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Background: Due to a variety of toxicological problems, the presence of As(V) in 

aquifers is a significant problem. Sorption using chitosan doped with iron 

nanoaggregates results in green and cheap methodology for its elimination.  

Results: The hybrid sorbent was characterized by SEM, EDS, TGA, XRD, and FTIR 

spectroscopy. Its stability against pH and time was determined by ICP-MS, while 

conventional analytical techniques verified its Fe content. The sum of an individual 

As(V) removal capacity by chitosan and iron nanoaggregates, was smaller than that of 

the hybrid sorbent, indicating the existence of synergy.  

Conclusion: This study demonstrates the great capacity of the hybrid sorbent to 

eliminate As(V) working with a continuous system (columns). The additional use of a 

factorial design allows determining optimal operating values to optimize two responses. 

In other words, in this multi-response system, column service time (tb) was minimized 

and, at the same time, maximized the volumes of purified water obtained ([As(V)] 

<0.05 m L-1) using desirability function. 

 

Keywords: ARSENIC; IRON-NANOPARTICLE; GROUNDWATER; 

IMPROVEMENT 

 

1. Introduction 

Arsenic (As) in water represents a global problem, affecting low- and high-income 

countries1. More than 226 million people are exposed2 through the ingestion of 

contaminated drinking water and food3. Compounds containing As can be found in 
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soils, rocks and natural waters4. Both organic and inorganic forms are naturally found, 

being the last the most toxic5. In natural waters, it is present with two predominant 

oxidation states, As(III) and As(V)6.  

Argentina is one of the most affected countries in Latin America7. In the Chaco-

Pampean plain areas, As concentrations vary in a wide range (0.005 - 5 mg L-1)8. About 

50% of the population in rural areas is exposed to As poisoning, including several 

clinical manifestations such as cancer, hypertension, diabetes, and hyperpigmentation9. 

About 30% of the people exposed to As develop cancer, especially of skin and internal 

organs10.  

The guideline value of As in drinking water is 0.01 mg/L recommended by the World 

Health Organization11, whereas the value of 0,05 mg/L, is valid for the Argentine 

drinking water standards12. 

For this reason, it is essential to develop a simple, economical, and sustainable As 

removal technology. Most of the current methods to remove As include 

oxidation/reduction, coagulation, precipitation, sorption, ionic exchange, membrane 

technologies, and bioremediation13. However, some of these methods are expensive 

and/or unfriendly to the environment. Biosorption is a novel method that has 

demonstrated a high capacity to remove several contaminants14-17, mainly when applied 

in continuous flow systems16,18. Our previous work showed chitosan capacity to remove 

As from water and groundwater16,19. Chitosan doped with iron derived nanoparticles can 

increase the adsorption properties of the material. This has been reported previously in 

the literature20-22. Nanoparticles have high removal capacity and fast reaction kinetics 
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against contaminants due to their high surface/volume ratio. A combination of iron 

nanoparticles and biopolymers increase the system stability, creating a synergy for As 

removal23. The aim of this work was the synthesis of a new material based on chitosan 

and iron derived nanopartiples (CIN) and its use in continuous treatment of natural 

contaminated groundwater. The use of a factorial design allowed the determination of 

the operating values to optimize two responses at the same time: minimum columns 

service time (tb) and maximum purified water volume (Vol). 

 

2. Experimental 

2.1 Analytical methods 

Groundwater natural samples were obtained from Piamonte Town, Santa Fe, Argentina. 

Groundwater characterization was analized by standard methods and the results are 

showed in Table S1. Water samples were supplemented by the addition of sodium 

arsenate (Na2HAsO·7H2O) solution until 1.0 mg/L As(V). Arsenic concentration was 

increased until 1.0 mg/L in column experiments in order to work with a value within the 

concentration range found in natural groundwater of the area under study. All the 

reagents for the current research were of analytical grade.  As(V) quantification in 

aqueous solutions was performed applying a self-made modification of molybdenum 

blue method16. Detection Limit (DL) and Quantification Limit (QL) were 0.0043 mg L-1 

and 0.013 mg L-1, respectively. The molar extinction coefficient (ε) obtained in the 

experimental linear range (0.0050-0.50 mg L-1) was (19150 ± 150) M-1 cm-1.  

