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Abstract 
 
 In this work, we investigate the degradation process of 1-chlorobutane, initiated by OH 

radicals, under atmospheric conditions (air pressure of 750 Torr and 296 K) from both 

experimental and theoretical approaches. In the first one, a relative kinetic method was used to 

obtain the rate coefficient for this reaction, while the products were identified for the first time (1-

chloro-2-butanone, 1-chloro-2-butanol, 4-chloro-2-butanone, 3-hydroxy-butanaldehyde and 3-

chloro-2-butanol) using mass spectrometry allowing suggesting a reaction mechanism. The 

theoretical calculations, for the reactive process, were computed using BHandHLYP/6-

311++G(d,p) level of theory and the energies for all the stationary points were refined at the 

CCSD(T) level. Five conformers for 1-chlorobutane and 33 reactive channels with OH radicals 

were found, that were considered to calculate the thermal rate coefficient (as the sums of the 

site-specific rate coefficients, using canonical transition state theory). The theoretical rate 

coefficient (1.8 x 10-12 cm3 molecule-1 s-1) is in good agreement with the experimental value 

(2.22 ± 0.50) x 10-12 cm3 molecule-1 s-1 determined in this work. Finally, environmental impact 

indexes were calculated and a discussion on the atmospheric implications due to the emissions 

of this compound into the troposphere is given. 
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1. Introduction 
Chemical industries produce many halo-alkanes, which are used as organic solvents, 

degreasing agents, pesticides and intermediates for the synthesis of other organic 

compounds.1,2 As with other industrial chemicals, these compounds have caused numerous 

cases of environmental pollution due to inadequate waste disposal, accidental discharges or 

intentional release.1,3,4 From this perspective and as a consequence of the degradation 

processes of halogenated compounds, the accumulation of these species in the troposphere 

has received considerable attention since they could be transported to the stratosphere 

contributing to the ozone layer depletion. Therefore, the gas phase kinetic and mechanistic 

studies of the reactions of halo-alkanes with the most relevant tropospheric oxidants (OH, Cl, 

NO3 and O3) are essential to evaluate their reactivity, the atmospheric destiny and its potential 

impacts on the quality of the air and the living beings. Especially important is the reaction with 

the OH radical since it is the main reactive species that initiates the atmospheric degradation of 

pollutants during the day. 

In particular, 1-chlorobutane (C4H9Cl or ClBut) is used as an intermediate product for the 

synthesis of catalysts and other compounds in the chemical industry. It is produced in closed 

systems, and there are no available data for consumers use. Based on the available 

information, it is known that its production volume was approximately 800 tons year-1 between 

1990-1993 only in Japan,5 so that, it should be considered for a systematic study. So far, there 

are only two previous kinetic studies for the reaction between ClBut and OH radicals to compare 

with the present measurements.6,7 Markert and Nielsen reported a rate coefficient of                   

k = (1.67 ± 0.40) x10-12 cm3 molecule-1 s-1 at room temperature and atmospheric pressure,6 

determined by pulsed radiolysis combined with kinetics UV spectroscopy with an excess of 

water as precursor of the OH radical. A few years later Loison et al,7 performed another 

absolute determination of the rate coefficient for this reaction by means of Pulsed Laser 

Photolysis coupled to Laser Induced Fluorescence detection of the OH radical (PLP-LIF) and 

reported a slightly higher value of k = (2.00 ± 0.15) x 10-12 cm3 molecule-1 s-1. The latter value is 

in very good agreement with the value estimated by the structure-activity relationship (SAR) by 

the same authors (kSAR = 1.97 x 10-12 cm3 molecule-1 s-1).7 

Considering the fact that none of the reported values were determined under 

atmospheric conditions and that the degradation products remain unknown, we proceeded to re-

determine the rate coefficient for the title reaction using a relative method, under atmospheric 

pressure in air and to identify the products of the reaction that will allow suggesting a likely 

reaction mechanism. The experimental results were complemented with electronic structure 
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calculations to explore the relevant points on the potential energy surface (PES) of the reaction 

and the reaction rate coefficient was calculated with the transition state theory (TST). 

Finally, the atmospheric lifetime (τ), Radiative Efficiency (RE), Global Warming Potential 

(GWP), Ozone Depletion Potential (ODP) and Photochemical Ozone Creation Potential index 

(POCPE) were evaluated using the experimental results from this work, contributing to a better 

understanding of the atmospheric chemistry of halo-alkanes. 

 

2. Methodology 
Kinetic measurements 

The rate coefficient for the title reaction at (296 ± 2) K and atmospheric pressure (750 ± 

10) Torr was determined by the conventional relative rate method described in previous works.8–

12 

The decay of the concentration of ClBut from reaction R.2.1 is determined relative to the 

decay of the concentration of a reference compound (Ref) (n-C5H12 and iso-C3H7OH) from 

R.2.2. 

