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Abstract

This work aimed to evaluate the effect of oral administration of probiotic Lactobacillus (L.) 

fermentum CRL1446, with feruloyl esterase (FE) activity, on metabolic biomarkers and intestinal 

microbiota of mice with high fat diet-induced Metabolic Syndrome (MS) and supplemented with 

wheat bran as a source of esterified ferulic acid. Six-week-old male Swiss albino mice developed 

the components of MS when fed with high fat diet supplemented with wheat bran (HFD+WB) for 

14 weeks. Positive impact of L. fermentum CRL1446 administration on these animals was reflected 

in a decrease in body weight gain and adiposity index compared to the animals that did not receive 

the probiotic strain. In addition, a decrease in plasma leptin levels, improvement of inflammatory 

profile, reduction of fatty infiltration in hepatocytes and modification of lipid profile (increased 

HDL-cholesterol and decreased LDL-cholesterol and triglyceride levels) were observed. On the 

other hand, L. fermentum CRL1446 reduced fasting glucose and insulin levels, improving the 

HOMA index in mice with MS. Postprandial glucose levels were also reduced in the oral glucose 

tolerance test. Consumption of L. fermentum CRL1446 with HFD+WB (HFD+WB-Lf mice group) 

had a great impact on host metabolism, modulating intestinal microbiota, with an increase in 

Bacteroidetes and a decrease in Firmicutes abundance being observed. Increased intestinal FE 

activity, improved oxidative status and increased abundance of 3-hydroxyphenylpropionic acid and 

butyric acid concentration in colonic content, were also demonstrated in HFD+WB-Lf mice. 

Results obtained suggest that supplementation with L. fermentum CRL1446 enhances beneficial 

effects of a bran diet, attenuating the risk factors associated with MS.

Keywords: Lipid lowering effect, hypoglycemic effect, feruloyl esterase, postbiotic, metabolic 

syndrome.
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1. Introduction

Metabolic syndrome (MS) is characterized by the presence of at least three of the following risk 

factors: central obesity, hyperglycemia, atherogenic dyslipidemia, and hypertension. Its prevalence 

in recent years has increased mainly due to changes in lifestyle, which include a greater sedentary 

behaviour and the consumption of diets rich in fats and sugars (Western diet). The MS is also 

associated with a high incidence of cardiovascular diseases and type 2 diabetes mellitus (T2DM), 

with significantly increased morbidity and mortality rates in the population1.

Regarding public health, the medical costs due to diseases related to MS are continuously 

increasing, and the effort required to reduce the percentage of body fat in individuals has become a 

global concern2. There are several strategies to reduce body weight, such as physical activity, 

calorie-restricted diets, use of medications, surgery, etc., but most of them involve high treatment 

costs, and in some cases, can generate adverse side effects. For this reason, the development of 

dietary strategies that include natural food products with probiotics and/or prebiotics has emerged 

as an alternative that could help to reduce the risk factors associated with MS, without generating 

adverse side effects on health3. 

In recent years, the interest in using probiotics, postbiotics or paraprobiotics, has emerged as an 

alternative for the prevention and treatment of pathologies related to obesity and MS, improving the 

balance of intestinal microbiota, decreasing the sensation of hunger and central adiposity, and 

improving the lipid profile and integrity of intestinal mucosa with a decrease in the inflammatory 

degree4. Some probiotic bacteria synthesize products or metabolic byproducts (postbiotics) which 

are secreted by live cells, such as enzymes and organic acids, that might also offer physiological 

benefits to the host by providing additional bioactivity5. Among the physiological functions of 

postbiotics, immunomodulation, anti-inflamatory, hypocholesterolemic, anti-obesogenic, and 

antioxidant effects are included6, 7. As probiotic microorganisms, mainly lactic acid bacteria (LAB) 

belonging to Lactobacillus genus is used. Several LAB strains can exert beneficial effects on the 

host based on enzyme activities.  In this sense, LAB with feruloyl esterase (FE) activity allow 
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increasing the bioavailability of ferulic acid (FA) at the intestinal level, which could induce 

metabolic changes that are positive in individuals who develop MS8. The consumption of FA, a 

type of phenolic compound, has been associated with the reduction of several risk factors present in 

chronic non-communicable diseases, such as T2DM, cardiovascular, neurodegenerative 

pathologies, etc.9 Its beneficial properties are attributed to multiple bioactive functions (antioxidant, 

antimicrobial, anti-inflammatory, etc.), which depend on FA intake. However, the bioavailability of 

FA is limited because it is present in vegetable matrices in esterified form (hydroxycinnamates), 

which regulates its bioefficacy 10. Therefore, FEs play an important role in the hydrolysis of ester 

bonds and the subsequent release of FA, thus constituting a fundamental step required for its 

bioavailability and metabolism. 

In rodents, the intestinal FE activity is provided by both intestinal microbiota and epithelial cells 

11, 12. On the other hand, Filannino et al.13 affirm that bacterial FE enzymes present in the colon are 

primarily responsible for increasing the bioavailability of FA in humans. When FA is ingested in 

the dietary fiber, 90% of it reaches the colon in the form of hydroxycinnamates (ferulates). Thus the 

colonic microbiota is the main responsible for the release of FA from its conjugated forms, because 

of the breakdown of ester bonds by action of FE and its subsequent metabolism14.

This work aims to evaluate the effect of oral administration of probiotic L. fermentum CRL1446, 

with FE activity, on metabolic biomarkers and intestinal microbiota of mice with high fat diet-

induced MS and supplemented with wheat bran as a source of esterified FA.

2. Materials and Methods

2.1. Bacterial strain, culture conditions and cell suspension preparation

L. fermentum CRL1446 was obtained from the Culture Collection of the Centro de Referencia 

para Lactobacilos (CERELA, Tucumán, Argentina). This strain has FE activity and is capable of 

releasing FA from wheat bran15.  L. fermentum was maintained in de Man, Rogosa and Sharpe 
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(MRS) broth (Britania, Buenos Aires, Argentina)16 containing 20% (v/v) glycerol at −80°C and it 

was propagated three times in MRS broth before each experimental use. For cell suspension 

preparation, L. fermentum CRL1446 was inoculated at 2% (v/v) in 50 mL of MRS broth and 

incubated at 37°C for 12 h. Cells were harvested by centrifugation (10,000 g 10 min) and washed 

twice with sterile phosphate-buffered saline (PBS) pH7. Cells were resuspended in sterile drinking 

water to achieve a concentration of 10⁹ cells/mL for animal assays.