 

2.2 Chitosan Iron Nanoaggegates synthesis (CIN) 
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Iron nanoparticles synthesis and stabilization was achieved from a stock solution 

containing 1:2 molar ratio ferrous: ferric species, which was slowly poured (drop-wise) 

into an alkali source, composed of sodium hydroxide, under vigorous stirring and 

nitrogen sparging. Core-shell magnetic crystals (Feº core - magnetite and / or 

maghemite shell) formed and precipitated. CIN was prepared by mixing a water-based 

suspension of iron nanoaggregates, functionalized with starch to promote interaction 

and linking to chitosan, incorporated as a powder. The mixture (1:20 w/w iron/chitosan) 

was stirred to achieve homogenization. Then it was allowed to settle, supernatant water 

was eliminated, and the material was dried at 60 °C for 72 hours. The resultant solid 

was then ground to obtain a suitable powder. 

Chitosan used for the CIN's synthesis was previously characterized (molecular weight 

and deacetylation degree) by our group15,19.  

 

2.3 CIN stability and total iron quantification 

CIN stability was determined as follow: 1.0 g of CIN were mixed with 60.0 mL of acid 

solution (pH 4.5 given by H2SO4) and stirred at 350 rpm for 4.5 h. The filtered 

supernatant was analyzed to measure the presence of iron using ICP-MS. Quantification 

of total iron was carried out by disaggregation of samples, and iron in aquous phase 

were measured by ICP-MS. 

 

2.4 pH zero-point charge (pHZPC) determination 
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Experiments were carried out preparing 50.0 mL of 0.01 M NaNO3 solutions at 

different initial pH values, pH0 (5.0 - 8.0). After that, 1.0 g of CIN was added to each 

solution and stirring for 24 hours at room temperature (25°C). The final pH (pHf) was 

measured and the ΔpH was calculated. The intersection point on the x-axis in the ΔpH 

vs pH0 graph indicates the pHZPC
14. 

 

2.5 Sorbent composition effect on the As(V) sorption 

Batch experiments were carried out using chitosan, iron nanoaggregates, and CIN 

individually. Reaction conditions like pH (4.5), T (21 ºC), initial concentration of As(V) 

(20 mg L-1), and contact time (5.0 h), were the same. Arsenic concentration was raised 

up to 20 mg/L in order to magnified differences between the three materials.  

Groundwater was divided into three equal parts, and each one was placed in a beaker 

with constant stirring. Each aliquot was mixed with different sorbents masses, 

calculated in proportion to the content of iron and chitosan (5.8% w/w Fe). At the end 

of the reaction time, solutions were filtered under reduced pressure using cellulose 

nitrate filters (0.45 µm pore size). Afterward, the remaining As(V) concentration was 

determined. 

 

2.6 FT-IR, XRD and TGA 

FT-IR spectroscopy (Perkin Elmer FT-IR Spectrum One spectrophotometer) was 

performed to identify the chemical functional groups present on CIN. The full 
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absorbance spectra in the IR wavenumber range from 500 to 4000 cm−1 were obtained 

by the KBr dilution method (1.5% w/w). 

XRD measurements were carried out to evaluate the crystallinity degree of CIN, before 

and after As(V) treatment, on a PANalytical EMPYREAN SERIES X-ray 

diffractometer equipped with a graphite monochromator and CuKα radiation (1.540598 

Å), a current of 30 mA and voltage of 40 kV. 

TGA was performed in Thermogravimetric equipment DTG-60H, Shimadzu, made in 

Japan. N/P 346-68700-93, atmosphere: air, flow rate: 50 mL min-1, temperature range 

30 - 650 ºC, temperature rate: 10 ºC min-1, CIN mass: 15.124 mg, CIN-As mass: 

14.841 mg. 

 

2.7 SEM and EDAX  

Iron nanoaggregates size and morphology were analyzed in a Zeiss Supra 40VP field-

emission scanning electron microscope (SEM). A SEM Philips 515 with EDS probe 

focused on individual agglomerates was used to assess the composition of 

nanoparticles. 

