
This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which 
may lead to differences between this version and the Version of Record. Please cite this 
article as doi: 10.1002/joc.6135 
 

Intraseasonal modulation of spring-strong wind events 

associated with convection in northeastern Argentina. 

Federico Otero 1 4 

Mariano S. Alvarez, Paola Salio and Carolina Vera 2 3 4 

 

1 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales 

2 Centro de Investigaciones del Mar y la Atmosfera CIMA – CONICET - UBA 

3 Departamento de Ciencias de la Atmósfera y los Océanos, FCEyN, UBA 

4 Instituto Franco-Argentino sobre Estudios de Clima y sus Impactos UMI IFAECI 3351-CNRS-

CONICET-UBA 

 

Manuscript submitted to 

International Journal of Climatology 

April 2018 

 

 

This article is protected by copyright. All rights reserved.



Corresponding author address: Federico Otero. Instituto Argentino de Nivología, Glaciología y Ciencias 

Ambientales. (IANIGLA) CCT Mendoza - CONICET. Av. Ruiz Leal s/n., Parque Gral. San Martín, 

(5500) Mendoza, Argentina. Email: fotero@mendoza-conicet.gob.ar 

Abstract 

The relationship between intraseasonal variability (IS, 10-90 days) and days which 

registered Convection-associated Strong Surface Wind Events (CSSWE) over 

Northeastern Argentina (NEA) was studied. The climatological behavior of these strong 

wind events showed a higher duration and occurrence in austral spring. CSSWE were 

categorized as a function of the wet and dry phases of the spring-Season IntraSeasonal 

(spring-SIS) index, which describes the activity of the leading pattern of IS-filtered 

outgoing longwave radiation (IS-OLR) during that season in eastern South America. A 

modulation of the IS variability over localized and mesoscale phenomena as the 

CSSWE was found, showing significant peaks of wind variability in that time scale, and 

especially the submonthly time scale. The CSSWE were categorized according to the 

phases of the spring-SIS pattern and most of them occurred before or during a wet 

phase, especially for the longer CSSWE. Moreover, the detection of CSSWE days 

during and before a dry phase was scarce. Rossby wave trains were observed to 

organize the circulation on intraseasonal time scales that configure regional cyclonic 

anomalies in such way which favors the development of CSSWE, promoting mid-level 

ascents over NEA and northerly advection of humidity to the region. Together with the 

composites of IS-OLR anomalies and the spectra of wind velocity, they support the fact 
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that the higher-frequency IS variability is the primary influence for the development of 

CSSWE. 

Key words: Surface winds, strong convective events, intraseasonal variability, 

Northeastern Argentina 

1. Introduction 

The potential for convective development in Southeastern South America (SESA) has 

been the focus of numerous studies. Nesbitt et al. (2003) and Rasmussen et al. (2014), 

among others, observed that the La Plata Basin is one of the regions with the highest 

frequency of occurrence of mesoscale convective systems (MCSs). In fact, Zipser et al. 

(2006) showed that this is one of the regions where the strongest MCSs on Earth occur. 

Responsible for approximately 60% of the total precipitation (Liu, 2011), MCSs in the 

region are also associated with severe weather events (Silva Dias, 1999, Matsudo and 

Salio, 2011, Mezher et al. 2012, Rasmussen et al. 2014, among others). The South 

American Low-Level Jet (SALLJ) east of the Andes transports considerable heat and 

moisture from the Amazon basin southward into the central plains of SESA, providing 

the ideal environmental conditions for convective initiation (Marengo et al. 2002, 2004, 

Vera et al. 2006, among others included in the text). SALLJ shows an intensity peak 

especially in spring months. The occurrence of extreme SALLJ events during 

summertime is associated with the presence of dipole-like outgoing longwave radiation 

(OLR) anomalies between SESA and the South Atlantic Convergence Zone (SACZ) 

region (Berbery and Barros, 2002 and Liebmann et al. 2004).  
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The SACZ is the region of South America with the largest IS activity with periods 

between 10 and 90 days (Liebmann et al. 1999). Nogues-Paegle and Mo (1997) show 

that this variability is associated with a meridional see-saw pattern of dry and wet 

conditions over tropical and subtropical South America (TSA). This pattern is 

influenced by the larger-scale conditions, related to the Tropics at least partially with the 

Madden Julian Oscillation (MJO, Madden and Julian, 1994) (Liebmann et al. 2004, 

Carvalho et al. 2004, Alvarez et al. 2016, among others). The dipole phase associated 

with an enhanced SACZ is related with strong tropical convection over the central 

Pacific and dry conditions over the western Pacific and the Maritime Continent. 