2.2. Animal protocol

Six-week-old male Swiss albino mice (n=24) were obtained from the closed random-bred colony 

maintained at CERELA. They were housed in individual cages and were acclimated to a 

temperature of 22°C ± 2°C with a 12-h light/dark cycle. Mice were then separated into three groups 

containing 8 mice each. The groups were as follows:

1. Control group, mice receiving by gavage 100 µL of drinking water  and fed daily with a 

normal diet;

2. MS group, mice receiving by gavage 100 µL of drinking water and fed daily with a high-fat 

diet supplemented with wheat bran to 7% (w/w) (HFD+WB);

3. MS+Lf group, mice receiving by gavage 100 µl of L. fermentum CRL1446 suspension 

(resulting in a dose of 108 cells/day) and fed daily with HFD+WB.

The control group mice received a normal diet (3.1 Kcal/g, with 6.5% vegetable oil-derived Kcal) 

and drinking water ad libitum for 14 weeks. Animals from the MS and MS+Lf groups were 

acclimated for 5 days to ad libitum normal diet, after which they were fed daily with HFD+WB (5.1 

Kcal/g, with 60% lard-derived Kcal) for 14 weeks. Both diets supplied approximately 0.60 mg of 

hydroxycinnamates/day/mouse which are in their ester-linked form in wheat bran. The nutritional 

composition of normal diet and HFD+WB are listed in Supplementary Table S1.
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The food intake and body weight of each mouse were measured every week. Body weight gain 

was expressed as follows: body weight at week 14 (g) − initial body weight (g). The food efficiency 

ratio was expressed as follows: body weight gain (g)/food consumed (g) at week 14.

Oral glucose and sucrose tolerance tests were performed after week 14 of treatment. Mice were 

fasted for 12 h, and glucose or sucrose was orally administered by gavage at a dose of 2 g/Kg. 

Blood samples were obtained by saphenous vein puncture before and after 30, 60, 90 and 120 

minutes of glucose or sucrose administration, according to Tomaro-Duchesneau et al.16. Glucose 

levels were analyzed with glucose test strips using a Glucometer from Accu-Chek Active (Roche, 

Germany). The homeostatic model assessment for insulin resistance (HOMA-IR) was calculated 

using insulin and glucose plasma values obtained at week 14 of the experimental trial 17.

At the end of the experimental period, the mice were fasted for 12 h and were anesthetized using 

an intraperitoneal injection of ketamine hydrochloride (100 mg/Kg of body weight) and xylazine 

hydrochloride (5 mg/Kg of body weight).

The experimental protocol complied with current Argentinean laws and was approved by the 

Animal Protection Committee of CERELA (CRL-BIOT-EF-2019/1A).

2.3. Biochemical assays

Blood samples were obtained from all animals (n=24) by cardiac puncture and were transferred 

into tubes containing the anticoagulant EDTA (Wiener Lab, Rosario, Argentina). Plasma was 

obtained by centrifugation (2500 ×g, 10 min) and was used for biochemical assays. Plasma glucose, 

total cholesterol, LDL-cholesterol, HDL-cholesterol, triglyceride, alanine transaminase (ALT) and 

aspartate transaminase (AST) concentrations were measured by enzymatic methods using 

commercial kits (Wiener Lab, Rosario, Argentina).

Cardiovascular risk indicators (LDL-/HDL-cholesterol ratio, Triglyceride/HDL-cholesterol ratio 

and atherogenic index were calculated according to the protocol described by Millán et al. 18 and 

Vega et al. 19.
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Plasma leptin concentrations were determined using an immunoassay kit (ELISA, DuoSet, R & 

D Systems, MN, USA). Plasma insulin levels were measured using ELISA (Mouse Insulin ELISA 

Kit, Alpco Diagnostics, USA).

Fasting plasma insulin and glucose levels were used to calculate insulin resistance using the 

homeostasis model assessment for insulin resistance (HOMA-IR) [(fasting glucose × fasting 

insulin)/22.5] 17.

2.4.  Determination of plasma cytokines

Plasma cytokine levels (TNF-α, IFN-γ, IL-6, and IL-10) were determined by flow cytometry, 

using the CBA Mouse Soluble Protein Flex Set kit (BD CA, USA).

2.5.  Determination of plasma lipoperoxidation

Lipoperoxide derivative concentrations in plasma were determined using the thiobarbituric acid 

reactive substances (TBA) methodology20.  Results were expressed as nmoles TBARS/g of proteins.

2.6.  Animal sample collection, adiposity index and liver histology

After blood collection, organs (large intestine, liver, mesenteric and epididymal fat) were 

surgically removed, washed using PBS, wiped with a paper towel and weighted.

The adiposity index was calculated using the following formula: total fat (mesenteric + 

epididymal) weight/body weight) × 100.

Liver weight was expressed as follows: liver weight (g)/body weight (100 g). Four liver samples 

from each experimental group were macrodissected, placed into plastic cassettes and fixed with 

formaldehyde solution (10% v/v in PBS, pH 7.0); the dehydrated samples were embedded in 

paraffin blocks. The paraffin blocks were sectioned at approximately 3–5 μm and were placed on 

glass slides stained with hematoxylin and eosin for subsequent histological studies.
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The size of adipocytes in adipose tissue from each experimental group was determined 

according to the methodology described by Cano et al.21, using Carl Zeiss software - Axio Vision 

Release 4.8. Photomicrographs of adipose tissue sections from each group were taken with a 40x 

objective. The area (μm2) of each adipocyte was determined from a total of 100 adipocytes in two 

histological sections per mouse of each group. The adipocytes were grouped by size ranges 

according to their areas (A) as follows: 500≤A≤1000 μm2; 1000<A≤2000 μm2; 2000<A≤3000 μm2; 

3000<A≤4000 μm2; 4000<A≤8000 μm2. 

For determination of FE activity, ferulic acid metabolites and short-chain fatty acid levels, eight 

large intestine samples from each experimental group were aseptically removed and their contents 

were collected according to the protocol described by Abeijón Mukdsi et al. 12 and Lorenzo-

Pisarello et al.22.

2.7.  Determination of glutathione peroxidase (GPx) and glutathione reductase (GR) 

activities in liver

Four liver samples from each experimental group were homogenized (buffer volume: fresh liver 

weight, 5:1) using a mortar and pestle with 100 mM potassium phosphate buffer (pH 7.5) 

containing 1 mM EDTA and 3 mM DL-dithiothreitol23. The homogenate was centrifuged (12,000 

×g for 30 min at 4°C) and the supernatant was aliquoted and stored at −80°C, until determination of 

protein concentration and GPx and GR activities. GPx activities were determined according to the 

protocol described by Flohé and Günzle24. Results were expressed as units (U) of GPx activity/g 

liver. One unit was defined as the amount of enzyme-producing 1 nmol of oxidized NADP/minute. 