 

OH + ClBut    Prod  kClBut   (R.2.1) 

   OH + Ref    Prod  kRef   (R.2.2) 

 

If the decay of ClBut and Ref is only given by reactions R.2.1 and R.2.2 with the OH 

radical, the following relationship can be established: 

             

    Ln �[ClBut]0
[ClBut]t

�= kClBut
kRef

 Ln �[Ref]0
[Ref]t

�    (Eq. 1) 

 

where [ClBut]0, [ClBut]t, [Ref]0 and [Ref]t are the ClBut and Ref concentrations at time zero (t0) 

and at any time (t), respectively. From Eq. 1, kClBut is obtained from the slope kClBut
kRef

 of a plot of 

Ln �[ClBut]0
[ClBut]t

� vs. Ln �[Ref]0
[Ref]t

�, owing that the values of kref are known (kn-C5H12 = (3.96 ± 0.79) x 10-12 

cm3 molecule-1 s-1)13 and kiso-C3H7OH = (5.1 ± 1.3) x 10-12 cm3 molecule-1 s-1)14). 

 The experimental setup was described in detail previously and only a brief description 

will be given here.8–12 The kinetic determinations were made in a collapsible Teflon bag of 

approximately 80 L. All the reactants diluted in ultra-pure air were left to mix in the reaction 

chamber for approximately 1 h before the first photolysis. The OH radicals were produced by 
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the UV photolysis of H2O2 at around 254 nm for which the Teflon bag was placed inside a 

wooden box with six germicidal lamps (Philips 30 W). The interior walls of the photolysis box 

were covered with aluminum foils.  

Mixtures of ClBut, Ref and H2O2 were irradiated for 5 or 6 periods of 2 min, up to 10 or 

12 min of total photolysis. After each irradiation period, the concentrations of ClBut and Ref 

were determined by gas chromatography (GC) with a gas chromatograph with flame ionization 

detection (GC-FID) Perkin Elmer Clarus 500. This GC-FID had an Elite 5 capillary column (30 m 

x 0.32 mm DI x 0.25 μm) that supports a maximum temperature of 350 °C. Samples were taken 

from the reactor and incorporated into the chromatograph using a gas-tight syringe Hamilton 

with a volume of 5 mL. 

After each experiment, the bag was cleaned by a continuous flow of ultra-pure air until 

the appropriate humidity conditions (< 5% RH) were achieved and the absence of ClBut and the 

others compounds that may have been adsorbed on its walls was corroborated.  

 
Analysis of reaction products 

The reaction products were identified by gas chromatography coupled to quadrupole 

mass spectrometry (GC-MS), using a gas chromatograph Clarus 500 Perkin Elmer coupled to a 

mass spectrometer Clarus 560 S Perkin Elmer (GC-MS). The analysis of the results was carried 

out by the software TurboMassTM GC/MS version 5.4.2, provided by the manufacturer. 

 

Chemicals 
The chemicals used were N2 (Linde 99.999%. CAS: 7727-37-9), ultra-pure air (synthetic 

air), C4H9Cl (Sigma aldrich99.5%. CAS: 109-69-3), H2O2 (70.5%. CAS: 7722-84-1) supplied by 

Atanor S.A. The solution of H2O2 was bubbled with high purity N2 during 3-4 days before using it 

in order to reduce the H2O content. Since H2O2 cannot be obtained free of H2O, its 

concentration was determined by standard titration with KMnO4 and typically, the content of H2O 

was less than 10% wt. n-C5H12 (98%. CAS: 109-6-0) and iso-C3H7OH (>98%. CAS: 67-63-0) 

were supplied by Sigma Aldrich. The reactants were degassed by repeated freeze-pump-thaw 

cycling and purified by vacuum distillation until GC revealed no observable impurities. 

 

Computational 
The OH + ClBut reaction has been studied at the density functional theory (DFT) level, 

using the BHandHLYP functional with the 6-311++G(d,p) basis set in Gaussian09 program.15 
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Conformational analysis for ClBut and the molecular properties (geometries, vibrational 

frequencies and thermodynamic values) for all stationary points in the possible reaction 

channels have been calculated and the electronic energies (EE) were corrected at CCSD(T) 

level.  

The CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) method has been chosen 

since Alvarez-Idaboy et al. have previously shown that it renders satisfactory results for the 

modeling of oxidation reactions of volatile organic compounds (VOCs).16,17  

The identity of stationary points was determined by a frequency analysis (zero or one 

imaginary frequency for a minimum or transition state, respectively). The theoretical rate 

coefficient for all reaction channels was calculated using the conventional transition state theory 

with Wigner tunnel transmission coefficient.18–20 

 

3. Results 
Rate coefficient determination 

The rate coefficient for R.2.1 (OH + ClBut) at 296 ± 2 K was determined by the relative 

method described in the previous section. Several experiments were performed prior to the 

kinetic determinations in order to ensure that the depletion rate of ClBut and the Ref compounds 

by photolysis, wall reactions and dark reactions are negligible as compared with the reaction 

with the OH radicals. Two different reference compounds were used to determine the value of 

the rate coefficient of the reaction: n-C5H12 and iso-C3H7OH whose rate coefficients for the 

oxidation by OH radicals under dry conditions are: kn-C5H12 = (3.96 ± 0.79) x 10-12 cm3 molecule-1     

s-1)13 and kiso-C3H7OH = (5.1 ± 1.3) x 10-12 cm3 molecule-1 s-1)14, respectively. 

The initial concentrations of ClBut, n-C5H12 and iso-C3H7OH were 9.8 x1014 molecules 

cm-3, whereas the concentration of H2O2 was 3.2x1017 molecules cm-3. 