Liebmann et al. (1999) show that the IS variability of the SACZ-SESA regions is 

related to the activity of Rossby wave trains extended along the South Pacific that 

develop persistent circulation conditions over the region. The variability source has 

been associated with either atmospheric internal variability (e.g. westerly jet weakening 

promoting blocking events or the development or hemispheric quasi-stationary waves) 

or by climate conditions forced by tropical convection variability (like that associated 

with MJO). Such wave trains induce in South America a strong SALLJ near 20 p S and 

a baroclinic zone further south, which both seem to in turn force the northerly flow and 

consequently intensify convection over SESA. On the other hand, the Rossby wave 

trains associated with an enhanced SACZ are similar but with opposite sign (Liebmann 

et al. 2004). 
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The leading pattern of IS variability in South America during the warm season (that is 

the period that roughly goes from October to April) has significant amplitude in two 

specific bands: one with periods between 10 and 30 days, which has the highest 

percentage of explained variance, and the other with periods between 30 and 90 days, 

which is associated with the MJO activity (Gonzalez and Vera, 2014). Moreover, the 

MJO strongly modulates heavy precipitation events over SACZ and SESA during 

summer, as well as surface temperature and associated circulation anomalies (Hirata and 

Grimm, 2016a). MJO influence on regional climate in South America was also detected 

in spring as well as in the other seasons, although with large seasonal variations 

(Alvarez et al. 2016).  

There are evidences that extreme daily rainfall events in SESA are associated with 

intense convection over the region and its inhibition in the SACZ region (e.g. Liebmann 

et al. 2004 and Gonzalez et al. 2008). Similarly, Alvarez et al. (2014) found that the 

leading pattern of IS-Filtered OLR anomalies (FOLR) in South America during winter, 

spatially characterized by a monopole-like center over SESA, modulates the occurrence 

of extreme daily precipitation events, as well as the sequence of consecutive rainy days 

(wet spells). These events occur more frequently during the positive phase of the 

leading pattern, which is defined as when FOLR anomalies are negative within SESA. 

On the other hand, Salio et al. (2007) show that convective activity in SESA is 

significantly modulated by synoptic-scale waves. Since the IS variability is known to 

organize the variability in the synoptic scale in a way that the amplitude of the synoptic 
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events change according to the IS phase (e.g., Liebmann et al. 1994, 2004), the IS 

variability could therefore also influence the initiation and evolution of convection (i.e. 

CSSWE).  

Carvalho et al. (2002) is to our knowledge one of the few studies which linked the IS 

variability with mesoscale phenomena. In this case, the large-scale intraseasonal 

variability (10-70 days) in low-level wind regimes and mesoscale convective activity in 

tropical South America (north of 20°S) were related. They found that the contrasting IS 

low-level wind regimes are related to the phase of a dipole of large-scale OLR 

anomalies in tropical South America, which led to the study of the regional impacts of 

convective systems according to the phase of the wind regimes. Characteristics such as 

the number of convective systems, diurnal distribution, radius and fragmentation of the 

convective systems vary according to the IS wind regime (Carvalho et al. 2002). 

However, the influence of the IS variability on the frequency and intensity of strong 

winds associated with deep moist convection has not been documented in Northeastern 

Argentina (NEA) region. Moreover, although several studies have analyzed the 

influence of IS variability on rainfall events over SESA either during the warm season 

(Nogues-Paegle and Mo, 1997, Liebmann et al. 1999, Gonzalez et al. 2008, Rickenbach 

et al. 2013, Gonzalez and Vera, 2014) or in the cold season (May to September, 

Alvarez, 2014), such influence during the transitional seasons (i.e., fall and spring) has 

not received similar attention yet. Previous studies have shown that during spring the 

interaction between baroclinic systems and strong moisture advection provides the 
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favorable environmental conditions for the development of severe weather events over 

SESA (Matsudo and Salio, 2011 and Mezher et al. 2012). 

This paper seeks to advance in the understanding of the influence and modulation of the 

IS variability in NEA on the strong wind events associated with deep moist convection 

during spring season (SON, September, October and November). In order to achieve 

that, Convection-associated Strong Surface Wind Events (CSSWE) are defined and 

detected, and their modulation by the IS variability is then analyzed. The paper is 

organized as follows: section 2 describes the data and methodology used to detect the 

CSSWE events and to describe the IS variability in northeastern Argentina. Section 3 

presents the main characteristics of the CSSWE events, their relationship with the 

activity of the leading pattern of IS variability and the dynamical conditions associated 

with CSSWE are discussed. Finally, conclusions and discussion are summarized in 

section 4. 

