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Abstract

Background:

Cross-frequency coupling (CFC) refers to the non linear interaction between os-
cillations in different frequency bands, and it is a rather ubiquitous phenomenon
that has been observed in a variety of physical and biophysical systems. In par-
ticular, the coupling between the phase of slow oscillations and the amplitude
of fast oscillations, referred as phase-amplitude coupling (PAC), has been in-
tensively explored in the brain activity recorded from animals and humans.
However, the interpretation of these CFC patterns remains challenging since
harmonic spectral correlations characterizing non sinusoidal oscillatory dynam-
ics can act as a confounding factor.

Methods:

Specialized signal processing techniques are proposed to address the complex in-
terplay between spectral harmonicity and different types of CFC, not restricted
only to PAC. For this, we provide an in-depth characterization of the Time
Locked Index (TLI) as a novel tool aimed to efficiently quantify the harmonic
content of noisy time series. It is shown that the proposed TLI measure is more
robust and outperform traditional phase coherence metrics (e.g. Phase Locking
Value, Pairwise Phase Consistency) in several aspects.

Results:

We found that a non linear oscillator under the effect of additive noise can
produce spurious CFC with low spectral harmonic content. On the other hand,
two coupled oscillatory dynamics with independent fundamental frequencies can
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produce true CFC with high spectral harmonic content via a rectification mech-
anism or other post-interaction nonlinear processing mechanisms. These results
reveal a complex interplay between CFC and harmonicity emerging in the dy-
namics of biologically plausible neural network models and more generic non
linear and parametric oscillators.

Conclusions:

We show that, contrary to what is usually assumed in the literature, the high
harmonic content observed in non sinusoidal oscillatory dynamics, is neither
sufficient nor necessary condition to interpret the associated CFC patterns as
epiphenomenal. There is mounting evidence suggesting that the combination of
multimodal recordings, specialized signal processing techniques and theoretical
modeling is becoming a required step to completely understand CFC patterns
observed in oscillatory rich dynamics of physical and biophysical systems.

Keywords: Non linear oscillators, Biologically plausible neural network
models, Cross frequency couplings, Time Locked Index, Instantaneous
frequency estimation, Systems Neuroscience

1 Highlights

2 e Time locked index efficiently quantifies the harmonic content of noisy time
3 series.

s e A non linear oscillator under the effect of additive noise can produce spuri-
5 ous cross frequency couplings (CFC) with low spectral harmonic content.
6 e Two coupled oscillatory dynamics with independent fundamental frequen-
7 cies can produce true CFC with high spectral harmonic content via recti-
8 fication mechanisms or other post-interaction nonlinear processing mech-
9 anisms.

10 e A non sinusoidal oscillatory dynamics with high harmonic content is nei-
1 ther sufficient nor necessary condition for spurious CFC.

12 e A complex interplay between CFC and harmonicity emerges from the
13 dynamics of nonlinear, parametric and biologically plausible oscillators.

1 1. INTRODUCTION

15 One of the most challenging and active topics in signal processing research
16 refers to tackling the inverse problem associated to infer the underlying mecha-
7 nisms producing the time series observed from a given physical system. This is
18 particularly true in electrophysiologically based Systems Neuroscience, in which
19 along standing goal is to infer the underlying multidimensional neural dynamics
2 from spatially sparse low dimensional recordings [I]. Cross frequency coupling
zn  (CFC) is a signature observed at the signal level informative on the mechanisms
2 underlying the oscillatory dynamics. From the signal processing point of view, a
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2 CFC pattern emerges when certain characteristics (e.g. amplitude, phase) of a
2 frequency band interact with others in a different band, either in the same signal
»s or in another related one. CFC is a rather ubiquitous phenomenon observed in
2 the oscillatory dynamics of a variety of physical and biophysical systems (see [I]
2 and references therein). In particular, the phase-amplitude cross frequency cou-
22 pling (PAC) observed in the electrical oscillatory activity of animal and human
2 brains, has been proposed to be functionally involved in neuronal communica-
s tion, memory formation and learning. This has motivated the development of
a1 specialized signal processing algorithms to robustly detect and quantify PAC
» patterns from noisy neural recordings [2] B, 4 [l [0, [7]. However, the interpreta-
1 tion of these PAC patterns remains challenging due to the fact that harmonic
s spectral correlations characterizing non sinusoidal oscillatory dynamics can act
s as a confounding factor.

s The concept of harmonicity refers to the degree of commensurability between
s the periods of the rhythms constituting the analyzed oscillatory dynamics. More
1 precisely, two frequencies fy and f1 are commensurable if they satisfy fo/f1 € Q,
s while harmonic frequencies are related by an integer ratio, i.e. for fo > fi
w they satisfy fo/f1 € Z. In terms of the Fourier analysis, harmonicity can be
o thought as the amount of spectral power concentrated at harmonic frequencies
« (i.e. spectral harmonicity). In the context of CFC, harmonicity is measured
s as the degree of phase synchronization between rhythms pertaining to different
w  frequency bands (i.e. PPC: phase-phase cross frequency coupling). Thus, the
s proposed harmonicity analysis would be worthy in many fields involving the
s study of physical and biophysical systems through low dimensional time series.
«  For instance, the quantification of spectral harmonicity associated to non si-
4 nusoidal neural oscillations can serve as a measure of spatial synchronization
s in non invasive brain recordings like scalp electroencephalography (EEG) and
so magnetoencephalography (MEG) [8]. In addition, the on and off medication
s states of patients with Parkinson’s disease can be distinguished by means of
s the non sinusoidal waveform shape of the exaggerated beta band oscillations
53 observed in invasive (intracerebral EEG) and non invasive (scalp EEG) record-
s« ings [9] [10]. Moreover, the harmonicity observed in intracerebral EEG recorded
55 from epilepsy patients has been used to effectively distinguish between harmonic
ss and non harmonic PAC patterns putatively linked to two essentially different
sv mechanisms of seizure propagation [I1]. Furthermore, when two oscillatory in-
ss  puts converge in a nonlinear integrator (e.g. a neuron), new harmonic and non
5o harmonic (a.k.a. emergent) oscillations are generated via the frequency mixing
o mechanism [I2]. Importantly, oscillations emerging from this mechanism entrain
s unit activity [12], suggesting that frequency mixing is intrinsic to the structure
2 of spontaneous neural activity and contributes significantly to neural dynamics.
&3 Recently, it has been reported that frequency mixing is widely expressed in a
& state and region-dependent manner in cortical and subcortical structures in rats
s [12]. In this context, spectral harmonicity could be used as a surrogate of the
e frequency mixing mechanism and emergent components entraining unit activity,
&7 thus, our proposed method for harmonicity quantification complements the tools
¢ described in [I2]. The evidence discussed above suggest that the quantification
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e of harmonicity of invasive and non invasive neural recordings from humans and
7 animal models can be used as a biomarker to characterize physiological and also
7 pathological brain states like those observed in Parkinson’s disease and epilepsy.
7 In this work we provide an in-depth characterization of the Time Locked Index
72 (TLI) as a novel tool aimed to efficiently quantify the harmonic content of noisy
7 time series. In addition, the TLI is used together with other proposed signal
75 processing techniques to quantitatively analyze the complex interplay between
7 spectral harmonicity and different types of CFC patterns, not restricted only to
7 PAC

» 2. METHODS

o 2.1. Synthetic and simulated dynamics

8 The spectral harmonicity and CFC patterns were analyzed in a variety of
a1 synthetic and simulated oscillatory dynamics in presence of intrinsic and ex-
22 trinsic additive noise. In it is described the formulation used to
ss  synthesize amplitude-modulated time series. [Appendix A.2[and [Appendix A.3|
s provide the equations for simulating the dynamics associated to the Van der Pol
s oscillator and a 2nd order parametric oscillator, respectively.

s In what follows we define an analytically tractable model capable to produce
& unidirectional PAC with external drive. In this model the slow rhythm rep-
s resents an external sensory input modulating the fast oscillations in sensory
s circuits (see discussion in [I3]). The characteristics of the oscillatory dynamics
o and the PAC patterns elicited by the proposed biologically plausible neural net-
o work architecture have been extensively analyzed in our previous works [T}, [14].
e In brief, the model consists of a single excitatory and a single inhibitory pop-
s ulation that are reciprocally connected (Figure . This representation follows
e the model introduced in [I5], it is a minimal version of a system capable of
s generating oscillations [I5] [I6]. The dynamics of the two populations can be
o6 written as,

Tlml = —my —+ S(Il) (1)
ToMo = —Mo + S([Q)

o where m; and 7; represent the output of the population ¢ € {1,2} and the time
e constant, respectively. The output of this representation is constituted by the
o currents Iy = Gama(t — Ag) + Hy +m1 and Iy = Gymq (t — Aq) + Ha + 12, where
w G indicates the efficacy of the interactions, H; is a external input and A; are
1w delays in the transmission of the interaction. The terms 7); represent additive
12 white Gaussian noise (AWGN) to the inputs I;. More precisely, 1; = N(0, ;).
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Figure 1: Biologically plausible network for unidirectional PAC with external drive represent-
ing a slow sensory input entraining fast oscillations underpinning local neural processing in a
cortical oscillator (Sensory entrainment).

103 Regarding the instantaneous activity A; = S(I;) of both populations, in
s Egs. [1) we consider threshold linear S(I;) and softplus S.(I;) transfer functions
105 defined as,

S() = [Li]+ = max(l;,0) (2)
S.(I;) = élog(l +eliy, e>0 (3)

ws The softplus transfer function in Eq. |3|results S.(I;) > 0 and converges toward
w7 the threshold linear transfer in the limit ¢ — oo. However, these two transfer
s functions are essentially different regarding their order of continuity, being S(I;)
0o of class C° (continuous but not differentiable) and S.(I;) of class C*° since it is
uo infinitely differentiable. This has rather profound implications in the resulting
m  dynamics. For instance, the stability of the stationary state depends on the ac-
u2  tivation function as well as of its derivative (see Eq. 4 in [I]). As a consequence,
s S(I;) and S.(I;) can produce very different stability conditions even when the
us latter converge to the former in the limit ¢ — oo. A discussion on how the ac-
us  tivation functions constituting the biologically plausible model affect the CFC
us patterns emerging in the resulting oscillatory dynamics is presented in Section
117 m

us  Synaptic efficacies G; were imposed so that the system was in the oscillatory
o state. The resulting oscillatory activity at 50 Hz belongs to the gamma band.
120 All the parameters for network are summarized in Table

Table 1: Values of the coupling parameters, time constants and delays for the
model shown in Figure

Synaptic efficacy | Delay | Time constant
G A [ms] 7 [ms]
12 14 5 0.1
2—1 -1 5 0.1
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m 2.2. Power Spectral Density

122 Power spectral density (PSD) estimates were computed using the modified
13 periodogram method with a Hann window in the time domain [17].

e 2.8. Cross Frequency Coupling

125 To quantify cross frequency coupling (CFC) patterns observed in the ex-
126 plored oscillatory dynamics, non parametric methods were used: Phase Locking
17 Value (PLV), the Mean Vector Length (MVL) and the Modulation Index based
s on the Kullback-Leibler distance (KLMI) (see [6] and references therein). In the
e particular case of PAC, Figure [3] shows for two synthetic oscillatory dynamics
1w the raw time series (z(t)) together with the band-pass filtered signals (zp(t),
wm  xpp(t)), the phase of the low frequency signal (¢rr(t)) and, the amplitude
12 envelope of the high frequency signal (agr(t)), as well as its phase evolution
13 (¢apyp(t)) from which the PLV, MVL and KLMI metrics can be computed as
134 follows [2, 4, 6],

N
. 1 5.
— i(NpLr—Mour)\ — _— i(NoLr(t)—Meur(t))
PLV <e > N ;e Y
1 &
— iNgLp \ _ = iN¢Lr(t)
MVL <yHF e > N, 2 yar(t) e ; (5)
S0 p(5) log plj)
KLMI = D =1 1=
kL (u,p) =1+ og N, (6)
. Yy J
p(j) _ < HF>¢'LF( ) : (7)

Sy E) o (k)

s wheret € Z is the discrete time index, 7 is the imaginary unit, N and M are some
s integers, N is the number of samples of the time series, p(j) denotes the mean
w  yur(t) value at the ¢rp(t) phase bin j ((yur)¢, . (j)) normalized by the sum
13 over the bins (see histograms in Figures BC1,C2), N, is the number of bins for
139 the phase histogram and Dy, represents the Kullback-Leibler distance between
1o p and the uniform distribution u. In the case of PAC (see Figure , Eqgs. to
w are computed using Yy p(t) = agp(t) and ¢rp(t) = ¢ay . (t). It is worth noting
12 that PLV, MVL and KLMI metrics have been extensively used to quantify PPC
w3 and PAC, however, they can also be used to quantify other CFC types like AAC
1w and PFC after replacing ¢ (t), ¢ur(t) and yyp(t) with the appropriate time
us  series. A detailed discussion regarding the proper configuration and processing
us of the time series involved in the quantification of several CFC types including
7 those explored in this work is given in

s One of the main confounds when assessing PAC is related to the nonuniform
1o distribution of phase angles of the modulating component (), which can
150 produce spurious PAC levels [18]. To detect the occurrence of this confound we
151 computed the phase clustering (PC) as shown in Eq. [8] (see Chapter 30, p. 414
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152 in [17]),

N,
PC, — <€i¢f> _ NL S eits ), (8)

=1

153 where ¢f(t) is computed as described in and the subscript for
1sa the frequency band of interest is defined as f € {LF, HF'}. When z1p(t) has a
155 periodic sinusoidal-like waveform shape, we obtain a rather uniform phase angle
15 distribution ¢pp(t) resulting in |PCLr| = 0 for a sufficiently large number of
57 samples Ng. On the other hand, if the time series xpz(t) is highly non sinu-
158 soidal, we obtain a skewed distribution of phase angles producing |PCprr| =~ 1.
150 Worthy to note, the spurious PAC associated to high PC values can be miti-
o gated by using narrow enough band-pass filter (BPF) to obtain the modulating
1 low frequency oscillations z 1 (t) (see the time series ¢ r(t) in Figures3[C1,C2),
2 or by the method described in [I§]. In contrast, to effectively assess PAC, the
s BPF aimed to obtain the modulated high frequency oscillations z g p(t) must
164 satisfy the restriction related to the minimum bandwidth determined by the low
s frequency band: Bwyp = 2 X frr, where fpp is the center frequency of the
16  BPF for xLF(t) [19}.

w  2.4. Time Locked Index

168 A specialized tool was developed to characterize the spectral harmonicity
10 associated to the CFC patterns observed in the explored oscillatory dynamics
w [Tl I]. Specifically, the Time Locked Index (TLI) was implemented to effi-
w1 ciently quantify the presence of spectral harmonics associated to the emergence
w2 of CFC in noisy signals. The quantitative characterization of the harmonicity of
73 the oscillatory dynamics is important given that coupled oscillatory dynamics
m  characterized by independent frequencies or non sinusoidal repetitive waveform
s shapes can both elicit a similar signature in the Fourier spectrum. In particular,
s the traditional algorithms aimed to assess CFC based on linear filtering (e.g.
v PLV, MVL, KLMI) are confounded by harmonically related spectral compo-
s mnents associated to non sinusoidal pseudoperiodic waveform shapes, reporting
wo  significant CFC levels in absence of independent frequency bands [I, 20, 21]. In
1o the TLI algorithm, time-locked averages are implemented in the time domain to
11 exploit the phase synchronization between harmonically related spectral compo-
12 nents constituting the non sinusoidal oscillatory dynamics. The following steps
155 describe the procedure to compute TLI (see Figures [3B1,B2),

e 1. The input signal z is band-pass filtered at the low (LF) and high (HF) fre-

185 quency bands under analysis, producing the time series xrr and zgp, re-
186 spectively. Z-score normalization is applied on the time series xrr and zgp
187 to ensure the TLI metric is independent of the signals amplitude.

s 2. The time instants corresponding to the maximum amplitude (or any other
189 particular phase) of both time series, x;r and zgyp, are identified in each
190 period of the low frequency band (Tr). These time values for the slow and
101 fast oscillation peaks are recorded in the time vectors ¢t r (red down-pointing
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192 triangles in Figures 17B2) and tyF (green up-pointing triangles in Figures
103 3B1,B2), respectively.
1w 3. Epochs EZ’; with a length equal to one period of the low frequency band

195 (Trr) centered at the fast oscillation peaks (tgp) are extracted form the
196 time series xpyp. Averaging over these epochs is computed to produce a
197 mean epoch (E}f; ). Note that the latter is a time-locked averaging due to
108 the fact that every single epoch E}f’},f is centered at the corresponding time
199 instant tgyp.

20 4. Epochs Eftflfl with a length equal to one period of the low frequency band
201 (Trr) centered at slow oscillation peaks (t1r) are extracted form the time
202 series xpp. Averaging over these epochs is computed to produce a mean
203 epoch <E;}§ ). Note that the latter is also a time-locked averaging, now with
204 epochs centered at the corresponding time instants ¢ p.

2s 5. Finally, the TLI is computed as follows,

max((EWE)) — min((EWE))

T (B ) — min((ELE)

(9)

26 In the case that the time series « were predominantly constituted by harmonic
207 spectral components, the fast (xypr) and slow (xpr) oscillatory dynamics are
208 characterized by a high degree of synchronization in time domain (i.e. phase-
20 locking). As a consequence, the amplitude of <E§}§ ) results comparable to that
20 of the (E4F) and so we obtain TLI ~ 1 (see Figures [3A1,B1). On the other
an hand, if the spectral energy of the time series x is not concentrated in narrow
22 harmonically related frequency bands, the fast (xgr) and slow (zrr) rhythms
23 will be not, in general, phase-locked. Therefore, the amplitude of <E§f§> is
as averaged out to zero and TLI = 0 is obtained for a sufficiently large number of
25 samples N; (see Figures 2,B2).

216 It is worth noting that the phase synchronization between the band-pass filtered
a7 time series (xr and xyp) can be quantified using the PLV metric, however, the
28 TLI algorithm has two significant advantages: 1) The computation of the TLI
29 measure does not require to know the harmonic ratio between the frequency
20 bands of interest. In contrast, to compute the PLV one needs to know this
21 harmonic ratio (i.e. the values of the integers N and M in Eq. , a priori,
22 in order to be able to evaluate the phase-phase cross frequency coupling char-
23 acterizing the harmonic spectral components [3]. 2) The TLI metric can be
24 effectively computed using slightly selective BPF to obtain the HF component
2 xgp(t), e filters having wide bandwidths or low steepness of the transition
26 bands. That is, by operating in the time domain the TLI reliably assesses the
27 degree of time-locking, even in the case in which several (harmonic) spectral
»s components are included within the bandwidth of the filter used to obtain the
2o fast thythm (zgp). This specific capability of the TLI metric is illustrated and
20 further discussed below in connection with Figures and

an Even though the TLI is a measure bounded in the range [0, 1] (see Section
22 and independent of the processed oscillations amplitude, the absolute value of
23 the TLI does depend on the noise level present in the processed time series and
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24 on the epoch length, i.e. the number of periods of the low frequency oscillation
235 taken to implement the time-locked average involved in the TLI computation
236 (this is further discussed below in connection with Figures 5| to |8 and . As
27 a consequence, the TLI is not a bias-free measure and this issue must be taken
28 into account to implement a quantitative analysis of harmonicity. Fortunately,
20 the surrogate control analysis [6] based on sample shuffled zpp(t) time series
20 described in Section below, overcome this limitation. Besides, in the case
a1 of time series corresponding to multiple channels (e.g. multi-site recordings) or
22 trials, a commonly used method to remove the bias is to implement a Z-score
23 normalization across channels/trials (i.e. spatial whitening) [IT].

