
J
H
E
P
1
2
(
2
0
1
9
)
1
1
2

Published for SISSA by Springer

Received: July 10, 2019

Revised: November 26, 2019

Accepted: December 3, 2019

Published: December 16, 2019

A vector leptoquark for the B-physics anomalies from

a composite GUT

Leandro Da Rold and Federico Lamagna
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We dedicate this work to the memory of Eduardo Pontón,

great physicist and greater person, who left us too soon.

1 Introduction

In the last years different experiments have reported hints of violation of lepton flavor

universality (LFU) in semileptonic decays of B-mesons, both in the charged current process

b → c`ν [1–5], and in the neutral current process b → s`¯̀ [6–9]. Although there is no

conclusive evidence of new physics yet, the deviations from the predictions of the Standard

Model (SM) are above 3σ for each kind of interaction, leading to one of the most interesting

challenges of flavor physics. There is no evidence of a common origin for both deviations,

but at theoretical level it is very interesting to explore this possibility. These anomalies
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could be explained by introducing new physics at a few TeV scale, with interactions having

a non-trivial flavor structure, mainly coupled to the fermions of the third generation.

Many references have shown that the deviations in B-physics can be explained by

adding to the SM a spin one leptoquark, known in the literature as U1 [10], transforming

as (3,1)2/3 under the SM gauge group, with a mass of order few TeV and interactions

with Left-handed currents of SM fermions [11–35]. Refs. [17, 28, 30] have made a detailed

analysis of flavor observables, showing what kind of couplings can explain the anomalies

and simultaneously satisfy the bounds from other flavor observables. This scenario remains

as the best one to explain the B-physics puzzle with a single new particle at the TeV scale.1

As is well known new dynamics at the TeV scale, mainly coupled to the third genera-

tion, is also needed to stabilize the Higgs potential. Although there is no obvious connec-

tion between these deviations and the hierarchy problem, from a theoretical perspective,

it would be very interesting to find a common origin for both phenomena.

Grand Unified Theories (GUT) naturally predict the presence of leptoquarks, but

usually with masses at the scale of grand unification. However, in composite GUTs, where

a new strongly coupled field theory (SCFT) is introduced, the compositeness scale can

be taken at the TeV scale, leading to leptoquark resonances with masses of few TeV. In

composite GUTs usually the grand unified group H is a global symmetry of the SCFT,

containing as a subgroup the gauge symmetry of the SM (GSM). In these scenarios the

gauge and fermion fields of the SM are taken as elementary fields, weakly coupled to the

SCFT, and gauging the subgroup GSM of H. Composite GUTs can also solve the hierarchy

problem: if the SCFT has a larger group G, spontaneously broken to H, the Higgs can

emerge as a composite Nambu-Goldstone Boson (NGB) state in G/H, as discussed for

example in ref. [37].2 As usual in composite Higgs models, since the elementary fields do

not furnish full representations of the global symmetry of the SCFT, at loop level they

induce a potential for the NGBs. Under some suitable conditions this potential can trigger

electroweak symmetry breaking (EWSB) dynamically.

In the present work we do not pursue precise gauge coupling unification. Instead we

are guided by the low energy phenomenology, and we demand G to be such that the SCFT

contains spin one resonances with the proper quantum numbers to be identified with U1,

as well as a NGB Higgs. A solution to the B-anomalies, besides a U1, requires a well

defined flavor structure of couplings. One of the most interesting approaches to flavor

physics in composite models is anarchic partial compositeness, where the interactions of

the elementary fermions with the SCFT are dominated by linear interactions. As is well

known, in this case a hierarchy of elementary-composite linear mixings can be generated

at low energies by the running of the linear couplings, leading to the hierarchical spectrum

and mixing angles of the CKM matrix, and simultaneously suppressing the flavor violating

processes. Since the same elementary-composite mixings enter in the interactions with

all the resonances, once the Left-handed mixings of the leptons are fixed to explain the

B-anomalies, the Right-handed ones are fixed to obtain the Yukawa couplings. As RD(∗)

1See also, for example, ref. [36] for a solution with a single scalar leptoquark R2.
2In this kind of composite GUTs, the global subgroup H must also contain the custodial symmetry of

the Higgs sector to have a chance to pass the electroweak precision tests (EWPT).
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requires a large mixing for τL, the resulting Right-handed mixings are suppressed by the

ratio of charged lepton mass over the Higgs vacuum expectation value (vev), giving very

small Right handed couplings with U1. Thus anarchic partial compositeness gives, as

a very good approximation, interactions of U1 with Left-handed currents and negligible

interactions with Right handed currents, without any additional hypothesis.

An effective weakly coupled description of the above dynamics can be obtained by

working with a theory of resonances. We will consider a three-site theory, with the first

site describing the elementary sector and the other two sites describing resonances of the

SCFT. In this case the one-loop potential of the NGBs is finite and can be calculated

explicitly, as well as the spectrum of new states and their couplings, leading to well de-

fined predictions. We will show that composite GUTs can simultaneously explain the

B-anomalies and stabilize the Higgs potential. Besides, due to the large degree of compos-

itenes required for τL, the third generation of Left-handed leptons play an important role

in the potential. This situation was considered in ref. [38], although in a different context.

Our paper is organized as follows: in section 2 we show a composite GUT contain-

ing the usual ingredients of composite Higgs models, as well as a vector leptoquark for

the B-anomalies. We describe the coset structure of the SCFT, the content of NGBs,

the fermionic representations and flavor structure, as well as some important bounds and

estimates associated to B-physics, as RD(∗) and RK(∗) . In the same section we present

the effective low energy physics obtained after integration of the massive resonances of

the SCFT, whose structure depends only on the pattern of symmetries, and the one-loop

potential of the NGBs. In section 3 we present an effective description of the resonances of

the SCFT in terms of a three-site model. In section 4 we describe the phenomenology of the

theory, we scan the parameter space finding regions with EWSB and we compute the spec-

trum of new particles. We also calculate the corrections to several observables, comparing

them with the present bounds, as well as the corrections to flavor quantities as RD(∗) . Fi-

nally, we comment very briefly on the phenomenology of the new pseudo Nambu Goldstone

boson (pNGB) states. We present our conclusions and some discussions in section 5. In

an appendix we present a 5D model that can also be used to describe the SCFT.

2 A composite GUT for the B-anomalies

We consider a theory with two different sectors: an SCFT or composite sector and another

sector called elementary that is weakly coupled with the SCFT. The SCFT is assumed to

have a simple global symmetry group G, spontaneously broken by the strong dynamics to

a subgroup H. This breaking generates a set of NGBs associated to the broken generators

of the coset G/H. Some of these NGBs will be identified as a composite Higgs. The

conserved Noether currents of the SCFT can create resonances of spin one, transforming

with the adjoint representation of G. Besides, we also assume that the there are fermionic

operators OSCFT that can create spin 1/2 resonances, transforming with linear irreducible

representations of G. These representations are not fixed a priori, leading to some freedom

for model building. The masses of the first level of resonances, collectively denoted as

m∗, are taken of order few TeV, whereas the interactions between them are characterized
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by a single coupling g∗, taken as: gSM � g∗ � 4π, thus for simplicity we assume that

all the couplings between resonances are of the same order. The NGB decay constant is

f = m∗/g∗, of order TeV.

The gauge fields and fermions of the SM are external to the SCFT, they are taken as

elementary fields. Demanding G to contain the SM gauge symmetry group, the gauging

of GSM explicitly breaks the global symmetry of the SCFT. The fermions of the SM have

linear interactions with the SCFT, that also break G explicitly:3

L ⊃ ωψψ̄OSCFT
ψ + h.c. , (2.1)

with ωψ being the coupling at the high ultraviolet (UV) scale Λ at which this Lagrangian

is defined.

2.1 Coset structure

SO(11)/SO(10) is the minimal coset of simple groups with the following properties: it

contains the SM gauge symmetry group as well as custodial symmetry, it delivers a Higgs

as a pNGB and, after proper identification of hypercharge, it contains a composite spin

one state that has the proper quantum numbers to be identified with the U1 leptoquark

(we follow the notation of ref. [10] for leptoquarks).4 However, since in this case U1 is

associated to a broken generator, it is heavier than, for example, W ′ and Z ′ resonances,

resulting in a suppressed effect in RK(∗) and RD(∗) , that are proportional to m−2
U1

, and

thus can not be accommodated. For this reason, we will consider instead a larger coset:

SO(12)/SO(11), such that U1 can be associated with an unbroken generator. Let us discuss

the coset structure in some detail.

We start by describing some features of the unbroken group. SO(11) contains SO(10)

that, as is well known from the study of GUTs, can accommodate a Left-Right symmetric

extension of the SM gauge group. A possible pattern of subgroups that allows to see this

property is:

SO(11)→ SO(10)→ SO(6)×SO(4)→ SU(3)c×SU(2)L×SU(2)R×U(1)X ≡ Hmin , (2.2)

with SO(6)∼SU(4)⊃ SU(3)×U(1) and SO(4)∼SU(2)×SU(2). Besides, we identify hyper-

charge with the following combination:

Y ≡ T 3R +
4√
6
TX . (2.3)

The set of broken generators in the coset SO(12)/SO(11) transform, under SO(11),

with the representation 11. Under SO(10) and Hmin the representation 11 decomposes as:

11 ∼ 1⊕ 10 ∼ (1,1,1)0 ⊕ (1,2,2)0 ⊕ (3̄,1,1)−1/
√
6 ⊕ c.c. , (2.4)

3We assume that bilinear interactions are suppressed, having no impact in the phenomenology, except

possibly for the neutrino sector [39] and eventually the first generation [40].
4The first two properties were already shown in ref. [37], the last one, as far as we know, has not been

considered before.
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where ⊕ c.c. means that, for the complex representations as the color triplet, one has to

add the charge conjugate one. Eq. (2.4) shows the transformation properties of the NGBs,

those associated to the colorless generators lead to two multiplets: a SM singlet that we

call ϕ and the Higgs field H, whereas the ones associated to the color triplet lead to a

leptoquark usually called S̄1 in the literature.

The currents of the SCFT associated to the global symmetry SO(12) can create spin one

states that transform with the adjoint representation 66, that under SO(11) decomposes

as: 66 ∼ 55⊕11. We have shown in eq. (2.4) the decomposition of 11, the representation

55 decomposes under SO(10) and Hmin as:

55 ∼ 45⊕ 10

∼ (8,1,1)0 ⊕ (1,3,1)0 ⊕ (1,1,3)0 ⊕ (1,1,1)0 ⊕ (3,1,1)−2/
√

6 ⊕ (3,2,2)1/
√

6

⊕ (1,2,2)0 ⊕ (3,1,1)1/
√

6 ⊕ c.c. , (2.5)

where the first line contains the decomposition of the 45, and the second one of the 10.