GR activities were determined according to the protocol described by Esterbauer and Gril25, by 

following the rate of NADPH oxidation at 340 nm. Results were expressed as units (U) of GR 

activity/g liver. One unit was defined as the amount of enzyme producing 1 nmol of NADP/ minute.
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2.8.  Inhibition of α-glucosidase activity in vitro

The inhibitory capacity of α-glucosidase activity was determined using the method described by 

Li et al. 26, using p-nitrophenyl α-D-glucopyranoside as substrate. 

2.9.  Protein determination

Protein concentration was estimated by the Bradford method27, using a commercial kit (Bio-

Rad, Hercules, CA, USA). Bovine serum albumin (Sigma, St. Louis, MO, USA) was used as 

standard. 

2.10. Determination of Intestinal FE Activity

Intestinal FE activity was determined in intestinal contents according to the protocol described 

by Abeijón Mukdsi et al.12. Results were expressed as units (U) of FE activity/gram of intestinal 

content. One unit was defined as the amount of enzyme releasing 1 mmol of FA/hour.

2.11. Determination of short-chain fatty acid (SCFA) in large intestine contents

Acetic, propionic and butyric acids were determined in large intestine content according to the 

methodology described by Lorenzo-Pisarello et al.22. SCFA produced were quantified by HPLC 

(Knauer system) using an ion-exchange column (BIO-RAD Aminex HPX-87H; 300 × 7.8 mm). 

The different components were eluted with 5 mM H2SO4 at a flow rate of 0.6 mL min-1. SCFA 

concentrations were reported as mmol/g of large intestine content.

2.12. Detection of ferulic acid (FA)  metabolites in large intestine contents

The presence of FA-derived metabolites was determined in large intestine contents of mice fed 

for 14 weeks. For this purpose, 30% (w/v) intestinal homogenates were prepared in PBS pH 7. To 

extracte metabolites, aliquots of 500 μL of homogenate were acidified with 10 μL of HCl (37%) 
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and extracted with 2 mL ethyl acetate. Samples were centrifuged (8000 x g, 10 min), and the 

organic phase was recovered and subsequently evaporated to dryness in a water bath at 40°C under 

a stream of N2. The dry residues were resuspended in 100 µL of methanol. 20 μL of each sample 

was injected into an HPLC-UV-MS system (InMetS. A., Rosario, Argentina) to detect the different 

phenolic compounds derived from FA metabolism. The conditions used were the following: Mobile 

phase: A: H2O MQ / 0.1% v/v formic acid; B: Acetonitrile / 0.1% formic acetic; Flow: 0.2 mL / 

min; Column: C18 Hypersil-GOLD, Thermo Scientific (50 x 2.1 mm; 1.9 μm particle size); 

Column temperature: 25°C; Autosampler temperature: 20°C; Detection: UV 320 nm, 265 nm + MS; 

Run time: 21 minutes.

2.13. Bacterial DNA Extraction, Sequencing, and Quantification

At the end of the 14 weeks of feeding and before the animals were slaughtered, stool samples 

from mice from each group were collected in sterile eppendorf tubes and stored at -20°C (n=3).

The DNA extraction was performed using a specific commercial kit for fecal samples (QIAamp 

DNA Stool Mini Kit, Hilden, Germany). 

A 20 μl aliquot of DNA from each sample was used for amplicon sequencing by means of a MiSeq 

Illumina sequencing platform (Shallowater, TX, USA). The V4 region of the 16S rRNA gene was 

amplified by PCR using primer pairs 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-

GGACTACHVGGGTWTCTAAT-3′) according to Illumina Protocol to generate an amplicon size 

of ∼400 bp28.  Libraries were constructed by ligating sequencing adapters and indexes onto purified 

PCR products using the Nextera XT Sample Preparation Kit (Illumina, San Diego, CA, USA) 

following the manufacturer's specifications. Equimolar amounts of each of the libraries were pooled 

and they were sequenced in an Illumina MiSeq personal sequencer using a paired end-of-reading 

protocol of 400 bp in length. Quality of sequences control was performed using the QIIME 

pipeline29. Sequences were first quality filtered and screened for chimeras using the UCHIME 

algorithm implemented in USEARCH (version 6.1544; 21)30, 31 . The remaining high quality 16S 
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rRNA gene sequences were clustered into OTUs (operational taxonomic units) at 97% similarity 

with the de novo reference OTU picking method and USEARCH (version 6.1544). Taxonomy 

assignation was performed with Bayesian RDP Classifier32, using an assignment confidence cutoff 

of 0.8. For calculation of the richness estimators, Chao 1 and the Shannon diversity indexes were 

determined using QIIME, with sample rarefaction set at 18,850 sequences per sample based on the 

sample with the least number of sequences. In addition, QIIME was also used to calculate beta 

diversity metrics among samples using weighted Unifrac distances and Bray-Curtis similarity30.

2.14. Statistical Analysis

Results are means of three independent experiments ± standard error of the mean (SE). Data 

were submitted to one-way analysis of variance (ANOVA) using SPSS version 12.0 (SPSS Inc., 

Chicago, IL, USA). Tukey’s test was used to identify statistically significant differences (P < 0.05). 

3. Results and discussion

3.1. Effects of L. fermentum CRL1446 administration on body weight gain, food efficiency 

ratio, adiposity index and leptin levels in MS mice

Body weight gain (BWG) and food efficiency ratio (FER) were augmented by the consumption 

of HFD+WB, being observed in mice from MS group, an increase of 63% and 86%, respectively 

compared to control group (Table 1). L. fermentum CRL1446 administration (MS+Lf group) caused 

a significant reduction in both parameters with respect to MS group, reaching values similar to the 

control. Values of food intake and BWG allows evaluating the ability of an organism to transform 

grams of food consumed into grams of body mass, which is known as FER. These two parameters 

are closely related to the composition of intestinal microbiota and diet33. Similar results were 

reported by Park et al.34, who observed a decrease in FER by administering a combination of two 

probiotic strains (L. curvatus HY7601 and L. plantarum KY1032) for 8 weeks to mice fed with 
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HFD. Previous studies, which analyze the influence of Lactobacillus spp. administration on the 

BWG showed that this effect is dependent on each strain. While some species induce a decrease in 

weight, others do not affect it or induce increases35, 36. 

Mice of MS group developed obesity characterized by an increase in mesenteric and epididymal 

adipose tissue (which was reflected in a 99% higher adiposity index value, compared to control 

group). The MS+Lf group showed a 39% decrease in the adiposity index compared to MS group 

(Table 1). These results are in accordance with those of Bhathena et al.8, who observed a reduction 

in the adiposity index when L. fermentum ATCC11976, strain with FE activity, was administered to 

hamsters with MS.