Figure 1 shows a typical graph of Ln �[ClBut]0
[ClBut]t

� vs. Ln �[Ref]0
[Ref]t

� (Eq. 1), for determinations 

using both Ref compounds. 
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Figure 1. Typical relative kinetic plot for the ClBut + OH reaction at 296 ± 2 K and atmospheric 
pressure, with two different reference compounds as indicated in the plot. 
 

The rate coefficient for the reaction ClBut + OH determined against different Ref 

compounds are reported in Table 1. The average value of this rate coefficient taking into 

account the multiple determinations with both Ref was (2.22 ± 0.50) x 10-12 cm3 molecule-1 s-1, in 

agreement with one of the previously reported value (2.00 ± 0.15) x 10-12 cm3 molecule-1 s-1.7 

The reported errors were determined by the propagation of the uncertainties of independent 

variables according to the following equation: 

 

∆k = �[ �ΔS
S
�

2
+ �∆kRef

kRef
�

2
]*k      (Eq. 2) 

 

where, ΔS is 2σn-1 of the slope (S) of the plots shown in Figures 1, obtained from the least 

squares fit, and kRef and ΔkRef refers to the rate coefficient of the reference reaction and its 

associated uncertainty, respectively and k is the rate coefficient determined in each experiment. 
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Table 1. Rate coefficients, kClBut, for the ClBut + OH reaction at 296 K and atmospheric 
pressure. 
 

Ref. 
kRef 

(x10-12 cm3 molecule-1 s-1) 

kClBut 
(x10-12 cm3 molecule-1 s-1) 

C5H12 3.96 ± 0.79 2.35 ± 0.50 

iso-C3H7OH 5.1 ± 1.3 2.1 ± 0.5 

 

Average kClBut = (2.22 ± 0.50) x 10-12 cm3 molecule-1 s-1 
   

 

Reaction Products 
To obtain some information about the reaction mechanism and the OH-initiated 

degradation pathways of ClBut in presence of O2, the reaction products were identified by GC-

MS under the same experimental conditions of the kinetic determinations in pure air and after 8 

min of irradiation in the absence of the reference compound. 

A typical FID chromatogram is presented in Figure 2, together with the assignment of 

each peak. The total ions chromatogram (TIC) and the corresponding mass spectra are shown 

in the Supporting Information (Figures S1 to S7). The assignment of each mass spectrum was 

achieved by comparison of those stored in the NIST database (NIST mass spectral search 

program, ver. 2.0d),21 which allowed identifying the following reaction products: 1) 1-chloro-2-

butanone, 2) 1-chloro-2-butanol, 3) 4-chloro-2-butanone, 4) 3-hydroxy-butanaldehyde and 5) 3-

chloro-2-butanol. 
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Figure 2. The typical chromatogram obtained by FID detection for ClBut + OH reaction. The 
reaction was performed in the absence of Ref compound, in air bath gas and 8 min of 
irradiation. 

 

Although the quantification of the products was not carried out, a qualitative analysis of 

the relative intensities of the chromatographic peaks (FID and TIC) shows that those 

corresponding to 1) 1-chloro-2-butanone and 3) 4-chloro-2-butanone are the most intense one. 

Considering similar sensitivities for all these compounds, it can be assumed that these two 

products are at a higher concentration than the others and then, they are the main products of 

the reaction. 

 

Theoretical 
To shed some light into the reaction mechanism and final products distribution, 

electronic structure calculations were performed on the conformation of the reactant molecule 

and possible reaction pathways with the OH radical, exploring the stationary points of the PES 

of the reactions. 

 Given the flexibility of ClBut and the existence of different conformers according to 

previous reports,22–26 a conformational analysis of this molecule was carried out in order to 

obtain information regarding the populations of the different conformers at the temperature of 

the present work. In this sense, the dihedral angles for the Cα-Cβ and Cβ-Cγ bonds were 

scanned from –180° to 180° and 5 stable conformers were found as shown in Figure 3. The 
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labels used for each conformer refers to the orientation anti (a) or gauche (g) of the Cl-atom and 

the terminal CH3 group, indicated in this order. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 3. Relative electronic energy profile + ZPE for the conformational isomerization of ClBut 
as a function of the Cα-Cβ and Cβ-Cγ dihedral angles obtained at the BHandHLYP/6-
311++G(d,p) level.  

 

The standard Gibbs free energy at 296 K (G°296K) for all the conformers was calculated 

at the BHandHLYP/6-311++G(d,p) level and refined at the CCSD(T)/6-311++G(d,p) level, using 

the rigid rotor and harmonic oscillator approximations for the calculation of the partition 

functions. The G°296K values relative to the most stable aa conformer (∆G°296K) are shown in 

Table 2 as well as their relative population at the same temperature, considering a Boltzmann 

distribution.  

As observed in Table 2, the aa conformer is the most stable one, irrespective of the level 

of theory used, but none of them have significant differences with respect to others. The relative 

populations do not depend very much on the level of theory, for this reason, the calculations on 

the reactivity were carried out considering the population of all conformers determined at the 

CCSD(T)/6-311++G(d,p) level. 
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Table 2. ΔG°296K and relative abundance, of the different conformations, of ClBut calculated by 
BHandHLYP/6-311++G(d,p) and CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) level of 
theory. 

