous values in the area.

This study had two main objectives. The first was to
characterize the climatological behavior of HI in the se-
lected region of South America for the purpose of de-
tecting areas of high fire hazard. Because HI was
originally designated to fulfill the atmospheric conditions
of different areas in the United States, its application to
another region of the American continent should be an-
alyzed due to different temperature lapse rates and hu-
midity conditions. The study region was a portion of
South America that had at least 17 radiosonde stations
operating during 2016. The second objective was to test
the application of a model originally designed for GNSS
(Global Navigation Satellite Systems) meteorology, the
Global Pressure and Temperature 2 wet model (GPT2w;
Bohm et al. 2015), to estimate HI in the region. Specific-
ally, GPT2w values were used as a substitution of the
radiosonde values of temperature and dew-point
temperature at different pressure levels. Then, values
computed from measured radio-sounding data (ie.,
HI R) were compared to the respective HI estimation
from the GPT2w model.
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Methods

Characterization of the Haines Index in the region

HI numerically rates the potential of extreme fire behav-
ior or sudden fire growth by evaluating atmospheric sta-
bility and moisture content (Simpson et al. 2014). Thus,
HI is the sum of two components or terms. The stability
component is the temperature difference between two
fixed lower tropospheric pressure levels. It measures the
potential for atmospheric mixing (Winkler et al. 2007).
The stability term can have values 1, 2, or 3, with higher
values indicating greater instability. The moisture com-
ponent is the dew-point depression at a fixed pressure
level (Winkler et al. 2007; Lu et al. 2011) and can have
values 1, 2, or 3, with higher values indicating drier air.
The pressure levels used depends on the variants of the
index. In fact, Haines originally created three variations
of the index (Low-variant HI, LHI; Mid-variant HI,
MHI: and High-variant HI, HHI) by dividing the US ter-
ritory into three regions according to surface elevations
and climatological divisions (Winkler et al. 2007). Thus,
the index is an integer from 2 to 6, where 6 means high-
est potential danger for a large wildland fire (see
Table 1).

Because the climate of a region plays an important role
in determining wildfire risk, a regional characterization of
HI was performed in the selected area to describe ex-
pected behavior and to thus identify its spatial and tem-
poral resolution. The region of interest extends from 15° S
to 35° S in latitude and from 35° W to 65° W in longitude
and covers most of the Rio de La Plata drainage basin in
South America (Caffera and Berbery 2006).

From Fig. 1 and Table 2, one can see that several cli-
mate types following the Koeppen-Geiger climate classi-
fication (Peel et al. 2007) are represented in this
extended area. Effectively, three dominant climate types

Table 1 Computation details of the Haines Index (HI). AT, and ATy indicate the temperature difference of the stability and moisture
term, respectively. Three variants are defined depending on elevation: Low-variant Haines Index (LHI), Mid-variant Haines Index
(MHI), and High-variant Haines Index (HHI). T is the air temperature and TD is the dew-point temperature at the atmospheric
pressure level indicated at the respective subscript. Hl = AT + ATy for all variants. The resulting values are classified as: 2 to 3 (very

low), 4 (low), 5 (moderate), and 6 (high)

Variants Stability Moisture
Condition Term value Condition Term value

LHI ATy < 4°C 1 ATg < 6°C 1
ATa = Toso hpa — T850 hra 4C<xATy<x7°C 2 6°C < ATg < 9°C 2
ATs = Tgso hpa = TDgso hea AT, > 8°C 3 ATg > 10 °C 3
MHI ATx <6 °C 1 ATg < 6°C 1
ATa = Tgso hea — 1700 hra 6°C < ATp < 10°C 2 6°C < ATg < 12°C 2
ATg = Tgso hpa — Dgs0 hea ATp > 11 °C 3 ATg > 13 °C 3
HHI AT, <18 °C 1 ATg < 15 °C 1
ATa = T700 hea — T500 hra 18 °C < AT < 21 °C 2 15°C < ATy < 20 °C

