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Abstract 

The main aim of the present study was to synthetize polyacrylamide nanoparticles and to use them 

as photosensitizer carriers. The new monobrominated derivatives (monobrominated neutral red and 

monobrominated azure B) were the photosensitizers used for antimicrobial photodynamic therapy. 

They were loaded into the nanocarriers and their antibacterial and oxidative activities were 

evaluated. The polyacrylamide nanoparticles were evaluated and prepared by inverse 

microemulsion polymerization. The nanoparticles obtained were characterized by size, 

polydispersity index, and zeta potential analysis. The Dynamic Light Scattering indicated that the 

diameter of the particle (z-average) was optimal, with an acceptable polydispersity index. The 

antibacterial activity of the polyacrylamide nanoparticles loaded with photosensitizers was 

evaluated against Staphylococcus aureus. Both photosensitizers loaded into the nanoparticles 

showed great potential as antibacterial agents since they suppressed the bacterial growth. The 

maximum percentage of growth reduction was 35.5% (> 2 Log CFU/mL), with the 

monobrominated azure B loaded into the nanocarrier with 2 hydroxyethyl methacrylate against 

methicillin resistant S. aureus. The improved physicochemical and photophysical properties of 

these photosensitizers were accompanied by a significant increase in the photoantimicrobial action, 

in conventional-sensitive and-methicillin resistant S. aureus. 
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The results obtained clearly suggest that polyacrylamide nanoparticles loaded with photosensitizers 

have great potential for further application in antimicrobial photodynamic therapy. 

 

1. Introduction 

A potential strategy to overcome the antibiotic resistance of numerous microorganisms may be the 

use of antimicrobial photodynamic therapy (APDT) that employs a localized, light-activated 

Photosensitizer (PS) that is capable of transferring the energy absorbed to other compounds that, in 

turn, generate metastable species that are very reactive, particularly singlet oxygen (1O2), which 

destroys target cells. The APDT eliminates the bacteria without inducing antibiotic resistance or 

even requiring daily dosing [1,2]. In contrast to antibiotics, sub-inhibitory doses of PS used in 

APDT have failed to induce genomic mutations and elevate photodynamic resistance. 

The main advantages of APDT are the few side effects, the prevention of the regrowth of the 

microorganisms after treatment, and the lack of development of resistance mechanisms due to the 

mode of action and type of biochemical targets (multi-target process). This therapeutic alternative 

includes noninvasive nature, repeatability without cumulative toxicity, and improved quality of life 

of the patients [3,4]. 

Two oxidative mechanisms of photoinactivation are considered to be implicated in the inactivation 

of the target cells by APDT. The type I pathway involves electron/hydrogen atom-transfer reactions 

from the PS triplet state with the participation of a substrate to produce radical ions, while the type 

II pathway involves energy transfer from that triplet state to molecular oxygen to produce 1O2. Both 

processes lead to highly toxic reactive oxygen species (ROS), able to irreversibly alter vital 

components of cells, resulting in oxidative lethal damage. ROS causes oxidative stress in the cells, 

inducing cell death by apoptosis, necrosis or a combination thereof [3]. 

The new cationic PSs, monobrominated Neutral Red (NRBr) and monobrominated Azure B 

(AzBBr), were synthesized and characterized in our laboratory (Fig. 1A) [5,6]. 

 NRBr proved to have the potential to be used as a PS because it presents less aggregation in 

different solvents and improved photoproperties, exhibiting significant increases in the 

photoantimicrobial action compared to Neutral Red [7]. However, this monobrominated derivative 

proved to be very chemically unstable under physiological conditions. So, it becomes a good 

candidate to be carried in a drug transporter system. 

AzBBr demonstrated an increase in 1O2 yields and a lower efficiency in inactivating cultured tumor 

cells. The decrease in photodynamic activity was related to an aggregation effect in comparison 

with the parent compound [5]. Despite its disadvantages, AzBBr is an excellent candidate to 

produce photocytotoxicity in biological media; therefore, we propose to continue studying it as a 

third generation PS. 
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In this way, the new brominated compounds could be included in vehiculization systems in order to 

improve their properties and increase the phototoxicity. The nanoparticles (NPs) as an emerging 

technology have the capability to overcome most of the limitations of classical PSs. The fact that 

most effective PSs tend to be insoluble, hydrophobic molecules with a high propensity to aggregate, 

means that encapsulation in nano-drug carriers may make a big difference to their performance [8]. 