With the identification of hypercharge of eq. (2.3), the multiplets (3,1,1)1/
√

6 ⊕ c.c. con-

tained in the 10 of 55 and 11 can be identified with U1 leptoquarks. The leptoquark in

55 is associated to an unbroken generator, whereas the leptoquark in 11 is associated to a

broken one, thus the former results lighter than the latter.

Besides U1, there is another spin one leptoquark: Ṽ2 ∼ (3,2)1/6, as well as two new

states transforming as: (3,2)7/6 and (3,1)−4/3. In generic leptoquark models Ṽ2 can induce

baryon decay, however, as we will show in section 2.4, the present model has a global U(1)B
that forbids proton decay. The other two states do not have dimension-four operators with

SM fermions.

It is also possible to choose other identifications of hypercharge, as Y ≡ T 3R−2TX/
√

6,

that allow to embed U1 in (3,1,1)−2/
√

6 ⊕ c.c.. However in this case the NGB leptoquark

is an S1, giving contributions to B-physics that can destabilize the U1 solution.

We will add a discrete Z2-symmetry, that corresponds to a parity and enlarges SO(12)

to O(12). We are interested in the transformation under which broken and unbroken

generators are, respectively, odd and even under this parity, leading to odd NGBs. In the

basis defined in appendix A, for the representation 12 this parity can be written in terms

of a 12× 12 matrix as: Pij = δij − 2δi12δj12. As we will show, the presence of P will lead

to several simplifications as well as a candidate for dark matter.

2.2 Fermions

The operators OSCFT that interact linearly with the SM fermions can be decomposed

under GSM as sums of irreducible representations. To avoid explicit breaking of GSM,

these decompositions must contain the representations of the SM fermions. Given eq. (2.3),

partners of the SM fermions can be found in the following representations of SO(10):

u, ` ⊂ 10 , q, e ⊂ 45 , q, d, ` ⊂ 120 . (2.6)

A Right-handed neutrino can be embedded in a singlet or in the adjoint representation of

SO(10). Larger representations are also possible. The representations of eq. (2.6) can be

– 5 –
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field P Hmin SO(10) SO(11) SO(12)

q + (3,2,2)1/
√

6 45 55 66

` + (1,2,2)0 45 55 66

u − (3,1,1)1/
√

6 10 11 66

d − (3,1,3)1/
√

6 120 165 220

e − (1,1,3)0 45′ 165 220

H − (1,2,2)0 10 11 ×

S̄1 − (3̄,1,1)−1/
√

6 10 11 ×

ϕ − (1,1,1)0 1 11 ×

Table 1. Embedding of the composite partners of the elementary fermions, from Hmin up to

SO(12). In the last three lines of the table we show the NGBs that transform with the fundamental

representation of SO(11).

embedded in representations of SO(12), we are interested in the following:

66 ∼ 55⊕ 11 ∼ (45⊕ 10′)⊕ (10⊕ 1) ,

220 ∼ 165⊕ 55 ∼ (120⊕ 45′)⊕ (45⊕ 10′) (2.7)

where we have shown the decompositions under SO(11) and SO(10). We have used the

marks to distinguish SO(10) representations that arise from the decomposition of different

representations of SO(11).

In order to obtain interactions between all the SM fermions and the SCFT, we will con-

sider that the following operators are present: OSCFT
66 and OSCFT

220 . Each elementary fermion

can interact with more than one SCFT operator, for example q can interact with OSCFT
66

and OSCFT
220 , however we will assume that the SCFT operators have different anomalous di-

mensions, such that one of the interactions dominates over the other (see section 2.3), and

as a simplification of this situation we will consider that each elementary fermion interacts

just with one OSCFT. In particular, as shown in table 1, we assume that q, u and ` interact

with OSCFT
66 only, whereas d and e interact with OSCFT

220 . Besides, from eqs. (2.6) and (2.7)

one can see that the elementary fermions u and ` can interact with several components

of OSCFT
66 : either with the 10 ⊂ 11 or with the 10′ ⊂ 55. The parity P can distinguish

between both 10s inside 66: 10′ is even and 10 is odd, thus if we assign a well defined

parity to the elementary fermions, P is conserved and the elementary fermions u and `

interact only with one multiplet of SO(11) in OSCFT
66 . In the following we will assign the

parities of table 1 to the elementary fermions, and we will mix them with the components

of the SCFT operators shown in that table.

It is also interesting to consider the scenario without P , we will briefly comment on

the consequences of this assumption in the section 4.5.

Let us now describe the interactions between the elementary fermions and the Higgs.

Since bilinear interactions with the Higgs have been assumed to be suppressed, the interac-
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tions with the Higgs are mediated by the linear interactions of eq. (2.1). The resonances of

the SCFT interact with the composite Higgs and eq. (2.1) leads to Yukawa interactions of

the elementary fermions. The SCFT has a global unbroken symmetry SO(11), thus in order

to obtain the proper Yukawa interactions of the SM, the interactions between the resonances

containing the partners of the SM fermions and the Higgs must be SO(11)-invariant. For

the up-type quarks, from the embeddings of table 1: 55× 11 ∼ 11⊕ 165⊕ 429, whereas

for the down-type quarks and the charged leptons: 55×165 ∼ 11⊕ . . . , thus our choice is

compatible with the Higgs embedded in an 11, and P -symmetry is respected by Yukawa

interactions.

Usually the SM fermions are embedded in the representation 32 of SO(11), however

in order to do that one has to take a different identification of hypercharge [37]. It is also

possible to take other representations, as 12, that contains ` and u, both P -odd, but for

simplicity we will not consider them.

2.3 Partial compositeness and flavor structure

At low energies one can consider an effective description of the SCFT in terms of resonances

Ψ (we use capital letters for resonances, and small letters for elementary fields). The linear

interactions lead to mixing:

Leff ⊃ λψfψ̄PψΨ , (2.8)

where a sum over ψ = q, u, d, `, e must be understood. Since ψ is in a representation of GSM

and Ψ is in a representation of G, the GUT symmetry, strictly speaking one has to add

the projector Pψ, that when acting on Ψ selects the component with the same quantum

numbers as ψ, for example: q̄PqΨ ≡ q̄Ψ(3,2)1/6 .

Assuming that the running of the couplings is driven by the dimension of operator:

∆ψ, the coupling can be estimated to scale as: λψ ∼ (m∗/Λ)∆ψ−5/2. Thus for Λ � m∗,

if ∆ψ > 5/2 the coupling λψ is suppressed, whereas for ∆ψ ' 5/2 it is not. In this way a

hierarchy of mixings can be obtained for different fermions [41].

The mass eigenstates can be obtained after a rotation of angle: tan θψ=λψf/mΨ≡εψ [42],

realizing partial compositeness. This rotation leads to a chiral massless state that is par-

tially composite, with degree of compositeness εψ, as well as a massive resonance with a

chiral component that is partially elementary.

The interactions between the elementary fermions and the Higgs require insertions of

λψ, thus the Yukawa couplings can be estimated as: yψ ∼ εψLg∗εψR . When considering

generations, the mixings and couplings acquire generation indices: λψj and g∗jk. [43] We

will assume that the flavor structure of the SCFT is anarchic, this means that in the

SFCT there are no preferred directions in flavor space, therefore all the coefficients of the

couplings between fermionic resonances are of the same order: g∗ ×O(1), as well as their

masses: m∗×O(1). The hierarchy of SM fermionic masses is driven by hierarchical mixings,

light fermions require at least one of the chiral mixings being small, whereas the top mass

requires sizable mixing for both chiralities, since: 1 ' yt ∼ εq3g∗εu3. The mixings of the

quarks can be related with the CKM angles and the quark masses, assuming that each

– 7 –
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chiral SM multiplet interacts predominantly with just one resonance, one gets: [44, 45]

εq1 ∼ λ3
Cεq3 , εu1 ∼

ySM
u

λ3
Cg∗εq3

, εd1 ∼
ySM
d

λ3
Cg∗εq3

,

εq2 ∼ λ2
Cεq3 , εu2 ∼

ySM
c

λ2
Cg∗εq3

, εd2 ∼
ySM
s

λ2
Cg∗εq3

,

εu3 ∼
ySM
t

g∗εq3
, εd3 ∼

ySM
b

g∗εq3
, (2.9)

where ySM
f is the SM Yukawa coupling of the quark f and λC ' 0.22 is the Cabibbo angle.

εq3 and g∗ are not fixed by these equations.

The lepton sector depends on the nature of the neutrino and the realization of their

masses. The masses of the charged leptons require:

ε`1g∗εe1 ∼ ySM
e , ε`2g∗εe2 ∼ ySM

µ , ε`3g∗εe3 ∼ ySM
τ . (2.10)

As we will show in section 2.5, in the present scenario the B-anomalies can be fitted with

a hierarchical mixing of the Left-handed leptons: ε`1 � ε`2 � ε`3. We will also show

in that section that, for the given values of ε`i, the mixings of the Right-handed charged

leptons are also hierarchical: εe1 � εe2 � εe3, and besides, at least for the second and

third generations, they are smaller than the corresponding Left-handed ones: εe2 � ε`2
and εe3 � ε`3. Since these hierarchical mixings lead to small mixing angles in the matrices

diagonalizing the charged mass matrix, the large mixing angles of the PMNS matrix must

be generated in the neutrino sector. We will assume this to be the case, and we will not

elaborate more on the neutrino masses, see refs. [39, 40, 43] for some examples.

The interactions with the spin one resonances have a flavor structure similar to the

Yukawa couplings, except that in this case the factor g∗ is universal, due to the global

symmetry of the SCFT, thus generically they are misaligned with the Yukawa couplings.

The interactions with U1 leptoquarks are of special interest for our analysis:

L ⊃ g(n)
Ljkq̄

j
Lγ

µU
(n)
1µ `

k
L + g

(n)
Rjkd̄

j
Rγ

µU
(n)
1µ e

k
R , (2.11)

where the index n numerates the U1 states, a sum over n is understood. The couplings can

be estimated as:

g
(n)
Ljk ∼

cjk√
2
εqjg∗ε`k , g

(n)
Rjk ∼

cjk√
2
εdjg∗εek , (2.12)

where the factor 1/
√

2 arises from the SO(11) generators, and the factor cjk ∼ O(1).

Using the estimates of eq. (2.9) for εdj , as well as the ones of section 2.5 for εej , the

couplings g
(n)
Rjk become very suppressed, and the Right-handed interactions of the second

term of eq. (2.11) can be safely ignored. See appendix C for their numerical estimates.

