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We consider the timelike version of warped anti–de Sitter space (WAdS), which corresponds to the
three-dimensional section of the Gödel solution of four-dimensional cosmological Einstein equations.
This geometry presents closed timelike curves (CTCs), which are inherited from its four-dimensional
embedding. In three dimensions, this type of solution can be supported without matter provided the
graviton acquires mass. Here, among the different ways to consistently give mass to the graviton in three
dimensions, we consider the parity-even model known as new massive gravity (NMG). In the bulk of
timelike WAdS3 space, we introduce defects that, from the three-dimensional point of view, represent
spinning massive particlelike objects. For this type of source, we investigate the definition of quasilocal
gravitational energy as seen from infinity, far beyond the region where the CTCs appear. We also consider
the covariant formalism applied to NMG to compute the mass and the angular momentum of spinning
particlelike defects and compare the result with the one obtained by means of the quasilocal stress tensor.
We apply these methods to special limits in which the WAdS3 solutions coincide with locally AdS3 and
locally AdS2 × R spaces. Finally, we make some comments about the asymptotic symmetry algebra of
asymptotically WAdS3 spaces in NMG.
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I. INTRODUCTION

In recent years, gravity about three-dimensional warped
anti–de Sitter (WAdS3) spaces has attracted attention due
to the fact that it represents one of the most interesting
examples of what has been dubbed “non-AdS holography.”
Different proposals suggesting that quantum gravity in
WAdS3 space could be dual to a two-dimensional theory
with a certain type of conformal invariance have appeared
in the literature [1–4]. It is, therefore, natural to ask to
what extent the holography-inspired techniques to compute
observables such as conserved charges can be extended
to the case of timelike WAdS3. The majority of the works
considering WAdS3 holography in the literature are, how-
ever, concerned with the spacelike WAdS3 spaces. This is
because, on the one hand, spacelike spaces can host black
holes [5], which are particularly interesting; on the other
hand, the fact that stretched timelike WAdS3 spaces exhibit
closed timelike curves (CTCs) is usually regarded as a
pathology that makes this case less physically sensible than
its squashed spacelike analogue. Nevertheless, there are
still good reasons to study the definition of conserved
charges in asymptotically timelike WAdS3 spaces. One
such motivation comes from dS=CFT: In dS=CFT, as
originally proposed [6], the dual field theory is supposed
to be a Euclidean CFT formulated at future infinity. In the

static patch, the holographic picture is such that the
dual CFT is located beyond the cosmological horizon.
Therefore, when trying to apply holographic renormaliza-
tion techniques, one has to propose a way to define the
regularized boundary stress tensor far beyond the horizon,
where the vector that is timelike inside the static patch
becomes spacelike. A particular proposal to do so in dS
space has been given in Ref. [7], where it was proposed
that conserved charges can be defined in terms of the
holographic stress tensor integrating on constant-t
codimension-2 surfaces, with t being the coordinate which
is timelike inside the static patch. This proposal works
well for dS=CFT and seems to be an ingenious trick to deal
with backgrounds that do not necessarily admit a globally
defined timelike Killing vector. A possible explanation
of why the proposal in [7] works has recently been given
by Ref. [8], where it has been shown that the dual CFT
description does not necessarily have to be placed at the
future conformal boundary, but also holds on any fixed
timelike slice in the static patch.
Here wewill raise the same kind of questions for timelike

WAdS3 spaces in new massive gravity (NMG) [9]. First,
we will investigate to what extent we can provide a notion
of quasilocal energy in timelike WAdS3 from far infinity.
Second, we will study the conserved charges, such as
the mass and angular momentum of spinning particlelike
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objects in timelike WAdS3, using the covariant formalism
applied to NMG. We will see that, despite the fact that
timelike WAdS3 exhibits CTCs, this space admits a
sensible definition of conserved charges.
The main motivations to study this particular case of

NMG are the following: As a ghost-free theory that
propagates two degrees of freedom, NMG is the three-
dimensional (3D) theory of gravity whose dynamics is
closest to that of four-dimensional gravity, in the sense that
it propagates two polarizations of a spin-2 particle (instead
of zero as in 3D general relativity, only one as in topologi-
cally massive gravity (TMG), or three as in other 3D higher-
curvature models). NMG is, on the other hand, the simplest
model of three-dimensional gravity that preserves parity
(unlike TMG, for instance). This latter property is of
particular importance in the case of WAdS3 backgrounds
because it permits us to distinguish between the chiral
features arising from the SLð2;RÞ ×Uð1Þ symmetric
geometry from chiral features inherent of parity-violating
effects (which are present in theories such as TMG).
The paper is organized as follows: In Sec. II, timelike