ATg = T700 hea = TD700 hea ATp > 22 °C 3 ATg > 21 °C 3
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Fig. 1 The Kéeppen-Geiger (K-G) climate classification at the study area at mid-latitudes in South America, from the Atlantic coast up to the
Andes pre-mountain range. Following K-G climate symbols: Af = tropical rainforest, Am = tropical monsoon, Aw = tropical savannah, BSh = arid
steppe hot, BSk = arid steppe cold, Cwa = temperate dry winter and hot summer, Cwb = temperate dry winter and warm summer, Cfa = temperate
without dry season and hot summer, Cfb = temperate without dry season and warm summer. Data arranged from the original set by Peel et al. (2007).
The black dots represent the radio sounding stations available during 2016 (see Table 2 for station details)

Table 2 Location of available radiosonde launching places
during 2016 at mid-latitudes in South America, from the Atlantic
coast up to the Andes pre-mountain range. L indicates Low-variant
Haines Index (LHI) and M is Mid-variant Haines Index (MHI); (see

Fig. 1 for IDs). Each location is identified by city and country name
(Br = Brazil, Ar= Argentina). The number radio soundings at each
station is also provided

ID  Location Latitude Longitude Elevation Soundings
(degree) (degree)  (m) (n)
L1 Corumba (Br) 1900S 5766 W 141 208
L2 Vitoria (Br) 2027 S 4028 W 4 137
L3 Galeao (Br) 2249S  4315W 6 288
L4 Fozdolguassu (Br) 2552S 5458 W 180 261
L5  Florianopolis (Br) 2766S 4855 W 5 268
L6 Uruguaiana (Br) 29.78S 5703 W 74 127
L7  Santa Maria (Br) 2072S 5370 W 85 247
L8  Porto Alegre (Br) 3000S 5118 W 3 186
L9  Ezeiza (Ar) 3449S  5832W 20 325
M1 Brasilia (Br) 1587S 4793 W 1061 260
M2 Uberlandia (Br) 1888 S 4822 W 943 131
M3 Confins (Br) 1962S 4397 W 827 253
M4 Campo Grande (Br) 2028S 5440 W 567 266
M5 Londrina (Br) 2333S 5113 W 569 121
M6 Marte Civ/Mil (Br) 2331S 4638 W 722 362
M7 Curitiba (Br) 2552S 4917 W 908 168
M8  Cordoba (Ar) 3119S 6413 W 474 277

of South America are present in this region: tropical,
temperate, and some arid areas. The selected area in-
cludes several types of vegetation from forest to grass-
lands. However, the distribution of the fuel beds and
their fire potential (e.g, Pettinari et al. 2013) is out of
the scope of this study.

Although several regional HI climatology studies
have been published in the last 20 years (see Lu et al.
2011 and references therein), they all focus on North
America, especially the US, where HI was originally
defined. Each of these studies used temperature and
dew point measured by radio sounding at different
levels according to the limits of the variants. (Haines
1988; Winkler et al. 2007; Potter et al. 2008; Lu et al.
2011). For this study, we determined the limits of the
Low and Mid variants of HI in the region by consid-
ering regional elevations and taking annual averages
of atmospheric pressure at the station. Following
Winkler et al. 2007, we used the elevation thresholds
of 300 m for Low variant of HI and 1000 m for Mid
variant of HI. Because there were no high mountains
in the area considered, the High variant of the index
was not used.

The meteorological quantities presented in this section
were simulated by using a re-analysis model and were
not derived from radiosonde measurements. A 17-year
analysis (2000 to 2016) of HI was performed by using
gridded fields (2.5° latitude x 2.5° longitude) from global
re-analysis data developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA In-
terim model (Dee et al. 2011).