The NPs loaded with PSs have been used as carriers to transport PSs into microorganisms and 

improve antimicrobial performance; particular attention has been paid to biocompatible and 

biodegradable matrixes [9-13]. Various organic nanomaterials such as liposomes, polymeric NPs, 

natural macromolecule NPs, as well as a number of other functional NPs with interesting chemical 

and physical properties have been investigated, showing encouraging results in vitro and in vivo 

[8,14-16]. 

The NPs containing PSs have several advantages over free PSs: transport high concentrations of PS 

for the production of lethal reactive oxygen species, reduce the ability of the target cell to pump out 

the PS, decrease the possibility of multidrug resistance, and increase selectivity of treatment by 

localized delivery agents. In addition, the nanoparticle matrix is non-immunogenic, stopping the 

aggregation of PS as occurs in the free state and the encapsulation can be used to enhance solubility 

if the PS is not soluble in water [12,14]. The efficiency of NPs in APDT may be attributed to the 

fact that this therapy relies on the production of ROS. Therefore, it is unnecessary to release the 

loaded PS and no time for biodegradation is needed, but it is only essential that the reactive species 

diffuse in and out of the NP [17]. 

Polymeric NPs have been widely investigated for their chemical, physical, and structural properties 

that enable them to be widely applied in drug entrapment, medical imaging, diagnosis, and 

treatment. Additionally, polymeric nanocarriers may be prepared from natural polymers such as 

albumin, hyaluronic acid, and chitosan and from synthetic polymers such as polylactic acid, poly 

glycolic acid, poly (lactide-co-glycolide), polypeptide, and polyacrylamide (PAA) [18]. PAA is an 

important water-soluble polymer with a large number of acetylamine groups on its macromolecular 

chains. Recent accelerated biodegradation studies demonstrated the biodegradability of the PAA 

nanomaterials [19]. The PAA nanoparticle matrix, generally a porous hydrogel, protects the 

embedded active form of PSs from enzymatic or environmental degradation and permits 1O2 and 

other kinds of ROS diffusion through the pores. 

In view of the above-mentioned facts, in this study, a nanocarrier strategy was developed using 

biocompatible polymers to incorporate the PSs, NRBr, and AzBBr. In addition, the entrapment of 

these PSs in novel nanoparticles could offer therapeutic advantages in comparison to free PS active 

agents since it could prevent different adverse effects. 
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The nanocarriers were developed using acrylamide (AA), 2 hydroxyethyl methacrylate (HEMA), 3-

(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) [PAA-HEMA-AHM (NPs 1)], AA, 3-

(aminopropyl) methacrylamide (APMA), and (+) N,N´-diallyl-L-tartardiamide (DAT) [PAA-

APMA-DAT (NPs 2)] (Fig. 1B). In addition, we evaluated the photoantimicrobial activity of the 

PSs loaded into novel PAA-NPs for application in APDT against methicillin-sensible 

Staphylococcus aureus (MSSA) and methicillin-resistant strains of S. aureus (MRSA). It has been 

reported that this bacterium is one of the most common microorganosm that is present in infected 

soft tissue lesions. Community and healthcare-acquired MRSA has dramatically increased [20,21]. 

Figure 1 

2. Materials and Methods 

2.1. Materials 

NRBr and AzBBr were synthesized in our laboratory according to the procedure previously 

described [19,20]. 

AA, N,N,N´,N´-tetraethylmethylenediamine (TEMED), ammonium persulfate (APS), polyethylene 

glycol dodecyl ether (Brij 30), AHM, dioctyl sulfosuccinate (AOT), APMA, HEMA, DAT, and 

9,10- anthracenediyl-bis (methylene)dimalonic acid (ABDA) were purchased from Sigma-Aldrich. 

Hexane, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), and ethanol were obtained 

from Sintorgan. Trypticase soy agar (TSA) was obtained from Britania (Buenos Aires, Argentina). 

Purification by dialysis was performed with cellulose ester membranes (MWCO 50 KDa; 

SpectrumLabs). 