WAdS3 space is discussed and its main properties
reviewed. In Sec. III, we discuss the WAdS3 spaces as
solutions to three-dimensional massive gravity. In Sec. IV,
we propose a definition of quasilocal gravitational energy
for defects in asymptotically WAdS3 spaces. We define the
quasilocal stress tensor for three-dimensional massive
gravity and discuss the difficulties encountered when trying
to compute both the mass and angular momentum of
defects with this method. In addition, we compute the
conserved charges associated to defects in timelike WAdS3
in the covariant formalism adapted to massive gravity.
We compare the results obtained for the timelike WAdS3
defects with the computation of the mass and angular
momentum of asymptotically spacelike WAdS3 black
holes. Section V contains our conclusions.

II. TIMELIKE WAdS3 SPACE

Timelike WAdS3 spaces are squashed or stretched
deformations of asymptotically three-dimensional anti–de
Sitter spaces (AdS3) [10]. In the case of the stretched
deformation, WAdS3 corresponds to the three-dimensional
section of the Reboucas-Tiomno one-parameter generali-
zation [11,12] of the Gödel solution of four-dimensional
cosmological Einstein equations, and the existence of
CTCs is a property inherited from its four-dimensional
ancestor, the Gödel universe [13]. These spaces represent
a workable example to address questions such as how to
define physically sensible observables, such as conserved
charges, in spaces with CTCs.

A. Timelike WAdS3 from the Gödel metric

The Gödel cosmological solution is the direct product
of the real line, R, and a three-dimensional manifold Σ
equipped with a metric [13,14]

ds2 ¼ −ðdt̂þ e
ffiffi
2

p
ωxdyÞ2 þ dx2 þ 1

2
e2

ffiffi
2

p
ωxdy2; ð1Þ

with coordinates x; y; t̂ ∈ R, and ω being a real parameter
that represents the vorticity of the Gödel solution. This
coordinate system gives a complete chart of the space, and
the four-dimensional solution is then homeomorphic to R4.
The space is geodesically complete and, hence, singularity
free; it is spatially homogeneous, though nonisotropic.
In a convenient system of coordinates, metric (1) above

takes the form

ds2 ¼ −
�
dtþ 2

ω
sinh2

�
ωρffiffiffi
2

p
�
dϕ

�
2

þ 1

2ω2
sinh2ð

ffiffiffi
2

p
ωρÞdϕ2 þ dρ2; ð2Þ

where the three-dimensional metric is now written as a
Hopf fiber over the hyperbolic plane. This space exhibits
closed timelike curves, as can be seen from the role played
by coordinates t and ϕ in the first term of (2).
The prominent properties of the Gödel space persist if

one considers a particular one-parameter deformation of the
metric (2) which, in particular, permits us to interpolate
between the three-dimensional section of Gödel space and
AdS3 [11]. This deformation is given by the metric

ds2 ¼ −
�
dtþ 4ω

λ2
sinh2

�
λρ

2

�
dϕ

�
2

þ sinh2ðλρÞ
λ2

dϕ2 þ dρ2;

ð3Þ

which, apart from the vorticity ω, includes an additional
real parameter λ that controls the deformation. For the
particular value λ2 ¼ 2ω2, metric (3) corresponds to the
three-dimensional section of Gödel solution (2); when
λ2 ¼ 4ω2 it corresponds to the universal covering of AdS3.
For generic values of λ and ω within the range
0 ≤ λ2 ≤ 4ω2, metric (3) describes the timelike stretched
WAdS3 spaces we will be concerned with.
It is convenient to consider a slightly different parameter-

ization: Define the parameter

l2 ¼ 2

λ2 − 2ω2
; ð4Þ

and then use ω and l2 (instead of λ) to describe the family
of WAdS3 metrics. For instance, in terms of ω and l2,
the Gödel solution corresponds to l2 ¼ ∞, while AdS3
space corresponds to l2 ¼ ω−2. The range 0 ≤ λ2 ≤ 4ω2,
in terms of these parameters, translates into jω2l2j ≥ 1.
Notice that ω2l2 may take values between −1 and −∞.
Spaces with jω2l2j < 1 are also interesting, although
present a different causal structure; they correspond to
the timelike squashed WAdS3 spaces.
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Now, continuing with the convenient changes of coor-
dinates, define the new radial variable r ¼ 2λ−2sinh2

