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Experimental observation of conditional past-future correlations
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Conditional past-future correlations measure the lack of statistical independence between past and future
system measurement outcomes when conditioned to a given state at a present time. Quantum non-Markovian
memory effects are present whenever this correlation is not null. Conditional past-future correlations can also be
used to detect initial system-environment correlated states. In this work, we provide theoretical and experimental
evidence for these general properties. We build an optical setup that implements the dynamics of a qubit
interacting with a dephasing spin bath. Both finite and infinite bath-size limits are observed. Confirmation of
theoretical predictions for conditional past-future correlations is obtained. This work provides experimental
support for quantum memory indicators based solely on outcomes of explicit system measurement processes.
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Introduction. In our daily experience, past and future
events are highly correlated. This property, however, begins to
weaken when the unpredictable influence of the environment
over a system of interest becomes significant. A manageable
and powerful mathematical description arises in the limit in
which the probability of future events depends only on the
current system state, being conditionally independent of its
previous history. This classical memoryless Markovian prop-
erty [1] can be rephrased in terms of a conditional past-future
independence, in which past and future system events become
statistically independent when conditioned to a given state
at an intermediate present time [2]. Non-Markovian memory
effects break these conditions.

In a quantum regime, the presence of memory effects
is usually unrelated to previous probability settlements. In
fact, the state of a quantum system depends on which way
it is measured [3,4]. Thus, most of the proposed definitions
of quantum Markovianity (and, consequently, quantum non-
Markovianity) rely on information that is attainable only
from the (unperturbed) system density matrix evolution [5,6].
Given the relevance of memory effects in quantum infor-
mation devices, different experimental arrangements have
been implemented to support diverse related theoretical for-
malisms [7–14]. Memory effects induced by initial system-
environment correlations have also been studied on similar
grounds from both theoretical and experimental points of view
[15–29].

In contrast to previous approaches, definitions of quantum
non-Markovianity that solely rely on information provided
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by subsequent measurement processes performed over the
system of interest have recently been proposed [30–32].
Consistence with previous classical probability settlements
is achieved. Owing to the lack of a preferential basis for
the selection of possible observables at each stage, it is
expected that the quantum nature of the dynamics gives
rise to a richer structure when compared with the classical
(incoherent) case. The aim of this Rapid Communication
is to provide experimental support to these novel quantum-
measurement-based formalisms and to explore which novel
features may emerge due to the quantumness of the observed
system.

In this work, we develop an experimental photonic plat-
form for measuring the conditional past-future (CPF) corre-
lation of a qubit system that interacts with a dephasing spin
bath [32]. The CPF correlation measures the break of CPF in-
dependence, which is only valid in the memoryless Markovian
regime. Both finite and infinite bath sizes are implemented. In
addition, we demonstrate both theoretically and experimen-
tally that the CPF correlation, only when considering quantum
systems, also allows witnessing initial system-environment
correlations. Thus, this quantum signature allows one to unify
the detection of both quantum memory effects and initial
correlations in a single frame, which in contrast to previous
approaches solely rely on system measurement outcomes. Our
results also support the interpretation of CPF correlations in
terms of a measurement back action on the environmental
degrees of freedom [32].

Conditional past-future correlation. This object is deter-
mined by a minimal set of three measurement processes
performed over the system of interest at three successive times
tx < ty < tz. Defining the system observables at the initial and
final steps as {Ox} and {Oz}, respectively, the CPF correlation
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is obtained as follows:

Cp f (t, τ ) = 〈OzOx〉y − 〈Oz〉y〈Ox〉y, (1)

where the time intervals are t ≡ ty − tx and τ ≡ tz − ty. The
averages are conditioned to a y outcome of the intermedi-
ate measurement. Explicitly, the correlation is Cp f (t, τ ) =
�zx[P(z, x|y) − P(z|y)P(x|y)]OzOx, where the sum indices
run over all possible outcomes at each stage. The conditional
probabilities [33] follow from quantum measurement theory
[4] by taking into account that each measurement process has
associated a set of normalized operators, {�x}, {�y}, and {�z}.