Fernandez et al. Fire Ecology (2019) 15:6

Page 5 of 18

-20°

-64° -60° -56° -52° 48

-44°  -40° -36°

HI variant

Fig. 2 Inter-annual seasonal average for the 17-year period (2000-2016) of the Haines Index (HI) at the study area at mid-latitudes in South
America, from the Atlantic coast up to the Andes pre-mountain range. Each grid square is marked with “L" or “M" showing the Low and Mid
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The ERA Interim model’s re-analysis data included
temperature and dew-point temperature at the
mandatory pressure levels (750 hPa and 850 hPa) and
the nonstandard level at 950 hPa. Gridded data was used
instead of radiosonde observations because radio sound-
ings were generally scarce in the region. Thus, multilevel
daily mean values at 00:00 GMT were applied to com-
pute seasonal, annual, and inter-annual averages and
standard deviations. Moreover, based on previous clima-
tological studies of HI (Winkler et al. 2007; Lu et al.
2011; Tatli and Tiurkes 2014), frequency and persistence
measures were also included for index values greater
than 4 (moderate, high, or very high potential of
plume-dominated fires condition). Following Lu et al.
(2011), “frequency” refers to the percentage of observa-
tions with HI greater than or equal to a given value,
while “persistence” is understood to be the maximum
number of consecutive days of HI greater than or equal
to a given value during a given period.

Both HI and its terms atmospheric stability (hereafter,
stability term) and moisture content (hereafter, moisture
term) were computed at each re-analysis grid point.

From Fig. 2, we can see that, on average during these
17 years, the dry winter (June, July, August; JJA) and
spring (September, October, November; SON) exhibited
higher values than the warm summer season (December,
January, February; DJF). The important contribution of
the stability term to the inter-annual HI average is in the
northeast part of the region, at Planalto Brasileiro (near
47° W and 15° to 20° S) and Serra da Canastra (near 46.3°
W and 20.25°S), during the whole year. Nevertheless, the
maximum stability term moved to the west in spring and
summer (Fig. 3). The inter-annual average moisture term
exhibited high values in the southwest of the selected re-
gion (i.e, at the center of Argentina, about 63° to 65° W
and 30° to 35° S, Sierras de Cérdoba; Fig. 4).

From Fig. 5, in summer, high frequencies occur in the
area of Paraguay, Uruguay, and the pre-mountain range
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Atlantic coast up to the Andes pre-mountain range. Each grid square is

Fig. 3 Inter-annual seasonal average for the 17-year period (2000-2016) of the stability factor of HI at mid-latitudes in South America, from the

marked with “L" or “M" showing the Low and Mid HI variant

of the Andes in the central part of Argentina. The Andes
pre-mountain range is a chain of small mountains lo-
cated, north-to-south, from 29° S to 33.5° S at about
64.7° W in longitude (Rio and Achdval 1904), which we
will refer to as “Sierras de Cérdoba.” However, the high-
est frequency values for HI (>4) in Fig. 5 occurred from
winter until spring, when the frequencies displayed a
spatially symmetrical pattern with high values not only
in the southwest of the region but also across the ele-
vated region of Brazil, in the northeast of the selected
area. Figure 6 displays the frequency values for HI>5
during the period 2000 to 2016, and it shows that the
percentage of days with moderate or high HI values is
only important during winter and spring. In particular,
the maximum HI value appeared in the winter in the
Brazilian highlands. Moreover, the spatially symmetrical
pattern appeared again during spring, showing similar
values in the highlands in Brazil and in the center of
Argentina. The frequency of HI=6 (not shown) only

exhibits a maximum of around 20% in the Brazilian
highlands in winter.

Figures 7 and 8 show the persistence in days during
2000 to 2016 for HI=4 and HI=5, respectively. In
agreement with the previous results, Figs. 7 and 8 also
exhibit maximum HI values in the Brazilian highlands
during winter. Maximum values in the persistence of HI
=6 (not shown) still appear at the Brazilian highlands,
but only during winter. Nevertheless, these values never
exceed 20 days.

We can conclude that two areas exist that persistently
experienced high values of HI: Sierras de Coérdoba
(Argentina) during summer (DJF), and Serra da Canastra
and central Planalto (Brazil) during winter and spring
(JJA and SON).

Nevertheless, we should be careful about the interpret-
ation of these results in the context of fire risk or fire
hazard. On one hand, fire hazard considers potential fire
behavior for a fuel type and is independent of the
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Fig. 4 Inter-annual seasonal average for the 17-year period (2000-2016) of the moisture factor of HI at the study area at mid-latitudes in South
America, from the Atlantic coast up to the Andes pre-mountain range. Each grid square is marked with “L" or “M" showing the Low and Mid

influence of weather on fuel-moisture content (Hardy
2005). On the other hand, fire risk refers only to the
probability of ignition, both man- and lightning-caused
(i.e., the chance that a fire might start; Hardy 2005.