ðλρ=2Þ, such that r ∈ R≥0. Metric (3) now reads

ds2 ¼ −dt2 − 4ωrdtdϕþ 2ðrþ ðl−2 − ω2Þr2Þdϕ2

þ dr2

2ðrþ ðl−2 þ ω2Þr2Þ : ð5Þ

This is one of the standard ways of representing timelike
WAdS3 space. The curvature invariants associated to this
metric are constant, and take the remarkably succinct form

Rμ1
μnR

μ2
μ1R

μ3
μ2…Rμn

μn−1 ¼ ð−1Þn 2n

l2n ðω2nl2n þ 2Þ: ð6Þ

Another interesting property of metric (2) is that it is
spatially homogeneous. As it happens with the universal
covering of AdS, the WAdS spaces are not globally
hyperbolic.
The isometry group of WAdS3 spaces (5) is

SLð2;RÞ ×Uð1Þ, which is generated by four out of the
five Killing vectors that Gödel solution admits. This
isometry is the remnant piece of the SLð2;RÞ ×
SLð2;RÞ isometry group of AdS3 that survives through
the stretched/squashed deformation.
From (5), it is easy to verify that in the special point

ω2l2 ¼ 1 the solution tends to AdS3 space. Indeed,
defining the new coordinates θ ¼ t − ϕ and ρ2 ¼ 2r and
replacing ω ¼ l ¼ 1 in (5), gives

ds2AdS3 ¼ −ðρ2 þ 1Þdt2 þ dρ2

ðρ2 þ 1Þ þ ρ2dθ2: ð7Þ

B. Introducing a defect

Let us now introduce a pointlike defect in spacetime (5).
This is achieved by performing the change

ϕ → ð1 − μÞφ; with 0 ≤ μ < 1; ð8Þ

while keeping the same periodicity for the φ coordinate,
namely, φ ∈ ½0; 2πÞ. This certainly changes the global
properties of the space in a way that is equivalent to
introducing an angular deficit δϕ ¼ μ=ð2πÞ in the original
angular coordinate. By doing (8) and rescaling the radial
coordinate as r → r=ð1 − μÞ, one finds the metric

ds2 ¼ −dt2 − 4ωrdtdφþ 2rððl−2 − ω2Þrþ ð1 − μÞÞdφ2

þ dr2

2rððω2 þ l−2Þrþ ð1 − μÞÞ ; ð9Þ

where t ∈ R, r ∈ R≥0, and φ ∈ ½0; 2πÞ. This metric shares
the asymptotic behavior with (5); namely, both have the
large r behavior

ds2 ¼ −dt2 − 4ωrdtdφþ 2ðl−2 − ω2Þr2dφ2

þ dr2

2r2ðl−2 þ ω2Þ þ hμνdxμdxν; ð10Þ

with, in particular, δgφφ ≡ hφφ ≃OðrÞ and δgrr≡
hrr ≃Oðr−3Þ.
Metric (9) represents a particlelike object located at

r ¼ 0, in the bulk of the Gödel universe. The object
disappears when μ tends to zero, which permits us to
anticipate that μ is somehow related to the mass of the
defect. More general defects will be introduced later
(see (34) below), which will represent spinning point
particles in Gödel spacetime.

III. TIMELIKE WAdS3 SPACE IN
MASSIVE GRAVITY

A. WAdS3 spaces as gravity backgrounds

A feature that makes WAdS3 spaces of particular interest
is that these geometries appear as exact solutions of a large
variety of models, including string theory [15,16], topo-
logically massive gauge theories [17–20], higher-derivative
theories [21], bi-gravity theories [22], and Einstein gravity
nonminimally coupled to matter fields [23]. A minimal
setup in which WAdS3 spaces appear is three-dimensional
gravity with no matter fields. Indeed, spacelike and time-
like WAdS3 geometries are exact solutions of pure three-
dimensional gravity provided one gives a small mass to the
graviton. The graviton mass is what ultimately induces the
vorticity required to support the Gödel universe or, more
precisely, the three-dimensional nontrivial part of it. In
three-dimensions, there are different manners to give mass
to the graviton in a consistent way. Here, we will adopt the
particular parity-even theory of massive gravity proposed in
Ref. [9], usually called new massive gravity (NMG), which
we will review in the next subsection. Our method to
compute the quasilocal gravitational energy, in Sec. IV,
amounts to defining a boundary stress tensor for NMG,
which is the generalization of the Brown-York quasilocal
stress tensor. For NMG theory, such a tensor exists and
has been defined in Ref. [24]. We will consider such a
definition of the quasilocal stress tensor and use it to
compute the mass of the defect in timelike WAdS3 as seen
from infinity, i.e., from the region that is beyond the radius
where CTCs appear.
We will first consider a defect in timelike WAdS3 space,