24 In contrast to the PLV and TLI which are biased measures [22], the pairwise
xs  phase consistency is a bias-free metric suitable for quantifying phase-phase cou-
25 pling [23] 24]. However, it should be noted that the number of arithmetic
27 operations involved in the computation of the PLV and TLI increase linearly
2us  with the number of samples Ny (i.e. computational complexity of O(Ny)), while
29 the pairwise phase consistency measure presents a significantly higher computa-
»0 tional complexity of O(N2). Another measure commonly used to assess phase
251 synchronization is the spectral coherence (see [I7], Section 26.7, p. 342). Impor-
»2  tantly, although the definition of spectral coherence includes a normalization by
253 the total power to produce a bounded metric in the range [0, 1], in the expres-
4 sion of spectral coherence individual phase angle vectors are weighted by power
»s  values. Therefore, results from spectral coherence are likely to be influenced
256 by strong increases or decreases in power ([I7, 25]). In other words, the spec-
»7  tral coherence is sensitive to phase-phase and also to amplitude-amplitude and
»s  phase-amplitude correlations between the input signals. On the other hand, the
9 TLI measure is defined as the ratio of time-locked averages computed on the
20 same signal (HF oscillations z g r), as such, it results an amplitude independent
1 quantity only depending on the degree of synchronization between the sequence
22 of time instants used to compute these time-locked averages (tpr and tgr). As
%3 a result, the TLI metric is sensitive only to PPC between the input rhythms.
x4 The source code for the computation of TLI together with test script examples
25 implemented in Matlab® and Python are freely available at,

266 |https://github.com/damian-dellavale/Time-Locked-Index/.

27 We are willing to provide technical support to investigators who express an inter-
x%s est in implementing the TLI metric in other programming languages, integrate
x%0 it in open-source software toolboxes or use it for non-profit research activities.
o The potential of the TLI metric to improve the characterization and aid the
on interpretation of PAC patterns observed in invasive neural recordings obtained
a2 from epileptic patients and in simulated dynamics of biologically plausible net-
o3 works, has been demonstrated in our previous works [T, [I1]. In this paper we
aa - extent the harmonicity analysis to four types of CFC patterns including an in-
a5 depth characterization of the TLI performance using simulated and synthetic
o6 oscillatory dynamics under controlled levels of intrinsic noise (AWGN: additive
o7 white Gaussian noise).

o Figure [2 shows two essentially different CFC scenarios in terms of the spectral
279 harmonicity, however, they are indistinguishable by traditional metrics aimed to
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20 assess CFC based on band-pass linear filtering (e.g. PLV, MVL, KLMI). Figure
281 shows phase-amplitude coupling via harmonic content. In terms of telecoms
22 engineering, the harmonic content constituting the spectrum of a quasi-periodic
23 non sinusoidal waveform with fundamental frequency fy can be though as a
284 ‘carrier’ given by the harmonic N fy, being N € Z the harmonic number, and
25 ‘sidebands’ (N —1) fo, (N+1)fo. This spectral profile is known to produce CFC
25 patterns in the time domain (e.g, an amplitude-modulated signal). This kind
27 of CFC patterns will be referred as ‘harmonic’ CFC. Figure shows phase-
»s  amplitude coupling in absence of phase-phase cross frequency coupling between
20 the ‘sidebands’ and the ‘carrier’. That is, the ‘sidebands’ are not harmonics
20 of the ‘carrier’ (non harmonic frequencies). This kind of CFC patterns will be
2 referred as ‘non harmonic’ CFC. Importantly, traditional algorithms aimed to
2 assess CFC (e.g. PLV, MVL, KLMI) are confounded by harmonically related
203 spectral components associated to a single (quasi)periodic non sinusoidal dy-
24 namics, reporting significant CFC levels even in absence of underlying coupled
205 dynamics (i.e. spurious CFC). This is due to the fact that coupled oscillatory
26 dynamics characterized by independent frequencies (i.e. true CFC) and a single
27 non sinusoidal oscillatory dynamics (i.e. spurious CFC) produce similar signa-
28 tures in the Fourier spectrum that are hardly distinguishable by using band-pass
200 linear filtering.

10
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Figure 2: Coupling between low and high frequency signals. (A, C) Upper panels corre-
spond to phase-amplitude coupling via harmonic content: A periodical nonsinusoidal signal,
composed by a fundamental sinusoid at 8 Hz plus the first three harmonics with decreasing
power, is stereotypically repeated over time (black line in panel A). By chopping the signal
in consecutive segments (red boxes, one prototypical in dark red, others in light red), whose
length is the period of the fundamental rhythm, the very same signal is obtained (see panel
C). In panel C, the true high frequency signal, i.e. the deterministic (noiseless) signal minus
the fundamental oscillatory component (thus avoiding filtering artifacts), is shown as well as
the arrow corresponding to each maxima in the chopped high frequency signals (red arrow).
These maxima always lie in the very same position compared to the low frequency maxima
(black arrow). (D) For comparison purposes, the deterministic fundamental low frequency
signal can be observed in panel D. (B, E) Lower panels correspond to a phase-amplitude mod-
ulated signal: The phase of a fundamental sinusoid at 8 Hz modulates the intensity of a high
frequency signal at 65 Hz. Here, high frequency signals corresponding to chopped segments
(blue boxes) does not result in a single trace (see panel E). Since the modulation is developed
only through amplitude, low and high frequency signals are not tightly coupled regarding
phase relationships, and each maxima of the high frequency chopped signal (blue arrows) has
a distribution (over phases, or relative time) with respect to the low frequency maxima (black
arrow). A small level of additive white Gaussian noise (see noisy signals in gray in panels
A and B) does not change conclusions and a concomitant dispersion in the location of high
frequency maxima may be observed.

300 To examine how the TLI metric distinguishes the harmonic CFC from the
s non harmonic CFC patterns, we can focus on Figure [3] Figures [BJA1 and [3A2
;2 show two synthetic signals which are constituted by two coupled oscillatory dy-
s namics plus a small level of extrinsic additive white Gaussian noise (AWGN).
;s Figure 1 shows that the amplitude of the fast oscillation z g r(t) is modulated
ws by the phase of the slow rhythm xr(t) and these two oscillatory dynamics are
ws  also phase-locked, as evidenced by the superposition of the individual LF cycles
57 shown at the top of the raw time series (). A similar phase-amplitude cou-
w8 pling is observed between the slow and fast oscillations constituting the signal
w0 shown in Figure BJA2, however, the superposition of the individual LF cycles
s shows no evidence of phase-locked between the slow and fast rhythms in this

11
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an  case. To differentiate these scenarios in a quantitative manner we introduce the
sz TLI metric which exploits the fact that, for a repetitive pattern with a fixed
a1z waveform in each cycle, harmonically related frequency bands are intrinsically
s linked to phase locking oscillations in time domain. The computation of the
ns  TLI metric is illustrated in Figures[3B1 and [3]B2 for the synthetic signals shown
ue  in Figures QA1 and BJA2, respectively.

siz In the case of the signal constituted by time-locked oscillations xpr and zgyp
as  (Figure 1)7 we obtain similar amplitudes for the time-locked averages (E}-£5)
2o and (B35 resulting in TLI ~ 1. On the other hand, in the case of non time-
20 locked oscillations 2 r and zpp (Figure BB2), (EiE) averages out resulting
s in TLI = 0. Importantly, these two essentially different scenarios in terms of
s spectral harmonicity both present the same level of PAC as evidenced by the
23 phase-amplitude histograms shown in Figures BIC1 and BIC2.

324
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Figure 3: Synthetic amplitude-modulated signals and derived time series involved in the
algorithms for quantification of PAC and harmonicity. Amplitude-modulated signals were
computed as described in Section [Appendix A.1| using a sinusoidal modulating at frr = 9 Hz
and modulated oscillations at fgp = 7X frp = 63 Hz and fyp = 7.1 X frp = 63.9 Hz for the
harmonic PAC and non harmonic PAC, respectively. The LF signals (z,#(t)) were obtained
by filtering the raw signal x(¢) using a band-pass filter centered at 9 Hz and a null-to-null
bandwidth of 9 Hz. The HF signals (xpr(t)) were obtained by filtering the raw signal x(t)
using a band-pass filter centered at 63 Hz and a null-to-null bandwidth of 81 Hz (see Section
IAppendix A.5). (A1, A2) Synthetic amplitude-modulated signals. (B1, B2) Time series
used to compute the TLI metric to quantify spectral harmonicity. Note that the synthetic
harmonic and non harmonic PAC patterns are characterized by TLI =~ 1 and TLI = 0 values,
respectively. (C1, C2) Time series used to compute the PLV and KLMI metrics to quantify
PAC. The histograms show the MI from which the KLMI can be computed. The histograms
show the distribution of amplitude of HF as a function of the phase of LF.
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s 2.5. Hilbert-Filter method for instantaneous frequency estimation

326 Frequency-modulated patterns like phase-frequency (PFC), amplitude-frequency
w2 (AFC) and frequency-frequency (FFC) have been the least explored CFC types
18 in neuroscience and biophysics in general, with the remarkable exception of the
19 respiratory sinus arrhythmia associated to the PFC between the respiratory and
a0 cardiac thythms. A possible reason for this may lie in the fact that detection
;31 methods to assess frequency-modulated patterns have been poorly described
s in the specialized literature [26]. Importantly, the conventional CFC metrics
s (PLV, MVL, KLMI from Egs. to in combination with equations
s« and constitute a complete formulation to effectively assess PFC, AFC and
135 FFC patterns, provided that a method to compute the instantaneous frequency
16 1is given. In this section we briefly discuss the conventional method used to es-
s timate the instantaneous frequency in time and frequency domains [27, 28]. In
;s addition, we provide an alternative approach based on the Hilbert-Filter trans-
19 formation of the phase time series. The proposed Hilbert-Filter transformation
a0 which operates on phase time series to produce an instantaneous frequency time
s series, should not be confused with the traditional Filter-Hilbert method which
a2 operates on raw time series to compute instantaneous phase and amplitude en-
ss  velopes time series (see Chapter 14, p. 175 in [I7]).

s Let ¢5(7) be an unwrapped phase time series, corresponding to the band-limited
us  signal x¢(7) : f € {LF, HF}, not constrained to its principal value in the inter-
s val (—m, 7] or [0,2m), i.e. ¢¢(7) is a continuous function of argument 7 € R. We
a7 also consider that the ¢ (7) time series has been detrended through a linear fit
us  to remove a trendline with slope Q?p. Then, the instantaneous frequency Q¢ (7)
1 of the undetrended phase time series is defined as follows [27],

d ¢y(7) md}

Qp(r) & ——=+ 0} [Sec‘ (10)

dr
0 Worthy to note, Eq. implies that a bounded frequency Q;(7) requires a
351 band-limited phase time series ¢ (7). This condition can be imposed by band-
sz pass filtering ¢7(7) to restrict it to a finite frequency band of interest (f €
s {LF,HF}). In the discrete time domain (¢ € Z), Eq. [10]is usually approximated
4 by a low-pass filtered version of the numerical derivative of the phase time series
355 [28],

Qp(t) ~ hppp(t) (Wt) ;f’f(t 1)> + 09, (11)
S
6 where Ty = 1/fs is the sampling time interval corresponding to the sampling
s7 rate fs, and * denotes linear convolution. Due to the fact that ¢(¢) is not
sss well defined at low amplitude values of the signal z;(¢) (see Eq. , very
3o small or large artifactual values of ¢ (t) sometimes occur which are amplified by
0 the numerical derivative in Eq. To mitigate these artifacts, the numerical
s1  derivative is in general smoothed by applying the low-pass filter kernel hy,pp(t).
w2 Besides, the discrete Fourier transform F{.} of the difference equation in Eq.
363 can be well described by a first order approximation in the non dimensional
e angular frequency w, provided that the oversampling condition (fs > f: f €

14
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s {LF,HF}) is satisfied. Under this condition, Eq. can be written as (see
s |[Appendix A.6)),

Qf(t) fs thF(t)*]-"_l{iw <I>f(w)}+Q?c (12)
Q;(t) ha(t) * 64(t) + QF (13)

w7 In Egs. and Q(w) = F{ps(t)} is the discrete Fourier transform of the
s phase time series, 7 ~1{.} stands for the inverse discrete Fourier transform, h1 ()
w0 is a filter with frequency response equivalent to the cascade connection of the
s low-pass filter Az pp(t) and the ideal derivator iw fs. Importantly, hq(t) can be
sn  implemented as a high-pass or band-pass filter provided that it satisfies two
s main requirements: within the frequency band of interest (f € {LF, HF}), the
s frequency response of hq(t) must approximate the magnitude response of the
s ideal derivator |w| fs with the following phase response,

Q

Q

e Yw>0

. (14)
e "2, Yw<0

arg (F{h1(t)}) = {

ss In what follows, we shall obtain an expression equivalent to Eq. by in-
srs  troducing the Hilbert transform with the aim to relax the requirement on the
w7 phase response of the filter hi(t). The Fourier representation of the Hilbert
ss  transformed phase time series is (see Chapter 11, p. 790, Eq. 11.63b in [29]),

p(w) = F{H{gs()}} = —i sgn(w) Pp(w) (15)
B +1, YVw>0 16
sgn(w) = 1 Vw<o (16)
w9 From Egs. [I5] and [16] the Eq. [I2] can be written as follows,
Q) = fs hopr(t) * FH —w sgn(w) if(w)} + Q(} (17)
~ fo hpp(t)  FH-lw] &)} + 95 (18)
Qp(t) ~ —ha(t)« H{gs(t)} +QF (19)

s In this case, the frequency response of ha(t), within the frequency band of in-
s terest (f € {LF, HF}), must approximate the magnitude response of the ideal
s derivator |w| fs with a zero-phase response (note that the constant phase of 7
;3 given by the negative sign in equation [19|can be easily introduced as an external
s« gain of —1). As a result, the Hilbert transformed phase time series H{¢¢(t)}
s in Eq. accounts for the phase response given by Eq. hence, relaxing
s this phase requirement on the filter ho(t). Besides, for offline data processing
s applications we can obtain a zero-phase-shift (i.e. non causal) filter by applying
s a magnitude mask in the frequency domain or by using a linear filter with an
o arbitrary phase response and reversing the phase delays. In the later case, after
s0 filtering the data in the forward direction, the filtered sequence is reversed and
s passed back through the filter again. Hence, we obtain zero-phase frequency re-
s sponse avoiding phase distortion and delays in the resulting filtered time series

15
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393 [17].

s As a conclusion, in the proposed method (Eq. 7 the phase time series ¢(t)
ws is Hilbert transformed via Eq. [A:26] and then passed through a zero-phase
26 (high-pass or band-bass) filter to produce the instantaneous frequency estima-
s7  tion. Note that the order of the Hilbert transformation and filtering indicated
s in Eq. can be interchanged since they are linear processes. The series of
30 steps involved in the proposed method for the computation of the instantaneous
w  frequency of a frequency-modulated signal (e.g. PFC) can be summarized as
401 fOHOWS,

w 1. The frequency-modulated raw signal z(¢) is band-pass filtered around the
403 modulated high frequency band (HF) to obtain the band-limited time series
404 .Z’HF(t).

ws 2. The Filter-Hilbert method is applied on the signal x ¢ (t) to obtain its phase
406 time series (see Eq. and Chapter 14 in [I7]).

w7 3. Unwrap the phase time series.

ws 4. Detrend the phase time series through a linear fit to remove a trendline with
409 slope Q(I){F

a0 5. The unwrapped and detrended phase time series is band-pass filtered around
an the modulating low frequency band (LF') to obtain the band-limited phase
a2 time series ¢ p(t). Note that in the case of a frequency-modulated signal
a3 x(t), the oscillatory components of ¢ p(t) pertain to the modulating low
414 frequency band LF.

a5 6. The Hilbert-Filter method (Eq. is applied on the phase time series ¢ (t)

416 to obtain the instantaneous frequency time series Qg p(t). Note that the
a7 zero-phase filter ho(t) can be of type high-pass or band-pass since the main
418 requirement is that it must approximate the magnitude of the frequency
a1 response of the ideal derivator (Jw| fs) within the modulating low frequency

420 band LF'.

21 Figures A and D show a frequency-modulated signal z(t) (solid black line)
a2 and its power spectrum, respectively. The simulated dynamics was obtained
w23 from a forced 2nd order parametric oscillator (see Section . In Figure
a2 is possible to distinguish a PFC pattern in which a high frequency oscillation
ws xgpr(t) (HF : 10.4—190 Hz, solid red line) is frequency-modulated by the phase
w5 of another oscillatory dynamics xpr(t) with lower frequency (LF : 6.3 — 10.4
w2 Hz, solid green line). The zr(¢t) and xgyp(t) time series were obtained band-
w28 pass filtering the raw signal z(¢) (solid black line in Figure [4A) with the filters
2 LF BPF (dotted green line) and HF BPF (dotted red line) shown in Figure [,
a0 respectively. Figure shows the frequency time series Qg p(t) estimated using
m Egs. [11] (dotted black line) and [19| (solid black line). Figure 4|C shows the phase
w2 of the frequency time series required to assess PFC (see Eq. [A.22). The low-
w3 pass filter hy pp(t) indicated in Eq. Was implemented using a moving average
s filter with a cutoff frequency (first sidelobe null) equal to the center frequency
w5 of the HF BPF (fyr ~ 90 Hz). The input signal was filtered in forward and
w6 reverse direction to obtain zero-phase response (no phase delays). In the time
s domain, this implies taking the averages over surroundings of 2f,/fyr points,

16
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w8 where fg = 1/T; is the sampling rate. Figure shows the frequency response
a0 of the moving average filter hppr(t) (dotted black line). The solid black line
w0 in Figures and represents the frequency response of the filter ho(t) used
w1 to compute the Eq. [I9 Note that the resulting zero-phase band-pass filter
«2 (LF BPF) approximate the magnitude response of the ideal derivator in the
w3 modulating low frequency band (LF : 6.3 — 10.4 Hz, LF BPF has central
wue  frequency frr ~ 2 Hz and bandwidth Bwpr =~ 4 Hz). The filter ho(t) was
as 'Rplemented using a Tukey window in the frequency domain (see
446 .

17
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Figure 4: Hilbert-Filter method for instantaneous frequency estimation. (A) Dynamics of the
parametric oscillator (solid black line) generated by simultaneously applying an off-resonance
external driving Fe and a parametric driving W), tuned at the same frequency fe = fp =
fo/12 =~ 8.33 Hz and 6. = 0 (see Eqgs. [A.16] and [A-17]in [Appendix A.3). The LF (solid green
line) and HF (solid red line) signals where obtained band-pass filtering the raw signal (solid
black line) using the BPF whose power responses (i.e. square magnitude) are shown in graph
D as dotted green and red lines, respectively. The configuration for the parametric oscillator
used in this plots is identical to that used in graphs D and E of Figure (B) Instantaneous
frequency time series computed for the raw signal (solid black line) shown in graph A. Solid
and dotted black lines correspond to the instantaneous frequency computed using the Hilbert-
Filter methos (Eq. and the numerical derivative (Eq. , respectively. (C) Instantaneous
phase of the frequency time series shown in graph B, computed via Hilbert transformation.
(D) Power spectrum (solid blue line) of the dynamics of the parametric oscillator (solid black
line in graph A). The power responses (i.e. square magnitude) of the BPF used to compute the
LF and HF signals are shown as dotted green and red lines, respectively. (E) The solid black
line represents the power response (i.e. square magnitude) of the band-pass filter ha(t) used to
compute the instantaneous frequency time series by means of the Hilbert-Filter method (Eq.
. The band-pass filter ha(t) was implemented as described inusing a Tukey
window in the frequency domain. The dotted black line represents the power response of the
low-pass filter hy pp(t) used to compute the instantaneous frequency time series by means of
the numerical derivative (Eq. . (F) Magnitude responses of the band-pass filter ho(t) and

the ideal derivator |w| fs. Regarding the oversampling condition discussed in [Appendix A.6]
in this case the oversampling ratio is OSR = fs/frr = 2000/8.33 ~ 240.