2. Data and Methodology 

2.1. Data 

Hourly 10 m wind data and hourly Present Weather data from 9 surface stations of the 

National Weather Service in NEA (fig. 1) are used to detect CSSWE. The data used are 

presented in UTC time for a period of 14 years spanning from January 1st 1999 to 

December 31st 2012. The selected period of study used here was based on the 

availability of hourly surface station data. 
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To describe environmental variables, the Climate Forecast System Reanalysis (CFSR) 

NCEP database (Saha et al. 2010) is used. This database has a 0.5° resolution in latitude 

and longitude, 40 vertical levels and a temporal resolution of 6 hours. To complete the 

time series (from March 30th 2011 to December 31st 2012), CFS in its version 2 (CFSv2, 

Saha et al. 2014) with same temporal and spatial resolution is used. Daily data of 

interpolated OLR is taken from the National Oceanic and Atmospheric Administration 

(NOAA) database (Liebmann and Smith, 1996), with a 1º resolution and between 1999 

and 2012 to perform composites and with a 2.5º resolution between 1980 and 2012 to 

compute the leading pattern of IS variability in South America.  

2.2. Methodology 

CSSWE are defined when the following criteria are all fulfilled:  

(i) the intensity of the wind at 10 meters exceeds the spring-75th percentile for 

the given station,  

(ii) at the time when (i) is observed, or within the 6 previous hours, the Present 

Weather code informed by the observer and recorded in the station is associated with 

convection. Those codes are 17 (thunderstorm, but no precipitation at the time of 

observation), 18 (squalls), and 80 to 99, which are related to showery precipitation or 

precipitation with current or recent thunderstorm, leaving out codes 83 to 86 as those 

are related to snow showers, which do not occur in NEA. This second criteria is adopted 

given that precipitation observations are not normally recorded hourly, but usually by a 

This article is protected by copyright. All rights reserved.



6 or 24-hour accumulated period. Hourly Present Weather codes therefore guarantee the 

presence of convection at the moment of the strong wind observation. 

If at least one hourly measurement that meets (i) and (ii) have been registered within a 

day, then that day is considered as a CSSWE day. The start day of the CSSWE is 

defined as “day 0”. If the following day meets (i) and (ii) then the event is of 2 

consecutive days (day 0 and day +1) and the same criteria for longer CSSWE. 

Following these criteria, CSSWE are determined in the period of study and then 

grouped into the following categories according with their duration: isolated events (i.e., 

CSSWE are registered only within one day, so they only have day 0), events lasting two 

consecutive days (day 0 and day +1) and events of three or more consecutive days. 

Once the CSSWE days have been obtained, the daily mean of the variables of the 

surface weather stations was computed and calculations are carried out with a daily 

framework. 

The leading pattern of IS variability in eastern South America is considered, and 

hereafter called SIS (Season-IntraSeasonal) pattern (Vera et al. 2017). Following the 

methodology proposed by Alvarez et al. (2014), an empirical orthogonal function (EOF) 

analysis is applied to the 1980-2012 spring daily OLR anomalies filtered on the 10-90-

day band.  The resulting leading EOF, hereafter as the spring-SIS pattern, is 

characterized by the spatial structure presented in Figure 2. The spring-SIS pattern 

presents a dipole, with one center of action extended over Paraguay and southern Brazil 

and another one located equatorward, where the SACZ variability maximizes and 
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explains 17.4% of the variance. The associated standardized principal component is 

used as an index to monitor the spring-SIS pattern activity. Its sign is defined such that a 

positive index value, which hereafter indicates a “positive phase” of the spring-SIS 

pattern, reflects favorable conditions for convection in SESA region and unfavorable 

conditions for convection in the SACZ, while a negative index value reflects favorable 

conditions for convection in the SACZ region and unfavorable conditions for 

convection in the SESA. The SIS index for the spring seasons between 1999 and 2012 

was used to represent the IS variability within each season. 

The evolution of the spring-SIS index is then related to the occurrence of CSSWE in 

NEA region. Those days in which the spring-SIS index resulted positive and exceeded 

one standard deviation are defined as a wet phase of the IS pattern. In this phase, OLR 

anomalies in the IS scale are negative over SESA region and then convection (and 

eventually, rainfall) is favored. Contrarily, those days in which the SIS index was 

negative and smaller than minus one standard deviation are defined as a dry phase, in 

which positive IS OLR anomalies occur in SESA and therefore inhibit rainfall 

conditions. The days previous to a wet or a dry phase of the SIS index were also 

objectively defined as categories pre-wet and pre-dry, as is explained below. The 

classification of the CSSWE is determined according to the day 0 of their occurrence: if 

day 0 occurred in a wet or dry phase of the spring-SIS pattern, the CSSWE is classified 

as wet or dry respectively. If day 0 occurred while the index was higher than one 

standard deviation but within the next 7 days it achieved a wet phase, then the CSSWE 
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is classified as pre-wet and if the index was in module lower than one standard 

deviation but within the next 7 days it achieved a dry phase, then the CSSWE is 

classified as pre-dry 

This classification is not exhaustive, as the main focus is to relate the CSSWE with the 

development and occurrence of the phases of the spring-SIS pattern. Events which fall 

outside these four categories will be grouped in the neutral SIS category. 