which comes to represent a massive spinless pointlike
object. From the four-dimensional point of view, this is like
considering a local cosmic string in the Gödel universe. We
will propose a physically sensible definition of mass for
such a highly localized source. Intriguingly, the result we
will obtain will be shown to account for 1=2 of the
Arnowitt-Deser-Misner (ADM) mass of the defect. In
addition, the definition of charges in terms of the quasilocal
stress tensor will prove to be not suitable to compute the
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angular momentum of spinning defects, the failure being
associated to the impossibility of regularizing the boundary
stress tensor by means of local counterterms. This will
eventually lead us to consider an alternative approach to
compute charges. We will consider, in Sec. V, the covariant
formalism for computing charges in NMG. Let us now
introduce the theory.

B. Three-dimensional new massive gravity

In this section, we will discuss asymptotically timelike
WAdS3 spaces in the specific context of three-dimensional
NMG. The action of the theory consists of three distinct
contributions, namely,

S ¼ SEH þ SNMG þ SB; ð11Þ
where the first term is the Einstein-Hilbert action

SEH ¼ 1

16πG

Z
Σ
d3x

ffiffiffiffiffiffi
−g

p ðσR − 2ΛÞ; ð12Þ

with σ ¼ �1 being a sign that effectively controls the sign
of the Newton constant. The second term in (11) is given by

SNMG ¼ 1

16πGm2

Z
Σ
d3x

ffiffiffiffiffiffi
−g

p �
RμνRμν −

3

8
R2

�
; ð13Þ

where m is the mass of the graviton. The third term in (11)
is the boundary action, needed for the variational principle
to be well posed. We will discuss the boundary action in the
next subsection.
Let us recall the main properties of theory (12)–(13):

Around maximally symmetric backgrounds, its linearized
limit coincides with the massive spin-2 Fierz-Pauli action,
representing a fully covariant extension of the latter. At a

generic point of the parameter space (Λ, m), the theory
propagates two massive local degrees of freedom. In
addition, NMG admits a rich set of solutions, such as
Scrödinger invariant spaces [25], Lifshitz spaces and
Lifshitz black holes [26], logarithmic deformation of the
Bañados-Teitelboim-Zanelli geometry [27], hairy ðAÞdS3
black holes [28], WAdS3 black holes, and others [21,29].
The equations of motion derived from (12) and (13) are

Rμν −
1

2
Rgμν þ σΛgμν þ

σ

2m2
Kμν ¼ 0; ð14Þ

which, apart from the Einstein tensor, involve the tensor

Kμν ¼ 2□Rμν −
1

2
∇μ∇νR −

1

2
□Rgμν þ 4RμανβRαβ

−
3

2
RRμν − RαβRαβgμν þ

3

8
R2gμν:

Timelike WAdS3 metrics (9) solve the equations of
motion (14) provided the coupling constants satisfy1

Λ ¼ −
ð11ω4l4 þ 28ω2l2 − 4Þσ

2ð19ω2l2 − 2Þl2
;

m2 ¼ −
ð19ω2l2 − 2Þσ

2l2
: ð15Þ

Recall that AdS3 space corresponds to ω2l2 ¼ 1, for which
Λ ¼ −35σ=ð34l2Þ and m2 ¼ −17σ=ð2l2Þ.

C. Boundary terms

To discuss boundary terms SB, let us first rewrite (13) as
follows:

SNMG ¼ 1

16πG

Z
Σ
d3x

ffiffiffiffiffiffi
−g

p �
fμν

�
Rμν −

1

2
Rgμν

�
−
1

4
m2ðfμνfμν − f2Þ

�
: ð16Þ

This includes an auxiliary field fμν, represented by a rank-2
symmetric tensor. After varying with respect to fμν, one
finds

fμν ¼
2

m2

�
Rμν −

1

4
Rgμν

�
; ð17Þ

which can be plugged back into (16) to reproduce the
higher-curvature term (13).
The next step is to consider the ADM-type decompo-

sition in the radial direction; that is,

ds2 ¼ N2dr2 þ γijðdxi þ NidrÞðdxj þ NjdrÞ; ð18Þ

whereN2 is the radial analogue of the lapse function,Ni are
the shift functions, and γij is the two-dimensional metric
induced on the constant-r surfaces. The Latin indices

i; j ¼ 0; 1, refer to the coordinates on the constant-r
surfaces (namely x0 ¼ t, x1 ¼ φ), while the greek indices
μ; ν ¼ 0; 1; 2, refer to all coordinates, including the radial
direction x2 ¼ r.
Boundary terms SB are introduced in (11) for the

variational principle to be defined in such a way that both
the metric gμν and the auxiliary field fμν are fixed on the
boundary ∂Σ; see [24] for details. The boundary action is
then given by