Thus, results from the application of HI should be
useful in the evaluation of crown fire potential. A crown
fire is intense, fast moving, and destructive (Scott and
Reinhardt 2001). According to these authors, hazard of
crown fire is dependent upon the physical situations that
lead to its occurrence. In particular, they result from a
combination of factors altering the fire environment:
fuel, weather, and slope steepness.

The GPT2w model

From the physical properties of radio signals from GNSS
propagating in the atmosphere, it is possible to obtain a
value for Integrated Water Vapor (IWV) by using GNSS
receivers on land, or temperature and humidity profiles

by using radio occultation techniques. The estimation of
atmospheric parameters from GNSS observations and
the subsequent use of those parameters in weather and
climate studies defines the topic known as GNSS
Meteorology. The first experiments employing these
ground- or space-based GPS techniques were reported
in the 1990s (Bevis et al. 1992; Kursinski et al. 1995).
Today, many national weather services routinely use
these measurements. For example, the national weather
service of France has been using such data sets from
European ground-based GPS networks and from satel-
lites equipped with GPS radio occultation receivers for
updating its operational weather prediction analyses
since 2007 (Poli et al. 2008).

The GPT2w model was originally created for use in
applications such as geodetic calculation of the zenithal
wet delay of radio signals propagating in the atmosphere.
GPT2w is an empirical geodetic model that provides
hydrostatic and wet mapping function coefficients of the
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Vienna mapping function 1 (VMF1; Bohm et al. 2006).
Additionally, knowing the Modified Julian Date (MJD)
and the geodetic coordinates of the site, GPT2w can also
provide atmospheric pressure, surface temperature and
its vertical gradient, mean atmospheric temperature, and
water vapor pressure and its vertical variation. It also
has the ability to estimate annual and semi-annual com-
ponents in their iterations. Since input to GPT2w soft-
ware supports the time reference in MJD as a real
number (i.e., with fractional part), it can be calculated at
any time. Our application provides the meteorological
parameters at hourly intervals.

The source of data used by GPT2w was 10-year
monthly mean level pressure data from ERA Interim
fields with 1° horizontal resolution (Bohm et al. 2015).
The latter condition made the model unable to represent
small variations in the computed meteorological
magnitudes. In these cases, GPT2w model was used to
provide vertical gradients that were used to extrapolate

temperature and dew-point temperature at different
heights from surface meteorological measurements.
Thus, even when these temperatures were estimates,
they were closer to reality than any estimate made from
a global climate model.

Simulation of HI from GPT2w
Local meteorological measurements (atmospheric pres-
sure, Pg; temperature, T;; relative humidity, RH;) at the
Earth’s surface, along with the respective radiosonde
launch, were necessary for validation at each location.
These data were obtained from the Integrated Global
Radiosonde Archive (IGRA) version 2 web site (ftp://ftp.
ncdc.noaa.gov/pub/data/igra). In each sounding, a
second-level flag indicated that the surface parameters
were measured.

By using the Clapeyron-Clausius equation (Parish and
Putnam 1977; Brock and Richardson 2001), we can com-
pute the saturation water vapor pressure (¢7) at the sur-
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Fig. 6 Frequency as percentage of days per season with HI 25 at the study area at mid-latitudes in South America, from the Atlantic coast up to
the Andes pre-mountain range. The quantities were the inter-annual averaged frequency values during the period 2000 to 2016
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face as a function of T following the equation of Buck
(1981) (in Brock and Richardson 2001: 87):

¢ = 6.1121 ¢ 7o 0

where T is in degrees Celsius and €} is in hPa. Thus,
by using surface relative humidity (%), we obtained
the water vapor pressure at surface (es), in the same
units as (e):

. (RH
=& (105) @)

The calculation of the Haines Index needs air
temperature at the 950, 850, 700 and 500 hPa pressure
levels, and dew-point temperatures at the 850 and
700 hPa levels (see Table 1). Because we only compute
the Low- and Mid-variant of the HI, we just used air
temperature at the 950, 850, and 700 hPa pressure levels,

and dew-point temperatures at 850 hPa. Moreover, the
model provides vertical gradients of temperature (d7)
and water vapor (\).