2.4 Baryon and lepton number conservation

Leptoquarks can mediate baryon decay making the theory phenomenologically unaccept-

able, unless they have very large masses, typically of order ∼ 1016 GeV.5 In the present

5In fact this scale depends on the nature of the leptoquark, as well as on the size of its couplings to the

SM fermions.
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model there are, for example, vector leptoquarks Ṽ2, with masses of order few TeV, that

in principle could couple to diquarks inducing baryon decay. However the SO(11) sub-

group contains a generator that can be identified with an operator of baryon number:

B =
√

2/3TX , with TX the generator of the U(1)X defined in eq. (2.2). This symmetry

assigns the expected baryon number to the resonances, and acts in the usual way on the

elementary states, forbidding the coupling of leptoquarks to diquarks and ensuring baryon

number conservation. Thus in the present model Y = T 3R + 2B.

As discussed in ref. [37], the Weinberg dimension five operator can be induced, with a

Wilson coefficient that can be generically estimated to be of order ε2`/m∗, resulting in a too

large contribution to neutrino masses. To avoid these contributions one can add a U(1)L
global symmetry to the composite sector, assigning the usual numbers to the operators

mixing with the elementary fields, for example: LOSCFT
` = OSCFT

` and LOSCFT
q = 0.

2.5 B-anomalies

In order to study the B-physics it is convenient to work with the effective theory resulting

from the tree-level integration of the resonances. Except where explicitly stated, we will

closely follow the analysis of ref. [17]. As discussed in section 2.3, only the effect of the U1

leptoquarks on Left-handed currents is important in our model. We obtain the following

effective Lagrangian

Leff ⊃
Cijkl

v2
SM

[(q̄iLγ
µσaqjL)(¯̀k

Lγµσ
a`lL) + (q̄iLγ

µqjL)(¯̀k
Lγµ`

l
L)] , (2.13)

with i, j, k, l being generation indices. The dimensionless coefficient Cijkl is given by:

Cijkl = g
(n)
Lilg

(n)∗
Ljk

v2
SM

2m
(n)2
U1

∼ cilc∗jkεqiεqjε`kε`l
v2

SM

f2
, (2.14)

where we have used that: mU1 ' g∗f/
√

2, and we have assumed that the contribution from

the lightest resonance dominates the sum, as we will show that happens in a three-site

model. Below we estimate the contributions of our model to B-physics, and in section 4.3

we show the numerical predictions in a three-site model.

The SM prediction [46–49] and the experimental value of Rτ`
D(∗) ≡ RD(∗) , including the

recent results of Belle [5, 9], are:

RD = 0.297± 0.015 , RD∗ = 0.334± 0.031 ,

RSM
D = 0.299± 0.003 , RSM

D∗ = 0.258± 0.005 . (2.15)

Eq. (2.13) gives a contribution to RD(∗) that, to linear order in C, can be approximated by:

RD(∗)

RSM
D(∗)

' 1 + 2C3233

(
1−

V ∗tb
V ∗ts

gL23

gL33

)
(2.16)

Using the estimates of eq. (2.9) for the quark degree of compositeness, a fit of RD(∗) re-

quires c23gL33/mU1 ∼ 1/TeV, with c23 ∼ O(1) arising from the dependence of the Wilson
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coefficient on the coupling gL23. In our model this ratio can be estimated as: ∼ εq3ε`3/f ,

therefore we obtain: εq3ε`3/f ∼ O(1)/TeV. This implies that, for f ∼TeV, the Left-handed

τ must have a large degree of compositeness.

The deviations in RK(∗) point to LFU violation in b→ s``. For negligible coupling to

electrons, the preferred contribution from new physics to the Wilson coefficients ∆C``9 and

∆C``10 is: [50–52]

∆Cµµ9 = −∆Cµµ10 =
4π

αemVtbV
∗
ts

C2322 = −0.40± 0.12 . (2.17)

Using eq. (2.14) we obtain: gL32g
∗
L22/m

2
U1
' 10−3. Making use of eq. (2.9), leads to

εq3ε`2/f ∼ 0.1/TeV, that fixes the order of magnitude of ε`2.

As long as ε`1 � ε`2, the electron does not play any important role in the B-anomalies,

thus ε`1 is not fixed by them if the latter limit is satisfied, as we will assume from now on.

Once the Left-handed mixings of µ and τ are fixed, the Right-handed ones can be

adjusted to obtain the proper masses. Using eq. (2.10) one obtains: εe3 ' 0.7 × 10−2/g∗
and εe2 ' 0.4× 10−3/g∗.

2.6 Bounds

One of the most stringent constraints on a U1 leptoquark arises from LFU violation in τ

decays. At one-loop U1 modifies the W coupling of the τ , that is in agreement with the SM

prediction at the per mil level. Following ref. [53] the violation of LFU can be parametrized

in the ratio: ∣∣∣∣gWτgWµ
∣∣∣∣ = 1.0000± 0.0014 . (2.18)

One-loop radiative corrections can be estimated as: [17, 54]∣∣∣∣gWτgWµ
∣∣∣∣ = 1− 0.08C3333 . (2.19)

From eqs. (2.18) and (2.19), we obtain gL33/mU1 . 0.8/TeV. This bound can be compared

with the value required to fit RD(∗) : c23gL33/mU1 ∼ 1/TeV. Although this puzzle seems to

introduce some tension, a factor c23 ∼ 2–3 is enough to satisfy both requirements.

The large degree of compositeness of `3 can induce large deviations in the couplings

ZτLτ̄L and Zνν̄, that are in agreement with the SM at the per mil level also. In generic

models with partial compositeness the correction to these couplings can be estimated as:

δgZ` /g
Z
` ∼ ξε2` , with ξ defined in eq. (24). However, in our model τL mixes with a resonance

having T 3L = T 3R and (TL)2 = (TR)2, realizing a discrete LR symmetry that protects

gZτL [55]. In this case the leading tree-level corrections are δgZτL/g
Z
τL
∼ ξε2`3(g/g∗)

2 ∼ few ×
10−3 (see ref. [56] for an explicit calculation in the case of the b-quark). Since it is not

possible to protect gZν at the same time, this coupling gets a larger modification, requiring

extra tuning of order (g∗/g)2 to pass the constraints [57]. We will show the numerical

results performing a tree-level calculation in section 4.2.

A similar situation holds for ZbLb̄L. Given our choice for the embedding of the reso-

nance mixing with the elementary bL, the discrete LR symmetry also protects gZbL , leading

to corrections of order 10−3. In section 4.2 we will describe the numerical predictions in a

three-site model.
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As in any other model with anarchic partial compositeness from linear interactions,

there are several quantities that push the compositeness scale to larger values: the neu-

tron dipole moment that requires f & O(5) TeV and εK in the Kaon-system that gives

m∗ & O(10) TeV [58]. In the lepton sector the electron dipole moment and the flavor

violating decay µ→ eγ give even stronger bounds: f & O(20–40) TeV. There have been a

few proposals for these problems, as the presence different scales for different flavors [59],

the presence of naturally tiny bilinear interactions in anarchic scenarios [40], the existence

of extended color symmetries in the SCFT [60, 61], as well as the presence of flavor sym-

metries [62, 63]. The proposal of ref. [40], where the lepton doublet and singlet of the

first generation are elementary, as well as the first generation Right-handed up- and down-

quarks, can be implemented straightforward in the present model. In this case, the most

dangerous contributions to the aformentioned processes are suppressed, though transitions

from operators like (s̄RdL)2 and (d̄iLγ
µdjL)2 require m∗ & 6–7 TeV. An interesting alter-

native is proposed in ref. [64], where the authors consider a composite sector with CP

symmetry, as well as a flavor U(1)3 symmetry in the composite “leptonic” sector. Either

if the elementary-composite interactions respect U(1)3, or if it is broken by the couplings

λψ, the constraints on m∗ are relaxed to . 10 TeV. Concerning the B-anomalies, ref. [64]

analyses two different cases: ε`i ∼ εei, and ε`i ∼ ε`j , showing that both scenarios can ex-

plain the anomalies. This proposal can be implemented straightforwardly in our model,

by extending G to G×U(1)3 × CP . Although the composite fermion multiplets contain

states with lepton and baryon number, the elementary fermions are not unified, in the

sense that qi and `i interact with SCFT operators that have different charges under U(1)3,

thus in this scenario εqi and ε`i are independent as required in our set-up (and similar for

the Right-handed fermions).

As discussed in ref. [65], bounds from B̄−B mixing combined with a solution to RD(∗)

lead to f . 0.7 TeV. This condition introduces a tension with EW precision tests, that

usually require, at least: f & 0.75 TeV [66], slightly increasing the amount of tuning of

the model.

2.7 Effective theory

An effective low energy theory, obtained after integration of the resonances of the SCFT,

and containing the elementary fermions and gauge fields as well as the NGBs, can be built

based only on symmetry principles. One of the main objects for this construction is the

NGB unitary matrix:

U = eiΠ/f , Π = ΠâT â , (2.20)

with Πâ the real NGB d.o.f., and T â the broken generators of the coset SO(12)/SO(11).

Under SO(12), U transforms as: GUH†, with G ∈SO(12) and H ∈SO(11) being a function

of G and Π: H(G,Π). In the fundamental and adjoint representations of SO(12), 12 and

66, respectively, U can be written as:

U = I +
sin(ρ/f)

ρ
Π +

cos(ρ/f)− 1

ρ2
Π2 , ρ2 =

∑
â

(Πâ)2 (2.21)
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The kinetic term of the NGBs can be written in terms of the Maurer-Cartan form:

iU †DµU = dâµT
â + eaµT

a, where Dµ is the usual covariant derivative containing the SM

gauge fields:

L ⊃ f2

4
dâµd

µâ . (2.22)

Assuming that only H has a vev: v, eq. (2.22) generates a mass term for the elec-

troweak (EW) gauge bosons, that is identical to the case of the MCHM based on the

coset SO(5)/SO(4), namely:

v2
SM = (246GeV)2 = f2 sin2

(
v

f

)
. (2.23)

As usual in CHM we define: [67]

ξ ≡
v2

SM

f2
. (2.24)

Let us focus now on the fermions. Although the elementary fields do not fill complete

representations of SO(12), we find it useful to embed them in full SO(12) representations

by adding non-dynamical fields, that must be put to zero in the end of the calculations.

Following the discussions of section 2.2, we embed the elementary fermions in the repre-

sentations of SO(12) shown in table 1.