SB ¼ −
1

8πG

Z
∂Σ

d2x
ffiffiffiffiffiffi
−γ

p �
K þ 1

2
f̂ijðKij − γijKÞ

�
; ð19Þ

1These solutions persist if one introduces in the equations of
motion the Cotton tensor of TMG.
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where, as said, γij is the metric induced on ∂Σ, γ ¼ detðγijÞ
and Kij is the extrinsic curvature, with K ¼ γijKij. f̂

ij in
(19) comes from decomposing the auxiliary field fμν as

follows fμν ¼ δμi δ
ν
jf

ij þ 2δðμr δ
νÞ
i h

i þ δμrδνrs and then defin-

ing f̂ij ≡ fij þ 2hðiNjÞ þ sNiNj, and f̂ ≡ γijf̂
ij, where

aðμbνÞ ≡ ðaμbν þ aνbμÞ=2.
The first term in (19) corresponds to the Gibbons-

Hawking term of general relativity, while the other two
terms come from the higher-curvature terms of (16). These
terms are preliminary elements to define the boundary
stress tensor, which we will discuss in the next section.

IV. CONSERVED CHARGES

A. The quasilocal stress tensor

The Brown-York quasilocal stress tensor Tij is obtained
by varying action (11) with respect to the metric γij, [30].
That is,

Tij ¼
2ffiffiffiffiffiffi−γp δS

δγijjr¼const
; ð20Þ

which yields [24]

Tij ¼ 1

8πG
ðKij −KγijÞ− 1

8πG

�
1

2
f̂Kij þ∇ðiĥjÞ −

1

2
∇rf̂

ij þKði
k f̂

jÞk−
1

2
N2sKij − γij

�
∇kĥ

k −
1

2
N2sKþ 1

2
f̂K −

1

2
∇rf̂

��
;

ð21Þ

where ĥi ¼ Nðhi þ sNiNjÞ. The covariant r-derivative ∇r
acting on f̂ij is defined as follows:

∇rf̂
ij ¼ 1

N
ð∂rf̂

ij − Nk∂kf̂
ij þ 2f̂kði∂kNjÞÞ;

∇rf̂ ¼ 1

N
ð∂rf̂ − Nk∂kf̂Þ: ð22Þ

When taking the limit r → ∞ in the definition (20),
stress tensor (21) is found to diverge. Without a proper
regularization procedure, this would result in an infinite
value for the conserved charges. To solve this problem, one
may try to improve the definition (20) by including addi-
tional boundary terms to the action, provided such terms do
not spoil the variational principle. In Ref. [31], this method
was applied to the case of spacelike WAdS3. It was shown
that, despite the persistent divergences of some components
of Tij, adding a boundary cosmological constant term to SB
makes the functional action finite and yields a finite
quasilocal energy. We can try to do the same here for
the timelike case and improve the stress tensor (20) by
adding a piece,

Tij → Tij −
ζ

8πG
γij; ð23Þ

which would come from a boundary contribution,

SB → SB þ ζ

8πG

Z
d2x

ffiffiffiffiffiffi
−γ

p
; ð24Þ

where ζ is a coefficient fixed by requiring the action to be
finite. The value of this coefficient is found to be

ζ ¼ −
σ8ω2l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðω2l2 þ 1Þ

p
ð19ω2l2 − 2Þ : ð25Þ

B. Quasilocal gravitational energy

The boundary stress tensor (20), once improved by the
addingof (23), yields the definition of conserved chargesQ~ξ,

associated to vectors ~ξ that generate isometries on ∂Σ. These
boundary Killing vectors ~ξ are defined by the equation

£~ξγij ¼ 0; ð26Þ

for the induced metric. Then, the charges are defined by
integrating theprojectionof theboundary stress tensor on the
vector ~ξ and a unitary vector u that is orthogonal to the
constant-t surfaces. That is,