Phosphate-buffered saline (PBS, 10 mM pH 7.4) solution was prepared using sodium chloride, 

potassium chloride, sodium hydrogen phosphate dihydrate, and potassium dihydrophosphate. All 

the chemicals were of the highest purity commercially available (Cicarelli) and the solutions were 

prepared using ultrapure water from a Milli-Q® purification system. 

 

2.2. Instrumentation 

Absorption spectra were carried out at room temperature with a Cary 60 UV-Vis (Agilent 

Technologies) spectrophotometer between 200 and 800 nm using a 1 cm length quartz cell. All 

experiments were carried out at least twice with consistent results. 

The average particle size, polydispersity index (PDI), and zeta potential (ZP) of the obtained NPs 

were evaluated using Dynamic Light Scattering (DLS) (Zetasizer Delsa Nano Version 2.20, 

Beckman Coulter Inc.). All measurements were carried out in triplicate at 25 ° C. The suspension of 

the NPs was appropriately diluted with Milli-Q water to attain suitable concentrations for analysis. 

The diameter and PDI of particle sizes were estimated using the CONTIN algorithm analysis 

through inverse Laplace Transformation of the autocorrelation function. 
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The pH was determined by a pH-meter (CRISON GLP 21) using a combined glass electrode. 

The chemical stability of the dyes was evaluated using a thermostatic bath (Vicking®, Masson D). 

Regarding the experiences with light, the samples were irradiated at a distance of 5 cm with a 

Parathom® lamp (OSRAM 5- W). The fluence rate measured with a Tes-1332 Digital Lux Meter 

(TES Electrical Electronic Corp.) was 8.4 mW/cm2. 

 

2.3. Synthesis of polyacrylamide nanoparticles 

All NPs were prepared by inverse microemulsion polymerization. Hexane (12.5 mL) was added to a 

dried 50 mL reaction flask and stirred under a constant purge of nitrogen for 5 minutes. Suitable 

amounts of the surfactants AOT (0.533 g) and Brij 30 (1.033 g) were added to the reaction flask and 

stirring was continued under nitrogen protection for 20 min. The aqueous solution of appropriate 

monomers and crosslinkers (see section 2.3.1. or 2.3.2.) for the different NPs was then added to the 

hexane reaction mixture and stirred at 500 rpm for another 20 min at 22 °C. 

To initiate the polymerization reaction, 13.35 µL of APS aqueous solution (25 mg in 0.5 mL of 

Milli-Q water) and 13.35 µL of TEMED contained in 2.5 mL of hexane were added to the reaction 

mixture. The reaction was allowed to proceed for 1 day at room temperature. 

Upon the completion of polymerization, hexane was removed by rotary evaporation and the 

particles were resuspended by addition of ethanol (15 mL). 

Regarding the processing and preservation of the NPs, dialysis through special membranes (50 kDa) 

(3 days) was selected first in ethanol to remove the surfactant and residual monomers and then in 

water (3 days). The samples purified by dialysis were stored in a refrigerator at 4 °C. 

DLS was employed to determinate the size of the NPs in aqueous solution. 

 

2.3.1. Preparation of monomers and crosslinker solution to yield PAA-HEMA-AHM (NPs 1): 

AA (monomer, 237 mg), HEMA (monomer, 20 µL), and AHM (crosslinker, 143 mg) were 

dissolved in phosphate buffered saline (0.67 mL) in a glass vial by sonication to obtain a uniform 

solution. 

2.3.2. Preparation of monomers and crosslinker solution to yield PAA-APMA-DAT (NPs 2): 

AA (monomer, 237 mg), APMA (monomer, 29.7 mg), and DAT (crosslinker, 152 mg) were 

dissolved in phosphate buffered saline (3.0 mL) in a glass vial by sonication to obtain a uniform 

solution. 
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2.4. Loading of nanoparticles with photosensitizers 

The loading of the different nanoparticle systems, NPs 1 and NPs 2, with the PSs was made by post-

synthesis modification of the NPs. To do this, 13.7 mL of Tween-80 was added to 1.37 mL (10 mg) 

of the NP solution. Then, different aliquots (in the range 100-500 µL) of the NRBr or AzBBr 

solution (1.3 mM) in DMSO were added to the NP solution and magnetically stirred at a constant 

rpm for at least 2 h. The excess of DMSO, Tween 80 and the PS that were not loaded, was removed 

by dialysis for 24 h. 