For anomalies calculation, the annual cycle was computed by smoothing the 

climatological daily means with a 31-point moving average and afterwards subtracted 

for each variable. A Lanczos bandpass filter of 63 weights (Duchon et al. 1979) is 

applied to the anomalies to obtain the 10-90-day filtered anomalies. Composites of 

filtered anomalies are computed according to the classification of the CSSWE events 

with respect to the spring-SIS index phase in which they occurred. The composites 

significance is tested through a local t-student test with a 95% confidence level for each 

grid point and level 

3. Results 

In the following subsections we analyze the IS modulation of CSSWE and the 

environmental IS dynamical conditions that favor their occurrence during austral spring. 

However, we first present a brief analysis on the seasonal distribution of CSSWE in 

order to identify the particularities of the SON season. The CSSWE distribution for 

each season is presented in table 1. A total of 715 events (31.1% of the total number of 
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days classified as CSSWE) are found during summer, similar to the number of events 

found during spring, 701 (30.5%). On the other hand, the number of events in winter 

and fall are 525 (22.8%) and 358 (15.6%) respectively. A CSSWE classification was 

also performed by clustering the CSSWE into the three categories (defined in section 

2.2) according to their duration (table 1). For all three categories considered, the larger 

frequencies of occurrence are observed during summer and spring, while fewer total 

events are observed during winter and autumn. Isolated CSSWE occur more often 

during summer, while events of 2 or more days during the spring. This could be 

explained by that fact that during this particular season, the interaction between 

baroclinic systems and the strong moisture transport provides (i.e. strong low-level 

winds) a favorable environment to initiate a large number of deep convective events in 

middle and subtropical latitudes of SESA (Siqueira et al.  2004, Salio et al. 2007, 

Anabor et al. 2008 and Rasmussen et al. 2016). Therefore, this work seeks to improve 

the understanding of these spring events and the influence of the IS on them. 

3.1. Intraseasonal modulation of CSSWE 

Consecutive days of sustained low-level winds in the NEA region may be related to 

large-scale intraseasonal variations that exhibit an influence in the circulation patterns in 

South America, as the spring-SIS pattern or the MJO. The spectral distribution of 

variance of 10 m wind velocity daily mean compositions, obtained from the surface 

stations is analyzed, along with the averaged OLR for the reference box [31.5 ºS to 23.5 

ºS and 61.5 ºW to 55.5 ºW] (figure 3). Surface (10 m) wind velocity shows spectral 
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peaks exceeding the red noise background spectrum at periods of 33, 19, and 17 days. 

The meridional component also shows significant peaks at 21, 12, and 10 days, while 

the zonal component seems to have no peaks in the IS scale (figures not shown). 

Likewise, the OLR variance spectrum also shows significant spectral peaks in the IS 

range, though at longer periods of: 40, 34, and 26 days. The IS time scale has therefore 

an influence in the variability of 10 m winds and also in convection over the study 

region. By representing the latter result with the activity of the spring-SIS pattern, the 

modulation over the CSSWE is studied. 

In the following sections, only CSSWE that lasted at least 2 days will be considered, as 

they may be probably associated with more organized and durable systems, and 

therefore more easily modulated or influenced by the IS variability. 

The different “flavours” in which IS variability can develop and its impact on the 

occurrence of CSSWE can be distinguished at a glance by observing the evolution of 

the spring-SIS index together with the occurrence of CSSWE. Figure 4 shows the 

percentage of stations that recorded a CSSWE for each day and the spring-SIS index 

value throughout the springs of 1999-2012. As seen in Figure 4, IS oscillations of the 

SIS index are not periodic -a wet phase is not always followed by a dry phase after 

some days- (e.g., compare in Fig. 4 springs of 2003 which is relatively periodic with 

2009), nor wet and dry phases span an approximately same number of days (e.g. 2009 

in Fig. 4). Also, it can be noted that CSSWE are more frequent prior to and during the 

wet phases of the spring-SIS index, while during the dry phases they are seldom seen. 
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For instance, between September 26th and September 29th 2004, a CSSWE of 4 days 

was observed, and in its day 0 the SIS index was of 0,28. As on days +2 and +3 the 

index was above 1 standard deviations, then this CSSWE is classified as a pre-wet case. 