Q~ξ ¼
Z

dφϱuiTij
~ξj; ð27Þ

where ϱ is given by the induced metric written in the form

dΣ2 ¼ −N2
Σdt

2 þ ϱ2ðdtþ Nφ
ΣdφÞ2: ð28Þ

In particular, for the WAdS3 defects, we have

ϱ2 ¼ 2ð1 − μÞrþ 2ðl−2 − ω2Þr2;
Nφ

Σ ¼ −
ωr

ð1 − μÞrþ ðl−2 − ω2Þr2 ;

N2
Σ ¼ 1þ 2ω2r2

ð1 − μÞrþ ðl−2 − ω2Þr2 : ð29Þ

With these ingredients, we are ready to compute
the mass of the defects: The unitary vector orthogonal
to the constant-t surfaces is given by u ¼ −NΣðrÞdt.
Considering a timelike boundary Killing vector,

~ξi ¼ NΣui; ð30Þ
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(i.e. timelike in the region where the source is located) we
find a value for the quasilocal energyM ¼ Q~ξ, which reads

M ¼ 2σω2l2ðμ − 1Þ
ð19ω2l2 − 2ÞG ¼ 2ðμ − 1Þ

19G

�
σ −

1

m2l2

�
; ð31Þ

where we used that 2m2l2σ ¼ 2 − 19ω2l2.
Let us first compare the result (31) with the special case

of locally AdS3 solutions, which correspond to ω2l2 ¼ 1.
In this case, (31) reduces to

Mω2l2¼1 ¼
2σðμ − 1Þ

17G
; ð32Þ

and, indeed, this is seen to match the mass of a defect in
locally AdS3 space in NMG. To see this explicitly, let us be
reminded of the fact that in the case of NMG in AdS3 the
mass of a deficit angle (a particular case of the BTZ
geometry) is given by [32]

MAdS3 ¼
ðμ − 1Þ
8G

�
σ þ 1

2m2l2

�
¼ 2σðμ − 1Þ

17G
; ð33Þ

where we used that ω2l2 ¼ 1 precisely corresponds to
2m2l2σ ¼ −17. That is, (31) reduces to the value (32) at
that point of the parameter space. In principle, we could be
tempted to take this matching as a consistency check of the
result (31). However, if we think of it carefully, we
conclude that there is a priori no good reason to expect
(31) to coincide with (33) in the ω2l2 → 1 limit. This is
because even when in that limit WAdS3 space becomes
AdS3 space, the latter shows up in a coordinate system
which is not the one usually considered when computing
the ADM charges of BTZ geometry. This is similar to what
happens in the case of asymptotically WAdS3 black holes,
whose conserved charges, as functions of the horizon’s
radii, do not tend to the charges of BTZ black holes in the
ν → 1 limit (being ν the parameter that controls the
deformation in that case; see the conventions in [1]). In
fact, we will see in the next section that the correct value
of the gravitational mass associated to a pointlike defect
in timelike WAdS3 space coincides with (31) only up to a
factor of 1=2. This feature has already been observed in the
context of spacelike WAdS3 solutions [31].
As it happens with spacelike WAdS3 spaces, the method

of computing charges using the quasilocal stress tensor (20)
does not suffice to give a finite result for the angular
momentum of spinning defects. This is basically because
there seems to be no manner to regularize all the compo-
nents of (20) by means of local boundary counterterms.
This means that, in order to study spinning defects, it is
necessary to consider a different method for computing
conserved charges. With this motivation, we will consider
in the following section the covariant formalism.

C. Covariant formalism in new massive gravity

Let us now consider spinning defects. The metric of
Gödel spacetime with both mass and angular momentum
reads2

ds2 ¼ −dt2 − 4ωrdtdφþ dr2

ð2r2ω2 þ λμ;jðrÞÞ
− ð2r2ω2 − λμ;jðrÞÞdφ2; ð34Þ

where

λμ;jðrÞ ¼
2r2

l2
þ 2ð1 − μÞr − jl2; ð35Þ

and where t ∈ R, r ∈ R≥0, 0 ≤ μ ≤ 1, and ϕ ∈ ½0; 2πÞ.
Metric (34) involves a new parameter j ∈ R, and reduces to
(9) when j ¼ 0. Notice also that only ξt ∼ ∂t and ξφ ∼ ∂φ

out of the four generators of SLð2;RÞ ×Uð1Þ survive as
exact Killing vectors of the metric (34).
In the case of the parameter μ, for example, the

introduction of j is achieved by means of a (improper,
i.e. not globally well defined) diffeomorphism from metric
(5). Metric (34) solves the equations of motion (14) for the
parameters (15).
In the covariant formalism [33,34], conserved charges

associated to an asymptotic Killing vector ξ are given in
three spacetime dimensions by the expression