 

Conformer 
BHandHLYP CCSD(T)//BHandHLYP 

ΔG°296K 
(kcal mol-1) 

Relative 
Population 

ΔG°296K 
(kcal mol-1) 

Relative 
Population 

(aa) 

0.0 45.6 0.0          35.2 

(ga) 

0.2 32.4 0.1          31.5 

(gg) 

0.9 10.6 0.3          20.7 

(ag) 

0.9 10.7 0.7          11.4 

(gg’ ) 

2.5 0.7 2.0           1.2 

 

 

 

 

 

Page 11 of 29

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



12 
 

 The primary and rate limiting step for reactions of alkanes with the OH radical is the H-

atom abstraction to produce H2O and an alkyl radical R that in air proceeds to products through 

reaction with O2. In the case of ClBut, the H abstraction can take place at different positions: Cα, 

Cβ, Cγ and Cδ. 

A comprehensive search of the different reaction channels was performed at the 

BHandHLYP/6-311++G(d,p) level for the 5 conformers. This search led to 33 total reaction 

channels and all of them start with the formation of a pre-reactive complex (CR) stabilized by a 

H-bond interaction between the Cl-atom and the OH radical which lies within a range of 2.44 - 

0.80 kcal/mol below the reactants energy. The energy of the stationary points on the PES 

(reactants, CR, transition state (TS) and product complex (CP)) was refined at the 

CCSD(T)//BHandHLYP level for the 33 channels and the results for the conformers at both 

theory level are shown in Figure 4. 

 The sub-indexes i and j in the label of the stationary points CRij, TSij and CPij indicate the 

conformation of ClBut, i = aa, ga, ag, gg or gg´ and the abstraction position j = αn, βn, γn and δn. 

The number n = 1, 2 stands for the H abstraction in the same plane of the Cl-atom or in the 

opposite one, respectively; while n = 3 stands for the abstraction of the remaining H in the 

terminal CδH3 group only. 

 The structures of the CRij, TSij and CPij and their corresponding relative energies are 

shown in Tables S1 and S2. The abstractions of H from Cβ and Cγ are the most favorable. As 

will be discussed in Section 4, these abstraction channels allow the formation of the main 

reaction products, 4-chloro-2-butanone and 1-chloro-2-butanone as well as 1-chloro-2-butanol. 

However, the formation of 3-hydroxy-butanaldehyde and 3-chloro-2-butanol requires the 

elimination of the Cl-atom or its migration from Cα to Cβ and it will be discussed with the reaction 

mechanism. 
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Figure 4. Relative electronic energies including ZPE correction (full lines) and ∆G°296K (dashed 
lines) (in kcal mol-1) for the stationary points calculated at the CCSD(T)//BHandHLYP level of 
theory for the reaction ClBut + OH, for the five conformers of ClBut as indicated. 
 
 

4. Discussion 
 The rate coefficient determined at 296 K for the reaction ClBut + OH k = (2.22 ± 0.50) x 

10-12 cm3 molecule-1 s-1 is in very good agreement with one of the previously determined values 

(2.00 ± 0.15)x10-12 cm3 molecule-1 s-1.7 It should be noted that the agreement with the another 

previously reported value6 (1.67 ± 0.4) x 10-12 cm3 molecule-1 s-1 is still within the experimental 

error. This latter value was determined under very high concentrations of H2O since this 

compound was used as a radiolytic precursor of the OH radical. Given the catalytic8,9,27 and 

anticatalytic27,28 effect of H2O on organic compounds reactions, this could be a reason of the 

observed difference. 
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Rate coefficient calculation 
As mentioned in section 3, the first H-atom abstraction by the OH radical from the ClBut 

is the rate limiting step as also shown by electronic structure calculations (Figures 4) leading to 

the formation of the corresponding alkyl radical according to the following reactions: 

 

CH3CH2CH2CH2Cl + OH  → CH3CH2CH2
●CαHCl + H2O   (R.4.1)   

  → CH3CH2
●CβHCH2Cl + H2O   (R.4.2) 

  → CH3
●CγHCH2CH2Cl + H2O   (R.4.3)  

         → ●CδH2CH2CH2CH2Cl + H2O   (R.4.4) 

 

The rate coefficient for the title reaction was calculated by the conventional Transition 

State Theory (TST), considering the energetic of all the reaction channels of the five conformers 

of ClBut at 296 K. 

The rate coefficients 𝑘𝑘𝑖𝑖𝑖𝑖 for each j reaction channel (abstraction position) of the i 

conformers were calculated according to the following equation (Eq. 3): 

 

kij = Γij
kBT

h
e
�- 

∆Gij
°#

NAkBT� �
    (Eq. 3) 

 

where Γ is the tunnel transmission coefficient calculated by the Wigner method,20 kB, h and NA 

are the  Boltzmann´s, Plank´s and Avogadro´s constants, respectively; T is the temperature of 

the system and ∆Gij
°# stands for the standard Gibbs free energy of activation calculated at the 

CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) level of theory and reported in Table 3 

together with the calculated kij. 