18


https://doi.org/10.1101/2020.10.15.341800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341800; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

wr 2.6. Harmonicity-CFC plots

a8 To characterize in a quantitative manner the harmonic content of CFC pat-
wo  terns emerging from the oscillatory dynamics explored in this work, we com-
w0 pute harmonicity vs. CFC plots aimed to identify correlations between these
1 two metrics. The harmonicity (TLI) and CFC (PLV, MVL, KLMI) metrics
w2 were computed from epochs of 5 sec. or 10 sec. in length corresponding to the
553 synthesized or simulated oscillatory dynamics (see Section obtained for a
4 subset of values of a parameter of interest (e.g. modulation depth, amplitude
w5 of the external driving, non linear parameter of the oscillator). In the case of
w6 simulated data, epochs of twice the required length were computed and then
w7 the first half of the time series were discarded to remove the transient period
sss of the numerical simulation. In all the harmonicity-CFC plots shown in this
w0 work, the analyzed epochs include between 15 and 90 cycles of the slowest os-
wo cillation present in the synthetic or simulated dynamics. We verified that these
w1 results hold even in the case of using shorter epoch lengths of ~ 7 cycles of
w2 the slowest oscillation present in the synthetic or simulated dynamics. Then,
w3 the scatter plot between the harmonicity and CFC metrics was constructed, in
s« which each data point corresponds to a given value of the parameter of interest.
w5 The frequency bands used to compute the harmonicity and CFC metrics were
w6 configured accordingly to the time scales of each analyzed oscillatory dynamics.

w1 2.7. Comodulograms and harmonicity maps

468 Comodulograms for the CFC metrics (PLV, MVL, KLMI) were computed
w  following [2, [30] and using the band-pass filters described in
a0 In all the comodulograms and harmonicity maps show in this work, the an-
a1 alyzed epochs include approx. 60 cycles of the slowest oscillation present in
a2 the synthetic or simulated dynamics. Each harmonicity map was constructed
w3 by computing the TLI metric for the same modulating (comodulogram x axis)
s and modulated (comodulogram y axis) frequency band combinations used to
a5 construct the corresponding CFC comodulogram. To assess the statistical sig-
s nificance of the CFC comodulograms, we compute a distribution of 1 x 103 surro-
a7 gate CFC values achieved by applying the CFC measure (PLV, MVL, KLMI) to
aw  sample shuffled ¢ p(t) or ygp(t) time series (see Eqs. []to[7) [6]. Then, assum-
a0 ing a normal distribution of the surrogate CFC values, a significance threshold
a0 is then calculated by using P < 0.001 after Bonferroni correction for multiple
s comparisons [3T]. A similar procedure was used to assess the statistical signif-
w2 icance of the TLI harmonicity maps using sample shuffled zyp(t) time series
w3 (see Section [2.4)).

w 2.8. Time series of CFC and harmonicity metrics

485 Time series were constructed for the TLI, PLV, MVL, KLMI and PC metrics
s to analyze their temporal evolution during synthetic CFC patterns. The time
a7 series were constructed by computing all metrics in a sliding epoch of 20 sec.
ws  in length with 90% overlap to include several periods for the slowest modulat-
s ing rhythms explored. This epoch length was an acceptable trade-off between

19


https://doi.org/10.1101/2020.10.15.341800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341800; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w0 statistical significance and temporal resolution capable to capture the CFC and
w1 harmonicity transients occurring in the synthetic dynamics (see the discussion

w2 about Eqgs. and in [Appendix A.1)). Unless otherwise specified, the

w3 time series for the CFC metrics were constructed using the Algorithm 2 of Table
494

Table 2: Algorithms to compute the CFC time series.

Algorithm 1 Algorithm 2
1. The input time series is Z-
score normalized.

1. The input time series is Z-
score normalized.

2. The whole time series is band-
pass filtered.

2. The whole time series is band-
pass filtered.

3. The band-pass filtered time
series is then subdivided in slid-
ing epochs.

3. The feature (e.g. phase,
amplitude) is computed for
the whole time series.

4. Each sliding epoch is Z-
score normalized.

4. The feature time series is then
subdivided in sliding epochs.

. 5. The feature (e.g. phase,
5. The CFC metrics are com-  amplitude) is computed for
puted for each sliding epoch. each sliding epoch.

6. The CFC metrics are com-
puted for each sliding epoch.

ws 3. RESULTS

ws  3.1. Spectral harmonicity: Characterization of the TLI metric

497 In this section we discuss the dependence of the TLI on the relevant pa-
w8 rameters to quantify the spectral harmonicity in experimental recordings. In
w0 addition, we compare the performance of the proposed TLI metric with the
s0 conventional method to assess PPC based on the PLV measure (PLVppc). For
soo  this, we compute the PLVppc using Eq. [d] with the configuration given by Eq.
502 Importantly, both harmonicity metrics are bounded in the range [0, 1]
s which is particularly convenient for the sake of comparison purposes. Due to
sa the fact that to compute the PLVppc measure using Eq. 4] one needs to know
sos @ priori the harmonic ratio between the two frequency bands of interest, i.e.
s the value of M and N, the characterization presented here is based on syn-
sor  thetic time series in which we have precise control on these parameters. Figure
508 shows, for the case of the linear superposition of two harmonic oscillations
so (fur/for = T7), the dependence of the TLI and PLVppe (M = 1, N = 7)
s metrics on the epoch length and the bandwidth of the BPF used used to obtain
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su  the fast rhythm (Bwgr), and taking the noise level as a parameter (AWGN in
s the range [0%, 200%] of the slow oscillation amplitude). Figure f|C and [5F show
sz the signals and power spectrum for a given set of parameter values, respectively.
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Figure 5: Performance of the TLI and PLVpp¢c in quantifying the harmonicity of a synthetic
dynamics constituted by the linear superposition of two sinusoidal oscillations at fo = frLrp =9
Hz and fgp = 7 X frp = 63 Hz. In all the cases shown in this figure, we used a sampling rate
of fs = 2000 Hz and the frequency and amplitude of the LF and HF oscillations were kept
unchanged. To obtain all the band-pass filtered signals shown in this figure we use the BPF as
described in The bandwidth of the BPF for the LF component (LF BPF) was
kept fixed at Bwprp =9 Hz. The PLVppc was computed using Eq. Elwith the configuration
given by Eq. and M =1, N=7. (A, D) TLI and PLVppc metrics as a function of the
epoch length and taking the level of additive white Gaussian noise (AWGN) as a parameter.
The noise level is expressed as the percent of the amplitude of the LF component at f;, » = 9 Hz
scaling the standard deviation o of the additive white Gaussian noise N'(0,0). To compute
graphs A and D, the bandwidth of the HF BPF was kept unchanged in Bwgprp = 99 Hz.
Our implementation of the TLI algorithm (Section requires at least 3 cycles of the low
frequency oscillation (frr = 9 Hz), which determines the minimum epoch length shown in
graphs A and D (3/frr &~ 0.3 sec.). The maximum epoch length used to compute graphs A
and D was 100/ frr =~ 11.1 sec. (B, E) TLI and PLVppc metrics as a function of the HF
bandwidth (Bwg ) corresponding to the BPF used to obtain the HF signal (xg g (t)), and
taking the level AWGN as a parameter. The minimum and maximum Bwpgp values used
to compute the graphs B and E were 9 Hz and 99 Hz, respectively. To compute the graphs
B and E, the epoch length was kept unchanged in 45/frr ~ 5 sec. In the panels A, B, D
and E, the solid lines represent the mean values and the shaded error bars correspond to
the standard deviation of 100 realizations at each point. (C) Synthetic dynamics (solid black
line) together with the HF and LF signals shown as solid red and green lines, respectively.
The synthetic dynamics includes additive white Gaussian noise N'(0,0) with the standard
deviation o corresponding to the 40% of the amplitude of the LF component at frr = 9 Hz.
The LF and HF signals where obtained by filtering the raw signal with the band-pass filters
whose power responses are shown as dotted green (Bwpr = 9 Hz) and red (Bwygr = 99 Hz)
lines in graph F, respectively. (F) Power spectrum (solid blue line) of the synthetic dynamics
(solid black line in graph C) computed using an epoch length of 100/frLr & 11.1 sec. The
power responses (i.e. square magnitude) of t129BPF used to compute the LF and HF signals
are shown as dotted green and red lines, respectively.
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514 Our implementation of the TLI algorithm (Section requires at least 3
sis  cycles of the low frequency oscillation (zrr(t)), which determines the minimum
sis  epoch length used to compute Figure |5| (3/frLr ~ 0.33 sec.). As expected, Fig-
sz ures B and BE show that in presence of harmonic oscillations, the value of the
sis  harmonicity metrics decay as the AWGN level is increased (T'LI = 1 without
sio noise and TLI = 0.5 for a AWGN level equal to 200% of the slow oscillation
s0 amplitude). On the other hand, Figures and show that in case of epoch
s length including sufficiently large number of slow oscillation cycles, the value
s22  of the harmonicity metrics converges to a constant value which depends on the
s23 noise level. Importantly, it was found that for short epoch length, comprising
s less than = 10 cycles of the slow oscillatory component, the TLI and PLVppc
s metrics present a significant bias. This bias produces the high values (= 1) of
s the harmonicity metrics in Figures and for epoch length less than ~ 1
sz sec. The bias of the TLI and PLVppe metrics was also investigated in presence
ss  of non harmonic oscillations. This analysis is discussed in and
s20  the obtained results support the conclusion drawn from Figures and [5D.

s Figures |§|A and |Z|A show the PLVppc and TLI metrics as a function of the
s frequency ratio of the two oscillations constituting the synthetic dynamics, and
s taking the noise level as a parameter. The frequency ratio fgr/frr was ex-
ss3 plored for a slow oscillation with frr = 3 Hz pertaining the High-Delta band
s (1 —4 Hz) and the fast rhythm with frp ranging from the Theta band (4 — 8
s Hz) to beyond the HFO (High Frequency Oscillations) band (100 — 500 Hz).
s3  Note that this cover the conventional frequency bands for the human brain ac-
s tivity which have been defined on the basis of certain cognitive significance and
s33  neurobiological mechanisms of brain oscillations [I7]. Figures |§|A and were
s9  computed using epochs of 5 sec. in length and BPF with constant bandwidths
s0o (Bwgp = Bwrrp = 3 Hz), and show that both harmonicity metrics present
sa. more dispersion and lower values compared to unity indicating a detriment of
si2  their performance for increasing values of AWGN level and frequency ratio be-
si3 tween the harmonic oscillations. Besides, we found that the small drop of the
saa. ' TLI metric for high frequency ratios in the case without noise shown in Figure
sis [7JA, was due to the effect of the finite sampling rate of the processed time series.
s In this case the oversampling rate was fs/(180fLr) = 3.7, where fs = 2000 Hz
se7  is the sampling rate and 180f7r = 540 Hz is the maximum frequency explored
ss  in Figure [JA. We investigate this finite sampling rate effect on the TLI and
se0 PLVppe metrics. In the case of the TLI measure this effect diminished expo-
sso nentially with the oversampling ratio, producing a drop of the TLI value less
s than &~ 5% for oversampling ratios above ~ 5 (data not shown). The behavior
ss2 of the PLVppe and TLI metrics in between the harmonic frequency ratios is
ss3 shown in Figures[6B, E, H and [7B, C, D. Figures [6C, F, I and [D, G, J show
ss«  the PSD and time series for three representative cases within the explored range
sss  of frequency ratios.
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Figure 6: Performance of the PLVp p¢ in quantifying the harmonicity of a synthetic dynamics
constituted by the linear superposition of two sinusoidal oscillations. In all the cases shown
in this figure, we used a sampling rate of fs = 2000 Hz and the amplitude of the LF and HF
oscillations were kept unchanged. To obtain all the band-pass filtered signals shown in this
figure we use the BPF as described in The bandwidth of the BPF for the LF
(LF BPF) and HF (HF BPF) components were kept fixed at Bwrpr = Bwygr = 3 Hz. The
PLVppc was computed using Eq. with the configuration given by Eq. (A) PLVppc
intensity as a function of the frequency ratio fgr/frr and taking the level of additive white
Gaussian noise (AWGN) as a parameter. The LF component was kept fixed at fr, 7 = 3 Hz and
the frequency of the HF oscillation was varied in the range 2 X frp < fgp > 180 X fr . The
noise level is expressed as the percent of the amplitude of the LF component at frr = 3 Hz
scaling the standard deviation o of the additive white Gaussian noise N'(0,0). The PLVppc
was computed using an epoch length of 45/ frp & 5 sec. (B, E, H) Evolution of the PLVpp¢
intensity in between the harmonic frequency ratios fgr/frLr for three AWGN levels. In
the panels A, B, E and H, the solid lines represent the mean values and the shaded error
bars correspond to the standard deviation of 100 realizations at each point. (C, F, I) Power
spectrum (solid blue line) of the synthetic dynamics (solid black line in graphs D, G and J)
corresponding to three frequency ratio values (fyr/frr = 3,89,179). The power spectra
were computed using an epoch length of 45/ frr ~ 5 sec. The power responses (i.e. square
magnitude) of the BPF used to compute the LF and HF signals are shown as dotted green
and red lines, respectively. (D, G, J) Synthetic dynamics (solid black line) together with the
HF and LF signals shown as solid red and green lines, respectively, corresponding to three
frequency ratio values (fyr/frr = 3,89,179). The synthetic dynamics includes additive
white Gaussian noise N (0, o) with the standard deviation o corresponding to the 25% of the
amplitude of the LF component at fr, = 9 Hz. The LF and HF signals where obtained by
filtering the raw signal with the band-pass filters whose power responses are shown as dotted
green (Bwyrp = 3 Hz) and red (Bwgyr = 3 Hz) lines in graphs C, F and I, respectively.
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Figure 7: Performance of the TLI metric in quantifying the harmonicity of a synthetic dy-
namics constituted by the linear superposition of two sinusoidal oscillations. For the sake of
comparison purposes this figure was computed using the same hyperparameters than those
used to compute and process the synthetic dynamics shown in Figure @

556 Figure [8 show the performance of the harmonicity (TLI and PLVpp¢c) and
sss PAC (KLMIpac) metrics in a simple multi-harmonic oscillatory dynamics ca-
sss  pable to generate PAC. For this, we compute the K LM Ipac using Egs. [6and[7]
ss9  with the configuration given by Eq. [A:20] The dynamics was synthesized using
s Egs. [A] [A4] and [AZ6] configured for the DSB-C case with a sinusoidal modu-
s lating a(t) and maximum modulation depth (see the caption of Figure |8 for the
s2 complete list of parameter values). Figures and for the multi-harmonic
53 dynamics should be compared with their counterparts in the case of a single
s HF harmonic component shown in Figures [JJA and [5D, respectively. While no
sss  significant differences are observed in the PLVppc metric between these two
6 scenarios (see Figures and ), the TLI metric present higher values (close
se7  to unity) and less dispersion when multiple harmonics are included in the HF
ses  bandwidth (see Figures and ) This result is consistent with the behavior
sso  observed in Figures and showing an opposite trend between the two har-
s monicity metrics, that is, as the HF bandwidth increases a concomitant increase
sn in the dispersion and drop of the values occurs in the PLVppc metric and the
s opposite is observed for the TLI measure. Figure shows the PAC metric as
s a function of the epoch length and taking the AWGN as a parameter. Impor-
s tantly, Figure shows that the K LM Ip oc metric increases only after the HF
s bandwidth is wide enough to include the two sidebands (6 x frr and 8 X frF)
s around the carrier (fHF =T7X fLF)7 that is Bwgg Z 2 x frr = 18 Hz. Worthy
sz to note, the increase rate of the K LMIpac curves in Figure is related to
ss the steepness (i.e. transition-band width) of the BPF used to obtain the fast
so  (amplitude-modulated) rhythm. That is, the steeper the roll-offs of the BPF the
ss0  higher the increase rate of the K LM Ipac curves in Figure . Note that we do
ss. - not use BPF with very steep roll-offs to prevent creating artificial narrow-band

se2  oscillations [31) [32] (see|Appendix A.5). Figures and show the PSD and

s3  time series for a representative case within the explored parameters.
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Figure 8: Performance of harmonicity (TLI, PLVppc) and PAC (KLMIpsc) metrics to
characterize an amplitude modulated synthetic signal. In all the cases shown in this figure,
we used a sampling rate of fs = 2000 Hz and the frequency and amplitude of the modulating
(LF) and the amplitude-modulated (HF) oscillations were kept unchanged. To obtain all the
band-pass filtered signals shown in this figure we use the BPF as described in [Appendix A.5
The bandwidth of the BPF for the LF component (LF BPF) was kept fixed at Bwrrp = 9
Hz. The PLVppc was computed using Eq. with the configuration given by Eq. and
M =1, N = 7. The amplitude-modulated signal was synthesized as described in
using the following hyperpameter values: ¢ = 1 (i.e. DSB-C), maximum modulation
depth m = 0, nmm = 0, we used a sinusoidal modulating a(t) at fo = for = 9 Hz as given
by Eq. Am =1, ¢m = 0, zpps was set with fgp = 7 X fop = 63 Hz, ¢. = 0,
zgp = 0, for z;, we use Ay = 4, Ay, =0V k > 1and ¢p = 0V k. In Eq. [AT] we
configured a constant amplitude envelope £(t) = 1. The extrinsic noise level shown in the
graphs corresponds to n(t) in Eq. and is expressed as the percent of the modulating
signal a(t) maximum amplitude (A,,) scaling the standard deviation o of the additive white
Gaussian noise (AWGN) n =~ N(0,0). (A, C, E) Harmonicity (TLI, PLVppc) and PAC
(KLMIpac) metrics as a function of the epoch length and taking the level of AWGN as a
parameter. To compute graphs A, C and E, the bandwidth of the HF BPF was kept unchanged
in Bwgp = 99 Hz. Our implementation of the TLI algorithm (Section requires at least
3 cycles of the low frequency oscillation (fr,r =9 Hz), which determines the minimum epoch
length shown in graphs A and D (3/fpr ~ 0.3 sec.). The maximum epoch length used to
compute graphs A and D was 100/ frr ~ 11.1 sec. (B, D, F) Harmonicity (TLI, PLVppc)
and PAC (KLMIpac) metrics as a function of the HF bandwidth (Bwg ) corresponding to
the BPF used to obtain the HF signal (z g (¢)), and taking the level AWGN as a parameter.
The minimum and maximum Bwpgpr values used to compute the graphs B and E were 18
Hz and 99 Hz, respectively. To compute the graphs B, D and F, the epoch length was kept
unchanged in 45/ frF & 5 sec. In the panels A, B, C, D, E and F, the solid lines represent the
mean values and the shaded error bars correspond to the standard deviation of 100 realizations
at each point. (G) Synthetic dynamics (solid black line) together with the HF and LF signals
shown as solid red and green lines, respectively. The synthetic dynamics includes additive
white Gaussian noise N (0, o) with the standard deviation o corresponding to the 40% of the
modulating signal a(t) maximum amplitude (A, ). The LF and HF signals where obtained by
filtering the raw signal with the band-pass filters whose power responses are shown as dotted
green (Bwpr = 9 Hz) and red (Bwgp = 99 Hz) lines in graph H, respectively. (H) Power
spectrum (solid blue line) of the synthetic dynamics (solid black line in graph G) computed
using an epoch length of 100/ frr = 11.1 sec. The power responses (i.e. square magnitude)
of the BPF used to compute the LF and HF signals are shown as dotted green and red lines,
respectively.
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584 As a conclusion, it was found that for dynamics with two harmonic (Fig-
sss ures [5| to or two non harmonic (Figure oscillatory components, the
sss  TLI and PLVppc metrics have a comparable performance in terms of the ex-
ssv plored parameters. On the other hand, for oscillatory dynamics containing
sss  multi-harmonic HF components the TLI present a better performance when
s90  compared with the PLVppe metric under similar conditions (compare panels
so A and C of Figure . This aspect will be further discussed below in connection
s with the simulated dynamics of the Van der Pol oscillator.