This wet phase was followed by a dry phase in which no CSSWE were detected and 

then, during the wet phase of the index, between October 12th and October 13th a 2 days 

CSSWE was observed in 66.6% of the weather stations in NEA. As the SIS index in 

those days was greater than 1, the CSSWE is classified as a wet event. The spring of 

2009 also showed some particularities: a persistent dry phase (9 days of the SIS index 

below -1) followed by a November of almost all days in a wet phase, during which long 

CSSWE were registered.   

The modulation on CSSWE is now quantified by categorizing the occurrence of spring 

CSSWE according to the spring-SIS index evolution, as defined in section 2.2, and 

results are shown in table 2. In this way, we seek to identify if CSSWE are more 

frequent when the SIS index achieves a wet phase, during the days before it, when the 

index reflects a dry phase or before that stage. Most of the 2-day-long CSSWE are 

observed in the pre-wet phase (66) and in the wet phase (48), while the pre-dry and dry 

phases only present 16 and 24 cases respectively. The CSSWE that lasted 3 or more 

days were also more frequently observed during the wet (36) and pre-wet phases (28) of 

the index. It is particularly notable the scarce occurrence of CSSWE of 3 or more days 

in the dry and pre-dry phase of spring-SIS pattern, as they only represent 6.8% of the 

cases observed. Indeed, only 3 CSSWE of 3 days or more occurred in the dry phase of 
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the SIS index, which can be identified in Figure 4: between November 13th and 

November 17th 2005, a CSSWE of 5 days during which the SIS index started in a dry 

phase for 3 days and turned to a wet phase on days +5 to +7; between November 3th and 

November 7th 2009, a CSSWE of 5 days in which day 0 was the only one with a SIS 

index below -1 and then reaching a wet phase on days +5 to +7; and from September 

19th to September 23rd of 2010, also of 5 days in which day 0 was the only one with a 

SIS index below -1 and then reaching a wet phase on days +4 to +6. Therefore, this 

long-lasting CSSWE, even though they were classified as occurring during a dry phase 

following our definition, do not seem to be associated exclusively to a dry phase of the 

SIS pattern but to a transition towards a wet phase. 

Furthermore, from table 2 it follows that 69.9% of the CSSWE occur previous to, or 

during a wet/dry phase of the SIS index, while only 30.1% of the events are not related 

to the activity of this mode of variability (neutral SIS). Discarding those and therefore 

considering only the CSSWE that could be linked to IS variability, 79.1% of them occur 

before or during a wet phase of the index. For further analysis, spring CSSWE events of 

2 and 3 or more consecutive days will be merged into one group. 

To examine the evolution of the spring-SIS pattern according to the occurrence of 

CSSWE, an ensemble of the daily spring-SIS index values was calculated from day -6 

to day +3 with respect to the start date (day 0) of the CSSWE. The median, first and 

third quartiles, and the 5th, 10th, 90th, and 95th percentiles of the spring-SIS index 

ensemble were calculated and presented in a box-plots form (Figure 5). The evolution of 

This article is protected by copyright. All rights reserved.



the SIS index when a CSSWE occurred in day 0 in a pre-wet phase (Figure 5a) reveals a 

mean growth in the index since day -3. From day 0 onwards, the mean value of the 

index is positive and since day +2 is higher than one standard deviation, reflecting a wet 

phase of the index. The index dispersion, considering the 5th and 95th percentiles, is 

markedly reduced between days -2 and +3 compared to the previous days, and in more 

than 75% of the cases the index is positive on day +1, 95% on day +2 and all cases on 

day +3. The spring-SIS evolution for those CSSWE which started in a wet phase 

(Figure 5b) shows mean positive values since day -5, and at least in 95% of the cases 

the SIS index is positive between day -2 and +2, being on average greater than one 

standard deviation. The maximum value of the SIS index is reached, on average, on the 

second day of the CSSWE. 

In the dry phase (fig. 5d), mean negative spring-SIS index values below one standard 

deviation are observed between days -3 and 0, reaching a minimum at day -1. In the pre-

dry phase category (fig. 5c) no mean values, neither positive nor negative, exceeding 

one standard deviation of the spring-SIS index are observed. The average SIS index 

turns negative on day +2, however given the few cases in this category, results should 

be analyzed with caution.  