δQξ½δg; g� ¼
1

16πG

Z
2π

0

ffiffiffiffiffiffi
−g

p
ϵμνφk

μν
ξ ½δg; g�dφ; ð36Þ

with g a solution, δg a linearized perturbation around it,
and kμνξ ½δg; g� being a one-form potential of the linearized
theory. In [35], this potential was computed for exact
Killing vectors in NMG using the Abbott-Deser-Tekin
(ADT) formalism. The result can be written

kμνξ ¼ Qμν
R þ 1

2m2
Qμν

K ; ð37Þ

where the first contribution comes from the pure GR part
of the equations of motion, while Qμν

K accounts for the
contribution of the Kμν tensor of NMG, whose explicit
expression can be found in equations (22), (28) and (29) in
[35], respectively.

D. Mass and angular momentum in the
covariant formalism

One can use (37) and plug it into (36) to compute the
(variation of the) mass and angular momentum, for which

2Notice that we can assign dimensions to the parameters
and coordinates as follows: ½t� ¼ l1; ½r� ¼ l2; ½ϕ� ¼ l0; ½l� ¼ l1;
½ω� ¼ l−1; ½μ� ¼ l0; ½j� ¼ l0, where l has dimension of length.
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the Killing vectors are, respectively, ∂t and ∂φ. This
procedure has been implemented in a MATHEMATICA code
and, for σ ¼ 1, gives3

M ¼ 4ðμ − 1Þl2ω2

Gð19l2ω2 − 2Þ ; ð38Þ

and

J ¼ −
4jl4ω3

Gð19l2ω2 − 2Þ ; ð39Þ

for the mass and the angular momentum of the solution
(34), respectively. Notice that, as expected, the angular
momentum changes its sign when ω does so.
Expressions (38) and (39) are the correct values of the

conserved charges. Intriguingly, the Brown-York quasilocal
energy obtained in (31) gives only one half of the mass.4

A special case to consider is the actual Gödel spacetime,
which corresponds to the limit l → ∞. In this case, the
mass formula (38) yields

MGöd ¼
4ðμ − 1Þ
19G

; ð40Þ

which is independent of ω. For μ ¼ 0 the result is negative
and is of crucial importance in the study of the spacelike
WAdS3 black hole spectrum [3,36].
Another special case to analyze is the AdS2 ×R space.

This corresponds to the limit ω → 0. To see this explicitly,
we define coordinate ~ρ2 ¼ 1þ 4ðr2=l4 þ r=l2Þ, in which
the metric for ω ¼ 0 takes the form

ds2jω¼0
¼ −dt2 þ ds2AdS2

¼ −dt2 þ l2

2
ð~ρ2 − 1Þdϕ2 þ l2

2

d~ρ2

ð~ρ2 − 1Þ : ð41Þ

In this case, the mass also tends to zero,

MR×AdS2 ¼ 0: ð42Þ

Locally AdS2 ×R spaces appear in the limit in which
(15) yields Λ ¼ −m2 [28].

V. CONCLUSIONS

In this paper, we have investigated the definition of
conserved charges in timelike WAdS3 spacetimes, which
exhibit CTCs. We have considered these spaces in the

context of NMG. Timelike WAdS3 spacetimes in NMG
represent a workable example to address questions such as
how to define physically sensible observables, such as
conserved charges, in spaces that do not possess a globally
defined timelike Killing vector.
For stretched and squashed timelike WAdS3 spaces,

we have investigated several features related to the
feasibility of defining conserved charges. One of the
questions we have addressed was how to provide a
sensible definition of quasilocal gravitational energy in
these spacetimes that exhibit CTCs. The motivation for
doing this was studying to what extent the holography-
inspired methods can be applied to this example of non-
AdS holography. We have succeeded in doing this for
nonspinning defects. However, the difficulties encoun-
tered when trying to adapt this method to spinning
solutions eventually led us to consider an alternative
way of computing charges. We have resorted to the
covariant formalism applied to NMG, which was shown
to be suitable to compute the mass and angular momen-
tum of a more general type of defects that represent
spinning particlelike objects in the bulk of WAdS3.
The question remains as to whether it is possible to

formulate a holographic renormalization recipe in WAdS3
spaces. The obstruction encountered when trying to do this
in Sec. IV was the impossibility of regularizing the full
boundary stress tensor in terms of local boundary counter-
terms. This phenomenon had also been observed both in
TMG and in NMG for the case of spacelike WAdS3,
suggesting this is a general feature of this type of back-
ground. Whether or not this problem is related to the lack
of Lorentz invariance in the dual theory is still to be
understood.
Before concluding, let us mention that the covariant

method for computing charges discussed in this paper can
be adapted to the case of charges associated to asymptotic
isometries. In a companion paper [36], it will be shown that
the algebra of charges in asymptotically WAdS3 spaces is
given by an infinite-dimensional algebra that coincides
with the semidirect sum of Virasoro algebra with non-
vanishing central charge and an affine ûð1Þk Kač-Moody
algebra.
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APPENDIX: RELATION WITH THE WAdS3
BLACK HOLES