 

2.8 Continuous Up-Flow Fixed-Bed Column Sorption Experiments 

Polypropylene columns of 2.0 cm internal diameter and 9.5 cm long were used for 

sorption experiments. CIN sorbent was hydrated in 100 mL of Milli-Q water (pH 4.5) at 

room temperature with constant agitation. Hydrated sorbent was packed inside the 

column, reaching the desired height and packing density. Groundwater containing 1.0 

mg L-1 of As(V) was pumped through the bed column with a peristaltic pump (Gilson 
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Minipuls 3) in an up-flow mode at room temperature (25°C). Volumetric flow-rate and 

pH were periodically controlled. Samples were eluted and collected at different times 

until the output As(V) concentration was equal to the input. As(V) sorption capacity (qt) 

was determined from Eq. 1: 

 

              qt = min  - mout
ms

 = 
C0 Q𝑡𝑡𝑒𝑒− Q∫ Ceff(t) dtt

0
ms

                                                            Eq.1 

 

In Eq. 1, qt represent the amount of As(V) uptake per unit mass of CIN (mg g-1), min and 

mout are a total mass of As(V) input and output from the fixed-bed column (mg), ms is 

the dry mass of CIN, C0 and Ceff are initial and effluent As(V) concentrations (mg L-1), 

Q is the volumetric flow-rate (L min-1), te (min) is the column saturation time when C/C0 

= 0.95 and  Q∫ Ceff(t)dtt
0  represents the elution profile area (mg). Integration limits, 0 

and t, are related to 0 and 0.95 C/C0 ratios.  

Finally, As(V) removal percentage (%R) can be obtained from min and mout, through 

Eq. 2: 

 

            %R = 𝑚𝑚𝑖𝑖𝑖𝑖−𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜
𝑚𝑚𝑖𝑖𝑖𝑖

 x 100                                                                    Eq. 2 

Desorption studies was performed employing 0.10 M solution of NaOH eluent and an 

upward flow of 8.5 mL min-1. The adsorption–desorption cycles were repeated three 

times. Adsorption conditions: H = 2.20 cm, flow rate = 8.53 mL / min, [As(V)]0 = 1.0 

mg/L. 
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Desorption efficiency was calculated using Eq. 3. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (%) = 𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑚𝑚𝑚𝑚𝑚𝑚 𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑥𝑥100                Eq. 3. 

 

2.9 Statistical, mathematical modeling of experimental column data 

Different mathematical models are used to describe the sorption process behavior. Their 

use allows analyzing and explaining the experimental data and predicting changes due 

to different operational conditions. These models include Thomas23, Yoon−Nelson24, 

and Modified Dose Response25. 

Response surface methodology (RSM) is defined as a set of mathematical and statistical 

techniques used to model and analyze the response of interest, which can be influenced 

by several variables. After preliminary tests, a central composite design (CCD) was 

selected for As(V) removal improvement. Design Expert (version 7.0) was used for data 

analysis.  

Table I presents the range and levels of independent variables: volumetric flow-rate (Q) 

and column bed height (H). 

 

Insert Table I here 

 

For RSM, experimental conditions were: pH = 4.5, packing density = 270 kg / m3, 

[As(V)]0 = 1.0 mg / L. Evaluated factors were: H and Q. 
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The study of the adjustment of experimental data to the mathematical model was carried 

out through Analysis of the Variance (ANOVA). Being a multi-response design, where 

the responses selected were the tb (the time when C/C0 ratio is equal to 0.05) and Vol 

(the volume of purified water at C/C0 = 0.05), the desirability function was used to find 

the best compromise between both responses26.  

 

3. Results and Discussion 

3.1 pHzpc determination 

A plot of ΔpH as a function of pH0, resulted in a pHzpc 8.6, see Figure S1. An increase 

in the pHZPC of CIN (8.6) compared to chitosan (6.3)15 can be explained by the presence 

of iron oxides/hydroxides, which give a higher positive charge density on its surface27.  

At pH 4.5, CIN has a positive surface charge, which favors As(V) sorption, because it is 

present predominantly as H2AsO4
- see Figure S228. Under these conditions, As(V) 

could form the ferric arsenate species according to the following reaction29: 

 

Fe(OH)2
+ + H2AsO4

- = FeAsO4 + 2H2O                                        

 

The formation of this specie explains that, in addition to physical sorption, chemical 

sorption can also take place. 

 

3.2. Effect of pH and iron content 

Figure 1 showed a maximum As(V) removal obtained at pH 4.5 (83% removal).  
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Insert Figure 1 here 

 

At this pH there is a favorable electrostatic attraction between As(V) and CIN, allowing 

efficient removal of arsenate ions. Table II details the batch experiment results, carried 

out with solutions of As(V) and: a) CIN, b) iron nanoaggregates, and c) chitosan. It can 

be seen that the CIN material has a higher retention capacity of As(V). Chitosan 

stabilize the iron nanoparticles preventing their agglutination in the sorption 

experiments and, in this way, exposing a major surface area per mass unit. The more 

surface area exposed implies more binding sites available and a higher retention 

capacity.  