3.2. Characterization of the environmental conditions of CSSWE associated with 

IS activity 

In the previous section we have shown that the occurrence of CSSWE is modulated by 

the IS time scale, and particularly seen through the activity of the SIS pattern. Using 10-
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90 filtered anomalies composites of CSSWE, we now analyze the large-scale IS 

circulation under which they are produced, taking into account the spring-SIS phase in 

which they occurred. 

The IS-filtered 250-hPa geopotential height anomalies composites for the CSSWE days 

0 are presented in Figure 6. Those CSSWE that were detected within a pre-wet phase 

(Fig. 6a) are related to a Rossby wave train arching in the South Pacific Ocean and 

towards South America. This wave shows an intense, statistically significant 

anticyclonic anomaly in the SE Pacific Ocean extending south to 75ºS and a cyclonic 

anomaly downstream, with a NW-SE orientation in the southern tip of South America. 

Also, an anticyclonic anomaly is located over the SESA region. Differently, when the 

CSSWE were registered during a wet phase of the SIS index, the wavetrain is seen to 

reflect more to the north, the anticyclonic anomaly is weaker and the cyclonic anomaly 

over South America is located farther northeast, with a more intense positive anomaly 

downstream (Fig. 6b). These type of wave trains have been often referred as Pacific-

South American (PSA)-type teleconnections, after the work of Mo and Higgins (1998) 

and Mo and Paegle (2001).  

Similar Rossby wave trains have been detected by Vera et al. (2017) related to the IS 

variability in South America. The authors analyzed separately the 30-90-day and 10-30-

day IS variability, thereby separating the influence of the MJO and other sources of 

higher frequency in the IS time scale. Particularly, the wave trains found in Figs. 6a and 

6b are similar to those associated with the evolution of an annual 10-30-days SIS 
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pattern during the SON trimester, the pre-wet cases to the days when the SIS phase 

changes towards a positive phase and the wet phase to the SIS positive phase (see Fig. 6 

from Vera et al. 2017). Therefore, and also supported by Fig. 3a, it is the high-

frequency IS variability which might modulate more clearly the occurrence of CSSWE. 

Composites of the IS-filtered 250-hPa geopotential height anomalies associated with 

CSSWE events that were detected during a pre-dry phase (Fig. 6c) are not conclusive 

given the lack of statistical significance, again probably due to the low number of events 

in this category (Table 2). On the other hand, those CSSWE detected in a dry phase 

(Fig. 6d) are similar to the SIS negative phase regressions of Vera et al. (2017), though 

the subtropical wavetrain the authors observed in the western Pacific Ocean is not 

observed in Fig 6d. A positive geopotential height anomaly extends across central 

Argentina towards the South Atlantic Ocean, and significant cyclonic anomalies are 

observed both, upstream and downstream. Also, a strong cyclonic anomaly is located to 

the southeast of New Zealand as a part of these subpolar wavetrain (Fig. 6d). 

Complementarily, Figure 7 presents the IS-filtered 850-hPa geopotential height 

anomalies composites for the CSSWE days 0. The low-level circulation composites 

show that the anomalies are approximately barotropic in the Pacific Ocean and are 

slightly ahead respect to upper-levels over South America. In both, pre-wet and wet 

composites (Figs. 7a, b), a cyclonic anomaly is observed over Argentina, favoring 

northerly and northwesterly wind into the NEA region where we identify the CSSWE. 

The strong anticyclonic anomaly upstream in the southeastern Pacific is observed in 
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both cases, farther to the north in the wet case (Fig. 7b). Differently, the low-level IS 

circulation when CSSWE are detected during a dry phase of the SIS index show an 

anticyclonic anomaly over the southwestern Atlantic Ocean, favoring easterly low-level 

winds which turn to be northerly over the NEA region (Fig. 7d). Low level conditions 

for moisture and heat transport are given for CSSWE in the dry phase, but NEA is 

affected by anticyclonic conditions, which inhibit the ascent, and it should be rarer to 

find convective cases. 

The 10-90-day filtered OLR anomalies composites for the CSSWE days 0 are presented 

in Figure 8. The regional pattern in South America for those CSSWE that occurred 

during the wet phase is a dipole similar to the SIS pattern, as expected because of the 

methodology (Fig. 8b), as well as the regional pattern for the pre-wet cases (Fig. 8a), 

when the SIS pattern is building up. These maps again resemble those presented in Vera 

et al. (2017) for the 10-30-day IS variability of South American OLR anomalies for the 

positive and the change of phase respectively (see their Figure 5). It is also interesting 

that the weak tropical anomalies observed in the Indian Ocean for the CSSWE cases 

also match with the 10-30-day variability, and they do not match in sign with the 30-90-

day variability (see Figure 2 of Vera et al. 2017), which is mainly related to the MJO. 