s The TLI metric was tailored designed to be combined with the PC metric for
se3 improving the characterization and interpretation of the CFC patterns observed
s at the signal level. To illustrate this point, the temporal evolution of the rele-
ss  vant metrics were analyzed during a variety of synthetic oscillatory dynamics.
sos  For this, time series for the PLV, KLMI, TLI and PC metrics were constructed
sy as it was described in Section 2.8 It is essential to note a key point regarding
se  the TLI temporal evolution as a complementary tool to interpret the estimators
s0 aimed to quantify CFC (e.g. PLV, MVL, KLMI). Even though the TLI is a
o0 measure bounded in the range [0, 1] (see Section and independent of the
s1 processed oscillations amplitude, the absolute value of the TLI does depend on
s2 the noise level present in the processed time series and on the epoch length, i.e.
603 the number of periods of the low frequency oscillation taken to implement the
s0¢ time-locked average involved in the TLI computation (see Figures [5| to [§] and
es [B.I). A similar behavior was observed for the bounded (PLV, KLMI € [0, 1])
sos and unbounded (MVL) CFC metrics. As a consequence, a robust indicator of
sor the occurrence of transient harmonic CFC patterns is given by the fact that
s the TLI increases concurrently with the CFC metrics, rather than by the ab-
s0o  solute TLI value at a particular time instant. In this regard, Figure QA shows
s a synthetic dynamics presenting a transient harmonic PAC pattern. This type
e of transient dynamics is relevant since it is commonly observed during the ic-
sz tal activity recorded invasively in patients candidates to epilepsy surgery and
a3 animal models of epilepsy (see [I1] and references therein). The dynamics was
e synthesized using Eqgs. [A.1] [A-]] configured for the DSB-C case with a Gaussian
a5 modulating a(t) (Egs. and and maximum modulation depth (see the
e16 caption of Figure |§| for the complete list of parameter values). The transient
sz harmonic PAC pattern was implemented through the time series envelope £(t)
as as defined in Egs. and Figure shows that the PAC (PLVpac)
s10 and harmonicity (TLI) metrics increase almost concurrently from their baseline
&0 value previous to the transient activation to close the unity. Note that while
ez the amplitude-modulated dynamics remains stable (80sec. < Time < 120sec.
e2 in Figure @A) so the PAC and harmonicity metrics indicating the occurrence
s of a PAC pattern (PLVpac & 1) constituted by harmonic spectral components
2 (TLI ~ 1) which is not an ephiphenomenon due to the presence of phase clus-
s tering (PCLp =~ 0). Figures @D and @E show the signals and power spectrum
e representative of this time interval in which the dynamics remains stable. In
e27 particular, @D shows the modulating signal with frr = 3 Hz (solid green line,
ws frr = 3 Hz) and modulated (fgr = 89 X frr = 267 Hz, red solid line) signals
20 obtained band-pass filtering the raw dynamics (solid black line). The modulat-
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s» ing and modulated signals were computed using the LF BPF (dotted green line)
en  and HF BPF (dotted red line) shown in Figure @E, respectively. In addition, the
s2 harmonicity map and comodulogram computed for an epoch during the time
e3  interval in which the dynamics remains stable are shown in Figures [0C and O,
s1 respectively, revealing the modulating (frr) and modulated (fyr) frequency
35 bands involved in the harmonic PAC pattern.
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Figure 9: Temporal evolution of the PAC (PLVp z¢), harmonicity (TLI) and phase clustering
(PCLr) metrics during a synthetic dynamics presenting a transient harmonic PAC pattern.
To obtain all the band-pass filtered signals shown in this figure we use the BPF as described
in (A) Synthetic dynamics (solid black line) together with the HF and LF
signals shown as solid red and green lines, respectively. The dynamics (solid black line) was
synthesized using Eqs. and [A-4] with the following hyperpameter values: sampling rate
fs = 2000 Hz, ¢ = 1 (i.e. DSB-C), half modulation depth m = 0.5, 7, = 0, we used a
Gaussian modulating a(t) with the fundamental frequency at fo = frr = 3 Hz as given by
Egs. [A77] and [AZ8] with o &~ 55 and Ap = 1, zppg was set with fgp = 89 X frp = 267
Hz, ¢ = 0, zgr = 0, for z;, we use A1 = 4, Ap, =1V2< k<4 A, =0V k >5and
¢ = 0V k. The transient harmonic PAC pattern was implemented through the time series
envelope £(t) as defined in Egs. and [A.3] with & = 0.5 and S equals to one third of
the time series length. Extrinsic noise 7n(¢) was added as shown in Eq. In this case
the noise level corresponds to the 10 percent of the maximum amplitude of the deterministic
part of signal x(t) (i.e first term of the right-hand member of the Eq. [A), scaling the
standard deviation o of the additive white Gaussian noise (AWGN) n = N (0,0). The LF
(solid green line) and HF (solid red line) signals where obtained by filtering the raw signal
(solid black line) with the band-pass filters whose power responses are shown as dotted green
(Bwpr = 1 Hz) and red (Bwgpr = 30 Hz) lines in graph E, respectively. (B) Time series
showing the temporal evolution of the PLVp s, TLI and PCpr metrics. These time series
were computed as described in Section [2.8 using the algorithm 2 summarized in Table[2] with
a sliding window of 20 sec. in length, i.e. 60 cycles of the slowest oscillatory component at
fo = for = 3 Hz. (C) TLI harmonicity map computed as described in Section using a
20 sec. epoch extracted from the center (Time =~ 100 sec.) of the synthetic dynamics shown
in panel A. In computing the map, all the TLI values below the significance threshold were
set to zero (see Section . The pseudocolor scale represents the TLI values ranging from 0
(blue) to 1 (red). (D) Zoom showing two cycles of the synthetic dynamics (solid black line)
together with the HF and LF signals shown as solid red and green lines, respectively. The two
cycle epoch corresponds to the center (Time ~ 100 sec.) of the synthetic dynamics shown in
panel A. (E) Power spectrum (solid blue line) computed from the synthetic dynamics (solid
black line in graph A). The power responses (i.e. square magnitude) of the BPF used to
compute the LF and HF signals are shown a}gdotted green and red lines, respectively. (F)
Comodulogram computed as described in Section [2.7] computed from the same epoch used to
obtain the harmonicity map (panel C). In computing the comodulogram, all the |PLVpac¢|
values below the significance threshold were set to zero (see Section . The pseudocolor
scale represents the |PLVp g¢| values ranging from 0 (blue) to 1 (red). The harmonicity map
(panel C) and comodulogram (panel F) were computed using the same BPF (see

A3).
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636 Due to the fact that to compute the metrics shown in Figure [9] we used suffi-
s ciently narrow LF BPF to obtain an almost sinusoidal low frequency component
s  (dotted green line in Figure @E and solid green line in Figure E[D), i.e. uniform
s30 distribution of ¢ (t) values in Eq. 8] the |PCpp| time series is close to zero
s0 along the transient dynamics (red solid line in Figure ) This indicates that
s the observed PAC pattern is not a spurious artifacts related to the presence of
s> phase clustering in the modulating LF component [I7, [I8]. On the other hand,
s3  Figure corresponds to the very same synthetic dynamics of that shown in
s Figure [0A, but in this case we use a wide LF BPF including several spectral
&5 components, and thus, resulting in a highly non sinusoidal low frequency com-
ss ponent (dotted green line in Figure and solid green line in Figure )
e7  As a consequence, we obtain a skewed distribution of phase angles producing
ss  |PCpLp| = 0.5. It is crucial to note that this finite phase clustering associated to
sa0 a non sinusoidal low frequency component (PCpr) produces a bias in both the
50 PAC and harmonicity metrics, which in this case becomes evident by comparing
o1 Figures and . Note that a wider LF BPF (dotted green line in Figure
es2 [LOJE) imposes a limit on the minimum value of the frequency for phase (abscissa)
63 that is possible to compute in the harmonicity map and comodulogram as it is
s« shown in Figures [I0C and [I0F, respectively.
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Figure 10: Temporal evolution of the PAC (PLVp 4¢), harmonicity (TLI) and phase clustering
(PCLF) metrics during a synthetic dynamics presenting a transient harmonic PAC pattern.
In this plot we use the same synthetic dynamics and the same set of hyperparameter values to
compute the metrics than those described in the caption of Figure@ except for the bandwidth
of the BPF used to compute the LF component (Bwrr). In this case, the PLVp ¢, TLI and
PCpr metrics were computed using Bwrr = 13.5 Hz centered around 7.5 Hz (see the dotted
green line in panel E). This wide BPF produces a non sinusoidal LF component (see solid
green line in panel D), characterized by a non uniform distribution of phase values producing
the increase of the phase clustering (PCp ) during the dynamics (see solid red line in panel
B). Note the bias in the PAC (PLVp4¢) and harmonicity (TLI) metrics due to the presence
of phase clustering (PCrr). The description of the panels is the same than that given in
Figure [0

655 In[Appendix B.2] we present the behavior of the harmonicity and PAC met-
sss rics during a variety of transient dynamics (e.g. non harmonic PAC), and also

7 discuss the bias produced on the MVL metric (MV Lpac) by the phase clus-
ess  tering associated to a non sinusoidal low frequency component (PCLr).

0 1t was found that the abrupt change of the raw signal amplitude associated to
s transient dynamics like those shown in Figures[J] to is capable to
ssr  produce spurious CFC values due to the interaction between the sliding epoch
2 and the abrupt change of the amplitude envelope of the raw time series (see grey
63 arrows in panels A and B of Figure @I) Importantly, these spurious CFC values
ss at rising and falling edges of the transient dynamics are effectively detected by
s the PCpp metrics since they occurs concomitantly with an increase of the phase
es clustering. On the other hand, due to the fact that the TLI is an amplitude
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e7 independent quantity sensitive only to PPC, it does not present these artifacts
ees associated to changes in the amplitude of the analyzed dynamics (see the TLI
60 time series in Figures @ to .

s We identify another confounding associated to the Algorithm 1 described in
e Table [2] for the computation of CFC time series. Specifically, Figures and
672 show the PLVpac and PCppr time series computed with the algorithms
o3 described in Table 2] together with the TLI metric for a transient harmonic PAC
e+ pattern similar to that shown in Figure [J] We found that using short sliding
s epochs of about 10 cycles of the slowest oscillation, Algorithm 1 produce time se-
oo ries of PAC metrics (e.g. PLVpac) which are monotonically decreasing toward
e and away from the rising and falling edges of the transient dynamics (see grey
o8 arrows in Figure ) Besides, Figure shows that this effect is also distin-
eo  guishable in the case of a transient oscillatory dynamics without PAC similar
s to that shown in Figure [B:2] We observed this behavior of the CFC time series
s1 computed via the Algorithm 1 in a variety of transient oscillatory dynamics,
e2 suggesting that is a confounding strongly related to the abrupt change of the
e3 amplitude envelope of the raw time series, irrespective of the type and intensity
ss of the CFC present in the dynamics. We emphasize that this confounding is
s particularly dangerous since it seems not to be associated to an concomitantly
s increase of the phase clustering time series, and therefore it is difficult to de-
o7 tected (see red solid line in Figures and ) On the other hand, Figures
688 and show that the monotonically decreasing trend is absent in the
0 time series of PAC metrics computed using the Algorithm 2. Moreover, when
0 comparing Figures and it becomes evident the bias introduced by the
o1 Algorithm 1 in the maximum intensity of the PLVp ¢ time series. We identify
s22 the root cause of these confounding as the computation of features (e.g. phase,
s amplitude, frequency) via the Hilbert transform on the whole band-pass filtered
sa time series including the abrupt changes of amplitude associated to the rising
ss and falling edges of the transient dynamics, which affect the resulting features
sos (see step 3 in Algorithm 1 of Table . On the other hand, these issues are
sv avoided in the Algorithm 2 of Table [2] by first dividing the band-pass filtered
s signals in sliding epochs, the resulting epochs are Z-scored to make them inde-
so pendent of the absolute amplitude of the filtered signals and then the features
70 are computed by applying the Hilbert transform on the Z-scored epochs (see
7o step 4 and 5 in Algorithm 2 of Table .

72 The behavior of time series of PAC metrics shown in Figures [[IA and [TIB
703 associated to the confounding of Algorithm 1 has been also observed during
74 the transition between the pre-ictal to ictal periods in intracerebral electroen-
s cephalography recordings (LFP: local field potential) obtained from the seizure
s onset zone of epilepsy patients [I1] (data not shown). This result is relevant
77 since several CFC types, in particular PAC, have been proposed as biomarkers
08 for detecting the seizure onset in epilepsy patients. As a conclusion, our results
00 suggest that Algorithm 1 should be avoided in analyzing oscillatory dynamics
7m0 characterized by abrupt changes of amplitude, where the Algorithm 2 is rec-
m  ommended instead. In addition, the temporal evolution of CFC metrics around
712 transient dynamics involving abrupt changes of amplitude (or any other feature),
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73 like those associated to epileptic seizures, should be analyzed and interpreted
74 carefully. The TLI time series shown in Figure [L1] present more dispersion and
ns a higher baseline bias when compared to that of Figure OB due to the fact that
76 they were computed for a more noisy synthetic dynamics and using a shorter
77 sliding epoch. Importantly, since the TLI metric is entirely computed in the
78 time domain using band-pass filtered signals, it is not affected by the confound-
79 ing produced by the Algorithm 1 associated to the computation of features using
20 the Hilbert transform.

721
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Figure 11: Comparison of the algorithms 1 and 2 are summarized in Tableaimed to compute
time series of CFC metrics. The time series showing the temporal evolution of the PLVp 4¢,
TLI and PCp,r metrics were computed as described in Section using a sliding window of
3.33 sec. in length, i.e. 10 cycles of the slowest oscillatory component at fo = frr = 3 Hz.
(A, C) The time series shown in panels A and C were computed from a synthetic dynamics
presenting a transient harmonic PAC pattern, as described in Section@ using the algorithms
1 and 2, respectively. The synthetic dynamics used in panels A and C was computed using
the same set of hyperparameter values as those described in the caption of Figure EL with the
exception of the extrinsic noise 7(¢) which in this case was set to 30 percent of the maximum
amplitude of the deterministic part of signal z(¢t) (i.e first term of the right-hand member
of the Eq. . (B, D) The time series shown in panels B and D were computed from a
synthetic dynamics without PAC, as described in Section using the algorithms 1 and 2,
respectively. The synthetic dynamics used in panels B and D was computed using the same set
of hyperparameter values as those described in the caption of Figure with the exception
of the extrinsic noise 7(¢) which in this case was set to 30 percent of the maximum amplitude
of the deterministic part of signal z(¢) (i.e first term of the right-hand member of the Eq.
. In the panels A, B, C and D, the solid lines represent the mean values and the shaded
error bars correspond to the standard deviation of 100 realizations at each point.

722 We characterized quantitatively the harmonic content of CFC patterns using
723 the harmonicity-CFC plots which categorize the analyzed oscillatory dynamics
724 in four quadrants, Q1: harmonic CFC, Q2: harmonic oscillations and No CFC,
25 Q3: Non harmonic oscillations and No CFC, Q4: Non harmonic CFC. Figure
726 shows the harmonicity-PAC plot, computed as it was described in Section
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727 for a variety of synthetic oscillatory dynamics and taking the amplitude
28 modulation depth as a parameter.
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Figure 12: Harmonicity-PAC plot computed for a variety of synthetic oscillatory dynamics
and taking the amplitude modulation depth as a parameter. The Harmonicity-PAC plot
was computed as it is described in Section @ The pseudocolor scale represents the 1 —m
values ranging from the minimum 0 (blue) to the maximum 1 (red) modulation depth, with
m defining the amplitude modulation depth as stated in Eq. @ The synthetic dynamics
were computed as it is described in using sinusoidal modulating signals (Eq.

A5).

m 3.2. A single non sinusoidal oscillatory dynamics characterized by dependent
730 frequencies

731 In this section we investigate the robustness of the proposed (TLI) and

7 conventional (PLVppc) harmonicity measures to quantify the harmonic content

73 of the simulated dynamics of the Van der Pol oscillator (see [Appendix A.2)).
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¢ We shall show that, contrary to what is usually assumed in the literature, the
735 spurious PAC elicited by a single non sinusoidal oscillatory dynamics like the
7 one associated to the Van der Pol oscillator can produce both harmonic and non
7z harmonic PAC patterns.

s Figure shows that, in the case of oscillatory dynamics containing multi-
70 harmonic HF components, the TLI is more robust than the PLVppc against
7o changes in the bandwidth of the BPF used to compute the high frequency
71 component (HF BPF, see the dotted and solid red lines in panels A, B, C and
w2 D of Figure . The non sinusoidal oscillatory dynamics shown in Figure
73 is constituted by a fundamental component at f; = 5.56 Hz and odd harmonic
s components at N x fo with N = 3,5,7,9,11,13,---. In Figure the band-
us  pass filters used to compute the harmonicity metrics were centered at frp =
76 1x5.56 Hz (LF BPF) and fgr = 9 x 5.56 Hz (HF BPF), and consequently, the
w PLVppc metric was computed using Eq. [ with M = 1, N = 9. Figure
s shows that the drop of the PLVpp¢ value occurs concurrently with the increase
o of the phase clustering PCpp, indicating that the former is produced by a
0 non uniform distribution of the phase values associated to the HF component,
71 i.e. non sinusoidal 2 (solid red line in Figure [13D). Worthy to note, Figure
752 also shows that increments of the HF bandwidth up to Bwyr =~ 20 Hz
3 degrade the signal-to-noise ratio in the band-pass filtered signal x g producing
7« a moderate drop of the TLI value. On the other hand, for Bwgypr 2 20 Hz,
s the HF bandwidth is wide enough to include other harmonic components and
76 thus improving the signal-to-noise ratio of g which translates in that the TLI
77 values become closer to the unity again. Importantly, we found that the pairwise
758 phase consistency measure [23] [24] is also affected by the phase clustering PCyp
79 presenting a similar behavior to that shown by the PLVppc metric in Figure
760 (data not shown). This results is not surprising since the pairwise phase
71 consistency measure was algorithmically derived from the PLV metric [23].
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Figure 13: The TLI is more robust than the PLVp pc against changes in the bandwidth of the
BPF used to compute the high frequency component. The Van der Pol oscillatory dynamics
(solid black line) shown in panels A, B, C and D were simulated as described in
using the following hyperpameter values: sampling rate fs = 2000 Hz, p = 300, wo = 27 fo,
fo =10 Hz, W, = 0, F. = 0, initial conditions z(0) = 2, #(0) = 1. With this configuration,
we obtain a non sinusoidal oscillatory dynamics constituted by a fundamental component at
fqa = 5.56 Hz and odd harmonic components at N X fg with N = 3,5,7,9,11,13,---. The
dynamics was computed without intrinsic noise (g1 = g2 = 0 in Eq. in order to obtain a
non sinusoidal oscillatory dynamics with a constant fundamental period. Extrinsic noise n(t)
was added as shown in Eq. [A-14] In this case the noise level corresponds to the 20 percent
of the maximum amplitude of the deterministic part of signal (i.e z1(¢) in Eq. , scaling
the standard deviation o of the additive white Gaussian noise (AWGN) n ~ N (0,0). We
computed the Van der Pol dynamics for 6 sec. time interval and then the first 0.1 sec. (200
samples) of the time series were discarded to remove the transient period of the numerical
simulation. For this set of hyperparameter values, panels A, B, C, D show different realizations
of the Van der Pol dynamics. To obtain all the band-pass filtered signals shown in this figure we
use the BPF as described in The bandwidth of the BPF for the LF component
(LF BPF) was kept fixed at Bwpr = fq = 5.56 Hz (see the dotted green lines superimposed
to the power spectra shown in panels A, B, C, D). The band-pass filters used to compute the
harmonicity metrics were centered at fr,p = 1 X fq Hz (LF BPF) and fgr =9 X fq Hz (HF
BPF), and consequently, the PLVppc metric was computed using Eq. with M=1, N =09.
In panels A, B, C, D we changed the bandwidth of the BPF for the HF component (HF BPF)
whose power response (i.e. square magnitude) is shown as dotted red line superimposed to
the power spectra. The resulting band-pass filtered HF signals are shown as solid red lines in
the upper graph of panels A, B, C, D. The power spectra and the harmonicity metrics (TLI,
PLVppc) were computed using an epoch length of ~ 33/ f4 ~ 6 sec. The panel (E) shows the
magnitude of the harmonicity (TLI, PLVppc) and phase clustering metrics (PCrp, PCyp)
as a function of the bandwidth of the BPF for the HF component (HF BPF). In the panel E,
the solid lines represent the mean values and the shaded error bars correspond to the standard
deviation of 100 realizations at each HF bandwidth value.