 

2.5. Photodynamic properties: singlet oxygen determination 

The use of ABDA in the detection of 1O2 was first described by Lindig et al [22]. It has since been 

employed to assess 1O2 generation by various photosensitiser systems. 

ABDA reacts very rapidly and irreversibly with 1O2 to produce an endoperoxide, resulting in the 

bleaching of the absorbance maximum of ABDA at approximately 380 nm [22, 23]. The 

endoperoxide formed is thermally stable at room temperature [24]. It is a useful method of 

quantification as, even when 1O2 generation rates are low, the concentration of endoperoxide 

produced remains proportional to the cumulative amount of 1O2 generated [25]. In addition, it has a 

high rate constant for reaction with 1O2 and high water solubility, which allows testing in aqueous 

media, and in systems with biological applications [22, 26]. 

The solutions of ABDA (Absorbance 0.3) and the PS free and loaded into NPs (previously 

dialyzed) with an Absorbance of 0.2 in Milli-Q water were irradiated in 1 cm quartz cuvettes at 5 

cm distance with a Parathom® lamp (OSRAM - 5 W) for a total time of 360 s. The kinetics of 

photooxidation of ABDA were studied by following the decrease of the absorbance (Abs) at λmax = 

380 nm as a function of irradiation time (Fig. 2). The photooxidation of ABDA was also used to 

determine the oxygen quantum yield (ΦΔ) of the photosensitizers. The free forms of NRBr and 

AzBBr in aqueous solution were used as references (ΦΔ= 1). 

Figure 2 

The observed rate constants (kobs) were obtained by a linear least-squares fit of the plot of Abs 

versus time (Fig. 3). 

The ΦΔ of the dyes was calculated using Eq. 1, where PS is the photosensitizer, Ref is the reference 

compound, and Abs0 is the initial absorbance of each PS at maximum absorption wavelengths. All 

determinations were carried out in triplicate. 

 

𝛷Δ
PS =

𝛷Δ
Ref 𝑘obs

PS  Abs0
Ref

𝑘obs
Ref  Abs0

PS         1. 
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2.6. Stability and photostability tests 

The chemical stability of the dyes was evaluated in buffer solutions at pH 7.4 at 37 °C by UV-

visible spectroscopy and the samples were protected from light. The stock solutions of free dyes and 

NPs loaded with NRBr and AzBBr (previously dialyzed; 5 x 10-4 M) were prepared in buffer pH 7.4 

prior to use. The standard solutions (25 mL; 3.5 x 10-5 M) of these compounds were prepared by 

diluting different aliquots of the corresponding stock solution with buffer pH 7.4. The samples were 

placed in a thermostatic bath. The aliquots were taken at different times and their Abs values were 

measured. The study was conducted for 6 h. 

The photostability of free and loaded dyes (10-5 M) in buffer solution (pH 7.4) was carried out in 

quartz cells that were irradiated (see section 2.2.) at room temperature for 120 min (total light dose 

= 60.5 J/cm2). It is important to note that the dye samples loaded into NPs were dialyzed before 

being measured. The solutions of the dyes were monitored by UV-visible spectroscopy as a 

function of time (Fig. 4). All stability studies were carried out in triplicate. 

 

2.7. Antimicrobial Photodynamic Therapy studies 

2.7.1. Bacterial strains and growth conditions 

Methicillin-sensible S. aureus ATCC 29213 (MSSA) and methicillin-resistant S. aureus ATCC 

43300 (MRSA) were used for this study. These strains were cultivated at 37 °C in TSA and 

maintained in this medium. An overnight culture was suspended in PBS and adjusted to a bacterial 

concentration of ∼ 108 CFU/mL (corresponding to 0.5 Mc Farland scale). Finally, a 1/100 dilution 

of McFarland (cellular density: 106 CFU/mL) was prepared and used for the photodynamic 

inactivation assays. 