As usual in the CCWZ formalism [68, 69], one can build SO(12)-invariants by dress-

ing the fields with U †, and then forming with them SO(11)-invariants. Thanks to the

transformation properties of U , these invariants are actually invariants of SO(12).6

Given a field ψ, that transforms with a representation of SO(12), we define ψr as

the projection of ψ to r, with r a representation of SO(11). To quadratic order in the

elementary fermions, the effective Lagrangian can be written as:

Leff ⊃
∑
f

Zf ψ̄f 6pψf +
∑
f,f ′

∑
r

(ψ̄fU)rΠ
r
ff ′(U

†ψ′f )r

f, f ′ = q, u, d, `, e (2.25)

The coefficient Zf stands for the elementary kinetic term, it will be taken to unity in

numerical calculations. Πff ′ are the form factors that codify the information arising from

the integration of the resonances of the SCFT, they depend on momentum and on the

microscopic parameters of the SCFT, but they not depend on the NGBs. Their precise

form requires a model for the SCFT, as for example an extra-dimensional theory, or a

discrete version of an extra dimension with a finite number of sites. In section 3 we will

show an explicit realization in terms of a three-site model.

If f and f ′ have the same chirality, Πr
ff ′ is proportional to 6p, in the following we will

trade Πr
ff ′ → 6pΠr

ff ′ , factorizing that power of momentum from the form factors.

We also embed the elementary gauge fields in the adjoint representation of SO(12), by

adding non-dynamical degrees of freedom. The effective Lagrangian at quadratic order in

6As is well known, in the case of quadratic invariants depending on two fields that are in the same

representation of G, there is a linear combination of invariants that is independent of the NGBs.
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the elementary gauge fields aµ is:

Leff ⊃
1

2
Pµν

[
−Zgaµp2aν +

∑
r

(aµU)rΠ
r
g(U

†aν)r

]
, (2.26)

with Pµν = ηµν − pµpν/p
2, Zg = 1/g2

0 and Πr
g being the form factors that codify the

SCFT dynamics after the integration of the spin one resonances, that are independent of

the NGBs.

It is useful to consider Leff with the NGBs evaluated in their vevs. Assuming that only

the Higgs has a non-trivial vev v, and keeping just the dynamical fields corresponding to

the SM, we obtain:

Leff ⊃
∑

f=u,d,e,ν

f̄LMffR + h.c.+
∑

f=u,d,e,ν

∑
X=L,R

f̄X 6p(ZfX + ΠfX )fX


+

1

2

∑
a=g,w,b

∑
j

ajµ(−Zap2 + Πa)a
j
µ , (2.27)

where the sum of the second line is over the dynamical gauge fields of the SM. We will call

g0s, g0w and g0y the elementary gauge couplings of SU(3)c, SU(2)L and U(1)Y , respectively,

and: Za = g−2
0a . The field νR has not been written, it could be present or not, depending

on the realization of neutrino masses.

The functions Mf and ΠfX can be computed by matching eqs. (2.25) and (2.27) in the

background of the Higgs vev, they are given by:

Mf =
∑
r

jrfΠr
qf , ΠfR =

∑
r

irfRΠr
f , ΠfL =

∑
r

irfLΠr
q , f = u, d ,

Me =
∑
r

jrfΠr
`e , ΠeR =

∑
r

ireRΠr
e , ΠfL =

∑
r

irfLΠr
` , f = e, ν . (2.28)

For the bosonic sector:

Πa = iraΠ
r
g . (2.29)

The functions irf , i
r
a and jrf can be expressed in terms of trigonometric functions of

v/f . Defining sv ≡ sin(v/f) and cv ≡ cos(v/f), we show them in table 2. We only present

the invariants involving fields with large degree of compositeness, that play an important

role in the potential that determines the vev, the other invariants are straightforward to

compute once the corresponding representations are built.

The spectrum of fermions of a given species, including the resonances that can be ex-

cited by the corresponding elementary fermion, can be obtained by computing the equations

of motion of the dynamical elementary fermions present in the Lagrangian of eq. (2.27):

p2(ZfL + ΠfL)(ZfR + ΠfR)− |M2
f | = 0 . (2.30)

The spectrum of the resonances that are not excited by the SM fermions, as the exotic

ones (that have Zf = 0), can be obtained by computing the poles of eq. (2.30) for each

species of fermions.7

7In some case there are also non-exotic resonances that are decoupled from the elementary SM fermions,

thus their spectrum is given by the poles of the correlators.
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SO(12) SO(11) iuL idL iuR iνL ieL ju ig iw

66
55 1− s2

v/2 1 s2
v 1− s2

v/2 1 icvsv/
√

2 1 1− s2
v/2

11 s2
v/2 0 c2

v s2
v/2 0 −icvsv/

√
2 0 s2

v/2

Table 2. Invariants irf and jrf of the kinetic and mass terms, in the background of the Higgs vev,

with no vev for S̄1. We have used sv = sin v/f and cv = cos v/f . We only show the invariants of

the fields that have a non-negligible degree of compositeness.

2.8 Potential

If the SCFT is considered in isolation, the Higgs, the singlet ϕ and the scalar leptoquark are

true NGBs. Since the interactions with the elementary sector explicitly break the global

symmetry of the SCFT down to the SM group, at loop level a potential is generated,

thus these scalars become pNGBs. The potential is dominated by the contributions of the

elementary fields that have the largest couplings with the SCFT. In the present model,

that role is played by qL, uR and `L of the third generation, we will also consider the effect

of the gluons gk and the weak fields wi on V , the effect of the other fields is sub-leading

and it will not be taken into account.

At one-loop level, the Coleman-Weinberg potential can be written as: [70]

V =
1

2

∫
d4p

(2π)4

(
− log det

Kf
K0
f

+ log det
Ka
K0
a

)
, (2.31)

where Kf and Kg are the fermionic and bosonic matrices in the quadratic effective La-

grangian of elementary fields, eq. (2.25):

Leff ⊃ f̄Kff +
1

2
aKaa , f t = (uL, dL, νL, eL, uR) , at = (gk, wi) . (2.32)

For f we have included only the fermions of the third generation giving the largest con-

tribution to V , for a we have included the elementary gauge fields of SU(3)c: gk, with

k = 1, . . . 8, and the ones of SU(2)L: wi, with i = 1, 2, 3. We have neither shown spinor,

nor vector, indices. The superindex 0 means that the NGBs are evaluated to zero, thus the

denominators in the argument of the determinants just subtract a divergent term indepen-

dent of the NGBs. Notice that, since the quarks have color indices, for our approximation

Kf is a matrix of dimension eleven. The matrices K can be calculated by making use of

eqs. (2.21) and (2.25). The specific form of the fermionic contribution depends on the em-

bedding of the elementary fermions into SO(12), leaving freedom for model building. Since

S̄1 is a singlet of SU(2)L and H is a color singlet, at one-loop level the gluons contribute

only to the potential of S̄1 and the ws only to the potential of the Higgs.

Since the dependence on the pNGBs is contained in the matrix U , V is a complicated

function of ϕ, H and S̄1, with an infinite series of terms. In order to analyse the stability

of the potential, we find it useful to perform an expansion of V in powers of ϕ, H and S̄1
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to fourth order, obtaining:

V '
∑

Φ=H,S̄1,ϕ

[m2
Φ|Φ|2+λΦ(|Φ|2)2]+λHS̄1

|H|2|S̄1|2+λHϕ|H|2ϕ2+λϕS̄1
ϕ2|S̄1|2+. . . , (2.33)

where the dots stand for higher order terms. The quadratic and quartic coefficients of

eq. (2.33) can be expressed as momentum integrals of combinations of the fermionic and

bosonic form factors Πr
ff ′ and Πr

g. Generically, the quadratic and quartic coefficients can

be estimated to be of order: m2
Φ ∼ ε2fm4

∗/(16π2f2) and λΦ ∼ ε2fm4
∗/(16π2f4). The absence

of terms with an odd number of fields is guaranteed by the P -symmetry. Notice that in

the absence of this symmetry, a term linear in ϕ can be present, triggering a vev for ϕ.

For m2
H < 0, m2

S̄1
,m2

ϕ > 0 and suitable quartic couplings, V is minimized by a non-

trivial Higgs vev: v2 = −m2
H/λH and zero leptoquark and singlet vev. Using the estimates

of the previous paragraph in the solution for the Higgs vev, for generic regions of the

parameter space one obtains: v ∼ f . As is well known, EWPT demands a separation

between v and f , leading to a tuning of order ξ, as usual in composite Higgs models.

For the embedding of table 1, the quadratic coefficients are:

m2
H = −

∫
d4p

(2π)4

(
2

Π55
` −Π11

`

Z` + Π55
`

+ 2Nc

Π55
q −Π11

q

Zq + Π55
q

+ 4Nc
Π11
u −Π55

u

Zu + Π11
u

+2Nc
|M55

u −M11
u |2

(Zq + Π55
q )(Zu + Π11

u )
− 9

4

Π11
g −Π55

g

−Zwp2 + Π55
g

)
,

m2
S̄1

= −
∫

d4p

(2π)4

(
4

Π55
q −Π11

q

Zq + Π55
q

+ 10
Π11
u −Π55

u

Zu + Π11
u

− 16

3

Π10
g −Π45

g

−Zgp2 + Π45
g

)
,

m2
ϕ = −

∫
d4p

(2π)4
4Nc

Π11
u −Π55

u

Zu + Π11
u

, (2.34)

the last terms show the gauge contributions, that are independent of the fermion em-

bedding. Having explicit expressions of the form factors it is possible to compute these

coefficients.

We have also computed the quartic couplings, but we do not show them because they

lead to too long expressions.

We consider now the potential that determines the Higgs vev, in the case of neither

vev of S̄1, nor of ϕ. The dominant contributions in our model are given by:

V '
∫

d4p

(2π)4

{
9

2
log(−Zwp2 + Πw)− 2 log[p2(Z` + ΠeL)]− 2 log[p2(Z` + ΠνL)] ,

−2Nc log[p2(Zq + ΠdL)]− 2Nc log[p2(ZuL + ΠuL)(ZuR + ΠuR)− |Mu|2]

}
, (2.35)

where the form factors can be obtained by making use of the eqs. (2.28) and (2.29), as well

as table 2.

In the next section we will show an effective description of the resonances of the

SCFT that allows to model the form factors. In section 4.1 we will show numerical results

for regions of the parameter space where the one-loop potential breaks the EW symmetry,

preserving SU(3)c×U(1)em. We will also show the predictions for the masses of the pNGBs.
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Figure 1. Moose diagram of the three-site theory.