762 We also investigate the effect of the bandwidth associated to the BPF used to

36


https://doi.org/10.1101/2020.10.15.341800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341800; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

763 compute the low frequency component (LF BPF, see the dotted and solid green
s lines in panels A, B and C of Figure . In this case the filters were centered
s at frrp =5 X% 5.56 Hz (LF BPF) and fyr = 15 x 5.56 Hz (HF BPF), and the
w6 PLVppc metric was computed using Eq. [{ with M =5, N = 15. Figure [[4D
77 shows that both harmonicity metrics are degraded by the increase of the phase
s clustering PCpp associated to a non sinusoidal low frequency component xpp
70 (see the solid green line in Figure ) That is, as the Bwpp is increased to
70 include several harmonic components within its bandwidth, a non sinusoidal LF
7 components is obtained at the output of the LF BPF filter (see the solid green
72 line in Figure ) This in turns produces an increment in the phase clustering
m  (PCpr), biasing the intensity of both metrics (TLI, PLVppc) toward values
74 close to zero. Un this condition, both harmonicity metrics (TLI, PLVpp) fail
75 to detect the presence of harmonic components in the oscillatory dynamics.
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Figure 14: The phase clustering associated to the low frequency component (PCr ) produces
a bias in both TLI and PLVppc metrics. In this figure we use the same synthetic dynamics
and the same set of hyperparameter values to compute the metrics than those described in
the caption of Figure [13] except for the configuration of the BPF's used to compute the LF
and HF components. In this case, the bandwidth of the BPF for the HF component (HF
BPF) was kept fixed at Bwgp = fq = 5.56 Hz (see the dotted red lines superimposed to the
power spectra shown in panels A, B, C). Besides, the band-pass filters used to compute the
harmonicity metrics were centered at fr,r =5 x fq Hz (LF BPF) and fgr = 15 x f; Hz (HF
BPF), and consequently, the PLVppc metric was computed using Eq. with M =5 N =15.
In panels A, B, C we changed the bandwidth of the BPF for the LF component (LF BPF)
whose power response (i.e. square magnitude) is shown as dotted green line superimposed to
the power spectra. The resulting band-pass filtered LF signals are shown as solid green lines
in the upper graph of panels A, B, C. The power spectra and the harmonicity metrics (TLI,
PLVppc) were computed using an epoch length of & 33/ f; ~ 6 sec. The panel D shows the
magnitude of the harmonicity (TLI, PLVppc) and phase clustering metrics (PCrp, PCHFr)
as a function of the bandwidth of the BPF for the LF component (LF BPF). In the panel D,
the solid lines represent the mean values and the shaded error bars correspond to the standard
deviation of 100 realizations at each LF bandwidth value.

776 Any non linear oscillator can be used as a model that generates spurious
77 PAC via separation of time scales due to non linear effects. Importantly, these
7s emerging time scales elicited by non linearities of the system are not indepen-
7o dent from each other, but harmonically related and dependent on the waveform
7w shape of the resulting non sinusoidal oscillatory dynamics. Figure shows
7 the harmonicity-PAC plot associated to the single oscillatory dynamics of the

72 Van der Pol oscillator (see |[Appendix A.2)). Specifically, Figure shows the
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73 evolution of the PAC (PLV) and harmonicity (TLI) metrics as the non linear
7 parameter of the oscillator (u/wp) is increased from the sinusoidal oscillatory
75 regime (u/wo = 0, see panels A and F in Figure up to a high non sinusoidal
s regime (p/wo A~ 4.77, see panels D and K in Figure [I5). In Figure the sinu-
7 soidal oscillatory regime (p/wg =~ 0) shown in panels A and F, becomes evident
s by the single spectral component constituting the corresponding power spectra
7 (see panels B and G), and by the phase portraits shown in Figures and
790 . On the other hand, the non sinusoidal oscillatory regime (p/wy = 4.77)
71 shown in panels D and K, becomes evident by the harmonic spectral compo-
72 nents constituting the corresponding power spectra (see panels E and L), and
. by the phase portraits shown in Figures [B.6C,D. In Figures [[5A,B,C,D,E, the
74 dynamics of the Van der Pol oscillator was computed by configuring the intrinsic
75 noise of type AWGN applied only on the equation of &5 (g1 = 0 and g2 = 0.5
s in Eq. [A.14). In this scenario, as the non sinusoidal oscillatory regime emerges,
77 the harmonicity metric (TLI) allows for a clear identification of the harmonic
s nature of the PAC pattern. Figure [15H shows the behavior of the PAC pattern
70 in the case when AWGN is being applied on the equations of both #; and @9
so (i.e. g1 = g2 =0.51in Eq. . On the other hand, Figure [15H shows that the
s harmonicity of the PAC intensity increases up to a given value of the non linear
s paremeter of the oscillator (u/wp), after which subsequent increments of p/wg
g3 produce a monotonic decrease of the harmonicity and keeping the PAC intensity
sos unchanged. Figure[15|shows that the single oscillatory dynamics of the Van der
ss  Pol oscillator in presence of AWGN can elicit several PAC patterns depending
s on the value of y1/wy: no PAC (Figures[I5F,G), harmonic PAC (Figures [15],J)
s and non harmonic PAC (Figures [I5|K,L). The results show in Figure [I5H were
ss computed using an epoch of 10 sec. which corresponds to approx. 50 cycles of
s0  the slowest oscillation at frp & 4.7 for p/we ~ 4.8. Importantly, it was found
sio  that these results holds even in the case of using an epoch length of 1.5 sec.
su (/2 7 cycles of the slowest oscillation), which is one order of magnitude shorter
sz than that involved in the computation of Figure [I5H. Moreover, we found that
a3 the results presented in Figure [I§ hold for the dynamics of the Van der Pol
s oscillator simulated with intrinsic noise of the type non-additive white Gaus-
a5 sian noise (NAWGN). The Harmonicity-PAC plots computed for the simulated
sis  dynamics of the Van der Pol oscillator with NAWGN intrinsic noise are shown
s in Figure [B7) of In addition, we verified that these results also
as  hold when PAC is assessed using different metrics (e.g. PLV, KLMI), hence,
a0 discarding the possibility of artifacts associated to a particular metric (compare
s20 panels A vs. B and C vs. D shown in Figure of . These
e results suggest that the presence of intrinsic noise (AWGN or NAWGN) can
s change the period of the single oscillatory dynamics in almost a cycle-by-cycle
23  manner significantly reducing the harmonic content in its power spectrum. This
g4 evidence supports the conclusion that ‘true’ and ‘spurious’ concepts applied to
225 the CFC patterns are not intrinsically linked to the harmonic content of the
s2s underlying oscillatory dynamics. More specifically, the high harmonic content
g7 observed in a given oscillatory dynamics is neither sufficient nor necessary con-
s2s  dition to interpret the associated CFC pattern as ‘spurious’ or epiphenomenal
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220 (i.e. a CFC pattern not representing a true interaction between two coupled
s oscillatory dynamics with independent fundamental frequencies). For instance,
sn  a single oscillatory dynamics characterized by a non constant oscillation pe-
2 riod can produce ‘spurious’ CFC with low harmonic content (i.e. non harmonic
g3 CFC). This type of oscillatory dynamics is commonly observed in oscillators
s« undergoing a chaotic regime or non linear oscillators under the effect of intrinsic
s noise (Figure ) On the other hand, in Sections and we shall present
s3s  results supporting the hypothesis that two coupled oscillatory dynamics with
s independent fundamental frequencies can elicit ‘true’ CFC with high harmonic
ss  content via rectification mechanisms.
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Figure 15: Harmonicity-PAC plot computed for the simulated dynamics of the Van der Pol
oscillator with intrinsic noise of type additive white Gaussian noise (AWGN). Note that a
single non sinusoidal oscillatory dynamics can produce both harmonic (panels D and E, I and
J) and non harmonic (panels K and L) PAC patterns. The Van der Pol oscillatory dynamics
(solid black line) shown in panels A, D, F, I and K were simulated as described in
@using the following hyperpameter values: sampling rate fs = 2000 Hz, wg = 27 fo, fo = 10
Hz, W), = 0, F. = 0, initial conditions z(0) = 2, £(0) = 1. To compute the harmonicity-PAC
plots shown in panels C and H, the parameter p controlling the oscillator nonlinearity was
increased from the sinusoidal oscillatory regime (p/wo = 0, see panels A, B, F, G) up to a
high non sinusoidal regime (u/wo =~ 4.77, see panels D, E, I, J, K, L). In panels C and H,
the pseudocolor scale represents the p/wg values ranging from =~ 0 (blue) to ~ 4.8 (red). In
panels A, B, C, D and E, the dynamics of the Van der Pol oscillator was simulated using
intrinsic noise of type AWGN applied only on the equation of #2 (91 = 0 and g2 = 0.5 in
Eq. . In panels F, G, H, I, J, K and L, the dynamics was simulated by applying the
intrinsic noise of type AWGN on the equations of both #1 and &2 (i.e. g1 = g2 = 0.5 in Eq.
IA.14). Therefore, in this case the intrinsic noise components (AWGN) in Eq. result
m ~ N(0,0.5) and n2 = N(0,0.5). Extrinsic noise n(t) was added as shown in Eq.
In this case the noise level corresponds to the 10 percent of the maximum amplitude of the
dynamics z1 in Eq. , scaling the standard deviation o of the additive white Gaussian
noise (AWGN) 7 = N (0,0). We computed the Van der Pol dynamics for 20 sec. time interval
and then the first 10 sec. of the time series were discarded to remove the transient period of
the numerical simulation. The power spectra (solid blue line in graphs B, E, G, J and L) were
computed unsing a 10 sec. epoch from the synthetic dynamics shown in the corresponding
graphs (solid black line in graphs A, D, F, I and K). In graphs B, E, G, J and L, the power
responses (i.e. square magnitude) of the BPF used to compute the LF and HF signals are
shown as dotted green and red lines, respectively. To obtain all the band-pass filtered signals
shown in this figure we use the BPF as descriped in In all the cases shown in
this figure, the bandwidth of the BPF for the LF (LF BPF) and HF (HF BPF) components
were set at Bwpp = 12 Hz centered at 7 Hz and Bwgypr = 82.65 Hz centered at 56.5 Hz,
respectively. In graphs A, D, F, I and K, the resulting band-pass filtered LF and HF signals
are shown as solid green and solid red lines, respectively. The harmonicity metric (TLI) was
computed as it was described in Section The PAC metric (PLVpa¢) was computed using
Eq. [@] with the configuration given by Eq. [A20and M = N = 1.


https://doi.org/10.1101/2020.10.15.341800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341800; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

839 It was found that the dependence of the harmonicity of the CFC pattern on
s the intrinsic noise (AWGN or NAWGN) is not exclusive of PAC but occurs in
s several CFC types. Figures [I6C and [I6H show this effect in the case of AAC
sz and FFC patterns, respectively. To compute the Figure [I6C we set Egs. [AT12]
843 and [A. T4 with W}, = 0, f. = 5.4 Hz and f,, = 1.33 Hz. This configuration
saa  produces an amplitude-modulated dynamics due to the action of the external
ss  driving F,. This configuration produces an amplitude-modulated dynamics due
s to the action of the amplitude-modulated external driving F, in which the sinu-
a7 soidal component at f,,, = 1.33 Hz modulates the amplitude of the oscillation at
ss  fe = 5.4 Hz (dotted grey line in Figures and ) As a consequence, the
a0 slow rhythm at f,, = 1.33 Hz effectively modulates the amplitude of the non
g0 sinusoidal oscillator dynamics (solid black line in Figures and ) The
ss1  amplitude-modulation of the resulting non sinusoidal dynamics becomes evident
2 in the phase portraits shown in Figure [B:8] Thus, two CFC patterns emerge
g3 from the resulting dynamics, (1) a PAC pattern in which the phase of the slow
s« rhythm at f,, = 1.33 Hz amplitude modulates the fundamental component of
s the non sinusoidal oscillator dynamics, and (2) an AAC pattern in which the
sss amplitude of the harmonic components follow the changes of the fundamental
g7 component amplitude. In the PAC pattern we have a ‘true’ interaction between
sss  two oscillatory dynamics, i.e. f,,, = 1.33 Hz and f. = 5.4 Hz. On the other hand,
o the AAC pattern can be thought as a ‘spurious’ or epiphenomenal coupling since
so it involves dependent frequencies related by the waveform shape of the single
ssr  oscillatory dynamics. Figure shows that the AAC intensity increases up to
s a given value of the external driving amplitude (A4, in Eq. , after which
83 subsequent increments of A, produce a significant drop in the harmonicity of
s the ‘spurious’ AAC pattern. To compute the Figure [I6H we set Eqs. [A.12]
865 and [A-T4) with F, = 0, fo = 10 Hz, f, ~ 1 Hz. As a result, we obtain an
ss frequency-modulated dynamics due to the action of the time variant parameter
s W,p,. Specifically, the slow rhythm at f, ~ 1 Hz (dotted gray line in Figures
s and ) effectively modulates the fundamental frequency of the non sinusoidal
g0 oscillator dynamics (solid black line in Figures and ) As a consequence,
g0 two CFC patterns emerge from the resulting dynamics, (1) a PFC pattern in
s which the phase of the slow rhythm at f, ~ 1 Hz frequency modulates the fun-
sz damental component of the non sinusoidal oscillator dynamics, and (2) an FFC
sz pattern in which the instantaneous frequency of the harmonic components fol-
sra  low the changes of the fundamental component frequency. In the PFC pattern
srs we have a ‘true’ interaction between two oscillatory dynamics, one associated to
s the time variant parameter W), and the other to the intrinsic dynamics of the
sz oscillator. On the other hand, the FFC pattern can be thought as a ‘spurious’
ers  or epiphenomenal coupling since it involves dependent frequencies related by
e the waveform shape of the single oscillatory dynamics. Figure [IGH shows that
so  the FFC intensity increases up to a given value of the W, intensity (i.e. A, in
s Eq. , after which subsequent increments of A, produce a significant drop
g2 in the harmonicity of the ‘spurious’ FFC pattern.
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Figure 16: Harmonicity-AAC and Harmonicity-FFC plots computed for the simulated dy-
namics of the Van der Pol oscillator with intrinsic noise of type additive white Gaussian noise
(AWGN). (A, B, C, D, E) To obtain the AAC pattern, the Van der Pol oscillatory dynamics
(solid black line) shown in panels A and D were simulated as described in using
Egs. [A.12] [A.13] and [A.14] with the following hyperpameter values: sampling rate fs = 2000
Hz, wo = 27 fo, fo = 10 Hz, no parametric driving W, = 0, fe = 5.4 Hz and fn, = 1.33
Hz, Ay = 1, ¢ = 1 (i.e. DSB-C), maximum modulation depth m = 0, initial conditions
z(0) = 2, £(0) = 1. To compute the harmonicity-AAC plot shown in panel C, the external
driving amplitude (A in Eq. was increased from A, = 0 (no external driving) up to
Ae = 5 x 10%. In panel C, the pseudocolor scale represents the A /(5 x 10*) values ranging
from 0 (blue) to 1 (red). (F, G, H, I, J) To obtain the FFC pattern, the Van der Pol oscillatory
dynamics (solid black line) shown in panels F and I were simulated as described in
using Egs. [A.12] [A.13] and |A.14] with the following hyperpameter values: sampling rate
fs = 2000 Hz, wg = 27 fo, fo = 10 Hz, no external driving Fe = 0, fp =~ 1 Hz. To compute
the harmonicity-FFC plot shown in panel H, the intensity of the time variant parameter W,
(Ap in Eq. was increased from A, = 0 (no parametric driving) up to A, ~ 10. In
panel H, the pseudocolor scale represents the Ap,/34 values ranging from 0 (blue) to 0.3 (red).
For both panels C and H, the dynamics of the Van der Pol oscillator was simulated using
intrinsic noise of type AWGN applied only on the equation of #2 (91 = 0 and g2 = 0.5 in
Eq. . Therefore, the intrinsic noise components (AWGN) in Eq. result 1 =0
and n2 ~ N(0,0.5). Extrinsic noise n(t) was added as shown in Eq. In this case the
noise level corresponds to the 10 percent of the maximum amplitude of the dynamics x; in
Eq. , scaling the standard deviation o of the additive white Gaussian noise (AWGN)
n =~ N(0,0). The Van der Pol dynamics was computed for 20 sec. time interval and then the
first 10 sec. of the time series were discarded to remove the transient period of the numerical
simulation. The power spectra (solid blue line in graphs B, E, G and J) were computed unsing
a 10 sec. epoch from the synthetic dynamics shown in the corresponding graphs (solid black
line in graphs A, D, F and I). In graphs B, E, G and J, the power responses (i.e. square
magnitude) of the BPF used to compute the LF and HF signals are shown as dotted green
and red lines, respectively. To obtain all the band-pass filtered signals shown in this figure we
use the BPF as described in In computing panel C (AAC), the bandwidth of
the BPF for the LF (LF BPF) and HF (HF BPF) components were set at Bwrr =~ 10.3 Hz
centered at 5.4 Hz and Bwyr ~ 17.6 Hz centered at 27 Hz, respectively. In computing panel
H (FFC), the bandwidth of the BPF for the LF (LF BPF) and HF (HF BPF) components
were set at Bwyp ~ 10.3 Hz centered at 5.443; and Bwgr =~ 10.8 Hz centered at 16.2 Hz,
respectively. In graphs A, D, F and I, the resulting band-pass filtered LF and HF signals
are shown as solid green and solid red lines, respectively. The harmonicity metric (TLI) was
computed as it was described in Section For the panel C, the AAC metric (PLV44c)
was computed using Eq. @ with the configuration given by Eq. [A.21]Jand M = N = 1. For
the panel H, the FFC metric (PLVrppc) was computed using Ewith the configuration
given by Eq. @and M=N=1.
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g3 3.3. Two coupled oscillatory dynamics characterized by independent frequencies
884