 

Insert Table II here 

 

Elution profiles of columns filled with chitosan and CIN are compared in Figure 2. It 

was evidenced that in the case of removal of As(V) with CIN, As(V) is not detected in 

the effluent during the first 180 minutes. Therefore, the tb and the volume of purified 

water (Vol) increase considerably compared to the unmodified chitosan sorbent. 

 

Insert Figure 2 here 

 

3.3 FTIR, XRD and TGA characterization  
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In the spectra shown below (Figure 3), the characteristic signals of chitosan and CIN 

after being exposed to arsenate ions are observed.  

 

Insert Figure 3 here 

 

Spectra showed signals between 3500 - 3400 cm-1 corresponding to the OH and NH 

groups vibration, a signal around 2900 cm-1 attributed to the CH2 vibration. Between 

1660 and 1652 cm-1, the band was observed due to the C=O bond in the amide group 

(CO-NH-R, amide band I), while the signal between 1590 - 1550 cm-1 is due to the 

amine group NH-R (amide II). At 1416 cm-1, a band corresponding to the vibration of 

the OH groups is displayed. The signals in the 1150 - 1070 cm-1 range matches to the 

glycoside bond -C-O-C. The Fe-O bond was observed in the range 560 - 540 cm-1, 

justifying in this way, the presence of iron oxides. The arsenate group has an absorption 

band due to the As-O bond located between 610 - 500 cm-1. This band appears with 

greater intensity in the CIN spectra after being exposed to arsenate ions.  

Figure S3 shows the diffractograms of CIN and CIN-As. In the CIN sorbent 

diffractogram, a characteristic chitosan peak was observed at approximately 2θ = 20°. 

The peaks at 2θ = 30.1, 35.5, 43.1, 71.1, 74.1 can be attributed to (220), (311), (400), 

(620) and (533) planes respectively of Fe3O4 (ICDD 01-075-0033). On the other hand, 

the peak at 2θ = 40.5 can be assigned to the (101) plane of FeOOH (ICDD 01-076-

0123). Additional peaks at 53.7 and 62.7 can be assigned both to (422), (440) planes of 

Fe3O4, and (012), (110) planes of FeOOH. Although Fe(0) could be present, its peak of 
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greater intensity around 2θ = 42.9 (ICDD03-065-4150) could be overlapped with peak 

43.1 attributed to Fe3O4. In the CIN-As diffractogram, a marked decrease in the 

intensity of the peaks mentioned above is observed, so it can be affirmed that the 

sorption of arsenate ions breaks the semi-crystallinity state of the polymeric portion of 

the material and iron oxides present in it. Similar results were observed by Wang and 

colleagues30. 

TGA analysis of CIN and CIN-As was performed to improve the system's chemical-

physical characterization (Figure S4). Total Fe content found in CIN was 5.8%, by 

ICP-MS and 4.8% by EDS (see next section). The CIN thermogram showed a water 

loss of 4.4% in the range of 100 - 200 °C and a mass loss of 78.2% due to the 

decomposition of the polymer in two stages (range 200 - 550 °C). The CIN-As 

thermogram showed different behavior. Water loss was less (2.5%) and occurs in the 

range of 100 - 200 °C. However, no mass loss was observed between 200 and 240 °C. 

The TGA results obtained were different from those of the pure chitosan polymer 

reported in the literature31. This additional stability to chitosan may be the result of an 

increase in chitosan stability given by Fe nanoaggregates. CIN decomposition is similar 

(80% mass loss, range 240 - 530 °C) to the results observed for different oxides of Fe 

from nanoaggregates. Final residue is a mixture of Fe oxides. The final residue for the 

CIN-As system is somewhat more significant (11.3%), due to a mixture of Fe and As 

oxides. 

 

3.4 SEM and EDS 
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SEM analysis showed homogeneity of size (average 18 µm) and morphology (spherical) 

of CIN, Figure 4. A close up of an individual agglomerate allowed the determination of 

average particle size, which was 58 nm.  