3 A three-site model

We consider an effective description of the SCFT dynamics and its interactions with the

elementary SM fermions and gauge bosons in terms of a discrete composite model. The

minimal set-up that allows to obtain the proper leptoquark interactions, as well as a fi-

nite one-loop potential is a three-site theory [71]. We show a moose diagram of such a

theory in figure 1 (see appendix D for a model in 5-dimensions). Site-0 contains the el-

ementary fermions and gauge fields of the SM, that will be denoted with small letters,

whereas the other two sites contain the lightest set of resonances of the SCFT, whose fields

will be denoted with capital letters and subindices indicating the site. Site-1 has a local

symmetry G1=SO(12), as well as massive Dirac fermions transforming with irreducible

representations of G1. Site-2 has massive Dirac fermions transforming with irreducible

representations of a global symmetry G2=SO(12), however only a subgroup H2=SO(11) is

gauged on this site. Two nearest sites j and j+ 1 are connected by σ-models based on the

coset Gj×Gj+1/Gj+(j+1), with a field Ωj = eiΠj/fj transforming linearly under Gj×Gj+1

and parametrizing the coset.

As described in section 2.7, we find it useful to add non-dynamical elementary degrees

of freedom that allow to embed the elementary fields in full multiplets of SO(12). Using

these embeddings it is straightforward to write invariants, the spurion fields are set to zero

in the end of the calculation. We will call aµ to the embedding of the gauge fields into

SO(12), and ψf to the embeddings of the elementary fermions, with f = q, u, d, `, e, the

later ones are defined in table 1.

The Lagrangian of the bosonic sector is:

Lb = − 1

4g2
0

faµνf
aµν +

∑
j=1,2

[
− 1

4g2
j

F ajµνF
aµν
j +

f2
j

4
tr(|DµΩj |2)

]
, (3.1)

with fµν and Fjµν the field strength on site-0 and j, and DµΩj = ∂µΩj+iAj−1µΩj−iΩjAjµ
(aµ ≡ A0µ). gj are the gauge couplings on site-j, with gSM � g1, g2 � 4π. Matching the

coupling of the unbroken diagonal group leads to: g−2
SM = g−2

0 + g−2
1 + g−2

2 , fixing g0, whose

size can be estimated as g0 ∼ gSM for g1, g2 � gSM. In fact a subindex in the coupling at

site-0, as well as in gSM , must be understood, distinguishing the different factors of the

SM gauge symmetry.

The σ-model fields provide 132 NGBs, in the unitary gauge 121 NGBs become the

longitudinal degrees of freedom of the 66 spin one resonances at site-1 and the 55 resonances

at site-2, that become massive. 11 NGBs remain in the spectrum, they correspond to H,
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S̄1 and ϕ. By going to the unitary gauge, one can obtain the decay constant of the physical

NGBs: f , as:
1

f2
=

1

f2
1

+
1

f2
2

. (3.2)

The Lagrangian of the fermionic sector is:

Lf =
∑
f

iψ̄f 6Dψf + Ψ̄R
1 (i 6D −mR

1 )ΨR
1 + iΨ̄R

2 6DΨR
2 +

∑
r

mR
2,rΨ̄

R
2,rΨ

R
2,r

+ f1

∑
f

λRf ψ̄fΩ1ΨR
1 + λR1,2f2 Ψ̄R

1 Ω2ΨR
2 + h.c. ,

f = q, u, d, `, e , (3.3)

where a generation index is understood. The superindex R labels the SO(12) representation

of the corresponding fermion. The first line of eq. (3.3) contains the kinetic terms of the

elementary fermions f , as well as the kinetic and mass terms of the fermions on sites 1 and

2. The last term of the first line contains masses for the fermions on site-2, with r being

the representations obtained after the decomposition of Ψ2 under SO(11), see eq. (2.7)

for Ψ2 ∼66 or 220. These terms, that give different masses to each SO(11) multiplet of

fermions, are allowed because on site-2 only SO(11) is gauged. The second line contains

the mixing between fermions located on different sites, these terms are gauge invariant

thanks to the transformation properties of the matrices of NGBs. The masses are taken as

m1 ∼ g1f1 and m2,r ∼ g2f2, such that fermionic and bosonic resonances have masses of the

same size. The mixing parameters λf are dimensionless numbers that, as discussed below

eq. (2.8), can span a hierarchy of values, being very small for the fermions of first and second

generations, as well as bR and τR, and O(g1) for the other fermions of the third generation.

Following the discussion of section 2.2, one would have to include two massive Dirac

fermions per generation in each composite site, one in the representation 66 and one in

220. The elementary fermions q, ` and u mix with Ψ66
1 , whereas d and e mix with Ψ220

1 .

From eqs. (2.9) and (2.10) and the discussions of section 2.5, we obtained that q, u and `

of the third generation have a large degree of compositeness, whereas the mixing λd and λe
must be suppressed to reproduce the bottom and tau masses. Given that the mixings with

Ψ220
1 are very suppressed, to simplify our analysis of the potential, as well as the analysis

of q and ` couplings with leptoquarks, from now on we will consider that there is just

one resonance in each site: Ψ66
j , and we will neglect the effects of Ψ220

j .8 Thus eq. (3.3)

simplifies to:

Lf = Ψ̄66
1 (i 6D −m1)Ψ66

1 + iΨ̄66
2 6DΨ66

2 +
∑

r=55,11

m2,rΨ̄
66
2,rΨ

66
2,r + λ1,2f2 Ψ̄66

1 Ω2Ψ66
2

+ f1

∑
f=q,`,u

λf
(
ψ̄fΩ1Ψ66

1 + iψ̄f 6Dψf
)

+ h.c. . (3.4)

The mass matrices obtained from eqs. (3.1) and (3.4) are shown in appendix B.

8Even if λd = λe = 0, Ψ220
2 can mix with Ψ66

2 through a mass term that is SO(11)-invariant:

m̂2Ψ̄66
2L,55Ψ220

2R,55 + m̂′2Ψ̄66
2R,55Ψ220

2L,55, distorting the spectrum of fermions. We are neglecting these effects

also.
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The states at sites 2 and 3 give an effective description of the lightest level of resonances

of the SCFT. To gain some insight into the dynamics of the SCFT, it is useful to study first

the spectrum neglecting the mixing with the elementary fields as well as the contributions

from the Higgs vev. Let us start with the spin one states, there is one multiplet in the

representation 11 of SO(11), located on site-1, with mass g1

√
(f2

1 + f2
2 )/2, that does not

mix with any other state in this limit. There are two multiplets in the representation

55 of SO(11), that are mixed by f2 as shown in eq. (3.1), after diagonalization of this

mixing, for f1 = f2 and g1 = g2 the mass eigenstates have masses: ' g1f1/2 and ' g1f1.

Turning-on g0 the elementary and composite states are mixed. After this mixing, and

before EWSB, one obtains a set of massless and partially composite fields that are in one

to one correspondence with the gauge bosons of the SM. The degree of compositeness of

the massless states: εg, is defined as

ε2g = 1− g2
1g

2
2

g2
0g

2
1 + g2

0g
2
2 + g2

1g
2
2

' g2
0

(
1

g2
1

+
1

g2
2

)
+O

(
g0

gi

)4

, (3.5)

it can be obtained by calculation of the massless eigenstate of the mass matrix before

EWSB. εg can be defined as εg =
√

1− x2
g,el, where xel is the projection of the massless

eigenstate onto the elementary one.

For the fermions one can proceed in an analogous way. Taking the limit of λf = 0, the

masses of the fermionic resonances depend on the masses at each site, as well as on the

mixings between sites: λ1,2. There are two multiplets in the 55 that split in two levels, as

well as two multiplets in the 11 that split in two levels, with masses:

m
(±)
r =

1

2
{m1 +m2,r ± [(m1 −m2,r)

2 + 4λ2
1,2f

2
2 ]} , r = 55,11 . (3.6)

Since we will take λ1,2 ∼ g1 ∼ g2, and all the fermionic mass parameters of order gjfj , the

masses of the fermionic resonances, before mixing with the elementary states, are of the

same size as the masses of the spin one resonances.

One can also perform a biunitary diagonalization of the fermionic mass matrices before

EWSB. Considering just one generation, we define the degree of compositeness as:

εq = λ2
q

λ2
1,2f

2
2 +m2

2,55

(m1m2,55 − λ2
1,2f

2
2 )2 + λ2

q(m
2
2,55 + λ2

1,2f
2
2 )2

,

εu = εq(λq → λu,m2,55 → m2,11) ,

ε` = εq(λq → λ`) . (3.7)

The mixing with the elementary states also shifts the masses of the resonances, leading to

what is usually known as light custodians when the mixing is large.

In the next sections we will show numerical predictions for the spectrum and couplings.

We will take into account all the mixings for these predictions, including those induced by

the Higgs vev.

Integrating the resonances at sites 2 and 3, it is possible to obtain explicit expressions

for the form factors of the low energy effective theory of section 2.7. For the fermions we
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obtain:

Πr
qq = S(λq,m2,r) , Πr

uu = S(λu,m2,r) ,

Πr
`` = S(λ`,m2,r) , Πr

qu = M(λq, λu,m2,r) , (3.8)

with S and M defined as:

S(λ,m2,r) = λ2f2
1 (p2 − λ2

1,2f
2
2 −m2

2,r)/d ,

M(λ, λ′,m2,r) = λλ′f2
1 [(−p2 +m2

2,r)m1 − λ2
1,2f

2
2m2,r]/d ,

d = [λ2
1,2f

2
2 + (m1 − p)(p−m2,r)][−λ2

1,2f
2
2 + (m1 + p)(p+m2,r)] . (3.9)

For the gauge fields we get:

Π55
g =

p2f2
1 [2p2 − f2

2 (g2
1 + g2

2)]

4p4 − 2p2g2
1(f2

1 + f2
2 ) + g2

2f
2
2 (−2p2 + g2

1f
2
1 )
,

Π11
g =

f2
1 (2p2 − f2

2 g
2
1)

4p2 − 2g2
1(f2

1 + f2
2 )
. (3.10)

4 Phenomenology

In this section we study the phenomenology of the composite GUT, with the lowest level

of resonances effectively described by the three-site model of the previous section. We

compute first the spectrum of pNGBs, looking for regions of the parameter space where

the SM states have the proper masses, and showing the predictions for the masses of ϕ, S̄1

and the spin one states U1, as well as the lightest Z ′. After that we study the corrections

to the Z couplings of τL and bL at tree level, showing that, thanks to the PLR-symmetry,

the corrections are of order ∼ few× 0.1% for ξ ∼ 0.1. After that, we study the corrections

to RD(∗) and show that, for large degree of compositeness of τL, it is possible to be within

1σ of the experimental average value. In this case the correction to Wτ coupling saturates

the bounds. Finally, we discuss the phenomenology of the pNGBs.