The vertical extrapolation of pressure by the GPT2w
model relies on an exponential trend coefficient related
to the inverse of the virtual temperature (Bohm et al.
2015: Equation 25), while the extrapolation of
temperature is a linear isothermal scale height that uti-
lizes the GPT2w temperature lapse rate dT.

From N\ we extrapolated the saturation water vapor
pressure and the water vapor pressure on the target level
(e.g, on 850 hPa, €., and egs0; Bohm et al. 2015):

850 hPa\ **!
€g50 =e:< I > ) (3)
S

and
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Fig. 7 Persistence as a seasonal maximum consecutive number of days with HI = 4 based on average seasonal values for the period 2000 to 2016
at the study area at mid-latitudes in South America, from the Atlantic coast up to the Andes pre-mountain range
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Notice that the vertical extrapolation of e uses the
GPT2w-inherent A values of the water vapor decrease
factor. Even if the gridded ERA Interim data used to es-
timate the \ parameter has a spacing of 1°in latitude and
longitude, horizontal resolution is not reduced toward
coarser spacing because the wet part in the atmosphere
has small-scale structures, particularly in coastal areas
(Bohm et al. 2015). Nevertheless, Bohm et al. (2015)
showed that it is not sufficient to apply constant de-
crease factors for water vapor pressure, neither in space
nor in time due to the inherent variability of water vapor
that could cause steep gradients of \.

Afterwards, the air temperature at 850 hPa (Tgs5) can
be obtained by using either the temperature gradient
from GPT2w or by inverting the equation of Buck
(1981). Because the last alternative produces estimated

values closer to HI_R values than the vertical gradients,
the temperature was extrapolated as:

240.97
Tgs50 = (5)
17.502

— 1],
In €850
6.1121

. L . s
where, again, Tgso is in degrees Celsius and e}, is in

hPa. Finally, the dew-point temperature at 850 hPa (Tg50

) can be estimated from Hardy (1998)):

3 ¢ In (€ :
Tgso _ Z;_O ( 850)i7 (6)
> icodi In (3350)

where ¢ =2.0798 x 10% ¢; = -2.0156 x 10; ¢, = 4.6779 x
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Fig. 8 Persistence as a seasonal maximum consecutive number of days with HI = 5 based on average seasonal values for the period 2000 to 2016
at the study area at mid-latitudes in South America, from the Atlantic coast up to the Andes pre-mountain range
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1075 3 =-92281x10% dy =1; d; =-1332x107%
dy =6.6578 x 107% and d3 = ~7.5173 x 10™°.

Once extrapolated values of temperature and
dew-point temperature are at target levels, HI is esti-
mated using the information found in Tables 1 and 2.
These simulated values are referred to as HI-GPT2w.

Results

The capacity and limitations of the GPT2w model in ex-
trapolating vertical values of temperature (7) and
dew-point depression (TD) are shown in Fig. 9, which
compares seasonal mean values of T and TD for austral
summer (DJF) and winter (JJA), estimated from GPT2w
with the respective averages from radiosondes. From
Fig. 9, we can see that the adiabatic vertical extrapola-
tion of temperature by the model misrepresented dry air
conditions as height increased, as expected. Maximum
values of temperature differences reached 6.8 °C (DJF)
and 8.4 °C (JJA), both at 700 hPa, although the standard
deviation values for the model ranged from 3 °C (DJF) to

4 °C (JJA), and, for the radiosondes measurements,
ranged from 2.5 °C (DJF) to 4.5 °C (JJA). Such inac-
curacies would produce some inconsistencies in the
stability term of HI On the other hand, dew-point
temperature differences between radiosondes and GPT2w
estimations were on the order of 1.2 to 2.7 °C (DJF) and
0.6 to 6.9 °C (JJA), with standard deviations values rising
as height increased, and reached more than 10 °C for both
datasets.