In the same way as a classical regime, quantum Marko-
vianity is defined by the statistical independence of past and
future events when conditioned to a given state at the present
time [P(z, x|y) = P(z|y)P(x|y)]. Thus, a system is Markovian
if for arbitrary measurement operators {�x}, {�y}, and {�z}
the CPF correlation vanishes, Cp f (t, τ ) = 0. Equivalently, a
system dynamics is non-Markovian if there exists at least one
set of measurement operators {�x}, {�y}, and {�z}, such that
Cp f (t, τ ) �= 0. If memory effects are present, in general it is
expected that a “continuous set of measurement processes”
will give rise to a non-null CPF correlation. As stated in
Ref. [32], this definition of non-Markovianity can be related
to a measurement back action on the environment degrees of
freedom that changes the system dynamics between consecu-
tive measurements.

Detection of initial system-environment correlations. Ac-
cording to Ref. [32], a CPF correlation has the following
properties [34]. It always vanishes when the time interval τ

between the second and third measurements approaches zero
[i.e., limτ→0 Cp f (t, τ ) = 0]. However, for the complementary
limit where the time interval t between the first and second
measurements approaches zero, the CPF correlation vanishes
whenever the initial system-environment state ρse

0 is an uncor-
related one, namely,

ρse
0 = ρ0 ⊗ σe ⇒ lim

t→0
Cp f (t, τ ) = 0. (2)

From this property, we can derive a criterion for detecting
initial system-environment correlations that is similar to the
previous one for quantum non-Markovianity. The system
and the environment are correlated at the initial time if
there exists at least one set of measurement operators {�x},
{�y}, and {�z}, such that limt→0 Cp f (t, τ ) �= 0. Similarly,
system and environment are uncorrelated at the initial time
if, for arbitrary measurement operators {�x}, {�y}, and {�z},
limt→0 Cp f (t, τ ) = 0.

The criterion based on Eq. (2) relies on the quantumness
of the observed system. In fact, for classical systems the
base for measurement observables is always the same (pointer
states), in particular {�x} = {�y}. Consequently, when t → 0
the outcomes of the first two measurements are identical,
{x = y}. Thus, limt→0 P(y|x) = δy,x. From the general re-
sult P(z, x|y) = P(z|y, x)P(x|y) = P(z|y, x)P(y|x)P(x)/P(y),
using the previous limit, it follows that limt→0 P(z, x|y) =
limt→0 P(z|y) limt→0 P(x|y). Thus, independently of the ex-
istence of initial correlations, it is always the case that
limt→0 Cp f (t, τ ) = 0. In contrast, in quantum systems one
can always select {�x} �= {�y}, which in turn permits the

detection of initial correlations from the CPF correlation,
limt→0 Cp f (t, τ ) �= 0.

Dephasing spin bath. As a dynamics to experimentally
study the previous properties, we consider a qubit system
(base |+〉 and |−〉) interacting with a quantum N-spin bath
[35–37] via the dephasing Hamiltonian

HT = σẑ ⊗
N∑

k=1

gkσ
(k)
ẑ . (3)

Here, σẑ and σ
(k)
ẑ are z-Pauli matrices for the system and

the kth bath spin, respectively. gk are coupling constants.
The three measurements that define the CPF correlation are
taken as projective ones, being performed in the x̂ direction
in the Bloch sphere of the qubit. The observables are Oz = z,
Ox = x, where z = ±1 and x = ±1. This model, as well as the
CPF correlation, admits a full exact analytical treatment (see
Ref. [32]).