4.1 EW symmetry breaking and spectrum of resonances

We have performed a scan of the parameter space of the three-site model, calculating

the pNGB potential and the Higgs vev. For this, we let most of the parameters to vary

randomly, with a number of constrains. As we wish to maintain perturbativity, at each

site dimensionful couplings should not exceed 4πfn. At sites 1 and 2, gauge couplings were

chosen in the interval [2.1,3.6], and the couplings at the elementary site where adjusted

to match the value of the SM couplings, as discussed below eq. (3.1). The scan was

also optimized to select the elementary-composite couplings such as to have the fermionic

degrees of compositeness larger than 0.5, as the points consistent with phenomenology

would be at larger mixings. For each point we calculated the one-loop potential at all orders

in the Higgs vev, obtaining the value of v in the cases with EWSB. We discarded all the

points with maximal breaking, as well as those without breaking. For each point kept, we

obtained the Higgs mass by calculating the curvature around the minimum. The top mass
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Figure 2. Scatter plot for top mass versus Higgs mass. Only points with f ≥ 0.7 TeV were

selected for this plot. In grey we highlight the limits for the benchmark window, defined by

mt ∈ [0.12, 0.18]TeV and mh ∈ [0.1, 0.15] TeV.

is calculated as well, by biunitary diagonalization of the up quark mass matrix in presence

of vev. Last, by rescaling all the dimensionful parameters, we fixed:
√
ξf = 246 GeV, as

indicated in the matching of eq. (2.23).

We defined a benchmark window, selecting phenomenologically viable points, as

f ≥ 0.7 TeV, mt ∈ [120, 180] GeV and mh ∈ [100, 150] GeV, a smaller window requires more

time of CPU running, with almost no impact in the phenomenology that we want to study.

The W mass was fixed to its experimental value by the rescaling described in the previous

paragraph, whereas the Z mass is related with the W one by custodial symmetry. In figure 2

we show a scatter plot of mt versus mh obtained with the random scan, selecting points with

f > 700 GeV. The random points contain the phenomenologically interesting region of the

SM, although the model prefers a ratio mh/mt slightly larger than the experimental value.

We have also calculated the masses of the other scalar states by taking into account

both: the gauge and the fermion contribution to the potential, as shown in eq. (2.34).

The gauge contribution is always positive, whereas the fermionic one can be either positive

or negative. In figure 3 we show both masses plotted one against the other, along with

the line mϕ = mS̄1
, we only show the results with both masses positive. Red triangles

correspond to points within the benchmark region, whereas blue circles are for points that

lie outside that region. Just by counting red triangles we obtain that there are more points

with mS̄1
> mϕ, than the other way around. For masses larger than 1 TeV it seems that

there are more red triangles with mS̄1
> mϕ, however, since the blue circles do not show

that pattern, we can not be sure if this a fluctuation due to the somewhat small number

of points lying in the benchmark region, or if it is a reliable tendency. The masses of

these states are in the range 0.1–2.5 TeV, with a larger density of points in the interval

100–700 GeV.
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Figure 3. Scatter plot of the ϕ particle mass as a function of the mass of the scalar LQ. Plotted in

blue are points with f > 700 GeV and in red the ones inside the benchmark window. Also included

is the line mϕ = mS̄1
.

For the vector leptoquark U1 we calculated its mass and its coupling to bL and τL.

This was also done by diagonalizing the fermion and boson mass matrices, and by writing

the Lagrangian in terms of physical degrees of freedom. As there are three U1 states, we

obtained three masses and three different couplings. For the fermion embeddings that we

have chosen, the parity P implies that one of these states does not couple to the physical

fermions, and as such it does not contribute to the couplings RD(∗) . In figure 4 we present

the mass of the lightest U1 state, as a function of the decay constant of the pNGBs, for

the benchmark region. The dependence with f can be understood from the discussion of

the spectrum above eq. (3.6). We obtain that, for the benchmark region, mU1 ∼ 1–4 TeV,

with a larger density of points near 1–2 TeV. In the next section we will show the ratio

g
U

(n)
1

/m
U

(n)
1

.

By calculating the eigenvalues of the mass matrix of the spin one neutral states, we

find the spectrum of neutral vector resonances. Besides the SM Z boson, the next 5 states

are of two kinds. The lightest 4 are actually degenerate in mass, and do not mix with the

elementary Z, while the 5th one is around 5% heavier, and does mix with the elementary

Z. As the first generation of quarks and leptons have a very low degree of compositeness,

in the approximation in which they are fully elementary, their couplings to these fully

composite Z ′ is zero. As such, their generation in pp collisions is highly suppressed, as the

parton distribution functions of the 2nd and 3rd generations in the proton are suppressed.

A process that can put bounds on these Z ′ with couplings mostly to the third generation

is four tops, which constrains the size of 4 quark operators that can be generated as a Z ′
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Figure 4. On the left panel we show a scatter plot of mass of the vector leptoquark U1, as a

function of the Higgs decay constant f , for the benchmark region. We observe the predicted linear

dependence with f . Also pictured is the line at 1.5 TeV, often cited as a bound for its mass in direct

searches [79]. On the right panel we show a scatter plot of mass for the first Z ′ resonance, as a

function of ξ = v2
SM/f

2, for points on the benchmark window. Red triangles pass the experimental

constraints, whereas blue circles do not.

exchange [72]. However, all points in the benchmark window pass these constraints, as

they are not too restrictive. In that case, points were only accepted or rejected according

to the lightest Z ′ that does couple to first generation, following experimental bounds on

these heavy vector bosons into either leptons, light jets, bottom and top quarks [73–78]. In

figure 4 we present m′Z as a function of ξ, for points inside the phenomenological window.

Using that mZ′ scales with f , as well as eq. (2.23), one can understand the dependence

of mZ′ with ξ. We see that mZ′ & 2 TeV for values of ξ . 0.1. The distinction between

points that are ruled out by Z ′ detection and those that pass the experimental constraints

can be seen by the marker, where red triangles are points that pass, and blue circles are

those that do not.

4.2 Bounds

We have computed the coupling of Z to τL, ν and bL in our three-site model. By rewriting

the three-site interaction Lagrangian in terms of the physical states, one finds the value of

the couplings gZτ , gZν and gZb .

The coupling gZτ has been measured with an accuracy of order few per mil [57]. In the

right panel of figure 5 we present the relative difference of gZτL coupling, as a function of ξ.

As expected from the estimates of section 2.6, it scales linearly with ξ, the dispersion arising

from the dependence of the coupling on ε` and εg. We find that the relative corrections

to the coupling can reach values below 2–5 per mil from ξ . 0.1 onwards. The coupling

gZν has also been measured at the per mil level [57], but in this case, since there is no

symmetry protection, the corrections are a factor 1/ε2g larger than for the charged lepton.

As can be seen in the left panel of figure 5, the bounds require ξ . 0.02, increasing the

amount of tuning.

We omit the same graph for the coupling of Z to bottom quark, since the values and

distribution of this coupling are similar.
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Figure 5. Relative correction of the couplings Zνν̄ on the left panel, and ZτLτ̄L on the right panel,

as a function of ξ, for points in the benchmark region.

As described in section 2.6, LFU violation in W couplings give constraints on C3333.

We have computed this Wilson coefficient for the benchmark points. In the next section

we will distinguish the points that pass these constraints form those that do not, showing

that a large portion of the former can also explain RD(∗) .

4.3 Predictions for RD(∗)

The contribution of the U1 leptoquarks to RD(∗) is given in eq. (2.16). Making use of the

flavor structure arising from partial compositeness, C3233 can be estimated as:

C3233

(
1−

V ∗tb
V ∗ts

gL23

gL33

)
∼ C3333λ2

C

c23

c33

(
1 +

c23

c33

)
, (4.1)

with

C3333 =
∑
n

C
(n)
U , C

(n)
U ≡ 1

2

(
vg

(n)
L33

m
(n)
U1

)2

. (4.2)

Thus, up to a factor of O(1), arising from the last two factors of the r.h.s. of eq. (4.1),

we can obtain C3233 by knowing g
(n)
L33/mU

(n)
1

. In figure 6 we present the coefficients C
(n)
U

of both U1 states having nonzero couplings to b and τ , as a function of the bottom quark

mixing εq. We find that the coefficient of the lightest state is approximately an order of

magnitude higher than the coefficient of the heaviest state, the suppression mainly due

to the difference in masses between both states. Thus the sum of eq. (4.2) is dominated

by the lightest state. As expected, larger εq leads to larger C
(n)
U , whereas the dispersion

of points is generated by the random variation of the other parameters of the model. A

similar dependence is found for ε`.

To obtain the coefficient of RD(∗) we sum both contributions, and multiply by a ran-

dom factor c to account for the factors c32/c33(1 − V ∗tbgL23/V
∗
tsgL33) on eq. (4.1), that is:

c(C
(1)
U1

+ C
(2)
U1

), with |c| < 3. In figure 7 we present a plot of RD∗ vs RD. In it, we show the

SM prediction, the world average for experimental values, along with confidence ellipses

for 1, 2 and 3 σ. We present our prediction in two groups, one such that
∑

nC
(n)
U ≤ 0.02,

to be consistent with LFU in τ decays, and the rest of the points up to
∑

nC
(n)
U = 0.06.

As can be seen in figure 6, this coefficient can actually reach values of order 0.1, we do not
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Figure 6. Scatter plot of C
(n)
U = 1/2(vg

(n)
L33/m

(n)
U1

)2 for points inside the benchmark window, as a

function of the degree of compositeness of the quark doublet of the third generation: εq.

Figure 7. Theoretical predictions for RD and RD∗ for our model. In red are plotted those points

that agree with
∑
n C

(n)
U ≤ 0.02, consistent with current bounds on LFU violation in tau decays. In

blue, we plot the rest of points, up to
∑
n C

(n)
U = 0.06. Also plotted is the experimental point along

with the confidence ellipses for coverage probabilities of 68.27%, 95.45% and 99.73% (1 to 3 σ).

show points with
∑

nC
(n)
U ∈ [0.06, 0.1]. One can see that many points lie in the 1σ region

without violating the bounds from gWτ . On the other hand, the bound on ξ from gZν is very

stringent, we have checked that only 6% of the points satisfy this bound, almost reaching

the border of the 1 σ ellipse from below.