In order to quantify how such differences impacted HI
computation, the results of HI-GPT2w were validated at
17 radiosondes stations (Table 2) during 2016. This
period was chosen for the radiosondes data availability
at the selected area. Among the selected stations was
Cérdoba (Table 2), located in one of the danger areas
(Sierras de Cérdoba). Although the model supports cal-
culation for short time intervals, depending on the avail-
ability of the data (e.g, hourly), we chose to make
calculations (HI-GPT2w) at daily intervals to be able to
compare with the radiosonde values.



Fernandez et al. Fire Ecology (2019) 15:6

Page 12 of 18

650 650
JJA
700 r 700 r R
750 r 750 r b
g g
< 800 r < 800 r R
o o
3 >
@ 850 - @ 850 1
j ol
o o
900 r 900 r R
950 r 950 r i b
[ !
1000 - : - 1000 : — {
-10 0 10 20 30 -10 0 10 20 30
Temperature (°C) Temperature (°C)
650 650
DJF JUA
700 r R 700 r 1
750 r b 750 r b
g g
< 800 r 1 = 800 r b
o o
o} >
@ 850 - i @ 850 1
j ol
o o
900 r R 900 r R
9 Radiosondes (Low)
_ AT GPT2w (Low)
950 ' _1eq" Radiosondes (Mid) 1 950 1
AT GPT2w (Mid)
1000 . . - : —=0— 1000 . : . ———t—
30 -20  -10 0 10 20 30 =30 -20 -10 0 10 20 30
Dew-point temperature (°C) Dew-point temperature (°C)
Fig. 9 The seasonal mean of temperature and dew-point temperature values for the period 2000 to 2016 at the study area at mid-latitudes in
South America, from the Atlantic coast up to the Andes pre-mountain range, estimated from GPT2w (A) compared against the respective
seasonal average values from the radiosonde profiles (e). Two cases are shown at each plot: the Low-variant HI stations (in blue) and
the Mid-variant HI stations (in red)

HI values were derived from radiosonde measure-
ments (HI_R) by using available data (IGRA version 2,
ftp://ftp.ncdc.noaa.gov/pub/data/igra). Notice that, after
Potter et al. (2008)), who claimed that the direct substi-
tution of the 925 hPa temperature for the 950 hPa
temperature can dramatically underestimate potential
wildfire severity estimated by the HI, the radiosonde
measurements at 950 hPa level were interpolated from
the mandatory level at 925 hPa. Thus, the log-pressure
interpolation followed Potter et al. (2008) and used

surface and 925 hPa level data to obtain the temperature
at 950 hPa for Low-variant HI stations.

To be able to evaluate at first glance the performance
of GPT2w in replicating the radiosondes measurements,
we showed both time series of the HI together. Figure 10
shows HI_R superimposed on HI-GPT2w during 2016 at
six chosen stations: three representing the Low HI vari-
ant (LHI) and other three for the Mid HI variant (MHI).
On one hand, we can see that LHI (SAEZ, SBGL, SBFL;
Table 2) never exceeded 5 at the selected stations and
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(See figure on previous page.)

Fig. 10 Haines Index values computed from radiosonde measurements for six stations at the study area at mid-latitudes in South America, from
the Atlantic coast up to the Andes pre-mountain range, during 2016 (H/_R, in red) superimposed on the Haines Index values from the GPT2w
model simulation (HL_GPT2w, in gray). Values are shown similar to a wind rose, where the HI values 2 through 6 correspond to the concentric
circles, with 6 being the outermost circle, and the date of each observation corresponds to the direction of the red or gray lines, clockwise from
January to December. Low-variant HI stations are shown in the left column and include stations in Ezeiza, Argentina; Galeao, Brazil; and
Florianopolis, Brazil. Mid-variant HI stations are shown in the right column and include stations in Cordoba, Argentina; Campo Grande,
Brazil; and Marte Civ/Mil, Brazil. Notice that Low-variant values never reach HI = 6

the model frequently underestimated HI R values. In
contrast, the MHI stations (SACO, SBCG, SBMT;
Table 2) often reached maximum index values. Here
again, the underestimation of the model was noticeable.