 

Insert Figure 4 here 

 

EDS spectrum of the composition of nanoparticles showed traces of sodium and sulfur, 

both due to the chemical synthesis from iron sulfate in alkaline medium (data not 

shown).   

Taking into account the results presented in the previous sections, it is possible to 

propose that the increased uptake in the hybrid material for As(V) is due to electrostatic 

interaction and formation of Fe-As compounds on the iron nanoaggregates Surface, as 

can be seen in Scheme I. 

 

Insert scheme I here 

 

3.5 Improvement of the contaminant sorption process in fixed bed columns 

Values for each factor generated by the CCD and the responses obtained are shown in 

Table III. 

 

Insert Table III here 
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An acceptable tb indicates the column effluent must have an As(V) concentration of 

0.05 mg L-1 according to the Argentine drinking water standards12. Both responses (tb 

and Vol) were optimized, generating the desirability function. The results of these 

analyses are detailed below. 

 

3.6. tb improvement  

ANOVA analysis for this model is shown in Table S2. Analysis of variance for this 

response indicates the quadratic model result significant. The lack of adjustment is not 

significant and indicates that the model has a good correlation with the experimental 

values. Statistical parameters of the model prediction are shown in Table S3. The R2-

predicted and R2-adjusted values did not show a significant difference, discarding a 

possible effect of blocking and the presence of outliers, as shown in Figure S5. 

Adequate precision is related to the signal-to-noise ratio, and values greater than 4.0 are 

considered correct. 

As was mentioned before, response tb can be expressed with a quadratic model using the 

following mathematical coded expression, Eq. 4 

 

tb = 113.69 + 16.53 H2 + 93.77 Q2 + 93.03 H – 160.46 Q – 44.66 H Q     Eq. 4 

 

The response Surface obtained, Figure S6, showed that tb increase when H increases 

and decrease when Q increases. This is coherent because: a) an increment in H implies 

an increment in sorbent mass and thus the number of active sorbent sites increase, 

resulting in a greater As(V) uptake and b) an increase in Q means that a greater amount 
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of As(V) is entering the column in less time, which causes saturation of the active 

sorption sites.  

 

3.7. Vol improvement 

The quadratic model for Vol response was significant (Table S4) Values of R2-

predicted and R2-adjusted did not show significant differences (Table S5), discarding 

block effects, and the presence of outliers, Figure S7. The signal-to-noise ratio 

(adequate accuracy), is greater than 4. The lack of adjustment is not significant, 

indicating the model has a good correlation with experimental values.  

Using the coded coefficients, the quadratic model can be expressed by Eq. 5 

 

Vol = 645.18 + 93.71 H2 – 164.67 Q2 + 513.77 H + 42.40 Q                        Eq. 5  

 

The graph of the response surface, Figure S8, showed that increasing H increases the 

Vol of purified water due to a more significant number of active sites of the sorbent and 

therefore the amount of As(V) retained will be higher. From Figure S8 it can be seen 

that, at low H, an increment in Q results in a better response for Vol until a maximum Q 

value, for which Vol response begins to decrease. The same explanation can be raised to 

high H. 

 

3.8 Desirability Function 

When a simple response is being analyzed, the model analysis indicates areas in the 

design region where the system is likely to give desirable results. However, when 
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several responses are needed to be simultaneously optimized, the desirability function 

can be employed, which is a function of more than one response. The desirability 

function includes the priorities of researchers and desires in building the optimization 

procedure. The procedure involves creating a function for each individual response (di) 

and finally obtaining a global function D that should be maximized by choosing the best 

conditions of the designed variables. The function D ranges from 0 (value totally 

undesirable) to 1 (all responses are in a desirable range simultaneously) and is defined 

by Eq. (6), where d1, d2, . . ., dN correspond to the individual desirability function for 

each response being optimized: 

𝐷𝐷 = [∏ 𝑑𝑑𝑑𝑑]1 𝑁𝑁�𝑁𝑁
𝑛𝑛=1                                                                                        Eq. 6 

Two responses were simultaneously optimized: minimizes tb and maximizes Vol are 

desirable. After the optimization procedure was carried out a response surface for the 

global desirability function was built as a function of the influencing factors H and Q. 