885 In this section we present the results obtained with a 2nd order parametric
sss  oscillator showing that two coupled oscillatory dynamics with independent fun-
sev  damental frequencies can elicit ‘true’” CFC with high harmonic content via the
ss rectification mechanism. The equations describing the dynamics of the para-
g0 Mmetric oscillator are detailed in Section [3.3] Figure [17] shows the PFC patterns
s0  corresponding to the dynamics of the parametric oscillator generated by si-
s multaneously applying an off-resonance external driving F, and a parametric
2 driving W), tuned at the same frequency f. = f, = fo/12~ 8.3 Hz and 6. =0
03 (see Egs. and , with fy being the natural resonance frequency of
s« the undamped oscillator (¢ = 0 in Eq. . Figures and show the
ss  harmonicity-PFC plots for the cases when AWGN is applied only on the equa-
g6 tion of &2 (g1 = 0 and go = 0.125 in Eq. [A.18) and on the equations of both
s &1 and &9 (i.e. g1 = go = 0.125 in Eq. espectively. In the latter case,
gs the intrinsic noise is capable to drive the resonator at its natural frequency fy
s increasing the harmonicity of the oscillatory dynamics for low A, values (see
w0 Figures , , and ) This harmonicity of the oscillatory dynamics for low
o1 A, values is not present when the parametric oscillator is configured with non
92 harmonic frequencies (e.g. fo = f, = fo/11.62 ~ 8.6 Hz, see Figures ,
903 and ) Figures show that the harmonicity of the PFC pat-
s tern increases as the parametric driving intensity A, increases. In Figure
ws the almost sinusoidal oscillatory regime (A, ~ 0) shown in panel A, becomes
ws evident by the single spectral component constituting the corresponding power
s spectra (see panel B), and by the phase portrait shown in Figure[B.9A. On the
s other hand, the non sinusoidal oscillatory regime (A, ~ 0.9) shown in panels D
oo and F, becomes evident by the harmonic spectral components constituting the
a0 corresponding power spectra (see panels E and G), and by the phase portraits
on  shown in Figures and [B.6F. In particular, panels D and E in Figure
sz show that the phase of the slow rhythm (frr = fe = f, =~ 8.3 Hz) modulates
oz both amplitude and frequency of the fast oscillation within the range 20 Hz
e < fugp < 140 Hz (see Figure and ) We found that in the forced paramet-
ais  ric oscillator, the fast oscillation constituting the oscillatory dynamics undergo
ais  a rectification process associated to the PAC pattern. That is, the amplitude of
a7 the HF component (fyr, solid red line in Figures and [L7F) goes to zero at
as  some particular phase of the LF cycle (f. = fp, solid green line in Figures
o0 and ) This periodic rectification process produces that the HF component
o0 resets its phase relative to the LF component in each LF cycle. As a conse-
o1 quence, the waveform shape of the resulting oscillatory dynamics is almost the
o2 same in each LF cycle even when the slow and fast rhythms have independent
o frequencies. This repetitive waveform shape (Figures[17D and[L7F) is character-
o¢ ized by a high harmonic content in its power spectrum (Figures and )
es which accounts for the high harmonicity reported by the TLI metric for high
o W, values (Figures and ) Importantly, we found that harmonic PFC
o7 patterns like those shown in Figures and are elicited for high values of
es the parametric driving W), irrespective of the ratio of the time scales involved
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w9 in the parametric oscillator, i.e. harmonic PFC patterns occurs for harmonic

a0 (Figure[l7) or non harmonic frequency ratios f./fo with f. = f, (Figure
a1 in * We also verified that these results also holds when PFC is
o2 assessed using different metrics (e.g. PLV, KLMI), hence, discarding the pos-
o3 sibility of an artefact associated to a particular metric (compare Figures
o« and [B.11]in [Appendix B.4). These results support the hypothesis that the har-
s monicity of the PFC pattern shown in Figures [I7D, [I7F, [B-10D, [B-I0F, B-11D
a6 and @F are not related to a fine-tuning of the parameters f., f, and f; of the
oy parametric oscillator, but to an emerging rectification mechanism associated to
as  the co-occurrence of PAC and PFC patterns which produce the phase resetting
o0 of the modulated HF component in each LF cycle.
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Figure 17: Harmonicity-PFC plot computed for the simulated dynamics of the 2nd order
parametric oscillator with intrinsic noise of type additive white Gaussian noise (AWGN).
Note that two oscillatory dynamics with independent frequencies can produce harmonic PFC
patterns (panels D, E and F, G). The parametric oscillator dynamics (solid black line) shown
in panels A, D, H, F and K were simulated as described in [Appendix A.3| by simultaneously
applying an off-resonance external driving Fe and a parametric driving W) tuned at the same
frequency and using the following hyperpameter values: sampling rate fs = 2000 Hz, p = 200,
wo = 27 fo, fo = 100 Hz, fp = fe = fo/12 ~ 8.3 Hz, 6. = 0, Ac = 1 x 10°. To compute the
harmonicity-PFC plots shown in panels C and J, the parameter A, controlling the parametric
driving intensity was increased from the sinusoidal oscillatory regime (A, =~ 0, see panels A,
B, H, I) up to a high non sinusoidal regime (A, ~ 0.9, see panels D, E, F, G). In panels
C and J, the pseudocolor scale represents the A, values ranging from 0 (blue) to 0.9 (red).
In panels A, B, C, D and E, the dynamics of the parametric oscillator was simulated using
intrinsic noise of type AWGN applied only on the equation of 3 (g1 = 0 and g2 = 0.125 in
Eq. . In panels F, G, H, I, J, K and L, the dynamics was simulated by applying the
intrinsic noise of type AWGN on the equations of both #; and %2 (i.e. g1 = g2 = 0.125 in
Eq. . Therefore, in this case the intrinsic noise components (AWGN) in Eq. result
m ~ N(0,0.125) and n2 =~ N(0, 0.125). Extrinsic noise 7(t) was added as shown in Eq.
In this case the noise level corresponds to the 5 percent of the maximum amplitude of the
dynamics z; in Eq. , scaling the standard deviation o of the additive white Gaussian
noise (AWGN) n = N (0,0). We computed the dynamics of the parametric oscillator for 20
sec. time interval and then the first 10 sec. of the time series were discarded to remove the
transient period of the numerical simulation. The power spectra (solid blue line in graphs B,
E, G, I and L) were computed unsing a 10 sec. epoch from the synthetic dynamics shown in
the corresponding graphs (solid black line in graphs A, D, F, H and K). In graphs B, E, G, I
and L, the power responses (i.e. square magnitude) of the BPF used to compute the LF and
HF signals are shown as dotted green and red lines, respectively. To obtain all the band-pass
filtered signals shown in this figure we use thd@BPF as described in [Appendix A.5| In all the
cases shown in this figure, the bandwidth of the BPF for the LF (LF BPF) and HF (HF BPF)
components were set at Bwpp =~ 4.2 Hz centered at fy/12 ~ 8.3 Hz and Bwgpr ~ 179 Hz
centered at fo = 100 Hz, respectively. In graphs A, D, F, H and K, the resulting band-pass
filtered LF and HF signals are shown as solid green and solid red lines, respectively. The
harmonicity metric (TLI) was computed as it was described in Section The PAC metric
(KLMIppc) was computed using Egs. EI and m with the configuration given by Eq.
Note that the K LM Ippc was normalized with its maximum value in each plot.
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w  3.4. Biologically plausible neural network model

oa1 In this section we show that ‘true’ PAC patterns with high harmonic con-
w2 tent (i.e, ‘true’ harmonic PAC) naturally emerge in the oscillatory dynamics of
w3 the biologically plausible neural network model shown in Figure [I] This model
ue is considered as a canonical circuit for generating PAC [16], and it represents
ws a network architecture that has been observed in a variety of sensory cortex
us areas in the form of a slow input stimuli (e.g. visual, auditory, olfactory) which
o7 entrain fast gamma oscillations underpinning local neural processing [13]. In
us addition, the model shown in Figure [I| has been analyzed in the context of the
wo  parkinsonian basal ganglia-thalamocortical circuit under dopamine depletion in
so connection with both the mechanism of action of the deep-brain stimulation
o1 therapy [14] and the exaggerated PAC between beta-gamma frequency bands.
2 The latter, putatively associated to the pathological mechanism of motor symp-
53 toms in Parkinson’s disease [T}, [33] [34].

o In [I] we demonstrate that PAC phenomenon naturally emerges in mean-field
ss models of biologically plausible networks, as a signature of specific bifurcation
ws structures. In particular, for the model shown in Figure [I| we found that in the
o7 case of an oscillatory external driving without noise (i.e. H; = h; cos(w;t+¢;)+d;
s and n; = 0 for I;, i € {1,2} in Eq. , the PAC patterns observed in the re-
0 sulting dynamics were elicited by the periodic excitation/inhibition (PEI) of a
w0 network population producing intermittent fast oscillations (i.e. intermittent
w1 PAC). For a detailes discussion of the PEI mechanism associated to the model
o2 shown in Figure [I| the reader is referred to Section 3.1 and Appendix A of [I].
o3 The threshold linear activation function S(I;) (Eq. [2]) imposes certain conditions
we in the input space (Hi, Hs) for the activation of the two populations constitut-
ss ing the architecture shown in Figure[l} As a consequence, when the amplitude
ws of the inputs are high enough to activate the two populations, the intrinsic fast
o Thythm (50 Hz) coexist with the external slow driving (w;/(27) = 3.33 Hz) in
ws the resulting oscillatory dynamics. The fast rhythm cease if any of the two
wo populations is deactivated. The locus in the (H;, Hs) space defined by the ac-
o0 tivation conditions does not depends on the temporal evolution of the inputs
o1 Hi, Hy (See Figure 13 in Appendix A of [I]). As a result, the trajectory of a
o periodic driving dynamics (H; (t), H2(t)) crosses the locus of the activation con-
o3 dition in the same phase of the slow driving period (w;/(27) = 3.33 Hz). Thus,
o in the case of oscillatory inputs Hy and/or Hs capable to periodically activate
a5 and deactivate the populations of the intrinsic oscillator we obtain a PAC pat-
as  tern associated to the intermittent occurrence of the fast rhythm phase locked
o7 to the slow external driving (i.e. PEI mechanism. See Figure 13 in Appendix
as A of [1])

oo Importantly, due to the rectification process involved in the PEI mechanism
so in presence of threshold linear activation functions, the amplitude of the fast
se1 oscillation goes to zero at some particular phase of the slow cycle, hence, the
w2 fast oscillation resets its phase relative to the slow driving in each cycle (see
w3 Figure ) As a consequence, the waveform shape of the resulting oscillatory
ss dynamics is almost the same in each slow cycle even when the slow and fast
wes rhythms have independent frequencies. This repetitive waveform shape (Figure
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s [L8D) is characterized by a high harmonic content in its power spectrum (Figure
w7 [L8E) which accounts for the high harmonicity reported by the TLI metric for
s high driving amplitude values (Figure ) We found that increasing levels of
0 intrinsic noise 7; (see Section applied on the model constituted by threshold
wo linear activation function S(I;) produce a drop in both the harmonicity and the
s intensity of the PAC as shown in Figures [I8[C, and [IM. That is, it seems
o2 that the harmonic content and the PAC intensity are intrinsically linked by the
w3 rectification mechanism associated to threshold linear activation functions.

we  We also investigate the characteristics of the PAC patterns observed in the os-
os cillatory dynamics of the model shown in Figure |1 constituted by the infinitely
ws differentiable softplus activation function defined in Eq. [3|. It was found that
o7 in absence of noise, the PEI mechanism associated to softplus activation func-
s tions elicit PAC patterns with high harmonic content (i.e. harmonic PAC) in
0o the resulting oscillatory dynamics (data not shown). However, in a more real-
woo  istic scenario including a small level of intrinsic noise 7; applied on the model
wa  constituted by softplus activation function S.(I;), the harmonicity was signifi-
we cantly reduced and the PAC instensity was kept almost unchanged (see Figure
wos [B.12]in [Appendix B.5). This result suggest that the harmonic content and the
we PAC intensity are not intrinsically coupled in presence of the softplus activation
s function and can be interpreted as follows. Due to the fact that S.(I;) > 0, the
wes amplitude of the intrinsic fast rhythm (50 Hz) is effectively modulated by the
wor  external driving (w;/(27) = 3.33 Hz) but it does not becomes strictly zero at
ws any phase of the slow rhythm, hence, the fast oscillation never resets its phase
wo  relative to the slow driving. Thus, the two oscillations with incommensurable
oo frequencies (50 Hz, 3.3 Hz) coupled via the PEI mechanism in absence of phase
o reseting, produce an oscillatory dynamics similar to that shown in the right
2 panels of Figure [3| (non harmonic PAC).
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Figure 18: Harmonicity-PAC plot computed for the simulated dynamics of the biologically
plausible neural network model shown in Figure[T]using the threshold linear activation function
S(I;) (Eq. . Note that two coupled oscillatory dynamics with independent fundamental
frequencies can produce ‘true’ PAC patterns with high harmonic content via rectification
mechanisms (panels D and E). The neural network dynamics (solid black line) shown in panels
A, D, F, I, K and N were simulated as described in using the configuration detailed in
Table resulting in an oscillatory dynamics in the gamma band (50 Hz). Besides, we use the
following set of hyperpameter values: sampling rate fs = 20 kHz, H1 = 0, Hy = Ag cos(2m fat)
with fo =~ 3.3 Hz. To compute the harmonicity-PAC plots shown in panels C, H and M, the
parameter As controlling the amplitude of the oscillatory input Ho was increased from A = 0
(see panels A, B, F, G, K, L) up to A2 = 0.3 (see panels D, E, I, J, N, O). In panels C, H
and M, the pseudocolor scale represents the As values ranging from =~ 0 (blue) to = 0.3 (red).
The neural network dynamics was simulated using intrinsic noise n; of type AWGN to the
node inputs I; (see Section . Panels C, H and M were computed with a noise level of 5,
10 and 20 percent of the external input maximum amplitude (A2 = 0.3) scaling the standard
deviation o; of the additive white Gaussian noise n; ~ N(0, 0;), respectively. We computed
theneural network dynamics for 10 sec. time interval and then the first 5 sec. of the time
series were discarded to remove the transient period of the numerical simulation. The power
spectra (solid blue line in graphs B, E, G, J, L and O) were computed unsing a 5 sec. epoch
from the synthetic dynamics shown in the corresponding graphs (solid black line in graphs A,
D, F,I, K and N). In graphs B, E, G, J, L and49, the power responses (i.e. square magnitude)
of the BPF used to compute the LF and HF signals are shown as dotted green and red lines,
respectively. To obtain all the band-pass filtered signals shown in this figure we use the BPF
as described in In all the cases shown in this figure, the bandwidth of the BPF
for the LF (LF BPF) and HF (HF BPF) components were set at Bwpr &~ 3.3 Hz centered
at ~ 3.3 Hz and Bwyr ~ 43.2 Hz centered at 50 Hz, respectively. In graphs A, D, F, I, K
and N, the resulting band-pass filtered LF and HF signals are shown as solid green and solid
red lines, respectively. The harmonicity metric (TLI) was computed as it was described in
Section The PAC metric (PLVpac) was computed using Eq. [4] with the configuration
given by Eq. [A20land M = N = 1.
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s 4. DISCUSSION

1014 In this work we provided an in-depth characterization of the Time Locked
s Index (TLI) as a novel tool aimed to efficiently quantify the harmonic content of
w6 NOisy time series, and to assist the interpretation of CFC patterns observed in
w7 oscillatory dynamics of physical and biophysical systems. It was demonstrated
ws  that by operating in the time domain the TLI reliably assesses the degree of
e time-locking between the slow and fast rhythms, even in the case in which sev-
wo eral (harmonic) spectral components are included within the bandwidth of the
wn  filter used to obtain the fast rhythm. In this aspect, the TLI measure outper-
w2 forms the PLV and pairwise phase consistency metrics since the former is more
w23 robust against changes in the bandwidth or transition bands steepness of the
s  BPF used to compute the HF component (see Figures and and re-
s lated discussion).

w6 We exploited the TLI metric together with other complementary signal process-
w2 ing tools to perform the harmonicity analysis on several types of CFC patterns
s using simulated and synthetic oscillatory dynamics under controlled levels of
w9 extrinsic (i.e. of observation) and intrinsic noise. To avoid the introduction
wp of unnecessary timescales on the analyzed oscillatory dynamics, White Gaus-
0n sian noise (AWGN) was used for this purpose. Since CFC is a rather ubiqui-
w2 tous phenomenon observed in a variety of physical systems, from physiological
w3 signals in the endocrine and cardiorespiratory systems, the neural activity of
13« the human brain to the atmospheric variables, astronomical observations, earth
0 seismic waves, nonlinear acoustics and stock market fluctuations (see [I] and
s references therein), our approach introduces a novel signal processing toolbox
ww  (and methodology) relevant to many physical and biophysical disciplines. CFC
w3 phenomenon observed in neural recordings has been proposed to be function-
w3 ally involved in neuronal communication, memory formation and learning. In
weo  particular, experimental findings have shown that PAC and PPC patterns are
wa  important variants of CFC linked to physiological and pathological brain states
02 like those observed in Parkinson’s disease and epilepsy [1I, 111, BT, 34]. As it was
w43 discussed in Section (I}, we recall that PPC is a signature related to the pres-
s ence of harmonic spectral components in the underlying oscillatory dynamics.
wss  In this regard, the interpretation of the PAC patterns observed in local field
ws potentials (LFP) recorded in humans and animal models remains challenging
we  due to the fact that the brain activity is, in general, characterized by non si-
1w nusoidal oscillatory dynamics. The latter raises the question of whether PAC
e patterns are indicative of true interactions reflecting a mechanistic process be-
wso  tween two independent neural oscillators, or whether it might be a more trivial
ws1 consequence of spectral correlations due to the non sinusoidal waveform con-
02 stituting the recorded time series [Il 20, [35]. The apparent PAC that arises
w53 from non sinusoidal dynamics with high harmonic content has been hypothe-
0s¢  sized to be informative about the underlying neural processes [7], and it was
wss  experimentally demonstrated for interacting non linear acoustic oscillators in
wss  [36]. However, the interpretation of the PAC phenomenon is completely dif-
7 ferent according to the mechanism that generates it. For instance, in [11] we
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wss  demonstrated, through a harmonicity-PAC analysis using the TLI metric, that
wso harmonic and non harmonic PAC patterns coexist during the seizure dynamics
weo recorded with intracerebral macroelectrodes in epilepsy patients. We found that
wet  harmonic and non harmonic PAC patterns observed during the ictal activity can
w2 be interpreted as emerging features linked to the restrained and paroxysmal de-
wes  polarizing shifts, which constitutes two essentially different neural mechanisms
wee  of seizure propagation. Importantly, the capability of the TLI metric to quan-
wes  titatively distinguish the non harmonic PAC pattern, is clinically relevant since
wes  this specific pattern has been previously associated with the ictal core through
ez the paroxysmal depolarizing shifts mechanism of seizure propagation.