4.4 Phenomenology of the pNGB scalars

Let us start with the pNGB Higgs. Since the invariants of table 2 are the same as for the

MCHM with fermions embedded in the fundamental representation of SO(5), the Higgs

phenomenology is similar to that case. We will not describe it here, as it has been exten-

sively discussed in the literature, see for instance refs. [38, 80, 81], and references therein.
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The presence of the P -symmetry has important consequences for the phenomenology

of S̄1 and ϕ. Let us consider two different cases: first the situation with no elementary

νR, and second the case with an elementary νR with even parity (+1). In the first case,

it is not possible to write a gauge invariant operator, P -even, with SM fields and just

one power of either S̄1 or ϕ. The lowest dimensional operators with these fields have

dimension six and contain both fields, ϕ and S̄1, they are: Oq` = ∂µϕq̄LS̄
∗
1γ

µ`L and

Oqe = ϕq̄LS̄
∗
1HeR. Depending on the relation between mϕ and mS̄1

, they can mediate

either the decay ϕ→ S̄∗1 q̄`, or the decay S̄1 → ϕq̄`. The first case leads to a stable particle

with electric charge and color: S̄1, and is not phenomenologically viable. The second case

is much more interesting because ϕ is stable and can be a good dark matter candidate

(see also ref. [82] for another scenario solving RK(∗) and with a dark matter candidate).

In figure 3 we have shown the spectrum of these states, showing that both situations are

possible in the model.

Adding an elementary νR even under P allows to include a dimension four operator:

Ouν = ūRS̄
∗
1νR that can mediate S̄1 decay: S̄∗1 → tν. In this case ϕ decays also, mediated

by its interactions with S̄1: ϕ → S̄∗1 q̄` → tνq̄`, with S̄1 off-shell for mϕ < mS̄1
. This νR

can not have Yukawa interactions with `, since the operator ¯̀
LHνR is odd under P .

Let us discuss briefly the creation of S̄1 and ϕ at LHC. S̄1, being a color triplet, can

be created in pairs by QCD interactions: gg → S̄1S̄
∗
1 . This is the main creation channel at

LHC. As discussed in the previous paragraphs, the final state is model dependent. In the

interesting case of a stable ϕ, one could get a final state with a pair of quarks and leptons of

the third generation as well as two scalar singlets: qq̄`¯̀ϕϕ, with the singlets giving missing

energy. ϕ could be created in pairs through a dimension six operator as GµνG
µνϕ2, or in

association with S̄1, for example in qZ∗ → S̄∗1ϕ` → qϕϕ`¯̀, with the virtual Z∗ emitted

from the initial proton. A detailed study of these processes is beyond the scope of this work.

Direct searches of S̄1 at LHC give bounds on mS̄1
of order ∼ 1 TeV, however these

bounds depend on which are the dominant decay channels. Since in the present model

the decay channels are model dependent, a dedicated analysis must be done for the

different cases.

4.5 Case without P -symmetry

Another possible scenario is the case where P -symmetry is violated by the interactions with

the elementary sector. There are several possibilities for this violation, we have studied the

case where the elementary fermions uR and `L interact simultaneously with 10 and 10’,

respectively contained in 11 and 55 of 66, as shown in eq. (2.7). Since 11 is odd and 55 is

even under P , it is not possible to assign a well defined parity to the elementary fermions

such that the elementary-composite interactions are invariant under P . It is also possible

to break this symmetry with the other elementary fermions, but since their mixing with

the SCFT is much smaller than the mixing of uR and `L of the third generation, we have

not studied them.

In this case there are many new operators, as for example dimension one and dimension

three operators: ϕ, ϕ|H|2 and ϕ|S̄1|2, and the dimension five operators: ϕψ̄ 6pψ (with ψ

being any elementary fermion), q̄LS̄
∗
1 6p`L and ūRS̄

∗
1H
†`L. The presence of the operators of

– 25 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
2

dimension one and three change drastically the potential, since a vev for ϕ is generated,

that can be estimated to be of order f . We have computed the one-loop potential to all

orders in ϕ and H in the cases without P -symmetry, confirming that, in the absence of

tuning 〈ϕ〉 ∼ f . This vev has a number of new effects, as: it gives large contributions to the

EW scale, it induces mixing between ϕ and h, it opens new decay channels for ϕ and S̄1.

The amount of P violation can be controlled by the mixing of uR with 10’, as well as

the mixing of `L with 10, that we will call λ̂u and λ̂` respectively (λu and λ` are for the

mixings used in the previous sections of the article: 10 for u and 10’ for `L). In the limit

λ̂u = λ̂` = 0 the symmetry is recovered, while taking these mixings small the violation

of P is suppressed, and one can obtain 〈ϕ〉 � f . As discussed below eq. (2.8), under

some suitable conditions the size of λψ is determined by the anomalous dimension of the

corresponding SCFT operator OSCFT
ψ . At the UV scale where eq. (2.8) is defined OSCFT

ψ

transforms linearly with a representation of SO(12), thus λu = λ̂u and λ` = λ̂` at the UV

scale. At low IR scales SO(12) is spontaneously broken, allowing a different evolution of λψ
and λ̂ψ, however, since in our scenario the EW scale is taken only one order of magnitude

smaller than that infrared (IR) scale, the window for running is rather small and it is not

natural to expect a large hierarchy between λψ and λ̂ψ at the EW scale. Therefore the

scenario with small violation of P requires some extra tuning.

We will not elaborate more on this interesting case, and leave it for future work.

5 Conclusions

We have considered a strongly coupled field theory with a unified global symmetry

group SO(12) spontaneously broken to SO(11) by the strong dynamics. The breaking

SO(12)→SO(11) has the following properties: it contains the SM gauge symmetry and the

custodial symmetry, it develops a set of NGBs that include the Higgs, an S̄1 leptoquark

and a SM singlet ϕ, and it contains massive spin one states that can be identified with U1

leptoquarks addressing the B-anomalies. We have shown that an anarchic flavor structure

of the SCFT, together with partial compositeness from linear mixing, can reproduce the

SM spectrum and CKM, simultaneously leading to a suitable flavor pattern of couplings

of U1. In particular, we have shown that to reproduce the shift in RD(∗) a large degree of

compositeness of `L and qL of the third generation is required. This configuration could

induce large corrections to Z couplings of τL and bL, that are in agreement with the SM

at the per mil level, however we have shown that it is possible to protect those couplings

with a well known LR symmetry, by properly choosing the representations of the fermionic

operators under the global symmetry of the SCFT. We have shown that qL, `L and uR can

be embedded in the adjoint representation of SO(12), the 66, whereas dR and eR can be

embedded in the representation 220. The elementary-composite interactions, dominated

by the third generation, generate a potential for the NGBs at one-loop level, that can trig-

ger EWSB and give masses to the extra NGBs. To obtain the suppression in the masses of

the bottom quark and tau, the mixing of bR and τR must be small, leading to a suppression

in the coupling of U1 with the Right handed currents, and realizing the scenario in which

only Left handed currents interact with U1.
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We have shown an explicit realization of the SCFT dynamics in terms of a weakly cou-

pled theory of resonances. For that we have built an effective low energy theory containing

the lowest level of resonances by making use of a three-site theory. This description allows

to compute the spectrum and couplings of the resonances, as well as the one-loop potential

that is finite. Choosing a large degree of compositeness for qL, `L and uR of the third

generation, we have scanned the parameter space of the three-site theory within a natural

region, obtaining a large set of points with EWSB, as well as the right spectrum of SM

states. We obtained masses of S̄1 and ϕ of order 0.2–2 TeV, and a lightest U1 with mass of

order 1–3 TeV. We computed the couplings of U1 and showed that it is possible to obtain

the proper correction to RD(∗) , without conflict with other observables as the W coupling

to τL. The anomalies in RK(∗) can be solved by properly choosing a small mixing for qL and

`L of the second generation, estimates of the couplings with U1 are given in appendix C.

We have also shown that the corrections to ZbLb̄L and ZτLτ̄L are of order 0.1% for ξ . 0.1.

On the other hand, since there is no protection for gZν , bounds from this coupling require

ξ . 0.02, increasing the amount of tuning and introducing some tension with RD(∗) . In

fact the points with ξ . 0.02 do not enter into de 1σ region, such that: an improvement of

the precission of RD(∗) , with the same central value, could not be explained in the present

model. For the points of the parameter space that induce the proper shift on RD(∗) , the

corrections to gWτ almost saturate the bounds, thus in the present model one can expect

to measure deviations in gWτ if measurements of this coupling increase their precision.

We have discussed very briefly the phenomenology of the new scalar states at LHC,

finding a very rich set of signals. Since the phenomenology depends on whether the P -

symmetry, as well as a light elementary Right-handed neutrino with parity +1, are present

or not, a detailed study of the production and detection of S̄1 and ϕ at LHC could allow to

distinguish the different realizations of the model. Besides, the size and flavor structure of

the couplings are fixed, giving a rather predictive scenario. Although such study is beyond

the scope of this work, a careful analysis of direct signals of new physics that could be

related with the B-anomalies must be done, particularly at LHC. We find this avenue very

interesting and leave its study for future work.

Finally, we stress that the coset SO(11)/SO(10) is big enough to contain the SM and

the custodial symmetry, develop H as a NGB and generate a U1 leptoquark. However,

since in this case U1 is associated to broken generators, its mass results heavier than the

lightest resonances associated to Z and W . EWPT give lower bounds on the later of

order 2–3 TeV, thus mU1 & 4–6 TeV. These values of mU1 give an extra suppression to the

contribution to RD(∗) , that results approximately a factor 4 smaller than what is needed to

fit the anomalies. It could be interesting to study the possibility of finding a group smaller

than SO(12) that could do the job.
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A Representations of SO(12)

In this appendix we give a brief description of the algebra, as well as the lowest dimensional

representations, of the group SO(12). A simple basis for the algebra of SO(12) in the

fundamental representation is given by the set of generators {T`m, ` < m = 2, . . . 12}, with

coefficients:

(T`,m)jk = i(δ`jδmk − δmjδ`k) , l < m . (A.1)

An SO(11) subgroup can be defined by choosing a vector n̂ to point in a direction of

the 12-dimensional space. For instance, selecting the twelfth coordinate, n̂ = ê12, the

algebra of SO(11) is defined by generators as in eq. (A.1) with indices different from

“12”. Inside SO(11), we can define the subgroup SO(4)×SO(6), where we will embed

SU(2)L×SU(2)R×SU(3)C×U(1)X . The SO(4) algebra is defined by allowing indices to run

from 1 to 4, while the SO(6) algebra by those indices between 6 and 11.