The objective was to minimizes the tb and maximizes the Vol at the same time to reduce 

operating costs. Figure 5 shows the response surface for the desirability function. It was 

found that desirability increases as Q and H increases. As Q increases, the contaminant 

load on the sorbent is higher, and it saturates more rapidly. However, if the H of the 

column is increased at the same time, there is a greater amount of sorbent, which would 

make it possible to obtain a greater quantity of purified water. This compensation effect 

achieves maximum value for Q = 8.60 mL min-1 and H = 2.22 cm with desirability of 
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0.913. Using the generated desirability function a tb value of 58.7 min and a volume of 

purified water of 498.9 mL were predicted.  

 

Insert Figure 5 here 

 

The breakthrough curve for this experimental condition and the adjustment to 

experimental data made by Thomas32, Yoon Nelson33, and Dose-Response34 models are 

shown in Figure S9 and Table S6. As can be seen clearly, the Dose-Response model 

fits the experimental data better than Thomas and Yoon Nelson models. 

Experimental value of tb (58 min) and Vol (490 mL) were obtained. These values are in 

agreement with those predicted by the desirability function. Thus, it can be said that the 

desirability function validates the objective of optimizing both responses studied 

satisfactorily. 

Adsorbent reusability was checked by conducting three adsorption–desorption cycles. 

The breakthrough time (tb) was 58 min and the volume of water treated (Vb) at 

breakthrough was 0.49 L in the first cycle. 

Desorption/recovery of As(V) from the column was performed with 0.1 M NaOH 

solution. It was observed that the percentage (%) of As(V) desorption was 95% in the 

first cycle. The volume of desorption solution employed was 0.05L. Breakthrough time 

(tb) decreased to 55 min in the second cycle (over 5 % loss of removal capacity). The 

percentage (%) of As(V) desorption was 75% in the second cycle and breakthrough 

time (tb) decreased to 35 min in the second cycle (over 40 % loss of removal capacity).   
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Loss of removal capacity was probably due to As(V) kept bonded to CIN blocking 

active sites and/or partial modification of CIN surface structure by NaOH solution 

modifying the sorption properties of the material.  The effluent water quality suggests 

that the As(V) removed water by CIN could be used for household purposes. 

 

4. Conclusions 

Continuous sorption of As(V) in groundwater was studied using a hybrid material as 

sorbent: CIN. SEM, EDS, TGA, XRD and FTIR spectroscopic techniques were applied 

to characterize the sorbent. The results observed in FTIR and XRD evidenced the 

presence of the main components of the material: chitosan and iron (such as oxides, 

hydroxides, and probably zero-valent iron). FTIR spectra of As and the decrease in the 

degree of crystallinity by XRD confirm As(V) sorption. Batch studies showed synergy 

of the material for the sorption of As(V). The use of the experimental design in fixed 

bed column studies was successfully applied. It allowed an integral study of the column 

sorption process. Having a multi-response model allowed the generation of the 

desirability function by optimizing the process for the two responses studied: tb and 

Vol. 
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Figure 3 
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Figure 4 
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Figure 5 
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Scheme 1. Arsenate (As(V)) sorption mechanism on CIN. 
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Table I. Coded levels for independent factors used in the experimental design. 

Factors Symbol Coded levels 

  - -1 0 1 + 

H (cm) X1 0.90 1.20 2.00 2.80 3.10 

Q (mL min
-1

) X2 0.50 2.00 5.70 9.40 10.00 

 

Table II. As(V) removal.
b 

Material Mass (g) As(V) remaining (mg L
-1

) As(V) removal (%) 

chitosan 3.99 15.60 20.30 

iron nanoaggregates 0.20 9.81 53.13 

CIN 4.20 0.51 97.50 

b
Reaction conditions: [As(V)]0 = 20 mg L

-1
, pH = 4.5; T = 25°C, Vf = 200 mL. 

 

Table III. Values for each factor generated by the CCD and the responses obtained. 

Column H (cm) Q (mL min
-1

) tb (min) Vol (mL) 

1 1.20 5.70 33 188.1 

2 2.80 2.00 522 1044.0 

3 0.90 5.70 18 102.6 

4 2.00 5.70 110 627.0 

5 2.50 9.40 90 846.0 

6 3.10 5.70 271 1544.7 

7 2.00 0.50 525 262.5 

8 2.00 5.70 125 712.5 

9 2.00 5.70 118 672.6 

10 1.20 9.40 22 206.8 

11 2.00 10.00 45 450.5 

12 2.00 5.70 109 621.3 

13 2.00 5.70 109 621.3 
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