Thus, the total rate coefficient (ktotal) for the reaction at 296 K was calculated as the sum 

of the kij coefficients for each reaction channel weighted by the relative population of the 

corresponding conformer Pi, according to Eq. 4:  

 

ktotal = ∑ (∑ kijj )i Pi     (Eq. 4) 

 

A close inspection to Table 3 shows, as a general trend, that the hydrogen abstraction to 

Cγ (R.4.3) renders the highest rate coefficients, while those for the abstraction on Cα and Cβ are 

slightly smaller. The theoretical branching ratios (Y = kCn/ktotal) for abstraction on each Cn are: 
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YCγ = 0.37 > YCβ = 0.31 ≥ YCα = 0.30 >> YCδ = 0.02, indicating that the only negligible channel is 

the abstraction on Cδ.  

Calculations show that H abstraction from Cβ and Cγ is energetically favored comprising 

the lowest energy barriers due to the inductive effect (-I) of the Cl-atom. The electron density is 

highly localized on the electronegative Cl-atom, which strengthens the C-H bonds, where this 

effect is stronger in those C-H bonds which are closer to Cl, being consistent with the 

hypothesis proposed by Market and Nielsen.6 Therefore, the reactivity toward the OH radical 

increases Cα < Cβ < Cγ. The exception is the abstraction from the terminal CδH3 group since the 

TS is very similar to the unstable primary alkyl radical produced as intermediate and then it is 

the least reactive position. 

From Table 3 it is also observed that the gg´ conformer renders the largest global rate 

coefficient (ki= ∑ kijj = 3.1 x 10-12 cm3 molecule-1 s-1) among all conformers. However, its 

population is very low as compare to the population of the other 4 conformers and then, its 

contribution to the total rate coefficient is negligible. The main contribution to the total rate 

coefficient comes from the aa and ga conformers, which in turn are the most populated ones. 

The total rate coefficient calculated according to Eq. 4 (ktotal = 1.8 x 10-12 cm3 molecule-1 

s-1) is in very good agreement with the experimental value ((2.22 ± 0.50) x 10-12 cm3 molecule-1 

s-1). 
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Table 3. ClBut conformer´s populations (Pi) and standard Gibbs free energy of activation (∆G°#), tunneling corrections (Г) and rate 
coefficients (kij) at 296 K for the reaction ClBut + OH at CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) level of theory. 
 

Atom 

Conformer aa 
Paa = 0.35 

Conformer ga 
Pga = 0.32 

Conformer ag 
Pag = 0.11 

Conformer gg 
Pgg = 0.21 

Conformer gg’ 
Pgg’ = 0.01 

 
k(cn)a 

 

 
n=α, β,γ,δ 

∆G°# 
(kcal 
mol-1) 

Гij kija 
∆G°# 
(kcal 
mol-1) 

Гij kija 
∆G°# 
(kcal 
mol-1) 

Гij kija 
∆G°# 
(kcal 
mol-1) 

Гij kija 
∆G°# 
(kcal 
mol-1) 

Гij kija 

Cα-1 8.5 3.7 1.2x10-13 8.8 3.8 8.2x10-14 9.1 4.0 4.3x10-14 8.7 3.8 9.1x10-14 8.7 3.2 9.5x10-14 
 
 

5.5x10-13 

Cα-2 ------ ----- ------- 8.6 3.8 1.1x10-13 8.4 3.7 1.4x10-13 ----- ----- ------- 8.4 3.6 1.5x10-13 

Cβ-1 8.4 3.6 1.5x10-13 8.4 2.9 7.3x10-15 8.5 3.6 1.4x10-13 8.8 3.7 8.1x10-14 9.0 3.9 5.7x10-14 
 
 

5.6x10-13 

Cβ-2 ------ ----- ------- 8.7 3.7 9.1x10-14 8.6 3.6 1.1x10-13 8.5 2.9 1.3x10-13 8.3 2.8 1.7x10-13 

Cγ-1 8.4 2.7 1.7x10-13 8.9 3.5 6.8x10-14 8.6 2.9 1.0x10-13 8.5 2.8 1.3x10-14 8.0 2.4 3.0x10-13 
 
 

6.7x10-13 
Cγ-2 ------ ----- ------- 7.9 2.7 3.8x10-13 8.4 2.8 1.5x10-13 ----- ----- ------- 7.9 2.6 3.4x10-13 

                 

Cδ-1 10.3 3.6 6.5x10-15 10.5 3.6 4.1x10-15 10.2 3.5 6.7x10-15 10.5 3.5 4.0x10-15 ----- ----- ------- 
 
 
 

4.0x10-14 
Cδ-2 ------ ----- ------- 9.9 3.4 1.2x10-14 10.1 3.6 9.3x10-15 ----- ----- ------- ----- ----- ------- 

Cδ-3 ------ ----- ------- 10.8 3.7 2.7x10-15 ----- ----- ------- 9.7 3.3 1.8x10-14 ------- ----- ------- 

 ki=Ʃkij*Гij 
ki*Pi  

1.4x10-12 
5.0x10-13 

ki=Ʃkij*Гij 
ki*Pi  

2.4x10-12 
7.7x10-13 

ki=Ʃkij*Гij 
ki*Pi  

2.4x10-12 
2.6x10-13 

ki=Ʃkij*Гij 
ki*Pi  

1.1x10-12 
2.4x10-13 

ki=Ʃkij*Гij 
ki*Pi  

3.1x10-12 
3.1x10-14 

kglobala 
1.8 x 10-12  

a) Units in cm3 molecule-1 s-1 
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Reaction Mechanism 
Under the present experimental conditions, the alkyl radicals produced in the first 

abstraction step will add molecular O2 to form peroxy radicals. In NOx-free conditions, the 

peroxy radicals will react further via peroxy self-reactions producing a large extent of alkoxy 

radicals. The alkoxy radicals formed can decompose, isomerize or react with O2 or HO2. 