The algebra of SU(2)L×SU(2)R inside SO(4) can be defined by:

TL1 = −1

2
(T1,4 + T2,3) , TL2 =

1

2
(T1,3 − T2,4) , TL3 = −1

2
(T1,2 + T3,4) ,

TR1 =
1

2
(T1,4 − T2,3) , TR2 =

1

2
(T1,3 + T2,4) , TR3 = −1

2
(T1,2 − T3,4) ,

An algebra of SU(3)×U(1) inside SO(6) can be defined by:

T
SU(3)
1 =

1

2
(T8,11 − T9,10) , T

SU(3)
2 =

1

2
(T8,10 + T9,11) ,

T
SU(3)
3 =

1

2
(−T8,9 + T10,11) , T

SU(3)
4 =

1

2
(T6,11 − T7,10) ,

T
SU(3)
5 =

1

2
(T6,10 + T7,11) , T

SU(3)
6 =

1

2
(T6,9 − T7,8) ,

T
SU(3)
7 =

1

2
(T6,8 + T7,9) , T

SU(3)
8 =

1

2
√

3
(−2T6,7 + T8,9 + T10,11) ,

TU(1) = −4(T6,7 + T8,9 + T10,11) . (A.2)

We construct the adjoint representation (66) by using the structure constants, or, by

using the generators of the algebra as a basis of this vector space.

The smallest representations of SO(12), and their decompositions under SO(10):

12 ∼ 1⊕ 11,

66 ∼ 11⊕ 55,

Decomposing them further under Hmin to identify which representations contain SM

fermions, we get:

1 ∼ (1,1,1)0

11 ∼ (3,1,1)1/
√

6 ⊕ (1,2,2)0 ⊕ (1,1,1)0 ⊕ c.c. ,

55 ∼ (3,2,2)1/
√

6 ⊕ (3,1,1)1/
√

6 ⊕ (3,1,1)−2/
√

6 ⊕ (8,1,1)0 ⊕ (1,2,2)0 (A.3)

⊕ (1,3,1)0 ⊕ (1,1,3)⊕ (1,1,1)0 ⊕ c.c. ,

the complex conjugate representations must be added only when they are not equivalent

to the original one. As we need to consider a parity transformation in order to forbid odd
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terms in the pNGB potential, we will have to extend the group from SO(12) to O(12), as

this transformation has a determinant equal to -1. We wish to make the pNGB states odd

under this parity. One way to achieve this is to make this parity act over the fundamental

representation 12 as:

P 11 = 11 (A.4)

P 1 = −1 (A.5)

The way to represent this parity transformation in the basis here defined would be as a

diagonal matrix with its first 11 entries +1, and the last entry -1. As the adjoint represen-

tation 66 can be built with the product of two 12 representations, we can find how this

parity acts on the adjoint by decomposing the product of representations:

P 55 = 55 (A.6)

P 11 = −11 (A.7)

And the pNGB are inside this 11 representation within the adjoint, so they will be odd

under this parity.

B Mass matrices

In this appendix we show the mass matrices in the three-site model, for the fermions we

consider just one generation and we do not include dR, nor eR partners, since their mixings

are small.

For the up type quarks we get a nine by nine matrix, as there are four elements inside

the adjoint representation with the same SM quantum numbers as this fermion. In the

basis where we first put the elementary fermion, then the four representations of site 1,

and then those of site 2, we get:

Mu =



0 0 −iλusv/
√

2 iλusv/
√

2 λucv 0 0 0 0

0 m1 0 0 0 λ1,2 0 0 0

λqs
2
v/2 0 m1 0 0 0 λ1,2 0 0

λqc
2
v/2 0 0 m1 0 0 0 λ1,2 0

−iλqsv/
√

2 0 0 0 m1 0 0 0 λ1,2

0 λ1,2 0 0 0 m2,55 0 0 0

0 0 λ1,2 0 0 0 m2,55 0 0

0 0 0 λ1,2 0 0 0 m2,55 0

0 0 0 0 λ1,2 0 0 0 m2,11


(B.1)

For the down type quarks, the matrix is a smaller three by three matrix as there is

only one representation inside 66 that contains the adequate quantum numbers. In the

basis where we order the three elements as site 0, 1 and 2 respectively, we get:

Md =

 0 0 0

λq m1 λ1,2

0 λ1,2 m2,55

 (B.2)

There is a row of zeros because there are no mixing for dR.
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For the charged lepton we also get a nine-by-nine mass matrix:

Me =



0 0 0 0 0 0 0 0 0

−λ` m1 0 0 0 λ1,2 0 0 0

0 0 m1 0 0 0 λ1,2 0 0

0 0 0 m1 0 0 0 λ1,2 0

0 0 0 0 m1 0 0 0 λ1,2

0 λ1,2 0 0 0 m2,55 0 0 0

0 0 λ1,2 0 0 0 m2,55 0 0

0 0 0 λ1,2 0 0 0 m2,55 0

0 0 0 0 λ1,2 0 0 0 m2,11


(B.3)

We do the same for the bosonic resonances. For the U1 state, we get a three by three

matrix, as there is, in site 1 both broken and unbroken generators identified with it, but

in the site 2 only an unbroken one. We order the basis as the two unbroken generators in

site 1 and 2, followed by the broken one in site 1. We get

MU1 =
1

2

g12
(
f2

1 + f2
2

)
−f2

2 g1g2 0

−f2
2 g1g2 f2

2 g
2
2 0

0 0 g2
1

(
f2

1 + f2
2

)
 (B.4)

For Z resonances we get a 14-by-14 matrix, as there are 8 elements in the algebra asso-

ciated with the Z quantum numbers, but three of those belong to the unbroken generators,

which are not present in site 2. Adding a source in the site 0, we get 14 degrees of freedom.

We do not show the matrix because it is too large.

C Numerical estimates of the Right-handed U1 couplings

The couplings of the U1 leptoquarks to elementary fermions were estimated in eq. (2.12).

Making use of eqs. (2.9) and (2.10), and assuming that all the couplings between the

resonances are of the same order (this is known as the one coupling scenario), we obtain

for the Right-handed couplings:

g
(n)
R ∼ εu3


mdme
λ3Cv

2
1
ε`1

mdmµ
λ3Cv

2
1
ε`2

mdmτ
λ3Cv

2
1
ε`3

msme
λ2Cv

2
1
ε`1

msmµ
λ2Cv

2
1
ε`2

msmτ
λ2Cv

2
1
ε`3

mbme
v2

1
ε`1

mbmµ
v2

1
ε`2

mbmτ
v2

1
ε`3

 (C.1)

The experimental values of RD(∗) and RK(∗) can be reproduced by taking ε`3 ∼
εu3mU1/TeV and ε`2/ε`3 ∼ 0.2. As discussed at the end of section 2.5, ε`1 is not fixed

by the B-anomalies, as long as ε`1 � ε`2. Taking for simplicity ε`1 ∼ εe1 ∼ (me/vg∗)
1/2

and εu3 ∼ εq3 ∼ 1/
√
g∗, eq. (C.1) takes the values:

g
(n)
R ∼

 10−6 2× 10−6x 5× 10−6x

6× 10−6 9× 10−6x 3× 10−5x

10−5 2× 10−5x 6× 10−5x

 , x =
TeV

mU1

. (C.2)
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The Right-handed couplings are much smaller than the Left-handed ones, thus with good

accuracy one can neglect gR and consider just the interactions with the Left-handed

currents.

D A model in 5 dimensions

An holographic dual of the SCFT described in section 3 can be obtained by working in a

theory with extra dimensions. We consider a 5D spacetime, with a compact extra dimension

and an AdS5 geometry. The extra dimension has two boundaries, respectively called UV-

boundary and IR-boundary, leading to the well known Randall-Sundrum model. The IR

scale is taken of order TeV, whereas the UV one is of the order of the Planck scale.

There is an SO(12) gauge symmetry in the bulk, broken to SO(11) in the IR by

boundary conditions, and to the SM gauge symmetry group in the UV also by boundary

conditions. A zero mode of the fifth component of the gauge field, A5, survives and leads

to the NGBs, that transform in the fundamental representation of SO(11). This is very

similar to the MCHM arising from SO(5)/SO(4).

There is a 5D fermion for each SM fermion multiplet of the SM. We will describe

only those associated to q, u and ` of the third generation, that are embedded in the

representation 66 of SO(12). We will use large letters for the 5D fields: Q, U and L. To

simplify the explanation of the boundary conditions of the 5D fermions, we find it useful to

define the following notation for the decomposition of representations of SO(11) under GSM:

55 ∼ rq ⊕ r̃q , rq = (3,2)1/6 ⊕ c.c. ,

55 ∼ r` ⊕ r̃` , r` = (1,2)−1/2 ,

11 ∼ ru ⊕ r̃u , ru = (3,1)2/3 ⊕ c.c. . (D.1)

r̃q, r̃` and r̃u are reducible representations of GSM, that can be expressed straightfor-

wardly in terms of irreducible ones, see for example eq. (2.5) for the decomposition of 55

under Hmin.

The boundary conditions of the 5D fermions can be taken as:

QL =

Q55
L =

[
Q

rq
L (++)

Q
r̃q
L (−+)

]
Q11
L (−−)

 , QR =

Q55
R =

[
Q

rq
R (−−)

Q
r̃q
R (+−)

]
Q11
R (++)

 ,

LL =

L55
L =

[
Lr`
L (+−)

Lr̃`
L (−−)

]
L11
L (−+)

 , LR =

L55
R =

[
Lr`
R (−+)

Lr̃`
R (++)

]
L11
R (+−)

 ,

UL =

U
55
L (+−)

U11
L =

[
Uru
L (−+)

U r̃u
L (++)

] , UR =

U
55
R (−+)

U11
R =

[
Lru
R (+−)

Lr̃u
R (−−)

] . (D.2)

Notice that, since SO(12) is broken to SO(11) in the IR boundary, the boundary condi-

tions of different SO(11) components of the 5D fermions can be different in the IR. The
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boundary conditions on the UV can be understood easily by making use of the holographic

approach [41]: describing Q and L in terms of Left-handed sources localized on the UV,

and U in terms of Right-handed ones, only a set of UV-sources that can be matched with

the SM ones are dynamical, i.e.: they have (+) UV boundary conditions.

We include also a 4D chiral fermion localized in the IR boundary: χL, transforming

as a 55, as well as the following mass terms localized on the IR:

LIR = muQ̄
55
L U55

R + m̃uχ̄LU
55
R +m`χ̄LL

55
R +m1Q̄

55
L L55

R +m2L̄
11
L Q11

R + h.c. , (D.3)

that are compatible with the SO(11) symmetry of the IR boundary.

The fermions with (++) boundary conditions lead to chiral 0-modes. After taking into

account the presence of χL and eq. (D.3), there remain three massless chiral fields that can

be identified with qL, uR and `L of the SM.

As usual in this kind of theories, the degree of compositeness of the 0-modes is con-

trolled by the bulk mass of the 5D fermions. The form factors can be calculated by

integration of the bulk degrees of freedom, and they can be expressed in terms of Bessel

functions [41, 67].

The lightest U1 leptoquarks are given by the lightest Kaluza-Klein states of the 5D

gauge field associated to the generators transforming as (3,1)2/3 inside 55.

We will not elaborate more on this description.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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