Histological studies of epididymal adipose tissue revealed changes in the number and size of 

adipocytes in mice from the two experimental groups under study (Figure 1A and 1B). In the MS 

group, a high abundance (57%) of large adipocytes (4000<A≤8000 μm2) was found, while in the 

control group only 9% of adipocytes were within this range. Besides, a significant decrease in the 

amount of small-sized adipocytes (ranges between 500 and 3000 μm2) was observed in the MS 

group compared to control group. In MS+Lf group, there was an increase in the number of larger 

adipocytes (4000<A≤8000 μm2) compared to control group, however, these represented only 20% 

of the total (3 times less than in the MS group). These results showed that CRL1446 strain could 

prevent hypertrophy of adipose tissue in animals fed with HFD+WB. Other authors also reported a 

similar effect of probiotic microorganisms on adipocyte size21. The adipose tissue increase is 

considered a critical determinant of obesity and can occur through the increase in adipocyte size 

(hypertrophy) or in adipocytes number (hyperplasia)37. 

Since adipose tissue is primarily responsible for the synthesis and secretion of leptin, plasma 

levels of this hormone were dosed in mice from all groups (Table 1). Plasma leptin levels were 7-

fold higher in animals from MS group than in the control group. In MS+Lf group, leptin values 

were 3.5-fold lower than in the MS group. Leptin is secreted by adipocytes in levels proportional to 

the amount of body fat and constitutes a key peripheral signal that indicates the status of body 
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energy stores38. Our results reflected a status of hyperleptinemia in mice from MS group, which was 

reported as a characteristic of obesity, with a status of resistance to leptin. Oral administration of L. 

fermentum CRL1446 allowed decreasing the hyperleptinemia in animals fed with HFD+WB. The 

reduction of plasma leptin levels as a consequence of the administration of probiotic 

microorganisms in diet-induced obesity models has been reported by other authors21.

3.2. Effect of L. fermentum CRL1446 administration on inflammatory status of MS mice

The inflammatory status of the animals was evaluated by determining the plasma levels of 

cytokines TNF-α, IFN-γ, IL-6 and IL-10 (Table 2). The proinflammatory cytokine levels (TNF-α, 

IFN-γ, IL-6) showed a significant increase in MS group compared to control group. In MS+Lf 

group, the levels of these cytokines were significantly reduced with respect to MS group. These 

results are consistent with those reported by other authors in animal models fed with HFD39. 

Regarding the levels of IL-10 (an anti-inflammatory cytokine), a three-fold decrease was observed 

in MS group compared to control group. In MS+Lf group, IL-10 levels were 1.5-fold higher than in 

MS group. Previous studies reported that there is a negative relationship between obesity and IL-10 

levels40. The administration of L. fermentum CRL1446 improved the inflammatory profile of 

animals that received HFD+WB, a reduction in pro-inflammatory cytokines and an increase in IL-

10 being observed.

3.3. Effect of L fermentum administration on the accumulation of fat in liver and 

transaminase activities in MS mice.

A pathology that is usually associated with MS is the accumulation of fat in the liver; therefore, 

an analysis of liver histology in animals from each group was carried out.

The results showed that mice fed with HFD+WB exhibited hepatic steatosis characterized by the 

presence of abundant vacuoles or lipid droplets of different sizes, as well as cytoplasmic granularity 
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of hepatocytes. Ballooning and hepatocellular binucleation could also be observed. MS+Lf group 

mice showed a reduction in fatty infiltration in hepatocytes (Figure 2). The accumulation of liver fat 

is a sign of the early development of non-alcoholic fatty liver disease (NAFLD) and is associated 

with the deregulation of lipid and glucose metabolism41.

The increased activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) 

is usually associated with liver damage. In MS group, plasma levels of ALT and AST showed a 2-

fold increase compared to control group. L. fermentum administration decreased ALT and AST 

activities to values similar to those observed in the control group (Figure 3). Transaminase activities 

(ALT and AST) are considered clinical biomarkers of liver function and disease. Also, it has been 

found that the augmentation of ALT and AST levels is associated with a higher body mass index 

and abdominal obesity, even in the absence of liver disease42. Other authors have reported an 

improvement in the fatty liver when a mix of probiotics was administered to rats with steatosis, 

associating the lower accumulation of fat with the modulation of the lipid profile, leptin and 

inflammatory biomarkers43. On the other hand, Bhathena et al.42, have demonstrated the beneficial 

effect of the administration of a microorganism with FE activity (L. fermentum ATCC 11976) in a 

golden Syrian hamster NAFLD model. 

3.4. Effect of administration of L fermentum on lipid profile and cardiovascular risk 

indicators

The effect of HFD+WB and L. fermentum CRL1446 administration on plasma levels of total 

cholesterol, HDL-cholesterol, LDL-cholesterol and triglycerides were evaluated (Table 3). A 33% 

increase in total cholesterol level was observed in MS group compared to control group. Total 

cholesterol level in MS+Lf group showed no significant differences with control animals (Table 3).

The HDL-cholesterol values in MS group decreased by 22% compared to control group. The 

administration of L. fermentum CRL1446 (MS+Lf group) allowed maintaining levels similar to 

those found in the control group. Regarding to LDL-cholesterol, in MS group a 26% increase in the 
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levels of this lipoprotein was observed compared to control group, while the administration of L. 

fermentum CRL1446 (MS+Lf) reduced LDL-cholesterol levels to values similar to those detected in 

the control group. These results were similar to those observed by Bhathena et al.8 in hamsters with 

MS treated with L. fermentun ATCC11976, strain with FE activity.

MS group showed a 56% increase in triglyceride levels compared to control group. In MS+Lf 

group, hypertriglyceridemia was reduced to values similar to the control group.

Table 3 shows the values of the cardiovascular risk indicators, which showed an approximately 2-

fold increase in the MS group compared to control group. In MS+Lf group, values lower than those 

of MS group or similar to control group were observed.  Various cardiovascular risk indicators 

(CRI) have been proposed, which have greater predictive value than the lipid fractions 

themselves18. Our results showed an increase of CRI in MS group compared to control. Mice from 

MS+Lf group presented lower values than those from MS group. Tomaro- Duchesneau et al.44 

reported similar results in MS rats treated with L. fermentum NCIMB 5221, strain with FE activity. 

Naowaboot et al.45 showed that the administration of ferulic acid in obese mice fed with HFD 

improved lipid homeostasis, probably through the modulation of lipogenic gene expression 

(SREBP1c, FAS, ACC) and stimulation of β-oxidation genes (CPT1A , PPARγ).

3.5. Effect of L. fermentum CRL1446 administration on Oral glucose tolerance test (OGTT), 

fasting glucose and insulin levels

Results show that MS group presented significantly higher blood glucose levels at all points of 

the curves with respect to control group, with values greater than 200 mg /dL after 120 min of oral 

overload, indicating insulin resistance (IR). Supplementation HFD+WB diet with L. fermentum 

CRL1446 reduced postprandial glucose levels to values similar to those observed in control group 

(Figure 4A and 4B).