This might indicate that the MJO is not the primary cause of the wave trains, as it is not 

clearly seen in the composites. However, in particular cases the MJO influence may be 

more important or may even impact the 10-30-day variability by triggering other 

mechanisms. The composites of CSSWE days that occurred within a dry phase of the 
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SIS index (Fig. 8d) also show the regional pattern expected (a negative phase of the SIS 

pattern) and no other strong signal in the tropics. 

Throughout this section we have showed that CSSWE are modulated by the regional IS 

variability through the SIS pattern, being the events favored mainly during the pre-wet 

and wet phases of the pattern. The composites of upper-level circulation and regional 

OLR anomalies have shown the IS conditions that create the environment which favors 

the development of convective strong winds events. However, there are still a small 

number of cases which occur when the IS modulation would not be favorable to 

develop in such conditions. Those cases might be explained by synoptic and/or meso 

scale activity, strong enough to cancel the IS inhibition and still produce a CSSWE. 

4. Summary and Discussion 

In this work we have detected the occurrence of strong surface wind events associated 

with convection (CSSWE) during austral spring in Northeastern Argentina and related it 

to the activity of the leading pattern of intraseasonal activity of OLR anomalies in South 

America, the SIS pattern. The variability of the SIS pattern follows the IS variability of 

precipitation, as previous studies have shown (Gonzalez et al. 2008, Alvarez et al. 

2014). Moreover, studies have also confirmed that the IS evolution as described by the 

SIS index is not a purely regional phenomena, but it is instead related to the evolution of 

Rossby wave trains along the Pacific Ocean which eventually alter the regional 

circulation (e.g. Nogues-Paegle and Mo, 1997; Vera et al. 2017).  These wave trains 

may be excited by convective activity in the tropics (as the MJO, the SPCZ) or by 
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sources of instability as the upper level jet stream activity (e.g., Trenberth 1986). The 

spring season was chosen as it was the season with largest amount of CSSWE detected 

of two or more consecutive days. The wind velocity taken from the surface stations in 

NEA showed significant peaks of activity revealing that the IS time scale, and 

especially the submonthly time scale, might be modulating the regional circulation that 

favors or not the occurrence of CSSWE.  

The CSSWE were categorized according to the phase of the spring-SIS pattern. When 

considering those events related to SIS activity, almost 80% of them occurred before or 

during a wet phase, especially for the longer CSSWE. Furthermore, the detection of 

CSSWE days during and before a dry phase was scarce. 

The evolution of the SIS index for the period that encompasses the CSSWE showed that 

those events detected before a wet phase were associated with a positive index from day 

0 onwards and evolving to a spring-SIS index higher than one standard deviation on the 

next days (that is, the beginning of the period of CSSWE days is observed on average 

two days before the onset of the wet phase). When the CSSWE days begin in a wet 

phase of the index, positive values of the index were observed since day -5 and the SIS 

index remains greater than one standard deviation for 4 days (between day -2 and +2). 

The hemispheric upper-level and regional low-level IS circulation that favors the 

development of CSSWE was also analyzed. At 250 hPa, PSA-like Rossby wave trains 

were observed to organize the circulation on IS time scales. When the CSSWE occur in 

a pre-wet phase, a strong anticyclonic anomaly in the SE Pacific Ocean and a cyclonic 
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anomaly in the southern tip of South America with a NW-SE orientation are observed. 

On the other hand, when the CSSWE are registered during a wet phase of the SIS index, 

on average the wave train is seen to refract farther the north, the anticyclonic anomaly is 

weaker and the cyclonic anomaly over South America is located more to the northeast. 

The persistence of the upper-level cyclonic anomaly in South America, favored by the 

IS variability, in roughly the same location for several days dynamically favors mid-

level ascents in the region. Along with the northerly advection of humid air in the lower 

levels by the IS cyclonic anomaly over northern Argentina, this circulation sets the 

environment that promotes the development of CSSWE in the meso scale. 

These Rossby wave trains are similar to those found by Vera et al. (2017) related to the 

IS variability in South America, and particularly to that in the 10-30-day time scale 

during the change of phase of the SIS index (from a dry to a wet phase) and during a 

wet phase. Also, the composites of IS-OLR anomalies result similar to those maps 

found by Vera et al. (2017) for the 10-30-day time scale, which together with the 

spectra of wind velocity previously mentioned, all support the conclusion that it is the 

higher-frequency IS variability the one which results more influential to the 

development of CSSWE. However, we do not out rule the influence of the MJO in 

particular cases. . 