For an uncorrelated pure initial system-bath state |�0〉 =
(a|+〉 + b|−〉) ⊗ |B(0)〉, at time t the Hamiltonian HT leads
to the state |�t 〉 = a|+〉 ⊗ |B(t )〉 + b|−〉 ⊗ |B(−t )〉, with the
bath state |B(t )〉 = ∏N

k=1(αke+igkt |↑〉k + βke−igkt |↓〉k ). Here
|↑〉k and |↓〉k define the k-spin basis. |�t 〉 can be rewritten
as follows [37]:

|�t 〉 =
2N −1∑

n=0

cn(a|+〉eiφnt + b|−〉e−iφnt ) ⊗ |n〉. (4)

The kth digit nk of the binary form of the number n represents
the state up (nk = 1 ↔ |↑〉k ) or down (nk = 0 ↔ |↓〉k ) of the
k spin from the bath. The phases are φn = ∑N

k=1(−1)nk gk .
Equation (4) motivates the following optical implementation.
The system states are encoded in the horizontal (H) and
vertical (V ) polarization light states (|+〉 ↔ |H〉, |−〉 ↔ |V 〉),
and 2N spatial light modes are required to represent the
environment. Therefore, two spatial light modulators (SLMs),
each acting on each polarization component, introduce the
phases eiφnt and e−iφnt . As in Ref. [32], we take gk = g/

√
N ,

and initials αk = βk = 1/
√

2 → cn = 1/2N/2.
Experimental setup. The specific experimental setup for

measuring the CPF correlation is illustrated in Fig. 1. It can be
divided into five parts. Module (i) is a single-photon source;
an additional heralded single photon is generated by a type-II
spontaneous parametric down-conversion process in a beta-
barium borate (BBO) crystal. In module (ii), the photon is
sent to a polarization beam splitter (PBS) and a half-wave
plate (HWP) to initialize its polarization state. The photon
beam is expanded with a pair of lenses and passed through
a digital mirror device (DMD), which generates 2N identical
pieces to represent the environmental states (|n〉). Module
(iii) is inserted for preparing initial (system-environment)
correlated states; this is achieved by inducing the full system-
environment unitary dynamics (SLM A and SLM B) before
the next step. In module (iv), two dephasing spin bath chan-
nels are placed between the first and second projective mea-
surements, {�x} and {�y}, and between the second and third
projective measurements, {�y} and {�z}. Each measurement
is performed by a PBS sandwiched by a pair of HWPs. The
dephasing dynamics [Eq. (4)] is realized by two SLMs that
can adjust the phases on every 2N spatial environment piece.
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FIG. 1. The experimental setup for measuring the CPF corre-
lation consists of five modules: (i) the single-photon source; (ii)
preparation of initial system-bath states; (iii) the initial correlated
states preparation (ICSP); (iv) dephasing dynamics between mea-
surements; and (v) detecting devices for conditional probabilities.
Projective measurements are performed by PBS �x , �y, and �z. Key
elements also include fiber coupler (FC) and interference filter (IF).

Here, SLM 1/3 responds to the horizontal polarization phase
change, whereas SLM 2/4 responds to the vertical polariza-
tion phase change. In module (v), after the measurement {�z},
the photons are collected by multimode fibers and detected by
single-photon avalanche detectors (SPADs). The conditional
probabilities can be obtained by the total counts on each port:
P(z, x|y) = Nz,x|y/

∑
z′,x′ Nz′,x′|y, where Nz,x|y denotes the

photon counts obtained after measurement �z=± = |x̂±〉〈x̂±|,
where |x̂±〉 = 1/

√
2(|+〉 ± |−〉). The first measurement is

alternatively fixed at both �x=+ = |x̂+〉〈x̂+| and �x=− =
|x̂−〉〈x̂−|. For the intermediate conditional measurement we
can select �y=+ = |x̂+〉〈x̂+| or �y=− = |x̂−〉〈x̂−|.

The setup illustrated in Fig. 1 can, in principle, realize an
arbitrary number of environmental spins and adjust the phase
on each state |n〉 individually. In our experiment, limited by
the screen size of the SLM, up to eight environmental spins
can be prepared. To simulate the case in which N = infinity,
a slightly different scheme is implemented. All SLMs are
applied as mirrors, and do not work for phase adjustment.
A series of beam-displacing pairs is inserted into the setup
to emulate the dephasing evolution [module (iv)] [10] and
prepare the initial correlated states [module (iii)]. The other
elements are the same as in the scheme depicted in Fig. 1.
With a properly modulated spatial environment, Gaussian de-
cay dependences are obtained, which in turn are equivalent to
an infinite bath size [32]. Further details of this experimental
setup are provided in [34].