Page 15 of 51 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
1 

M
ay

 2
02

0.
 D

ow
nl

oa
de

d 
by

 U
pp

sa
la

 U
ni

ve
rs

ity
 o

n 
5/

12
/2

02
0 

8:
41

:1
8 

A
M

. 

View Article Online
DOI: 10.1039/D0FO00730G

https://doi.org/10.1039/d0fo00730g


16

Fasting plasma glucose and insulin levels in MS group increased by 96% and 45%, respectively, 

compared to control group, whereas in mice of the MS+Lf group, they decreased to values similar 

to control group (Table 4).

The HOMA-IR index to assess insulin resistance was approximately 3-fold higher in MS group 

than in control group. The administration of L. fermentum CRL1446 decreased the HOMA-IR index 

in MS group, to similar values to those observed in control group (Table 4).

Naowaboot et al.45 have suggested that ferulic acid could act decreasing the expression of 

hepatic enzymes of gluconeogenesis, (phosphoenolpyruvate carboxylase and glucose-6-

phosphatase), thus reducing blood glucose levels. Bhathena et al.8 reported that the administration 

of L. fermentum ATCC11976 (strain with FE activity) to hamsters with MS decreased serum insulin 

and glucose levels. The results obtained in this work also agree with those reported by Lim et al.46, 

who demonstrated that the administration of L. sakei OK67 to obese HFD-induced mice improves 

glucose tolerance.

3.6. Evaluation of the antihyperglycemic effect of Lactobacillus fermentum CRL1446

To evaluate the antihyperglycemic effect of L. fermentum CRL1446, the Oral Sucrose Tolerance 

Test (OSTT) was performed and the ability of this bacterium to inhibit α-glucosidase was 

determined. In the OSTT test, the results showed a significant increase in blood glucose levels in 

MS group at all points of the curve; while in MS+Lf group, no differences were observed with 

respect to control group. The area under the curve in MS group showed a 36% increase with respect 

to control group, while in MS+Lf group it was similar to control group (Figure 5A and 5B). 

Measuring blood glucose levels after a sucrose intake is an indirect method for assessing the ability 

of LAB strains to inhibit α-glucosidase activity. Intestinal α-glucosidases participate in the cleavage 

of sucrose with the consequent release of glucose, and its inhibition would allow maintaining lower 

blood glucose concentrations.
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In order to verify whether the effect on glycemia observed in vivo could be attributed to the 

strain administered, an in vitro study was conducted to assess its ability to inhibit α-glucosidase 

enzyme. Results showed that L fermentum CRL1446 was able to inhibit 90.41% of α-glucosidase 

activity.  Li et al.26 reported that the administration of L. plantarum X1 with α-glucosidase 

inhibitory capacity improved risk markers in rats with DT2. Likewise, Malunga et al.47 reported that 

ferulic acid and mono and oligosaccharides (feruloylated arabinoxylan) were able to inhibit α-

glucosidase enzyme. This information suggests that the antihyperglycemic effect of L. fermentum 

CRL1446 in MS mice could be enhanced by the presence of ferulic acid in dietary bran fibers.

3.7. Effect of administration of L. fermentum CRL1446 on intestinal FE activity and oxidative 

status in MS mice

Intestinal FE activity was significantly reduced (42%) in mice from MS group compared to 

control group. Supplementation of HFD+WB with L. fermentum CRL1446, strain with FE activity, 

increased intestinal FE activity in MS+Lf group by 46%, compared to MS group (Table 5). 

However, FE activity of MS+Lf group did not reach the values observed in the control group. It 

should be noted that despite the fact that we administered a probiotic strain with FE activity, mice in 

the MS+Lf group are animals on the way to develop pathology such as MS due to their diet, while 

the control group is made up of healthy animals, so the difference in activity intestinal enzyme is 

understandable. In previous studies, Abeijón Mukdsi et al.12 reported increased FE activity in large 

intestine content in mice fed normal diet supplemented with L. fermentum CRL1446. Our results 

would indicate that L. fermentum CRL1446 could increase the bioavailability of FA from dietary 

wheat bran at the colon level, to be subsequently absorbed and metabolized, thus exerting its 

beneficial effects.

The oxidative status of mice was evaluated by determining in liver glutathione peroxidase (GPx) 

and glutathione reductase (GR) activities and plasma lipoperoxide (TBARS) concentration (Table 

5). In MS group, there was a decrease in GPx and GR activities (11% and 15%, respectively) and an 
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increase in TBARS concentrations (48%) compared to control group. The administration of L. 

fermentum CRL1446 improved oxidative status in mice (MS+Lf group) as evidenced by an increase 

in GPx (37%) and GR (64%) activities compared to MS group. Besides, plasma TBARS levels in 

MS+Lf group showed a significant reduction with respect to MS group, maintaining similar values 

to control group (Table 5). These results indicate that CRL1446 strain is capable to improve the 

oxidative status of mice with MS.

FA shows high antioxidant activity in vitro; however, its biological effect in vivo is questionable 

due to its low degree of absorption and rapid metabolism within the host48.  Rondini et al.49 showed 

that the administration of FA to rats, in its complexed form in a natural product such as wheat bran, 

increases the half-life of FA in plasma, improving its bioavailability. Recent studies reported that 

the administration of feruloylated oligosaccharides to rats with T2DM improved the lipid profile of 

these animals more effectively compared to free FA50. The administration of LAB with FE activity 

in the diet could be a strategy to increase the bioavailability of FA in the gut, since it is gradually 

released by enzymatic hydrolysis, improving MS biomarkers.

3.8. Detection of metabolites derived from FA and quantification of short-chain fatty acids 

(SCFA) in colon contents

To verify whether the administration of CRL1446 strain improves the release of FA in the colon, 

the presence of this acid and its metabolites in colon contents was evaluated. The determination was 

semiquantitative since the abundance of each metabolite could be estimated according to the size of 

the spectral peaks (Figure S1 and Table 6). FA metabolism by intestinal microbiota enzymes 

produce bioactive compounds: dihydroferulic acid (DHF), 3,4-dihydroxyphenylpropionic acid 

(DHPPA), 3-hydroxyphenylpropionic acid (HPPA) and benzoic acid (BA) that can be absorbed and 

transported to the liver or part of them can be excreted in the feces51. It has been shown that 

bioactive phenolic compounds reach low concentrations in the plasma (in the order of μg), so the 

role of the microbiota in their metabolism is highlighted 52.
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In all groups of animals dihydroferulic acid (DHF), 3,4-dihydroxyphenylpropionic acid 

(DHPPA) and 3-hydroxyphenylpropionic acid (HPPA) were detected (Table 6). A lower abundance 

of HPPA was observed in MS group compared to control, and an increase of this compound was 

found when L. fermentum CRL1446 was administered. These results would indicate that FA was 

bioavailable and it was metabolized and transformed into each of the above mentioned compounds, 

which is consistent with the highest intestinal FE activity observed in control and MS+Lf groups.