e 'The evidence discussed above highlights the relevance to unravel the com-
weo plex interplay between spectral harmonicity and different types of CFC. Sev-
wo eral approaches and controls have been previously proposed to address the
wn true/spurious dichotomy in connection with PAC. In [37] it was argued that
w2 an increase in PAC intensity associated with a decrease in power of the modu-
w3 lating LF component would be an indication of the existence of ‘true’ coupling.
wa  Conversely, the presence of concomitant AAC and PAC patterns could be a
wrs  proxy for ‘spurious’ PAC, in which the thigh correlation between the ampli-
we  tude of the putative modulating LF and the modulated HF rhythms giving rise
w7 the AAC pattern, are produced by harmonically related spectral components
ws  constituting an underlying non sinusoidal oscillatory dynamics [38]. Another
w9 approach suggested in [37] refers to the use of multimodal recordings (e.g. LFP,
0o single and multi unit activity). Specifically, analysis of spike-triggered LFP
ws1  recordings can be used to confirm that spike timing is clocked by the phase
e of ongoing HF component (e.g. gamma oscillations), hence, revealing that the
13 modulated fast rhythm is not an HF harmonic of the slow modulating rhythm
w8« but associated to genuine HF oscillatory activity. Multi site recordings allow
wss  measures of inter area PAC in which slow and fast rhythms are extracted from
wss time series recorded in different neural populations. Importantly, measures of
wgz  inter area PAC in which the slow and fast rhythms are generated in distinct
wss  oscillators reduce concerns on spurious coupling [37, B9]. In this regard, it has
s been noted that one-to-one mapping between electrode measurement (i.e. time
o series) and neural source of oscillations (e.g. LFP) does not hold in real data,
w  as there are multiple neural networks that generate fields measured by a single
we electrode [I7, 40]. Thus, the electrode time series is the result of a mix that
w3 could have very non sinusoidal waveform shape that is not present in any of the
we  individual sources [I7), [40]. Multichannel recordings in combination with tools
wes  for CFC source identification have been proposed as a way to disambiguates
wss  this issue [1I7, 40} [39)].

w7 Here we noted that in all these previous works it has been implicitly assumed
wes  that ‘spurious’ CFC patterns are intrinsically linked to an underlying non sinu-
109 soidal oscillatory dynamics characterized by a high harmonic content in its power
no  spectrum. However, our results suggest that this assumption does not hold in
uo  realistic scenarios. In Velarde et al. [I] we analytically demonstrated that PAC
n2  phenomenon naturally emerges in mean-field models of biologically plausible
nos  networks, as a signature of specific bifurcation structures. Importantly, Velarde

o1
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uoe et al. [I] found that the mechanisms producing ‘true’ PAC (i.e. secondary Hopf
uos  bifurcation and PEI mechanism), in general elicit two coupled non sinusoidal
uos  oscillatory dynamics with independent fundamental frequencies. These results
uor  suggest that the resulting oscillatory dynamics underlying ‘true’ PAC is in gen-
nos eral characterized by a high harmonic content in its power spectrum. In this
ne  work we quantitatively analyzed the role of the spectral harmonicity in different
mo  types of CFC patterns not restricted only to PAC and thus, providing a broader
un  vision on this open issue in comparison to that addressed in previous reports.
uz  The results obtained using biologically plausible neural network models and
w3 more generic non linear and parametric oscillators reveal that harmonicity-CFC
ms  interplay is more complex than previously thought.

ws In line with the discussion given above about co-occurring AAC and PAC pa-
s terns [37, [38], we found that special care should be taken to interpret CFC
urr  patterns involving the same properties in the LF and HF frequency bands (e.g.
ms PPC, AAC, FFC) since they might be epiphenomenal patterns elicited by a
mo  single non sinusoidal oscillatory dynamics constituted by harmonically related
uo frequency components, in which the harmonic components within the HF band
un  follows the changes of the fundamental frequency component in the LF band
nz  (see Section [3.2). However, in Sections and we show that concomitant
us  PAC and PFC patterns were related to the presence of ‘true’ PFC with high har-
e monic content via the rectification mechanisms elicited by the PAC pattern. As
s a conclusion, the co-occurrence of multiple CFC patterns should not be taken as
e a straightforward indicator of spurious coupling per se. In Section we show
uzr  that a single oscillatory dynamics characterized by a non constant oscillation pe-
uzs  riod can produce ‘spurious’ CFC with low harmonic content (i.e. non harmonic
us  CFC). This type of oscillatory dynamics is commonly observed in oscillators
un undergoing a chaotic regime or non linear oscillators under the effect of intrinsic
uan  noise (Figure ) On the other hand, in Sections and we show that
u2  two coupled oscillatory dynamics with independent fundamental frequencies can
uzn  elicit ‘true’ CFC with high harmonic content via rectification mechanisms (or
uu  other post-interaction nonlinear processing mechanisms). In Table [3| we resume
s the evidence supporting the conclusion that ‘true’ and ‘spurious’ concepts ap-
s plied to the CFC patterns are not intrinsically linked to the harmonic content
uzz  of the underlying oscillatory dynamics. Based on this results, we claim that
s the high harmonic content observed in a given oscillatory dynamics is neither
u  sufficient nor necessary condition to interpret the associated CFC pattern as
mo  ‘spurious’ or epiphenomenal, i.e. not representing a true interaction between
ua  two coupled oscillatory dynamics with independent fundamental frequencies.
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Table 3: Summary of the harmonic and nonharmonic cross-frequency couplings
observed in simulated and experimental oscillatory dynamics.

Nature of the CFC

True CFC*

Spurious CFC**

Harmonicity

PAC:

- Forced parametric oscillator with
additive noise (Figures [17D,E.F,G,
B.10D,E,F,G and [B.11D,E,F.,G).

AAC:
- Coupled non linear acoustic oscil-
lators [36].

- PEI mechanism without phase- | PAC:
resetting (Figure ,J ,N,0). - Non linear oscillator with intrinsic
© | - Secondary Hopf bifurcation [I]. noise (Figure [I5K,L).
§ | - Epileptiform local field potentials,
£ | e.g. spike-wave discharges associ- | AAC:
E ated to the paroxysmal depolarizing | - Forced non linear oscillator with
< | shifts [I1]. intrinsic noise (Figures [I6D,E).
o
z PFC: FFC:
- Forced parametric oscillator with | - Forced non linear oscillator with
additive noise (Figures [L7K.L, | intrinsic noise (Figures [L6],J).
BLI0K L and BTIK.L).
PAC:
- PEI mechanism with phase-
resetting (Figure [I8D,E and [1]). PAC:
- Epileptiform local field potentials, | - Non linear oscillator (Figure
e.g. non sinusoidal repetitive wave- | [I5D,E,LJ, [1] and [36]).
o | form shapes associated to restrained
'S | depolarising shifts [11]. AAC:
9 . . .
£ - Forced non linear oscillator (Points
"E PFC: in Figure located in between

panels A and D).

FFC:

- Forced non linear oscillator (Points
in Figure [I6H, located in between
panels F and I).

* True CFC: Two (or more) coupled oscillatory dynamics characterized by
independent fundamental frequencies.

** Spurious CFC: A single non sinusoidal oscillatory dynamics characterized by
dependent, i.e. harmonically related, frequencies.
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ue 5. CONCLUSION

1143 We found that harmonic and non harmonic patterns associated to a variety
uss  of CFC types (e.g. PAC, PFC) naturally emerges in the dynamics characterizing
uss  biologically plausible neural network models and more generic non linear and
e parametric oscillators. Substantial evidence was presented supporting the con-
uer  clusion that ‘true’ and ‘spurious’ concepts applied to the CFC patterns are not
s intrinsically linked to the harmonic content of the underlying oscillatory dynam-
o ics. More specifically, the high harmonic content observed in a given oscillatory
uso dynamics is neither sufficient nor necessary condition to interpret the associated
usi  CFC pattern as ‘spurious’ or epiphenomenal, i.e. not representing a true inter-
us2 action between two coupled oscillatory dynamics with independent fundamental
us3  frequencies. In addition, the proposed signal processing techniques provide an
use extension of the traditional analytic toolkit used to quantify and interpret CFC
uss patterns observed in oscillatory dynamics elicited by physical and biophysi-
uss cal systems. There is mounting evidence suggesting that the combination of
usz - multimodal recordings, specialized signal processing techniques and theoretical
uss  modeling is becoming a required step to completely understand CFC patterns
use  observed in oscillatory rich dynamics of physical and biophysical systems.
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1 Appendix A. Supplementary methods

> Appendiz A.1. Synthetic signals

3 Synthetic dynamics associated to the analysis of various PAC and PPC pat-
+ terns were computed as follows,

w(t) = £)(2psp(t) + alt) + 2(t) + 2w (t)) + n(t) (A.1)

s In Eq. t € Z is the discrete time index, zpgp(t) is the amplitude modulated
s (double side band) signal with a sinusoidal carrier of frequency frr, a(t) is the
7 modulating signal, z,(t) is a sum of harmonic oscillations of the fundamental
s frequency fLr, zgr(t) is a sinusoidal component with frequency fgr, n(t) rep-
o resent extrinsic (i.e. of observation) additive white Gaussian noise (AWGN).
1 The amplitude envelope of the entire time series £(t) was included to emulate
u  CFC and harmonicity transients in the synthetic dynamics and it was defined
12 in terms of the sigmoid function,

™
—~
o~
=

S(t) + S(-t) (A.2)
1
St) = 15 e—al=p)’ (A.3)
13 where a and 3 are parameters controlling the edge steepness and the time shift
1 of the time series envelope, respectively. For synthetic oscillatory dynamics in
15 permanent regime with no transients we use £(¢) = 1. The amplitude modulated
16 signal zpgp(t) was defined as,

2psp(t) = ((a(t) () (L—m) +c Ay (14 m)) Sin(27 frrpt + de) (A.)

7 In Eq. a(t) defines the shape of the amplitude envelope of the sinusoidal
18 carrier with frequency frp, A, is the maximum value of the modulating a(t),
v Ny(t) is additive white Gaussian noise (AWGN) intrinsic to the modulation
20 process, m define the modulation depth (m = 0 imply maximum modulation
2 depth and m = 1 for no modulation) and ¢ is the carrier factor controlling the
» type of amplitude modulation (AM),

Double-SideBand with Carrier (DSB-C), Ve>1
AM type = { Double-SideBand Reduced-Carrier (DSB-RC), V1i>c>0

Double-SideBand Suppressed-Carrier (DSB-SC), Vc¢=0
(A.5)
s For the sake of consistency with modulation depth (m) and carrier factor (c)
2« parameters in Eq. the modulating signal a(t) must satisfy the condition

s min(a(t)) = —max(a(t)). We explored two types of waveform shapes for the
2 periodic modulating signals a(t). The sinusoidal modulating signal was defined
27 as,

a(t) = Ay, sin(2rfrpt + éum) (A.6)
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s On the other hand, the periodic Gaussian modulating was defined as,

alt) = g (t mod TSF) i Top = fL% (A.7)
gt) = A, (2 e 1) (A.8)

2 In Eq. g(t) define a single period with the shape of a Gaussian probability
s density function with standard deviation o. In Eqs. g(t) is repeated with
a a period of Tpr samples to obtain a periodic modulating signal a(t) with a
2 Gaussian waveform shape.

1 The z,(t) and 2y p(t) signals were defined as follows,

Np,

an(t) = > Ay sin(k2rfLpt + ér) (A.9)
k=1

zpr(t) = App sin2rfprt+ opr) (A.10)

u  Appendiz A.2. Van der Pol oscillator

3 The Van der Pol oscillator is a non linear and time invariant system whose
s dynamics is defined by the following differential equation,

Z—p(l —m2)ds—|—(wo—|—Wp)2x:Fe, (A.11)

s7  where the over-dot represents time derivative, y is a scalar parameter controlling
s the nonlinearity, wg = 27 fj is the angular frequency of oscillation when p = 0,
s W, =0 and F. = 0. The time variant parameter W, and the external driving
o F, were defined as,

W, = A, cos(2mf,t) (A.12)
A, = 27F,

F. = A. cos(2rf.t+86.) (A.13)
Ae = A cosrfpt) (1—m)+c A, (1+m)

s where F}, and f, have units of Hz, F, is defined as an amplitude-modulated ex-
« ternal driving with frequency f. and constant phase 6., being f,, the frequency
s of the sinusoidal modulating, A,, the maximum value of the modulating, m
« the modulation depth and ¢ the carrier factor controlling the type of ampli-
s tude modulation (see Eq. . In presence of noise, the dynamics of the Van
s der Pol oscillator is described by the following system of stochastic differential
o equations,

Ty = z2+ g1 ,
By = p(l—af)xy — (wo+Wp) z1 + Fe + gonpe (A.14)
r = x1+7

w# InEq. m and 1), are independent and identically distributed random vari-
w0 ables representing intrinsic noise, and 7 represent extrinsic (i.e. of observation)
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so noise. For the simulations computed with the Eq. we use independent and
s normally distributed random variables for both intrinsic (n1,72) and extrinsic
2 (n) noise (i.e. white Gaussian noise). Therefore, the intrinsic noise components
s in Eq. result m; &= N (0, ¢1) and 72 ~ N (0, g2), where g; and go represent
s« the standard deviation of the zero-mean normal distribution A/. Unless oth-
s erwise specified, we use Additive White Gaussian Noise (AWGN), that is, the
ss  parameters defining the noise intensity g1 and go do not depend on the state
s7 variables 1 and xo. In the case of g; = g2 = 0, Egs. and are equiv-
ss alent. In addition, we fixed fo = 10 Hz and 6. = 0. Regarding the numerical
s integration of the stochastic differential equation we use an explicit solver
o based on the Euler-Heun method [41].

oo Appendiz A.3. Parametric oscillator

62 To analyse the PFC patterns we use a linear and time variant system based
63 on a 2nd order parametric oscillator whose dynamics is defined by the following
¢ differential equation,

&+ pi 4wl (1+Wy) o = F,, (A.15)

s where the over-dot represents time derivative, p is the parameter defining the
e intensity of the dissipative term, wy = 27 fy is the angular frequency of oscilla-
&7 tion when o =0, W, =0 and F, = 0. The time variant parameter W, and the
e external driving F, were defined as,

W, = A, cos(2mfpt) (A.16)
F. = A, cos(2nfct+0.), (A.17)
o where f, and f. have units of Hz, 6§, is a constant phase in rads., the parameters
7 Ay, and A, defines the intensity of parametric and external driving, respectively.

7 In presence of noise, the dynamics of the parametric oscillator is described by
22 the following system of stochastic differential equations,

9.31 = X2 +gl771
Tog = —uxg— w(2) 1+ Wp)x1 + Fe + g2 (A.18)
r = I1+7

7 In Eq. 11 and 7y are independent and identically distributed random vari-
7+ ables representing intrinsic noise, and 1 represent extrinsic (i.e. of observation)
75 noise. For the simulations computed with the Eq. [A18] we use independent and
7 normally distributed random variables for both intrinsic (11,72) and extrinsic
77 (n) noise (i.e. white Gaussian noise). Therefore, the intrinsic noise components
7 in Eq. result m1 &~ N(0,g1) and 1y = AN(0, g2), where g; and go repre-
7o sent the standard deviation of the zero-mean normal distribution N. Unless
9o otherwise specified, we use Additive White Gaussian Noise (AWGN), that is,
a1 the parameters defining the noise intensity ¢g; and go do not depend on the
2 state variables z; and z5. In the case of g, = go = 0, Eqs. and are
s equivalent. In addition, we fixed fo = 100 Hz, p = 200, f, = f.. Regarding
s the numerical integration of the stochastic differential equation we use an
s explicit solver based on the Euler-Heun method [41].
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s Appendiz A.4. Cross frequency coupling metrics

Egs. to show the proper configuration of the ygp(t), ¢ r(t) and
s ¢rr(t) time series to quantify PPC, PAC, AAC, PFC, AFC and FFC by means

s of the PLV, MVL and KLMI metrics using Eqs. [4 to [7]

©

)
Q

©

ppo | PF =8 (@in) (A.19)
¢nr =arg (v5p)

pac {0 =welein) (A.20)
our =arg (yip), yar = anr = |} 5|

AAC ¢LF = arg (yfp) yYLF = ALF = |$}:F| (A.21)
bur = arg (y;rIF) yYHF = GHF = |35J15F|

pro { 0w =2 (i) (A.22)
dur =arg (Up), yur = Qur

AFC ¢LF = arg (yZ_F) y YLF = aLF = ’fUJLrF’ (A.23)
our =arg (Qfp), yar = Qur

FFC drr =arg (), yor = Qur (A.24)
our =arg (Qfp), yur = Qur

o The time series configuration to assess PC using Eq. [§]is given by Eq.
PC {¢f(t) = arg (x}“(t)) .f e {LF,HF) (A.25)

o The ygr(t), dur(t) and ¢rp(t) time series required to assess the six types of
22 CFC were computed using the Filter-Hilbert method (see Chapter 14 in [I7]).
o3 In brief, the raw time series z(t) was band-pass filtered around the frequency
u band of interest f € {LF, HF'}, then, the analytic signal xlf (t) corresponding
o5 to the filtered time series x¢(t) was computed in the frequency domain using
o the following equations [30] [42],

Xplw) = Flap(®)}
2Xf(w), Yw>0
Xfw) = ¢X5(0), Yw=0 (A.26)
0, Vw<O0
vE(t) = FHX[ (W)} =ap(t) + iz (t)

dp(t) = Im{ap ()} =H{zp(t)},
o In Eq. t € Z is the discrete time index, w is the non dimensional angular

e frequency (see[Appendix A.6)), X (w) is the discrete Fourier transform, ¢ is the

o imaginary unit, H{.} denotes the Hilbert transform, I m{x}“(t)} stands for the
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w0 imaginary part of xj{ (t) and the operators F{.} and F~1{.} denote the discrete
1w Fourier transformation and its inverse respectively, which were computed via
102 the fast Fourier transform algorithm.

s The amplitude envelope af(t) and phase ¢¢(t) time series for that particular
s frequency band f € {LF, HF'} were obtained by computing the absolute value
s and argument of the analytic signal ;v;{(t), respectively:

¢f(t) = arg (x]f(t)) = arctan (ff(t)> [rad.] (A.27)

xf(t)
‘x}f (t)‘ (A.28)

af(t)

s In Eqgs. [A.22] |[A.23| and |[A.24] the instantaneous frequency time series Qpp(t)
w and Qgp(t) were computed following the procedures described in the Section

108

109

wo  Appendiz A.5. Band-pass filtering

1w The band-pass filters (BPF) involved in the computation of x¢(t) from the
w2 raw time series x(t) were implemented in the frequency domain by multiplying
us  the Fourier transform of the input signal by a Hann window and then, applying
s the inverse Fourier transform to get the band-pass filtered signal back in the time
us  domain (i.e. circular convolution in the discrete time domain) [T}, 1T}, 36]. Note
us that this filtering approach was used to effectively isolate the desired frequency
u7  bands (i.e. null-to-null bandwidth), which is not guaranteed when other linear
us filters are used (e.g. low order IIR filters) [31]. We verified that our BPF
o implementation do not produce neither phase distortions nor significant artificial
o oscillations in the output signal capable to generate spurious CFC [32], showing a
1 performance comparable to that of the FIR filters implemented in the EEGLAB
12 (eegfilt function, data not shown) [43]. In order to mitigate edge artifacts due to
123 the transient response of the BPFs and the computation of the analytic signals,
e we implemented the time series reflection procedure described in [I7]. Briefly,
125 time series are reversed in time, concatenated to both ends of the real-data time
126 series, analyses were performed, and then, the reflected portion of the data were
17 trimmed.

vs  Appendiz A.6. Fourier transform of the discrete time derivator

120 In this section we shall obtain the expression for the discrete Fourier trans-
1o form of the discrete time derivator defined as,

¢r(t) = ¢p(t = 1)
T

7 (A.29)

wm where Ty, = 1/f5 is the sampling time interval corresponding to the sampling
2 rate fs. Taking into account the analysis and synthesis equations of the discrete
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133 time Fourier transform,

N,—1
Flost)y =pk) = > op(t)e’¥H (A.30)
o1(t) = 7 D Brk)e N, (A.31)
S k=0

134« where i is the imaginary unit, ¢,k € Z are the discrete time and frequency in-
135 dices, respectively and N; is the number of samples of the time series. Applying
3 Eq. to Eq. and introducing the non dimensional angular frequency
w w =k 2m/N;, we obtain,

f{ o (t) *;Sf(t -1 } = o Opw) (1) (A.32)

= fs Ps(w) (1 —cos(w) +i sin(w)) (A.33)

s where we have applied the time shifting property of the Fourier transform (in
13 this case for a time shift ¢ = —1). The Eq. [A-32]is the discrete Fourier transform
uw of the discrete time derivator in Eq.

w1 Let us now consider that the oversampling condition given by fs > f : f €
w {LF,HF} is satisfied. As a consequence, in the discrete frequency domain this
w3 condition implies k < Ng, or equivalently, w =~ 0. Under this condition, the Eq.
144 can be well described by a first order approximation in the non dimensional
us angular frequency w which can be written as,

f{ O7(t) = 65t~ 1) }

Q

T Fo®p(w)(1— 141 w) (A.34)

Q

fsiw ®p(w) (A.35)

us Appendix B. Supplementary results

w  Appendix B.1. Bias of the TLI

148 Figure shows that the TLI and PLVppc metrics present a comparable
1o bias when computed on non harmonically related oscillations. Figure shows
150 that the bias of the TLI and PLVppc metrics rapidly increases for epoch lengths
151 shorter that ~ 10 cycles of the slow rhythm, being this bias rather independent
152 of the noise level (AWGN) and the non harmonic ratio (R = fyr/frLr) between
153 the slow and fast oscillations.


https://doi.org/10.1101/2020.10.15.341800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.10.15.341800; this version posted November 1, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Epoch length = 5sec.