Experimental results of CPF correlation. We first mea-
sure the CPF correlation to investigate the non-Markovian
property of the system. According to the definition, the
values of Cp f (t, τ ) are determined by P(z, x|y), P(x|y) =∑

z=±1 P(z, x|y), and P(z|y) = ∑
x=±1 P(z, x|y). In this stage,

we omit the initial correlations; hence module (iii) is not
inserted into the setup. The initial polarization state is set to
be |H〉. By adjusting the phase on SLM 1/2 and SLM 3/4 in
each channel, we can vary the evolution time t and τ and scan
the CPF correlation values.

The CPF correlation for y = ±1 is [32] Cp f (t, τ ) =
f (t, τ ) − f (t ) f (τ ), where f (t, τ ) = [ f (t + τ ) + f (t −
τ )]/2, while f (t ) = cosN (2gt/

√
N ). Thus, for finite N ,

Cp f (t, τ ) is a periodic function in both interval times (t, τ ),
with period π

√
N/4/g. Figure 2 presents the two-dimensional

surface plots of Cp f (t, τ ) in one period. Figures 2(a)– 2(c)
are the analytical values for N = 2, 4, and 8, respectively,
and Figs. 2(e)–2(g) are the corresponding experimental
results. The CPF correlations change with the number of
environmental spins and grow outward to an X-shaped form
[32]. The location of the central peak (red area) increases
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FIG. 2. CPF correlations for the spin-bath model (3) with different sizes, N = 2, 4, 8, and N = infinite. (a)–(d) are the analytical results.
(e)–(h) are the respective experimental results obtained from the proposed optical platform with a precision of 15 × 15 pixels in one period.
The axes are the time intervals gt and gτ between successive measurements.
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FIG. 3. System coherence behaviors c(τ ) and cyx (t, τ ) between
the first ({�x} and {�y}) and last ({�y} and {�z}) two measurements.
(a) Finite spin bath with N = 8. (b) Infinite bath size, N = ∞. Solid
lines represent the theoretical predictions, and symbols represent
experimental results.

with N. In the limit N → ∞ (d) and (h), which is performed
with the alternative experimental scheme [34], CPF loses
its periodicity (the location of the central peak diverges)
and recovers a Gaussian behavior as presented in [32],
f (t ) = exp[−2(gt )2]. Consistently, the experimental results
show that the environment correlation time is divergent,
limt→∞ Cp f (t, t ) = 1/2 �= 0.

Coherence behavior between consecutive measurements.
The quantum non-Markovianity indicated by a non-null CPF
correlation (Fig. 2) can be read from a measurement back
action on the environmental degrees of freedom, which in
turn change the system dynamics between consecutive mea-
surement events [32]. In fact, in the interval t , the bath
starts in state |B(0)〉, while the system coherence is c(t ) =
〈B(−t )|B(t )〉 = [cos(2gt/

√
N )]N [c(t ) = exp[−2(gt )2] for

N → ∞]. In contrast, in the interval τ , following the
second measurement, the bath begins in state |Byx(t )〉 =
[|B(t )〉 + yx|B(−t )〉]/

√
N yx

t , where N yx
t is a normalization

constant [32]. This entangled spin bath state depends on the
outcomes product yx. This property translates to the system
coherence behavior, which is cyx(t, τ ) = 〈Byx(t − τ )|Byx(t +
τ )〉 = [cτ + yx(ct+τ + c∗

t−τ )/2]/[1 + yx(ct + c∗
t )/2].

To verify this complementary reading of quantum non-
Markovianity [c(τ ) �= cyx(t, τ )], we perform state tomogra-
phy [38] at the first and second dephasing channel to obtain
c(t ) and cyx(t, τ ), respectively. We plot these objects (yx =
±1), for both finite (N = 8) and infinite (N = ∞), bath size
limits, Figs. 3(a) and 3(b), respectively. In both cases, c(τ )
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FIG. 4. CPF correlation for an initial system-environment cor-
related state induced by the total unitary dynamics during a time
interval gt0. (a) Finite bath, N = 8. (b) Infinite bath size. In both
cases, the symbols with error bars represent experimental results, and
the solid lines are given by Eq. (5).

develops almost the same Gaussian behavior. However, for
finite N periodic behavior is obtained. In contrast, the behavior
of cyx(t, τ ) differs from c(τ ) and in turn depends on the prod-
uct yx = ±1. These properties are consistent with theoretical
predictions and also confirm the presence of memory effects
as demonstrated in Fig. 2.