Similarly, Duncan et al.53 found HPPA as the main metabolite derived from FA when evaluating 

the fermentation of wheat bran by human feces. These authors, based on metagenomic studies, 

reported that wheat bran promotes an enrichment in butyric acid producing bacteria capable of 

releasing FA from the fiber (i.e., with FE activity). Thus, they postulated that the increase in 

bacteria producing butyric acid and releasing FA during the degradation of wheat bran could 

explain the beneficial health effects attributed to fiber consumption.

SCFA are produced by fermentation of diatary fiber by colonic microbiota. Therefore, SCFA 

content depends on the composition of the intestinal microbiota and the type of fermented 

substrate54.  Acetic, propionic and butyric acid concentrations in large intestine contents of mice 

from all the groups studied were determined (Figure 6). Results showed a significant reduction in 

the levels of all SCFA in MS group with respect to control. The MS+Lf group showed no 

differences in acetic and propionic acid concentrations with respect to MS group, but an increase in 

the concentration of butyric acid was observed. These results would indicate a lower metabolic 

activity of colonic microbiota in animals with MS, and that supplementation with L. fermentum 

CRL1446 causes an increase in the concentration of butyric acid with respect to MS group.

The type and concentration of SCFA produced by intestinal microbiota are important for the 

development or prevention of obesity and MS55. The most abundant SCFA in the colon are acetic, 

propionic and butyric acids, which are normally found in a molar ratio that can range from 3: 1: 1 to 

10: 2: 156. Butyrate is a key energy source for human colonocytes; there is also evidence that 

butyrate can activate intestinal gluconeogenesis through a cAMP-dependent mechanism with 
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beneficial effects on glucose control and energy homeostasis57. Likewise, it was reported that 

butyrate protects against diet-induced obesity without suppressing food intake58. Brinkworth et al.59 

reported a decrease in SCFA, especially butyrate, in obese subjects who consumed HFD low in 

carbohydrates, compared to obese subjects who consumed a diet low in fat and enriched in 

carbohydrates and fibers.

The complex and dynamic intestinal microbial ecosystem contributes to the metabolism of 

various compounds from the diet, producing numerous metabolites. The production of specific 

metabolites, such as SCFA, is closely linked to the host's energy homeostasis56.

For this reason, it has been suggested that the modification of intestinal microbiota by the 

administration of specific LAB could influence metabolic parameters, either to counteract or favor 

the effects of the diet.

3.9. Effect of HFD+WB and L. fermentum CRL1446 administration on intestinal microbiota 

of mice

To investigate the impact of the administration of HDF+WB and L. fermentum CRL1446 on the 

composition of intestinal microbiota of mice, high performance sequencing technology (HTS) was 

used. Several indices of alpha diversity were calculated to determine whether dietary 

supplementation with L. fermentum CRL1446 was associated with a difference in the number of 

OTUs. Interestingly, significant differences were observed in the number of OTUs in the "species" 

level and in the Chao1 metrics (an accurate estimator of the number of different species or richness) 

when comparing the MS+Lf group with the control or MS group (Table 7). The results indicate a 

greater phylogenetic diversity (PD whole tree) in the mice that received L. fermentum CRL1446 

with respect to the mice to which the probiotic was not administered. No significant differences 

were observed in the alpha diversity metrics between MS and Control groups, except for the 

Shannon index that was higher in MS group (Table 7). The analysis of beta diversity using Unifrac 
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showed a variation of the principal components (PCoA) according to the type of diet administered; 

the different clustering in the 3 groups of mice evaluated was evident (Figure 7). 

The bacterial communities in all groups were dominated by two phyla: Bacteroidetes and 

Firmicutes (Figure 8A). The relative abundance of Bacteroidetes phylum (which includes all 

Bacteroidales) was lower in MS group (31.2%) with respect to control group (85.8%), while in mice 

that received L. fermentum CRL1446 (MS+Lf group) Bacteroidetes increased (59.05%) compared 

to MS group (Figure 8A). On the other hand, the proportion of the phylum Firmicutes (which 

includes all Clostridiales and Lactobacillales) was 12.75% in control group and it increased with the 

administration of HFD+WB in the MS group (55.05%); however, when this diet was also 

supplemented with the probiotic L. fermentum CRL1446 (MS+Lf group), it was observed a 

decreased abundance of Firmicutes (36.05%) (Figure 8A).

The current vision regarding the investigation of metabolic syndrome and associated pathologies 

focuses on the study of intestinal microbiota. One of the main functions of the microbiota is its 

ability to extract energy from the diet, which is possible thanks to the role that bacteria play in 

transforming complex nutrients, such as dietary fiber, into simple sugars and short-chain fatty acids, 

avoiding their loss in stools60. It is interesting to mention that many studies indicate that 

Bacteroidetes are more abundant when maintaining a low-calorie diet61. Mice subjected to fat-rich 

Western-type diets show an increase in Firmicutes and a decrease in Bacteroidetes62. The relative 

abundance of Bacteroidetes in MS mice was lower than 50%, whereas the Firmicutes were higher 

than 50% (Figure 8A). Similar results were reported by Ley et al.63 in obese mice. In this study, the 

administration of L. fermentum CRL1446 allowed modifying the intestinal microbiota by 

counteracting the effects of HFD+WB with an increase in Bacteroidetes and a decrease in 

Firmicutes abundance. Ma et al.64 reported that FA modulates the intestinal microbiota composition 

of mice fed HFD by decreasing the proportion of Firmicutes while increasing the proportion of 

Bacteroidetes, improving non-alcoholic fatty liver disease in animals. This suggests that the 

observed effect on the microbial communities of mice that received L. fermentum CRL1446 may be 
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due to the increased release of FA in the gut, which would have a positive impact on individuals at 

risk of MS.

Firmicutes were dominated by Clostridiales, mainly by Ruminococcaceae family (Figure 8B). 

Overall, the most abundant group was an unclassified group of Clostridiales (Control: 7.30%; MS: 

20.50%; MS+Lf: 20.65%). Within the Ruminococcaceae family the genus Oscillospira prevailed in 

all groups of mice evaluated (Control: 1.70%; MS: 15.85%; MS+Lf: 5.35%). The Lachnospiraceae 

family was also present, but its abundance was low in all the groups evaluated (Control: 1.25%; 

MS: 2.60%; MS+Lf: 1.20%). With respect to the genus Lactobacillus (Lactobacillales family), a 

higher proportion was found in the MS+Lf group (1.95%) compared with the Control (0.25%) and 

MS (0.35%) groups (Figure 8B). In the present study it was found that Lachnospiraceae abundance 

was approximately 2-fold higher in MS group compared to Control and MS+Lf groups (Figure 8B). 