Finally, even though some CSSWE were detected on days with neutral SIS activity or 

even on a dry phase of the SIS index, which at least would not favor (from the IS time 

scale) the conditions for the development of convection in NEA, those events might be 
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generated exclusively by processes associated with the meso scale. Nonetheless, the 

association of most CSSWE days with a growing or a high SIS index found in this work 

is of great importance when studies of the predictability of the SIS index are being 

undertaken.  
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Figure 1: South America map and surface station (dot). Rectangle denotes Northeastern Argentine region 
(NEA). Zoom over the study area with surface station number (bottom right). The inner area corresponds to 

the region from which OLR was averaged to compute the spectrum. 
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Figure 2: First leading Empirical Orthogonal Function (EOF) of FOLR for the spring season (spring-SIS 
pattern). Contour interval is 3 and 0 contour is omitted. Units are in Wm-2. 
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Figure 3: Power spectrum of daily mean 10 m wind velocity in (ms-1)2 and b) daily mean OLR (Wm-2)2 for 
the reference box. The dashed lines indicated in each spectrum are the red noise background spectrum and 

95% confidence level, respectively. The main spectral peaks (in days) are shown inside each spectrum. 
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Figure 4: Temporal evolution of the spring-SIS index (red solid line) with the percentage of stations with 
CSSWE (blue bars) for the spring 1999-2012. The one-standard deviation threshold is marked as reference. 
Light blue bar corresponds to a less than 33% of station with CSSWE, medium blue to those between 33-

66% and dark blue higher than 66%. 
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Figure 5: Mean spring-SIS evolution and box plot associated with CSSWE for each spring-SIS index phases 
from day -6 to +3. a) pre-wet, b) wet, c) pre-dry and d) dry. Events start on day 0. The center mark of 

each box represents the median, coarser box are the 25th and 75th percentiles, finer box are the 10th and 
90th percentiles, arrows are the 5th and 95th percentiles and whiskers extend to the extreme values, below 

and above the 5th and 95th percentiles respectively. One standard deviation with light gray line. 
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Figure 6: Filtered 10-90 days geopotential height anomalies composites at 250 hPa [gpm] for each spring-
SIS phase. a) pre-wet, b) wet, c) pre-dry and d) dry. Positive anomalies are presented in solid line and 
negative values are dashed. 95% significant values of the composition are shaded. Surface stations are 

indicated by black dots. 
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Figure 7:Filtered 10-90 days geopotential height anomalies composites at 850 hPa [gpm] and wind 
anomalies [ms-1] for each spring-SIS phase. a) pre-wet, b) wet, c) pre-dry and d) dry. Positive anomalies 
are presented in solid line and negative values are dashed. 95% significant values of the composition are 

shaded. Surface stations are indicated by black dots. 
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Figure 8: Filtered OLR anomalies [Wm-2] for each spring-SIS phase. a) pre-wet, b) wet, c) pre-dry and d) 
dry. 95% significant values of the composition are shaded. Surface stations are indicated by black dots. 
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 1 day 2 days ≥3 days Total events
Spring (SON) 379 (54.0%) 219 (31.2%) 103 (14.7%) 701 (30.5%)
Summer (DJF) 438 (61.2%) 204 (28.5%) 73 (10.2%) 715 (31.1%)
Fall (MAM) 333 (63.4%) 152 (28.9%) 40 (7.6%) 525 (22.8%)
Winter (JJA) 224 (61.5%) 107 (29.9%) 27 (7.5%) 358 (15.6%)
Total 1374 (59.8%) 682 (29.6%) 243 (10.6%) 2299 (100%)

Table. 1. Number of CSSWE for each of the three categories according to their duration 

and for the four seasons of the year. Also shown are, for each season, the percentage of 

events that lasted 1, 2 or 3 or more days. Last column shows the amount of the total events 

per season and the percentage respect to the yearly total. Last row shows the amount and 

percentage in each of the three categories.
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 Pre-Wet Wet Pre-Dry Dry neutral 
SIS Total

2 Days 66 (30.1%) 48 (21.9%) 16 (7.3%) 24 (10.9%) 65 (29.7%) 219 (68%)
≥ 3Days 28 (27.2%) 36 (34.9%) 4 (3.9%) 3 (2.9%) 32 (31.1%) 103 (32%)
Total 94 (29.2%) 84 (26.1%) 20 (6.2%) 27 (8.4%) 97 (30.1%) 322 (100%)

Table 2. Number of spring CSSWE of 2 days and 3 or more days for each category 

defined based on spring-SIS index phases (pre-wet, wet, pre-dry, dry and neutral SIS). 

See Section 2.2 for details.
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