Considering the theoretical branching ratios reported in the previous section and the 

identified products, the following reaction mechanism is suggested: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Scheme 1. General mechanism for the formation of observed products in ClBut + OH 

reaction. Color code indicates the H-abstraction for different C-atoms and the observed 

products, by GC-MS, are framed and numbered. 
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The commonly accepted mechanism29 explains the formation of the main products, 

1-chloro-2-butanone and 4-chloro-2-butanone as shown in Scheme 1 (products 1 and 3, 

respectively) by the reaction of the Cγ and Cβ alkoxy radicals with O2. The formation of 1-

chloro-2-butanol (product 2) and 3-chloro-2-butanol (product 5) is probably related to 

competitive reaction of the Cγ and Cβ alkoxy radicals with the HO2 radical, respectively. The 

latter reaction is likely due to the considerably high steady concentration of the HO2 radical 

(in the order of 1012 radicals cm-3) produced as a consequence of the OH + H2O2 reaction   

(k = (2.00± 0.15) x 10-12 cm3 molecule-1 s-1),30 and due to the high initial concentration of 

H2O2.  

The corresponding alcohol produced by the reaction of the Cγ alkoxy radical with HO2 

was not detected under the present experimental conditions. However, product 5 shows an 

alcohol group in Cγ followed by a Cl atom migration from Cα to Cβ, and then it could be the 

isomer of the missing product.  

A detailed study, by computational calculations, for the reaction of the alkoxy radicals 

with the HO2 radical is out of the scope of this work. However, Zhang et al., reported a 

theoretical study on the HO2 + C2H5O → C2H5OH + O2 reaction finding that the transition 

state lies at 6.94 kcal/mol below the energy of the reactants, which makes this process very 

likely.31 

Additionally, as determined from calculations, abstraction from Cα is not negligible. 

Thus, we expect that 3-hydroxy-butanaldehyde (product 4) accounts for this reaction 

channel, whose formation proceed through a six-member-ring intermediate that allows the 

H-transfer from Cδ to O to produces a primary radical. This primary radical is unstable which 

drives the H-migration to form the secondary radical, that can undeergo subsequen 

reactions upto the final product 4, as depicted in the proposed mechanism (Scheme 1).  

 

 Atmospheric Implications 
The atmospheric sink of a VOC is given by several removal processes: photolysis, 

wet and dry deposition and reactions with the main oxidants of the atmosphere (OH, Cl, NO3 

and O3).29 Then, the global tropospheric lifetime of ClBut is estimated as the reciprocal of the 

sum of loss rates of each removal process, according to the following equation: 

   

 𝜏𝜏global =  � 1
𝜏𝜏OH

+ 1
𝜏𝜏Cl

+ 1
𝜏𝜏NO3

+ 1
𝜏𝜏O3

+ 1
𝜏𝜏photolysis

+ 1
𝜏𝜏other processes

�
-1

    (Eq. 5) 

 

Since the photodissociation quantum yield of aliphatic hydrocarbons is extremely 

small in the actinic region of the lower troposphere and their solubility in water is also low, 

the photolysis and wet deposition of ClBut are neglected.32,33 Unfortunately, the rate 
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coefficients for the reactions of ClBut with NO3 and O3 are unknown. However, a comparison 

with the corresponding rate coefficients for the reactions with n-butane suggests that the 

oxidation rate of ClBut by NO3 and O3 is very slow to be competitive with the corresponding 

reactions with Cl and OH.34,35 Thus, they can also be neglected in the calculation of τglobal. As 

a consequence, an upper limit for τglobal is estimated considering only the oxidation reaction 

with the most important tropospheric oxidants (Cl and OH). The value of kCl = (1.11 ± 0.05) x 

10-10 cm3 molecule-1 s-1, reported by other authors36 and the value of kOH = (2.22 ± 0.50) x  

10-12 cm3 molecule-1 s-1 determined in this work were used for the calculation of τglobal 

together with the following recommended global concentrations of the oxidants: a 12 h 

average day-time concentration for [OH] = 1 x 106 radical cm-3,37 an average global 

concentration for [Cl]avg = 1.0 x 103 atom cm-3 38 and a peak concentration [Cl]coastal =1.3 x 105 

atom cm-3 39 in the coastal marine boundary layer. In this sense, the calculated lifetimes of 

ClBut were, τOH = 5.42 days, τClavg = 105 days and τClcoastal = 19 h and a 𝜏𝜏global
avg  = 4.9 days and 

τglobal
coastal = 16 h, indicating that the most important tropospheric sink of ClBut is the reaction 

with the OH radical, except in the coastal marine boundary layer where this compound is 

essentially oxidize by Cl, due to high concentration of this atom in sea regions.  