Initial correlated states. In order to introduce experimental
initial correlated states, we submit an uncorrelated system-
environment state to the total unitary dynamics during an
effective time t0 [module (iii) in Fig. 1]. This procedure en-
tangles the qubit and the spin bath, |�0〉 = a|+〉 ⊗ |B(t0)〉 +
b|−〉 ⊗ |B(−t0)〉. Consistent with our theoretical predictions,
this initial correlation can be detected if the first two measure-
ments are performed in different directions. As in the above
setting, we maintain {�x=±} = |x̂±〉〈x̂±|, {�z=±} = |x̂±〉〈x̂±|,
while now {�y=±} = |n̂±〉〈n̂±|. Here, n̂ is a direction in the
x̂-ẑ plane in the Bloch sphere with polar angle θ . Thus, |n̂±〉 =
cos(θ )|+〉 ± sin(θ )|−〉. Using the parameters a = b = 1/

√
2,

it is possible to obtain the following [34]:

lim
t→0

Cp f (t, τ ) = y
cos2(θ ) sin(θ )

[1 + yw sin(θ )]2
[g(τ ) − w f (τ )], (5)

where g(t ) = Re[c(t0 + t ) + c∗(t0 − t )]/2, f (t ) = Re[c(t )],
and w = Re[c(t0)]. Consistently, for an uncorrelated initial
state [t0 = 0], or when the first two measurements are per-
formed in the same direction [θ = π/2], Eq. (5) leads to
limt→0 Cp f (t, τ ) = 0.

The previous expression can be tested by rotating the
HWPs corresponding to {�y} (see Fig. 1). In Fig. 4 we
present the experimental results for both finite and infinite
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bath sizes, and the two conditionals y = ±1. We set θ = 35.2◦
[the angle that maximizes the global amplitude in Eq. (5)]
and control SLM A, B such that gt0 = 0.7. For finite N , the
CPF correlation is periodic in τ (period

√
2π ); this prop-

erty is lost for N = infinite (where gt0 = 0.745). Whereas
in Fig. 2, limt→0 Cp f (t, τ ) = limτ→0 Cp f (t, τ ) = 0, here the
property limt→0 Cp f (t, τ ) �= 0 witnesses the initial system-
environment correlations and illustrates the validity of the
proposed approach. Complete experimental and theoretical
plots of Cp f (t, τ ) are shown in [34].

Conclusions. In summary, we have proposed a quantum
optical arrangement that implements the dynamics of a qubit
system interacting with a dephasing spin bath of variable size.
The experimental setup allows determining correlations in the
outcomes of successive projective measurements performed
over the system. The results confirm the experimental de-
tection of quantum non-Markovianity through nonvanishing
CPF correlations. In addition, we have theoretically and ex-
perimentally demonstrated the ability of the CPF correlation
method to detect initial system-environment correlations. This
property relies on the quantumness of the observed system,
which makes it possible to detect initial correlated states
by selecting different bases for successive measurement pro-
cesses. Furthermore, we have confirmed that memory effects
follow from a measurement back action on the bath degrees of
freedom that alters the system dynamics between consecutive
measurements.

In contrast to previous approaches, CPF correlations pro-
vide a powerful alternative tool to study and detect quantum
memory effects in a more intrinsic manner. In fact, the present
approach solely relies on measurement outcomes performed

over the system of interest. On the other hand, the optical
setup may provide an experimental basis to study several
other related topics of interest in the theory of non-Markovian
open quantum systems together with their dependence on
bath size. In fact, it can be applied as a distinctive all-
optical simulator for many-body systems in future experi-
ments and more general operations can be realized by this
setup.
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