 

2.7.2. Photodynamic inactivation of S. aureus in vitro. 

The PSs were dissolved in a mixture of DMF: H2O (1:9 v/v). The PAA-NPs were prepared as 

described in section 2.3. and then diluted with PBS to obtain solutions with the same concentration 

of the free dye and loaded form ([NRBr]: 18 µM and [AzBBr]: 15 µM). The DMF present in the 

final dilutions did not alter bacterial viability. 

The aliquots of different PS solutions (1 mL) were transferred to a tube with 1 mL of 1/100 

McFarland dilution. The cellular density used in the photodynamic assays was 106 CFU/mL and the 

final PS concentrations were 9 mM and 7.5 mM for NRBr and AzBBr, respectively. These 

suspensions were irradiated for 30 min and 15 min, reaching a total light dose of 15.1 J/cm2 and 7.6 

J/cm2. Bacterial cultures grown under the same conditions with and without PS kept in the dark and 

illuminated cultures without sensitizer served as controls. When the lighting period ended, 100 µL 

aliquots were removed and serially diluted 10-fold. The number of viable bacteria was determined 
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in triplicate by the drop plate technique for bacterial enumeration according to Naghili et. al [27]. 

The CFU/mL was log-transformed and the PSs both free and loaded into NPs were compared with 

the control cultures. Statistics values were expressed as the mean ± standard deviation of each 

group. The difference between two means was compared by a two-tailed unpaired Student's t test. P 

values of < 0.05 were considered significant. 

 

3. Results and Discussion 

3.1. Synthesis, particle size, PDI, and zeta potential of polyacrylamide nanoparticles 

In this study, our synthesis strategy focused on obtaining polyacrylamide nanoparticles with good 

characteristics. For this reason, we tested two pathways of synthesis (see section 2.3.). Table 1 

summarizes the size of the particles, PDI, and zeta potential values for the new nanoparticles, free 

and loaded with different dyes. 

Table 1 

According to these results, it can be said that the new PAA-NPs (NPs 1 and NPs 2) are optimal and 

present good size and acceptable PDI. These values allowed the conclusion that the NPs were 

distributed in only one population and were similar in size [28]. It is possible to affirm that the size 

of both nanoparticles increased with the vehiculization of NRBr and AzBBr, reaching 300 nm in all 

cases. These modifications demonstrated that there was an interaction between the different PAA-

NPs and the PS. 

The zeta potential of a nanoparticle is commonly used to characterize the surface charge property of 

NPs. It reflects the electrical potential of particles and is influenced by the composition of the 

particle and the medium in which it is dispersed. NPs with a zeta potential above ±30 mV have been 

shown to be stable in suspension, as the surface charge prevents the aggregation of the particles. 

The zeta potential can also be used to determine whether a charged active material is encapsulated 

within the center of the nanoparticle or on the surface [29, 30]. 

The value of zeta potential was found to be more than 30 mV for all NPs (Table 1). It indicates that 

the synthesized NPs could be expected to be stable for a longer time. Also, the zeta potential values 

varied from negative to positive when NRBr and AzBBr were loaded into PAA-NPs. This 

modification may be due to the fact that both dyes present cationic form (Fig. 1), which allows 

inferring that the PSs evaluated were located on the surface of the NPs. 

 

3.2. Photodynamic properties: singlet oxygen determination 

Fig. 3 A shows the kinetics of photooxidation of ABDA as a function of irradiation time for AzBBr 

loaded into NPs 1 and NPs 2. Similar results were obtained for the dye NRBr under the same 

experimental conditions (Fig. 3 B). From the analysis of these data, it was confirmed that both NPs 
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did not produce the oxidation of ABDA when they were irradiated. A similar behavior was 

observed for NRBr and AzBBr loaded into both systems and in the absence of light. Therefore, it is 

possible to state that the decomposition of ABDA is related to the formation of 1O2, generated by 

the excitation of both PSs. 

Figure 3 

The values of the observed rate constant (kobs) were obtained and ΦΔ were calculated using Eq. 1 

These data for NRBr and AzBBr are summarized in Table 2. 

Table 2 

According to the obtained results, it is possible to affirm that for the PS of the family of azines 

(NRBr), the production of singlet oxygen increases considerably when this is loaded into the PAA-

NPs in comparison with the free PS in water. Thus, the value of ΦΔ for NPs 1-NRBr was 3.5 times 

greater than that obtained for the free NRBr, while, the value of ΦΔ for NPs 2-NRBr tripled 

compared to the free PS. 