The total percentage (HI =2, ..., 6) of hits was 57.03%
for LHI and 50.12% for MHI (Table 3 and Fig. 11). The
best performance was for very low values (HI=2 to 3)
for both variants. Notice that there were almost no cases
of LHI =6. The underestimation of GPT2w was 25 to
26.3%, and similar for both variants, showing the worst
cases for LHI = 4 (low HI values, Low variant) and MHI
=5 (moderate HI values, Mid variant). The total over-
estimation (HI=2, ..., 6) was clearly worse for MHI
(24.83%).

In general, it was clear that the success of the GPT2w
model in replicating HI R fell as HI values grew. More-
over, the main failure detected was an underestimation
for Low HI variant (26.28%) while, for the Mid HI vari-
ant, the total percentage of underestimation (25.05%)
and overestimation (24.84%) was quite similar.

Table 3 Percentages of the efficiency of the GPT2w simulation
used to build the Low-variant Haines Index (LHI) and the Mid-
variant Haines Index (MHI) during 2016 at the stations at the
study area at mid-latitudes in South America, from the Atlantic
coast up to the Andes pre-mountain range, listed in Table 2.
Results are classified according to the Haines Index values (from
2 to 6); percentage of hits is in boldface. Note that LHI never
reaches the maximum value of 6

Simulation efficiency (%)

Haines Index value Accuracy of HI LHI MHI
2 to 3 Very low Underestimation 0.00% 0.00%
Hit 43.33% 29.72%
Overestimation 11.58% 17.72%
4 Low Underestimation 18.22% 6.12%
Hit 8.85% 7.93%
Overestimation 3.86% 5.89%
5 Moderate Underestimation 8.06% 14.63%
Hit 4.85% 10.02%
Overestimation 0.00% 1.22%
6 High Underestimation 0.05% 4.30%
Hit 2.45%

To explain the origin of the mismatches, we analyzed
the simulation of the stability and moisture terms for
each HI value from 2 to 6. Figure 12 shows the differ-
ence between the aforementioned terms from radio-
sonde and the GPT2w simulation versus the number of
days (stability term in green and moisture term in blue).
The results are displayed according to Low-variant HI
(left) and Mid-variant HI (right). For the Low HI variant
(Fig. 12, left column) the underestimation at LHI = 3, 4,
and 5 was due to the moisture term, while stability was
responsible for the overestimation of the index at LHI =
2 and 4. For the Mid variant (Fig. 12, right column), in
general, the stability term appears to have caused over-
estimation at MHI =2 and underestimation at MHI =5
and 6. Nevertheless, the contribution of both terms
seems to be similar for MHI = 4.

Discussion and conclusions

This study addressed two main objectives. The first was
to characterize the climatological behavior of HI in a se-
lected region of South America in order to detect areas
prone to plume-dominated fires. The chosen region
covered most of the Rio de La Plata drainage basin and
included, in the southwest, part the pre-mountain range
of the Andes (central part of Argentina, Sierras de
Cérdoba) and the northern part of the Planalto
Brasileiro, Serra da Canastra in Brazil. This study area in
South America was selected for its availability of radio-
sonde launches at 00:00 GMT during the year 2016. The
behavior of the index was characterized through an in-
vestigation of the climatology of the HI by using ERA
Interim data for the period 2000 to 2016. We identified
two areas that persistently experienced high values of
HI: Sierras de Coérdoba (Argentina) during summer
(DJF), and Serra da Canastra and central Planalto
(Brazil) during winter and spring (JJA and SON).