Epoch length = Ssec.

14

TLI [arb. units]
PLV [arb. units]
=

) 0=
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
HF banwidth [Hz] HF banwidth [Hz]

HF banwidth = 102.6Hz

HF banwidth = 102.6Hz

e
o

PLYV [arb. units]
I

TLI [arb. units]

Epoch length [sec.]

1 T
HF banwidth = 3Hz =371
X _ 08 319

) 7

Zo. 506
£ £
&) 8

=, 04
=] >
= )

0.2

v . = = 0

5 10 15 20 25 30 5 10 15 20 25 30
Epoch length [sec.] Epoch length [sec.]

Figure B.1: The TLI and PLVppc metrics present a comparable bias when computed on non
harmonically related oscillations. In all the cases shown in this figure, we used a sampling
rate of fs = 2000 Hz and the bandwidth of the BPF for the LF component (LF BPF) was
kept fixed at Bwpp = frp. We use the BPF as described in Besides, in all
the cases shown in this figure the noise level is expressed as the percent of the amplitude of
the LF component at fr,r Hz scaling the standard deviation o of the additive white Gaussian
noise N'(0,0). Panels A, B, D and E, were computed using a synthetic dynamics similar to
that used in Figure [5] but in this case it is constituted by two non harmonic oscillations at
for =9 Hz and fyp = 7.2fLr = 64.8 Hz. For panels A, B, D and E, the PLVppc was
computed using Eq. E with the configuration given by Eq. and M =1, N =17. (A,
D) TLI and PLVppc metrics as a function of the HF bandwidth (Bwg ) corresponding to
the filter HF BPF used to obtain the HF signal (zgp(t)), and taking the level AWGN as a
parameter. The minimum and maximum Bwpgr values used to compute the graphs B and E
were 9 Hz and 102.6 Hz, respectively. To compute these graphs, the epoch length was kept
unchanged in 5 sec. (B, E) TLI and PLVppc metrics as a function of the epoch length and
taking the level of additive white Gaussian noise (AWGN) as a parameter. To compute graphs
B and E, the bandwidth of the filter HF BPF was kept unchanged at Bwgr = 102.6 Hz.
Our implementation of the TLI algorithm (Section requires at least 3 cycles of the low
frequency oscillation (frr = 9 Hz), which determines the minimum epoch length shown in
graphs A and D (3/frF & 0.3 sec.). The maximum epoch length used to compute graphs A
and D was 100/ frr =~ 11.1 sec. (C, F) The TLI and PLVppc metrics as a function of the
epoch length and taking the non harmonic ratio R = fgr/fLF as a parameter. Panels C and
F were computed using a synthetic dynamics similar to that used in Figure[5] but in this case
it is constituted by two non harmonic oscillations at frr = 3 Hz and fgr = R X frp with
R =3.2,13.1,89.1,180.1. To compute graphs C and F, the bandwidth of the filter HF BPF
was kept unchanged at Bwyp = Bwpp = frr = 3 Hz. The noise level was set to 20 percent
of the amplitude of the LF component at frr = 3 Hz. The minimum and maximum epoch
length shown in graphs C and F are 3/frr = 1 sec. and 100/ frr = 33.3 sec., respectively. In
all the panels, the solid lines represent the me;}n values and the shaded error bars correspond
to the standard deviation of 100 realizations at each point.
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s Appendix B.2. CFC time series and the bias produced by phase clustering

155 Figures and show the temporal evolution of the PAC (PLVpac),
15 harmonicity (TLI) and phase clustering (PCr) metrics for synthetic dynamics
157 presenting non PAC and a transient pattern of non harmonic PAC, respectively.
158 Figures and should be compared with the results for a synthetic dy-
150 namics presenting a transient pattern of harmonic PAC (Figure @[)
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Figure B.2: Temporal evolution of the PAC (PLVp a¢), harmonicity (TLI) and phase cluster-
ing (PCLF) metrics during a synthetic dynamics without PAC. To obtain all the band-pass
filtered signals shown in this figure we use the BPF as described in (A) Syn-
thetic dynamics (solid black line) together with the HF and LF signals shown as solid red and
green lines, respectively. The dynamics (solid black line) was synthesized using Eqgs. and
with the following hyperpameter values: sampling rate fs = 2000 Hz, ¢ = 1 (i.e. DSB-C),
zero modulation depth m = 0, 1, = 0, we used a sinusoidal modulating a(¢) with the funda-
mental frequency at fo = frr = 3 Hz as given by Eq. with A, = 1, zppg was set with
fur =89 X frp = 267 Hz, ¢ =0, zgr = 0, for 2z, we use A1 =4, A, =1V 2< k<4,
A =0V k > 5 and ¢ = 0V k. The transient pattern was implemented through the time
series envelope £(t) as defined in Egs. and with o = 0.5 and S equals to one third
of the time series length. Extrinsic noise n(¢) was added as shown in Eq. In this case
the noise level corresponds to the 10 percent of the maximum amplitude of the determinis-
tic part of signal x(t) (i.e first term of the right-hand member of the Eq. [A7I), scaling the
standard deviation o of the additive white Gaussian noise (AWGN) n =~ N (0,0). The LF
(solid green line) and HF (solid red line) signals where obtained by filtering the raw signal
(solid black line) with the band-pass filters whose power responses are shown as dotted green
(Bwrrp = 1 Hz) and red (Bwygp = 30 Hz) lines in graph E, respectively. (B) Time series
showing the temporal evolution of the PLVp -, TLI and PCr metrics. These time series
were computed as described in Section [2.8 using the algorithm 2 summarized in Table[2] with
a sliding window of 20 sec. in length, i.e. 60 cycles of the slowest oscillatory component at
fo = for = 3 Hz. (C) TLI harmonicity map computed as described in Section using a
20 sec. epoch extracted from the center (Time =~ 100 sec.) of the synthetic dynamics shown
in panel A. In computing the map, all the TLI values below the significance threshold were
set to zero (see Section . The pseudocolor scale represents the TLI values ranging from 0
(blue) to 1 (red). (D) Zoom showing two cycles of the synthetic dynamics (solid black line)
together with the HF and LF signals shown as solid red and green lines, respectively. The two
cycle epoch corresponds to the center (Time = 100 sec.) of the synthetic dynamics shown in
panel A. (E) Power spectrum (solid blue line) computed from the synthetic dynamics (solid
black line in graph A). The power responses (i.e. square magnitude) of the BPF used to
compute the LF and HF signals are shown as dotted green and red lines, respectively. (F)
Comodulogram computed as described in Sectgon 277 computed from the same epoch used to
obtain the harmonicity map (panel C). In computing the comodulogram, all the |PLVp4c¢|
values below the significance threshold were set to zero (see Section . The pseudocolor
scale represents the |PLVp 4| values ranging from 0 (blue) to 1 (red). The harmonicity map
(panel C) and comodulogram (panel F) were computed using the same BPF (see

A3).
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Figure B.3: Temporal evolution of the PAC (PLVp4¢), harmonicity (TLI) and phase clus-
tering (PCL ) metrics during a synthetic dynamics presenting a transient non harmonic PAC
pattern. The synthetic dynamics was synthesized using the same parameter values than those
used in Figure@ except for the frequency of the carrier in the zppg signal which in this case
was set to fgp = 88.9 X frp = 88.9 x 3 =266.7 Hz. The PLVp ¢, TLI and PCppr metrics
were computed using the same set of hyperparameter values than those used in Figure[Q] The
description of the panels is the same than that given in Figure @}

160 Figures [0] and [10] in the main text show that the presence of phase cluster-
6 ing (PCpr) produces a bias which reduces the magnitude of the PAC metric
w2 (PLVpac) in presence of a harmonic PAC pattern. On the other hand, Figures
163 and illustrate the complementary situation in which the magnitude of
e the PAC metric (MV Lpac) in absence of PAC is biased from closed to zero
16s  (see Figure B.5B) toward higher magnitude values (|MV Lpac| ~ 0.6 in Figure
s [B.5B), as a consequence of the presence of phase clustering (PCLr). In Figures
167 and is also shown that the presence phase clustering (PCrr) introduces
s a bias that reduces the magnitude of the harmonicity metric (TLI) in presence of
6o harmonically related oscillations (fo = frrp =3 Hz and fgr =89 X frrp = 267
170 HZ)

10
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Figure B.4: Temporal evolution of the PAC (MV Lp4¢), harmonicity (TLI) and phase clus-
tering (PCLF) metrics during a synthetic oscillatory dynamics constituted by harmonically
related rhythms with no PAC. The synthetic dynamics was synthesized using the same pa-
rameter values than those used in Figure The MV Lpac (see Eq. , TLI and PCLp
metrics were computed using the same set of band pass-filters and hyperparameter values
than those used in Figure The description of the panels is the same than that given in

Figure
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Figure B.5: Temporal evolution of the PAC (MV Lp¢), harmonicity (TLI) and phase clus-
tering (PCLF) metrics during a synthetic oscillatory dynamics constituted by harmonically
related rhythms with no PAC. In this plot we use the same synthetic dynamics and the same
set of hyperparameter values to compute the metrics than those described in the caption
of Figure except for the bandwidth of the BPF used to compute the LF component
(Bwpr). In this case, the MV Lpac (see Eq. , TLI and PCp,r metrics were computed us-
ing Bwpp = 13.5 Hz centered around 7.5 Hz (see the dotted green line in panel E). This wide
BPF produces a non sinusoidal LF component (see solid green line in panel D), characterized
by a non uniform distribution of phase values producing the increase of the phase cluster-
ing (PCrr) during the dynamics (see solid red line in panel B). Note the bias in the PAC
(MV Lpac) and harmonicity (TLI) metrics due to the presence of phase clustering (PCLF).
The description of the panels is the same than that given in Figure

wm Appendiz B.3. A single oscillatory dynamics characterized by dependent fre-

172 quencies

173 Figure shows the phase portraits for the simulated dynamics of the Van
s der Pol oscillator, complementing the results shown in Figure of the main
175 text.
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Figure B.6: Phase portraits for the simulated dynamics of the Van der Pol oscillator. In
this figure we use the same synthetic dynamics and the same set of hyperparameter values
than those described in the caption of Figure [[5] In particular, the phase portraits were
computed using the dynamics z; in Eq. which only takes into account the effect of
the intrinsic noise, that is, without including the extrinsic (i.e. of observation) noise 7. (A)
Phase portrait corresponding to the dynamics shown in Figure (No PAC). (B) Phase
portrait corresponding to the dynamics shown in Figure (No PAC). (C) Phase portrait
corresponding to the dynamics shown in Figure [15D (Harmonic PAC). (D) Phase portrait
corresponding to the dynamics shown in Figure (Non harmonic PAC).

176 Figure [B.7] shows the harmonicity-PAC plot usnig the TLI, PLVp4c and
w K LM Ipac metrics computed for the simulated dynamics of the Van der Pol os-
ws  cillator with intrinsic noise of type non-additive white Gaussian noise (NAWGN).
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Figure B.7: Harmonicity-PAC plot computed for the simulated dynamics of the Van der Pol
oscillator with intrinsic noise of type non-additive white Gaussian noise (NAWGN). In this
figure we use the same synthetic dynamics and the same set of hyperparameter values to com-
pute the metrics than those described in the caption of Figure[15] except for the configuration
of the intrinsic noise. In this case, we use non-additive white Gaussian noise (NAWGN). For
the numerical integration of the stochastic differential equation [A.14] we use an explicit solver
based on the Euler-Heun method [4I] using the Stratonovich integral formulation. Impor-
tantly, we verified that the harmonicity-PAC plots shown in this figure do not change when
computed using the Itd integral formulation. For the panels A and B, the dynamics of the
Van der Pol oscillator was simulated using intrinsic noise of type NAWGN applied only on
the equation of #2 (g1 = 0 and g2 = 0.5z2 in Eq. . For the panels C and D, the
dynamics was simulated by applying the intrinsic noise of type non-additive white Gaussian
noise (NAWGN) on the equations of both @1 and 2 (i.e. g1 = 0.5z1 and g2 = 0.5z2 in Eq.
. Therefore, in this case the intrinsic noise components (NAWGN) in Eq. result
m ~ N(0,0.5z1) and 12 = N(0,0.5x2). Extrinsic noise n(t) was added as shown in Eq.
In this case the noise level corresponds to the 10 percent of the maximum amplitude of the
dynamics z1 in Eq. , scaling the standard deviation o of the additive white Gaussian
noise (AWGN) n =~ N (0, ¢). The harmonicity metric (TLI) was computed as it was described
in Section For the panels A and C, the PAC metric (PLVpac) was computed using Eq.
with the configuration given by Eq. and M = N = 1. For the panels B and D, we
compute the KLMIp s¢ using Egs. [B] and [7] with the configuration given by Eq. [A:20] Note
that the KLMIpac was normalized with its maximum value in each plot.

179 Figure [B.§ shows the phase portraits for the simulated dynamics of the Van
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1o der Pol oscillator, complementing the results shown in Figure of the main

181 text.
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Figure B.8: Phase portraits illustrating the simulated dynamics of the Van der Pol oscillator
under an amplitude-modulated external driving. In this figure we use the same synthetic
dynamics and the same set of hyperparameter values than those used to compute Figure Ep
In particular, the phase portraits were computed using the dynamics 1 in Eq. which
only takes into account the effect of the intrinsic noise, that is, without including the extrinsic
(i.e. of observation) noise 7. (A) Phase portrait corresponding to the dynamics shown in
Figure for Ae/(5x 10%) ~ 0.01. (B) Phase portrait corresponding to the dynamics shown
in Figure for Ae/(5 x 10%) =~ 0.1. (C) Phase portrait corresponding to the dynamics
shown in Figure for Ae/(5 x 10%) ~ 1.

w2 Appendix B.4. Two coupled oscillatory dynamics characterized by independent
183 frequencies

184 Figure shows the phase portraits for the simulated dynamics of the 2nd
155 order parametric oscillator, complementing the results shown in Figure of
15 the main text.
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Figure B.9: Phase portraits for the simulated dynamics of the 2nd order parametric oscillator.
In this figure we use the same synthetic dynamics and the same set of hyperparameter values
than those described in the caption of Figure In particular, the phase portraits were
computed using the dynamics z; in Eq. which only takes into account the effect of
the intrinsic noise, that is, without including the extrinsic (i.e. of observation) noise 7. (A)
Phase portrait corresponding to the dynamics shown in Figure [17]A,B (No PFC). (B) Phase
portrait corresponding to the dynamics shown in Figure[17H,I (No PFC). (C) Phase portrait
corresponding to an intermediate dynamics in between the cases shown in Figure [17]A,B and
Figure ,E. (D) Phase portrait corresponding to the dynamics shown in Figure L (Non
harmonic PFC). (E) Phase portrait corresponding to the dynamics shown in Figure [17D,E
(Harmonic PFC). (F) Phase portrait corresponding to the dynamics shown in Figure [17F,G
(Harmonic PFC).

157 Figures and show the PFC patterns corresponding to the oscil-
18 lator dynamics generated by simultaneously applying an off-resonance exter-
1o nal driving F, with the parametric driving W), tuned at the same frequency
w fo = fp = f0/11.62 ~ 8.61 Hz and 0, = 7/2 (see Eqs. [A.16] and [A.17). For
1 the configuration used to compute the Figures and [B.11}J, the intrinsic
112 noise is capable to drive the resonator at its natural frequency fy for low A,
103 values (see panels H and I in Figures [B.10] and [B.11]). However, no harmonicity
s is observed in Figures [B.10J and [B.11J for low A, values (see blue filled circles
s in Figures [B.10J and [B.11}J), due to the fact that we configured the external
ws  (fe) and parametric (f,) driving frequencies having a non harmonic ratio with
w7 the natural resonance frequency (fo) of the undamped oscillator (x = 0), i.e.
we  fe = fp = fo/11.62 ~ 8.6 Hz. In this regard, compare the harmonicity for low

s A, values (blue filled circles) in Figures L7, and .
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Figure B.10: Harmonicity-PFC plot computed for the simulated dynamics of the 2nd order
parametric oscillator with intrinsic noise of type additive white Gaussian noise (AWGN).
Note that two oscillatory dynamics with independent frequencies can produce harmonic PFC
patterns (panels D, E and F, G). In this figure we use the same synthetic dynamics and the
same set of hyperparameter values to compute the metrics than those described in the caption
of Figure except for the phase of the external driving 6. = 7/2 and the frequency of the
parametric and external driving, which were configured as fp = fe = fo/11.62 ~ 8.3 Hz (i.e.
fp and fe are non harmonics of fp). The harmonicity metric (TLI) was computed as it was
described in Section The PFC metric (KLMIppc) was computed using Egs. |§| and m
with the configuration given by Eq. [A:22] Note that the KLMIppc was normalized with its
maximum value in each plot.
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Figure B.11: Harmonicity-PFC plot computed for the simulated dynamics of the 2nd order
parametric oscillator with intrinsic noise of type additive white Gaussian noise (AWGN).
Note that two oscillatory dynamics with independent frequencies can produce harmonic PFC
patterns (panels D, E and F, G). In this figure we use the same synthetic dynamics and the
same set of hyperparameter values to compute the filtering and harmonicity metric (TLI)
than those described in the caption of Figure except for the phase of the external driving
fe = m/2 and the frequency of the parametric and external driving, which were configured
as fp = fe = fo/11.62 ~ 8.3 Hz (i.e. fp and f. are non harmonics of fp). The harmonicity
metric (TLI) was computed as it was described in Section In this case, the PFC metric
(PLVppc) was computed using Eq. Ewith the configuration given by Eq. and M =1,
N =1.

w0 Appendix B.5. Biologically plausible neural network model

201 Figure [B:12)shows the harmonicity-PAC plots computed for the for the sim-
22 ulated dynamics of the biologically plausible neural network model shown in
203 Figureusing the softplus activation function S(7;) (Eq. . The results shown
24 in Figure should be compared with those shown in Figure [I8| of the main

205 text.
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Figure B.12: Harmonicity-PAC plot computed for the simulated dynamics of the biologically
plausible neural network model shown in Figureusing the softplus activation function S(I;)
(Eq. . In this figure we use the same synthetic dynamics and the same set of hyperparameter
values to compute the metrics than those described in the caption of Figure[L8] except for the
activation function S(I;) which in this case was computed using the Eq. [3| with ¢ = 20.
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