The very short lifetime of ClBut in the troposphere indicates that only local effects 

due to its emission are expected. 

Photochemical ozone creation potentials index (POCP) is yet another issue that 

requires consideration in the evaluation of the environmental impact of ClBut.40 The POCP 

for a particular VOC is determined by quantifying the effect of a small incremental in its 

emission on the calculated amount of ozone formed, relative to that resulting from an 

identical increase in the emission (on a mass basis) of a reference compound, which is 

taken to be ethene (POCP = 100).41 Recently, Jenkin et al.40 have developed a simple 

method to estimate the POCP (POCPE) values of a VOC, rationalized in terms of its 

chemical structure and reactivity with the OH radical, focused on multiday north-west Europe 

and single-day USA-urban conditions, according to Eq.6: 

 

POCPE = A*ys*R*S*F       (Eq. 6) 

 

where F takes, by default, a value of 1 except for only a specific series of compounds and A 

is a multiplier. Parameters R and γS are related to structure and reactivity with OH radicals, 

respectively; while S is related to the size of VOC. These parameters are defined according 

to Eqs. 7-10, respectively: 
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ys = (nB 6⁄ )*( 28.05 M⁄ )      (Eq. 7) 

R = 1-�B* yR+1�-1       (Eq. 8) 

S = (1 -α)*�-C* nC
β�+ α      (Eq. 9) 

yR = (kOH kOH°⁄ )*( 6 nB⁄ )      (Eq. 10) 

 

M stands for the molar weight, nC the number of C atoms and nB is the number of C-C and 

C-H bonds of the VOC. kOH and kOH◦ are the rate coefficients for the reaction of the VOC and 

the reference compound (ethene, 8.64 x 10-12 cm3 molecule-1 s-1)13 with OH radical at a given 

temperature.42 The B value describes the POCPE dependency on the OH radical under 

different atmospheric conditions. Parameters α, β and C are used to describe the 

dependency of POCPE on the size of the VOC. The A, B, α, β and C parameters were 

obtained from Jenkin et al.43 and are showed in Table S3. 

Thus, the POCPE for ClBut was estimated as explained above, focused on different 

timescales (eg: single-day USA urban conditions and multi-days north-west European 

conditions). In this regard, the POCPE values obtained for the degradation process of ClBut 

by OH radicals were 9.29 in single-day USA urban conditions and 18.83 in multi-days north-

west European conditions, which are smaller than the corresponding values reported for n-

butane (17.1 and 32 under the same conditions, respectively).43 This is in agreement with 

the study of Cheng et al.44 in which the authors reported that production of photochemical O3 

from halo-alkanes is less important than from the corresponding alkanes due to the 

presence of the halogen atom that reduces the reactivity of the compound. Moreover, 

although a positive value of POCPE indicates that ClBut contributes rising the tropospheric 

O3 concentrations, the effect of this compound is very low as compare to the O3 produced by 

the reference compound ethene. 

The Ozone Depletion Potential (ODP) of a VOC is defined as the reduction in total 

ozone column per unit of mass emission for that compound relative to the reduction in total 

ozone column per unit of mass emission for trichlorofluoromethane (CFCl3, often called 

CFC-11), and by definition the ODP for this compound is 1.0.45  Thus, ODP provides an 

index of the relative ozone depletion to be expected from a compound of interest that can 

then be used in policy considerations. Because short-lived compounds, such as ClBut are 

not well-mixed throughout the troposphere, the ODPs depend not only on their atmospheric 

lifetime but also on the season and location of their emission. Therefore, model calculations 

are required to evaluate the ODPs of short-lived compounds. However, a simple procedure 

to estimate the ODPs seems to be also valuable. A semi-empirical approach has been 
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developed by Solomon and Albritton46 and applied to the ODP estimation of a compound of 

interest from the following expression: 

 

ODP = τClBut
τCFCl3

 * MCFCl3
MClBut

 * nCl
3

     (Eq. 11) 

 

where M denotes the molecular weight of each species, n is the number of chlorine atoms in 

the considered VOC (the number 3 in the denominator represents the three chlorine atoms 

in CFCl3 (CFC-11)), and τClBut and τCFCl3 are the corresponding global atmospheric 

lifetimes. The value of τCFCl3 is taken as 45 years.47 The obtained ODP value of 1.4 x 10-4 

shows that this VOC must have a negligible effect on the stratospheric ozone depletion.  

 Finally, the contribution of the emission of ClBut to the greenhouse warming was 

estimated from the global warming potential (GWP), which indicates the possible climate 

impact of ClBut relative to the impact produced by the same amount of CO2 over a given 

time horizon (TH) (usually 20 and 100 years) which is calculated according to Eq. 12.48 

 
GWPClBut(TH) = AGWPClBut(TH)

AGWPCO2(TH)
     (Eq. 12) 

 

AGWPCO2 is the absolute global warming potential of CO2 (in W m-2 year kg-1), whose values 

are 2.46x10-14 and 9.17x10-14 W m-2 year (kg CO2)-1 for THs of 20 and 100 years, 

respectively, as reported by Hodnebrog et al.48 and AGWPClBut is the absolute global 

warming potential of ClBut (in W m-2 year kg-1) calculated according to the Eq. 13. 