On the other hand, a similar behavior was observed between AzBBr and NRBr when they were 

vehiculized. The vehiculization of the thiazine dyes caused greater decomposition of ABDA than 

the free one. However, no significant differences were observed in the 1O2 production of both 

nanoparticle systems. 

From the above, it can be deduced that the vehiculization of the dyes, NRBr and AzBBr, in PAA-

NPs is able to optimize the photochemical properties of the PSs, which is an important advantage 

because they can be used in therapeutic applications. 

These results are very promising and would indicate that the NPs of PAA have the capacity to 

induce the ROS generation of PSs and lead to the formation of more singlet oxygen at the action 

site. 

 

3.3. Stability and photostability tests 

Fig. 4 shows the chemical stability studies of the dye NRBr, free in water and loaded into PAA-

NPs. The free dye NRBr was very unstable (half-time (t½) = 10 min) in buffer solutions at pH 7.4. It 

was assayed at 37 °C for 6 h and followed a pseudo-first order kinetics. This fact means that at this 

pH the stability of NRBr was significantly affected. The results obtained demonstrated that the free 

dye AzBBr had a high chemical stability under the same experimental conditions tested for NRBr 

(data not shown). 

Figure 4 

However, when the studies were performed in the presence of both PAA-NPs, NPs 1 and NPs 2, the 

stability of the NRBr compound increased significantly and demonstrated to be stable during the 6 h 
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study period (Fig. 4). That is to say, the loading of the PS into the NPs protected them from 

chemical degradation. 

On the other hand, in a previous work done by our research group, it was shown that the free dye 

NRBr presented high photostability [7]. However, AzBBr showed some photochemical instability 

(t1/2 = 100 min) when assayed for 120 min. When this PS was loaded into both novel NPs the half-

times remained essentially constant compared to the free dye. (data not shown). 

It is possible to conclude that the vehiculization of both compounds in the new NPs presented a 

clear improvement in terms of their chemical and photochemical stability, which is a therapeutic 

advantage. 

 

3.4. Inactivation of S. aureus in vitro. 

In order to evaluate the effect of the vehiculization of NRBr and AzBBr in PAA-NPs on their 

photodynamic activity, the inactivation of MSSA and MRSA was tested in vitro. As shown in Fig. 

5, the exposure of the bacteria to PSs free and encapsulated in NPs 1 and NPs 2 in the dark did not 

produce a reduction in CFU/mL. The same effect was observed when both strains of S. aureus were 

irradiated in the absence of the PSs. Fig. 5 A shows that the free NRBr, NPs 1-NRBr and NPs 2-

NRBr caused a significant reduction in the Log CFU/mL of MSSA compared to the control 

solution. In addition, it was observed that after 30 min of irradiation the two nanoparticle systems 

produced a greater reduction in cell viability than the free PS, with no significant differences being 

observed between NPs 1-NRBr and NPs 2-NRBr. 

When MRSA was treated with free and encapsulated NRBr, only the third generation PSs, NPs 1-

NRBr and NPs2-NRBr, were observed to cause a significant reduction in the number of CFU/mL 

(Fig. 5 B). In contrast to MSSA, NPs 1- NRBr proved to be significantly better than NPs 2- NRBr 

in the inactivation of the resistant strain. 

On the other hand, Fig. 5 C and D shows the photodynamic effect of AzBBr free and encapsulated 

in NPs (1 and 2) against MSSA and MRSA, respectively. In both cases, the third generation PSs 

caused a significant reduction in cell viability, with NPs 1-AzBBr being significantly better than 

free AzBBr and NPs 2-AzBBr. In fact, the maximum percentage of growth reduction was 35.5% (> 

2 Log CFU/mL) with NPs 1-AzBBr against MRSA. It is important to note that the microorganisms 

treated with AzBBr were irradiated for 15 min because when they were exposed for 30 min to light, 

the percentage of death was 100%. 

Figure 5 

These results agree with those obtained in singlet oxygen production (see section 3.2.) because both 

PSs were more active when they were loaded into the NPs than when they were free. In turn, when 
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NPs 1 were used as carriers, the values obtained were better than when using NPs 2. These results 

make the third generation PSs good candidates for potential application in APDT. 