Other researches showed that Lachnospiraceae are more abundant in infants of overweight 

mothers65 and in obese subjects66 and it has also been shown that they positively correlate with 

epididymal adipose tissue67. Moreover, enrichment of specific Lachnospiraceae was reported in 

human studies with diets supplemented with whole grain barley68 and wheat bran69. Regarding the 

genus Lactobacillus (family Lactobacillaceae), previous studies conducted by our research group in 

a murine model demonstrated that a calorie restricted diet increases its abundance, and that the 

administration of L. fermentum CRL1446 to mice subjected to caloric restriction, would allow this 

bacteria to colonize the large intestine with the consequent increase in FE activity in intestinal 

mucosa and content70. A similar effect was observed in animals from MS+Lf group, in which the 

proportion of Lactobacillus was higher (Figure 8B), probably because the prolonged administration 

time of L. fermentum CRL1446 allowed intestinal colonization, altering the microbiota and causing 

increased release of FA from bran fibers; however, more studies of species and strain identification 

are required. Santacruz et al.71 evaluated the influence of an obesity treatment program 

(intervention based on an energy‐restricted diet and regular physical activity) on the gut microbiota 
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and body weight of overweight adolescents, observing that in the high weight–loss group, 

Lactobacillus group counts increased.

The phylum Bacteroidetes was dominated by Bacteroidales whose family and genus could not be 

determined precisely (Control: 29.65%; MS: 15.80%; MS+Lf: 36.85%). It was also found that 

Prevotella genus (family Prevotellaceae) was not present in the MS group, while the abundance in 

Control and MS+Lf groups was 34.9% and 12.45% respectively (Figure 8B). It is known that 

increase in the Prevotella genus facilitates the fermentation of the carbohydrates that escape 

intestinal digestion and increases the production of SCFA72. Nadal et al.73 reported shifts in 

microbiota associated with weight loss in obese adolescents which included increased proportions 

of Bacteroides-Prevotella. 

Regarding the phylum Proteobacteria, the genus Desulfovibrio was predominant, a much higher 

relative abundance being observed in the MS group (7.35%) compared to the Control group 

(1.25%). Administration of L. fermentum CRL1446 allowed to maintain lower levels of 

Desulfovibrio in the MS+Lf group (4.05%) (Figure 8 A and B). Larsen et al. 74 determined the 

composition of intestinal microbiota of diabetic people and observed that the occurrence of diabetes 

correlated with high Proteobacteria levels compared to healthy individuals. Likewise, Zhang et al.55 

reported an enrichment of sulfatereductive populations such as Desulfovibrio in obese subjects. In a 

study performed by Parker et al.75, it was found that Proteobacteria abundance was significantly 

lower in obese mice group fed with HFD and treated with probiotics (Lactobacillus curvatus 

HY7601 and Lactobacillus plantarum KY1032) compared to mice receiving HFD and placebo.

4. Conclusion 

Our results showed that animals fed with HFD+WB and that jointly received L. fermentum 

CRL1446 hydrolyzed bran fiber more efficiently, so that their metabolic status of improved with 

respect to their MS pairs that did not receive the probiotic strain.
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There is a close relationship between the gut microbiota composition, intestinal FE activity, 

metabolites derived from FA, SCFA and hydrolysis of the fiber contained in foods. The oral 

administration of L. fermentum CRL1446 increased intestinal FE activity improving the 

biochemical markers of MS and the oxidative status of mice fed with HFD+WB for 14 weeks. 

Modulation of the intestinal microbiota composition through a diet that includes wheat bran fiber 

along with a FE producing probiotic strain, such as L. fermentum CRL1446, or its metabolic 

products/byproducts (postbiotics) represent a promising nutritional strategy to prevent or modify the 

risk of MS and associated metabolic disorders.
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Figures Legends

Figure 1: A: Representative photomicrographs of epididymal adipose tissue at 14 weeks. The 

histological sections were stained with hematoxylin-eosin and the images were captured with Carl 

ZEISS microscope with 40x magnification. (A) Control group, (B) MS group, (C) MS + Lf group. 

B: Abundance of adipocytes (%) according to their size (µm2) in mice fed for 14 weeks. Data 

represent mean ± SE (standard error) of n=8 mice per group. The statistical difference was 

determined using Tukey’s test with P<0.05. Values with different letters differ significantly in each 

area range

Figure 2: Representative photomicrographs of liver of mice at week 14. The histological sections 

were stained with hematoxylin-eosin and the images were captured with Carl ZEISS microscope 

with 200x magnification. (A) Control group, (B) MS group, (C) MS+Lf group. The arrows indicate 

some alterations observed in MS group (lipid drops and binucleation).

Figure 3: Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) concentrations 

(U/L). Data represent mean ± SE (standard error) of n=8 mice. Statistical differences were 

determined using Tukey’s test with P<0.05. Values with different letters differ significantly.

Figure 4: A: Glucose tolerance curves at week 14 in () Control group, () MS group and () 

MS+Lf group. B: Areas under the curve (AUC) at week 14. Data represent mean ± SE (standard 

error) of n=8 mice. Statistical differences were determined using Tukey’s test with P<0.05. (*) 

indicate statistical differences with respect to the control group. In figure B, values with different 

letters differ significantly.

Figure 5: A: Oral sucrose tolerance curves at week 14 in () Control group, () MS group and () 

MS+Lf group. B: Areas under curve. Data represent mean ± SE (standard error) of n = 8 mice. 

Statistical differences were determined using Tukey’s test with P <0.05. In figure A the asterisks 
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(*) indicate differences statistics regarding the control group. In figure B values with different 

letters differ significantly.

Figure 6: Concentration of short chain fatty acids (SCFA) produced in colon contents at week 14 

of feeding. Mice received normal diet (Control group), HFD+WB (MS group), HFD+WB 

supplemented with L. fermentum CRL1446 (MS+Lf group). The dose of administration of the 

strains was 108 CFU/day/mouse. Data represent mean ± SE (standard error) of n=8 mice. The 

statistical difference was determined using Tukey’s test with P<0.05. Values with different letters 

differ significantly for each acid evaluated.

Figure 7: Weighted Unifrac-based PCoA analysis of gut microbiota (beta diversity) via 16S rRNA 

sequencing of mice fed for 14 weeks with normal diet (Control group), HFD+WB (MS group) and 

HFD+WB supplemented with Lactobacillus fermentum CRL1446 (MS+Lf group).