The second objective was to test the application of the
GPT2w model, which has the capacity to generate vertical
gradients of different meteorological parameters and
therefore can simulate the construction of HI. The appli-
cation of GPT2w was suggested due to the notable lack of
radiosondes in large regions of South America that are
often subjected to extensive fires, some of which are man
made (Arganaraz et al. 2015). The simulated values of HI
computed from the GPT2w model (HI GPT2w) were
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Fig. 11 Performance of the simulation (H/_GPT2w) in reproducing HI from radiosonde measurements (H/_R) during 2016 at the study area at
mid-latitudes in South America, from the Atlantic coast up to the Andes pre-mountain range, as a number of days of successes and failures. LHI
and MHI refer to the Low and Mid variant of HI, respectively

compared with values of HI computed from measured
radio-sounding data (HI_R) during 2016. HI GPT2w
reproduced HI_R about 50% of the time, more accurately
for very low HI values (H=2 to 3) than for high values
(HI=6). The lack of agreement in the moisture term
caused an underestimation of the Low-variant HI values
(LHI), while the stability term was responsible for the lack
of coincidence in Mid-variant HI values (MHI).

Although the model can also simulate meteorological
data at the Earth’s surface and vertically extrapolate them,
in order to obtain more realistic values, meteorological

data measured on the surface were used. Thus, the model
was only applied to find the gradients that allowed us to
extrapolate saturated water vapor pressure and air
temperature at a given pressure level.

El Nino (EN) events are responsible for the rainy season
in most of Brazil, and this is because EN affects the trop-
ical heat sources and global atmospheric circulation that
impact the South America summer monsoon (Grimm
2003). The last 2015-2016 El Nifo was one of the stron-
gest EN events ever recorded (Jiménez-Muiioz et al. 2016,
Paek et al. 2017) Based on the Oceanic Nifio Index (ONI),
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Mid-variant HI in the right column

an application of the 3-month running mean of the
sea-surface temperature anomalies in the El Nino 3.4 re-
gion, we can detect that warm anomalies started at the
end of 2014 and remained up until austral fall of 2016.
Nevertheless, there was a slight La Nifia phase at the end
of 2016. (http://origin.cpc.ncep.noaa.gov/products/ana-
lysis_monitoring/ensostuff/ONI_v5.php). Normally, EN
conditions affect the northern part of Brazil, causing
droughts in the eastern Amazonia and unusually high pre-
cipitation in western Amazonia. Nevertheless, the 2015

—-2016 event was extremely hot and this extreme heat co-
incided with an increased extent of extreme drought se-
verity from precipitation deficit through an increase in
potential evapotranspiration (Jiménez-Munoz et al. 2016).
According to Jiménez-Muiioz et al. 2016, the impact of
this situation on tree mortality and biomass growth may
be attributed not only to precipitation deficits but also to
heat stress. Moreover, fires had been suggested as a major
agent of forest transition under drought. This particular
situation affected the northern part of the selected area
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where maximum values of HI were reached. Alternatively,
EN conditions for the southern part of the region (south-
ern Brazil, Uruguay, northeastern Argentina) showed
higher than average rainfall from November to the follow-
ing January (Ropelewski and Halpert 1987). This situation
is also represented in our results with typical values of HI
=2 to 3 in this area.

In this study, we did not analyze the efficiency of HI
linked to the occurrence of large or erratic wildfires. The
crown fire hazard assessment needs not only a climato-
logical study of the area, but also an analysis of soil and
vegetation, (i.e, available fuel, fuel type, and terrain
slope, among other characteristics; Scott and Reinhardt
2001, Molders 2008). Moreover, for a complete evalu-
ation of the potential that a convective fire will grow, HI
should be evaluated together with another energy release
index (Dentoni and Mufoz 2012

We conclude that the simple application of GPT2w to
extrapolate the vertical values of temperature and its
dew-point depression is not enough to reproduce HI as
if it were derived from radiosonde measurements. In
particular, it is important to notice that only the Buck
(1981) model was applied to obtain saturation water
vapor pressure at a given geopotential level. Therefore,
this estimate could be improved with the application of
other equivalent formulas, as summarized by the works
of Alduchov and Eskridge (1996) or Kémpfer (2013):
Appendix B). Moreover, with regard to the vertical
propagation gradients, it is speculated that the extrapo-
lated saturation water vapor pressure could be improved
by using values of Integrated Water Vapor from Global
Navigation Satellite System (GNSS-IWV) estimated at
several stations in the region (Bianchi et al. 2016).
Nevertheless, this last strategy has yet to be explored.
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