 

4. Conclusions  

Most efforts have been focused on developing novel low-complexity carriers that present an optimal 

synthesis route and can be loaded with PSs that produce ROS upon light activation and are stable 

during photodynamic action. The use of PAA-NPs as PS nanocarriers demonstrated to be a valuable 

tool to enhance the antimicrobial efficacy of the PSs and protect them from possible degradation 

under physiological conditions. The novel NPs presented ideal sizes and polydispersities. 

The results obtained showed that the PSs, NRBr and AzBBr, can be successfully encapsulated in 

PAA-NPs and targeted against S. aureus without non-specific phototoxicity. 

The encapsulation of both PSs in NPs 1 and 2 enhanced the size of the particles reaching 300 nm in 

all cases. The ΦΔ increased considerably when the PSs were loaded into the NPs in comparison to the 

free PSs in water. The value of ΦΔ for NPs 1-NRBr was 3.5 times greater than that obtained for the 

free NRBr, while the value of ΦΔ for NPs 2-NRBr tripled compared to the free PS. The vehiculization 

of AzBBr in both PAA-NPs caused a similar increase in the decomposition of ABDA to that of the 

free PS. 

This study describes experiments aimed at evaluating the efficiency of the novel systems, NPs 1 and 

NPs 2, in APDT. The two nanoparticle systems, NPs 1-NRBr and NPs 2-NRBr, produced a greater 

reduction in cell viability than the free PS, with no significant differences being observed between 

both systems in the methicillin-sensible strain. The NPs 1-NRBr caused a greater reduction in cell 

viability against MRSA than NPs 2-NRBr. 

The dye AzBBr encapsulated in NPs 1 demonstrated to be better than NPs 2 against MSSA and 

MRSA. 

It is possible to affirm that the vehiculization of NRBr and AzBBr in the PAA-NPs is able to 

optimize the photochemical properties of the PSs, which is an important advantage because they 

can be used in therapeutic applications.  
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Figure 1. A. Chemical structure of PSs. B. Synthesis of new PAA-NPs. 

Figure 2. UV-Visible absorbance spectra of ABDA in solution with NPs 1-AzBBr irradiated at 

different times (in the range 0-360 s). 

Figure 3. Kinetics of photooxidation of ABDA at λmax=380 nm as a function of irradiation time for 

AzBBr (A) and NRBr (B) in different PAA-NPs. 

Figure 4. Stability studies of free NRBr in water and loaded into PAA-NPs. 

Figure 5. Photodynamic inactivation of MSSA (A and C) and MRSA (B and D) treated with 

different PSs. 
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Table 1. Particles size, PDI, and zeta potential values for new NPs, free and loaded with different 

dyes. 

 

Characteristics  
Free PAA-NPs PAA-NPs-NRBra PAA-NPs-AzBBrb 

NPs 1 NPs 2 NPs 1 NPs 2 NPs 1 NPs 2 

Average size (nm) 94.3 91.5 298 303 294 307 

Zeta potential (mV) -35 -32 +30 +37 +31 +33 

PDI 0.25 0.23 0.24 0.27 0.25 0.26 

 

a and b: aliquot of 100 µL of stock solution 20 mM. 
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Table 2. Kinetic parameters for the photooxidation and ΦΔ of NRBr and AzBBr, free and loaded into 

NPs. 

 

PS Absorbance* -kobs* (x10-4; s-1) ΦΔ 

Free NRBr 0.226±0.025 0.5±0.1 1 

NPs 1-NRBr  0.245±0.002 2.0±0.1 3.46 

NPs 2-NRBr  0.202±0.001 1.9±0.1 3.02 

Free AzBBr 0.195±0.004 9.6±0.2 1 

NPs 1-AzBBr  0.160±0.008 9.6±0.3 1.22 

NPs 2-AzBBr 0.131±0.003 7.8±0.1 1.21 

*Determination number, n = 3 
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Highlights 

- Polyacrylamide nanoparticles were synthesized and charectizarated. 

- Singlet oxygen and chemical stability determination of dyes were studied.  

- Antimicrobial photodynamic therapy against S. aureus was evaluated.  
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