Figure 8: Relative abundance of intestinal bacterial communities in mice fed for 14 weeks with 

normal diet (Control group), HFD+WB (MS group) and HFD+WB supplemented with 

Lactobacillus fermentum CRL1446 (MS+Lf group). The figures show the taxonomic categories for 

the different groups evaluated. A: phylum. B: order, family and bacterial genus.
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Table 1: Body weight gain, food efficiency ratio, adiposity index, and leptin levels. 

Groups

Control MS MS+Lf

Body weight gain (g) 12.90±0.77b 20.44±1.38a 13.92±0.42b

Food efficiency ratio 0.03±0.001b 0.05±0.004a 0.03±0.001b

Adiposity index 2.20±0.16c 4.70±0.21a 3.00±0.20b

Leptin (ng/mL) 0.98±0.17c 6.65±1.07a 1.87±0.16b

Data are expressed as mean ± SE (standard error), n=8 per group. Values with different superscript letters in 
the same row are significantly different (P<0.05) as assessed by Tukey’s test. Control, mice receiving normal 
diet; MS (Metabolic syndrome), mice receiving HFD+WB diet; MS+Lf, mice receiving HFD+WB diet and 
L. fermentum CRL1446. 
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Table 2: Inflammatory status of mice with metabolic syndrome

Groups
Cytokines (pg/mL)

Control MS MS+Lf

TNF-α 5.42±1.69c 36.56±6.60a 19.80±1.50b

IFN- γ 1.34±0.41a 14.34±2.91a 5.68±0.78c

IL-6 2.98±1.09c 18.02±2.06a 10.86±1.79b

IL-10 223.50±43.60a 75.81±14.56c 114.60±15.14b

Data are expressed as the mean ± SE (standard error), n=8 per group. Values with different superscript 
letters in the same row are significantly different (P<0.05) as assessed by Tukey’s test. Control, mice 
receiving normal diet; MS (Metabolic syndrome), mice receiving HFD+WB diet; MS+Lf, mice receiving 
HFD+WB diet and L. fermentum CRL1446.
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Table 3: Plasma lipids and cardiovascular risk indicators

GroupsPlasma lipids 

(g/L) Control MS MS+Lf

Triglyceride 0.27±0.02c 0.43±0.03a 0.35±0.02b

Total cholesterol 0.66±0.02b 0.88±0.02a 0.65±0.03b

LDL-cholesterol 0.56±0.02b 0.71±0.01a 0.52±0.02b

HDL-cholesterol 0.16±0.01b 0.12±0.01a 0.16±0.01b

Cardiovascular 
risk indicators

LDL/HDL 3.57±0.34b 5.81±0.25a 3.34±0.22a

Triglyceride/HDL 1.73±0.11c 3.49±0.15a 2.26±0.21b

Atherogenic index 3.18±0.43b 6.19±0.52a 3.16±0.64b

AIP 0.24±0.04c 0.54±0.06a 0.35±0.06b

Data are expressed as the mean ± SE (standard error), n=8 per group. Values with different 
superscript letters in the same row are significantly different (P<0.05) as assessed by Tukey’s test. 
Control, mice receiving normal diet; MS (Metabolic syndrome), mice receiving HFD+WB diet; 
MS+Lf, mice receiving HFD+WB diet and L. fermentum CRL1446.  Atherogenic index: (total 
cholesterol – HDL-cholesterol)/ HDL-cholesterol. AIP: Atherogenic Index of Plasma = Log 
(TG/HDL).
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Table 4: Plasma glucose, insulin levels and HOMA-IR

Data are expressed as mean ± SE (standard error), n=8 per group. Values with different superscript 
letters in the same row are significantly different (P<0.05) as assessed by Tukey’s test. Control, mice 
receiving normal diet; MS (Metabolic syndrome), mice receiving HFD+WB diet; MS+Lf, mice 
receiving HFD+WB diet and L. fermentum CRL1446.

Groups

Control MS MS+Lf

Glucose (mmol/L) 3.96±0.46b 7.79±0.91a 4.12±0.23b

Insulin (μU/mL) 8.69±0.69b 12.59±0.85a 8.84±0.75b

HOMA-IR 1.53±0.27b 4.36±0.41a 1.62±0.29b
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Table 5: Intestinal feruloyl esterase, glutathione peroxidase and glutathione reductase 

activities and TBARS levels

IFE: intestinal feruloyl esterase, GPx: glutathione peroxidase, GR: glutathione reductase, TBARS: 
thiobarbituric acid reactive substances. Values are expressed as mean ± SE (standard error), n=8 per group. 
Values with different superscript letters in the same row are significantly different (P<0.05) as assessed by 
Tukey’s test. Control, mice receiving normal diet; MS (Metabolic syndrome), mice receiving HFD+WB diet; 
MS+Lf, mice receiving HFD+WB diet and L. fermentum CRL1446.

. 

Groups
Enzymes

Control MS MS+Lf

IFE (U/g) 1255.60±50.27a 733.00±82.90c 1074.00±170.14b

GPx (U/g) 34.15±0.97b 30.50±0.73c 41.84±3.12a

GR (U/g) 53.91±1.30b 45.90±1.94c 75.72±2.74a

TBARS (nmol/g) 32.42±6.60b 47.94±4.54a 32.32±2.71b
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Table 6: Detection of FA-derived metabolites in colon contents of mice fed for 14 weeks by HPLC-MS. 

The mass/charge ratios (m/z) and retention times (RT) for each compound are shown. FA: ferulic acid; DHF: 
dihydroferulic acid; DHPPA: dihydroxyphenylpropionic acid, HPPA: hydroxyphenylpropionic acid and BA: 
benzoic acid. The metabolites detected are shown for the 3 groups of mice tested (n=3 each). (-): metabolite 
not detected (+): metabolite detected. More signs (++ or +++) indicate greater area of the peaks in the 
spectrum.

Compound Rt (min)
Molecular 

ion [ M - H ]- 
(m/z)

Control 
group MS group MS+Lf 

group

FA 12.55 193.0 - - -

DHF 8.26 195.1 + + +

DHPPA 7.36 181.1 + + +

HPPA 8.56 165.1 ++ + +++

BA 13.2 121.0 - - -
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Table 7: Alpha diversity metrics

Groups 

Metric Control MS MS+Lf

Shannon 5.38±0.46a 6.29±0.12b 6.28±0.32b

Chao 1 297.98±23.82a 267.06±4.04a 330.36±0.74b

Observed OTUs (Species) 274.10±28.50a 255.65±0.75a 313.75±7.95b

PD whole tree 20.86±0.91a 19.28±0.30a 22.80±0.12b

Chao1, Shannon’s diversity and phylogenetic diversity (PD whole tree) of colon contents of mice fed for 14 
weeks. Data are expressed as mean ± SE (standard error), n=3 per group. Values with different superscripts, 
within the same row, are significantly different (P< 0.05).
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Figure 7

     Control group

    MS group

    MS+Lf group
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Figure 8

A

B
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