 

AGWPClBut = REClBut
*  * 𝜏𝜏ClBut * �1- e

- TH
𝜏𝜏ClBut�           (Eq. 13) 

 

where REClBut (in W m-2 kg-1) is the radiative efficiency due to a unit increase in the 

atmospheric abundance of ClBut and τClBut is the atmospheric lifetime of this compound (in 

years). 

The REClBut (1.04 x 10-12 W m-2 kg-1) was determined according to the Pinnock 

method49 from the IR absorption spectra recorded at 298 K in the spectral range (500-1500) 

cm-1. Figure 5 shows the dependence of the absorption cross-section (in cm2 molecule-1) on 

the photon energy (in cm-1) obtained averaging four IR spectra between 0.5 to 5.0 Torr of 

ClBut. The integrated absorption cross-section (1.83 x 10-17 cm2 molecule-1 cm-1) was 

determined by integrating over the whole spectral range at intervals of 10 cm-1. 
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The Pinnock method49 is a good approximation to calculate the RE of compounds 

uniformly distributed in the atmosphere, which is not the case of compounds with short 

atmospheric lifetimes as in the case of ClBut. Hodnebbrog et al.48 provided a correction 

factor f(τ) (Eq. 14) to the RE based on the atmospheric lifetime of the compound: 

 

f(τ) = a𝜏𝜏b

1+c𝜏𝜏d     (Eq. 14) 

 

where a, b, c and d are constants with values of 2.962, 0.9312, 2.994 and 0.9302, 

respectively. Then, considering τClBut = 1.24 x 10-2 years, the lifetime corrected radiative 

efficiency RE* is 5.25 x 10-14 W m-2 kg-1. Using RE* = RE*f(τ) in Eq. 13 and replacing the 

calculated value of AGWPClBut in Eq. 12 the estimated values of GWP(TH) are 3.1 x 10-2 and 

9.1 x 10-3 for THs of 20 and 100 years, respectively. Therefore, a negligible contribution to 

global warming is expected from ClBut as compare to the same amount of CO2. 

All the estimated atmospheric indexes for ClBut are reported in Table 4. 
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Figure 5. IR spectrum of ClBut at 298 K. 
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Table 4. Estimated atmospheric indexes of ClBut: global and coastal atmospheric lifetimes 
(τglobal and τcoastal), ozone depletion potential (ODP), modified photochemical ozone creation 
potentials index (POCPE) for single and multi-days scales, radiative efficiency (RE) and 
lifetime corrected radiative efficiency (RE*) and global warming potential (GWP) for time 
horizons of 20 and 100 years. 
 

τ (years) 
ODP 

POCPE RE RE* GWP 

global coastal single 
day 

multi 
days (W m-2 kg-1) /10-12 TH = 20 

years 
TH = 100  

years 
0.0124 0.0017 1.4 x 10-4 10.55 20.68 1.04 0.0525 3.1 x 10-2 9.1 x 10-3 
 

 
5. Conclusions 

The rate coefficient for the reaction of ClBut with OH radicals was re-determined to 

be (2.22 ± 0.50) x 10-12 cm3 molecule-1 s-1 at 296 K, using a relative method. The initial 

hydrogen abstraction process for this reaction was theoretically investigated at the 

(CCSD(T)/6-311++G(d,p)//BHandHLYP/6-311++G(d,p) level of theory and the reaction rate 

coefficient was calculated with the canonical transition state theory considering the reactivity 

and population of the different conformers of ClBut at 296 K, rendering a value                  

ktheo = 1.8 x 10-12 cm3 molecule-1 s-1 in good agreement with the experimental one. 

The reaction products were characterized for the first time which allows suggesting a 

likely reaction mechanism in clean atmospheres (absence of NOx). The main reaction 

products 4-chloro-2-butanone, 1-chloro-2-butanone and 1-chloro-2-butanol are obtained 

from the subsequent reaction of the alkyl radicals produced from the primary H-abstraction 

to Cγ and Cβ of ClBut by the OH radical. The finding of 3-chloro-2-butanol could be 

associated to the isomerization of the missing primary product 4-chloro-2-butanol. On the 

other hand, the minor reaction products 3-hydroxy-butanaldehyde accounts for the reactivity 

of Cα, which is not negligible according to calculations.  

The global atmospheric lifetime of ClBut was estimated at 4.9 days, indicating that 

this compound is rapidly degraded in the troposphere after being released and it may have 

only a local impact.  Based on its POCPE values, we can infer that ClBut might contribute 

about 10 % to the production of tropospheric ozone compared to the contribution of the 

reference compound (ethene), under north-west Europe and the USA-urban conditions. 

Finally, as a result of its short global lifetimes and corrected lifetime radiative efficiencies, 

ClBut has small ODP and GWP values, so its emission into the atmosphere will not 

contribute significantly to either stratospheric ozone depletion or global warming of the Earth. 
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Supporting Information 
 
TIC chromatogram for OH + ClBut reaction and mass spectrums of ClBut and corresponding 

products. Geometries of all stationary points in the reactive process and all relatives 

energies including ZPE and thermal free energy corrections calculated at the BHandHLYP/6-

311++G(d,p) level and refined at the CCSD(T)/6-311++G(d,p) level. Parameters used to 

calculate the POCPE values. 
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