As we will see, the relation between timelike charges we
have obtained and the mass and angular momentum of the
so-called “warped” black holes (WBH) is not as simple as
one would a priori think. WBHs are black hole solutions
that asymptote stretched spacelike WAdS3 space; see [1]
and references therein. As we will describe below, these
black holes can be obtained from the timelike solution by
means of a complex change of coordinates: Consider first
the double Wick rotation,

t → iτ; φ → −iΘ; ω → −ω; r → −r; j → −j; ðA1Þ

and, second, τ ¼ t0 − l
ffiffi
j

p
Θ. Finally, in order to compare

with the coordinates used in the literature, let us rescale
time as t0 → LT.
The change of coordinates above maps the timelike

metric (34) into the WBH solution,5

ds2 ¼ L2dT2 þ L2dR2

ðν2 þ 3ÞðR − rþÞðR − r−Þ
þ L2ð2νR −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q
ÞdTdΘ

þ RL2

4
½3ðν2 − 1ÞRþ ðν2 þ 3Þðrþ þ r−Þ

− 4ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q
�dΘ2; ðA2Þ

with R ¼ −2r=L2 provided one identifies the parameters as
follows,

ν ¼ ωL; L2 ¼ 3

ω2 þ 2l−2 ;

r� ¼ l2

L2

�
−ð1 − μÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − μÞ2 − 2ðω2l2 þ 1Þj

p
ðω2l2 þ 1Þ

�
: ðA3Þ

Notice the useful relations:

rþ þ r− ¼ 2l2ðμ − 1Þ
L2ð1þ l2ω2Þ ; rþr− ¼ 2jl4

L4ð1þ l2ω2Þ :

ðA4Þ

The timelike and spacelike Killing vectors are related in the
following way:

∂t ¼
i
L
∂T; ∂φ ¼ l

L

ffiffi
j

p ∂T þ i∂Θ: ðA5Þ

This charge-dependent change of coordinates makes the
relation between timelike and spacelike charges more
involved than a mere analytic continuation.
Changing in (A2) LT → t, R → r and LΘ → φ, we can

assign the dimensions as ½t� ¼ l1; ½r� ¼ l1; ½φ� ¼ l0; ½L� ¼
l1; ½ν� ¼ l0; ½r�� ¼ l1 and the expression of the mass of the
WBH then becomes6

MWBH ¼ Q∂T

¼ νðν2 þ 3Þ
GLð20ν2 − 3Þ

�
ðr− þ rþÞν −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2 þ 3Þ

q �
;

ðA6Þ

while the expression for the angular momentum is7

JWBH ¼Q∂Θ ¼
νðν2þ 3Þ

4GLð20ν2− 3Þ
×
�
ð5ν2þ 3Þrþr− − 2ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr−ðν2þ 3Þ

q
ðrþ þ r−Þ

�
:

ðA7Þ

Using the relations (A3) between the spacelike and
timelike parameters, one observes that going from the
timelike to the spacelikemetric involves a charge-dependent
and globally not-well-defined change of coordinates,
namely, the definition τ ¼ t0 − l

ffiffi
j

p
Θ above. This implies

that the spacelike and timelike charges do not coincide. Only
in the case j ¼ 0 does one see that the masses are related8

according to ∂t ∼ L−1∂T ,

MWBHjj¼0 ¼ L−1M: ðA8Þ

It is important to remark that, in the case of spinning
defects in timelike WAdS3, and due to the j-dependent
change of coordinates, the conserved charges cannot be
simply obtained from the mass and angular momentum of
spacelike solutions.

5See Eq. (4.1) in Ref. [1].

6This expression comes from (D.4) in [35], which coincides
with (27) in [31] without the extra factor 1=2 which should be
absent. Note that this expression has also been obtained inde-
pendently with the covariant formalism.

7Result taken from (30) in [31] which has been crossed-
checked with [21]. Note that this expression has also been
obtained independently in the covariant formalism.

8Up to a μ-independent factor, which cannot seen in the
integration.
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