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In this work we extend the approach used in [Emanuel Gallo and Osvaldo M. Moreschi, Phys.
Rev. D 83, 12 083007 (2011)] to the study of weak gravitational lensing in a plasma medium.
First, we present expressions for the deflection angle and optical scalars in terms of the components
of the energy-momentum tensor for spherically symmetric lenses surrounded by a cold nonmagne-
tized plasma. Second, we show that the same expressions can be deduced using the Gauss-Bonnet
theorem. Finally, we establish a correspondence between the spatial orbits of photons in a nonho-
mogeneous plasma and the nongeodesic curves followed by test massive particles whose dynamics
also depend on an external central field. As an application, we use the Gauss-Bonnet theorem to
compute the deflection angle of the nongeodesic trajectories followed by relativistic test massive
charged particles in a Reissner-Nordström spacetime.

PACS numbers:

I. INTRODUCTION

Gravitational lensing is an essential tool to study the
content of matter and energy in the Universe. In many
observations, the influence of optical media along the
path of the light rays propagation can be neglected. How-
ever, environmental effects cannot be safely neglected in
the radio-frequency range. At all physical scales we are
physically motivated to consider that galaxies, clusters
of galaxies, black holes or other compact objects are sur-
rounded by a dispersive plasma medium. In such an
optical medium, the propagation of light rays becomes
frequency-dependent.

The effect of plasma on light propagation has been
studied since 1960. The influence of the solar corona on
the time delay was first investigated by Muhleman and
Johnston in 1966 [2] and four years later Muhleman, Ek-
ers and Fomalont calculated the light deflection in the
presence of a plasma in the weak-field approximation [3].
In 1980 Breuer and Ehlers performed a rigorous deriva-
tion of a Hamiltonian for light rays including a magne-
tized plasma and curved background [4–6]. The light
deflection in a plasma was calculated for the first time in
the Schwarzschild spacetime (and in the equatorial plane
of the Kerr spacetime) without the weak-field approxi-
mation by Perlick in 2000 [7]. Since then the study of
the influence of plasma media become an active research
area [8–29].

One of the crucial quantities in the study of gravi-
tational lensing is the deflection angle. In general, ex-
pressions for the deflection angle are written in terms of
derivatives of the metric components. However, in [1],
Gallo and Moreschi introduced an expression for the de-
flection angle in the weak lensing regime which is written
in terms of curvature scalars. More precisely, in the case
of a static, axially symmetric lens configuration, it was

shown that the deflection angle α in a weak field regime
can be written at linear order in terms of the impact pa-
rameter b, and the projected Ricci and Weyl scalars Φ̂00

and Ψ̂0 = −ψ̂0e
2iϑ (we refer to [1] for more details) in a

very compact form which we reproduce here

α(b) = b(Φ̂00(b) + ψ̂0(b)). (1)

The advantage of (1) is that it is written in terms of geo-
metrical quantities with a clear physical meaning instead
of the usual coordinate dependent expressions in terms
of the metric components. Recently, it was generalized
to the cosmological context by Boero and Moreschi [30]
and by us to take into account second order corrections
in perturbations of a flat metric [31]. In addition, this
approach was used to study the dark matter phenomena
and alternatives to the Schwarzschild metric [32, 33].
On the other hand, Gibbons and Werner have also

established an alternative geometrical (and topological)
way to study gravitational lensing using the Gauss-
Bonnet theorem and an associated two-dimensional op-
tical metric [34]. This method allows us to calculate
the deflection angle in terms of other geometrical quan-
tities: the Gaussian curvature of an appropriate domain
D, the geodesic curvatures of the curves which conform
the boundary ∂D of D, and its Euler number which is
a topological invariant. Since the seminal work of Gib-
bons and Werner, the Gauss-Bonnet theorem has been
applied in numerous studies [35–39, 39–58]. In particu-
lar this method was successfully extended by us to the
plasma case [27, 59]. It is worthwhile to mention that
the concept of the optical metric and the related Fermat
principle for light rays in general relativity were intro-
duced first by Weyl in 1917 [60].
Therefore, for the pure gravity case there are at least

two alternative methods to compute the deflection angle
and related optical quantities in terms of coordinate-free
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quantities: on the one hand the null-tetrad approach[1,
31], and on the other the Gibbons-Werner method [34].
Note that even when these two methods are geometrical,
the associated geometrical quantities refer to two differ-
ent manifolds (a four-dimensional Lorentzian metric in
the case of [1]) and a two-dimensional Riemannian met-
ric in the case of [34]. As we mentioned above, we have
also recently extended the use of the Gibbons-Werner
method to more general situations where dispersive me-
dia are present. A natural question arises: can the null
tetrad method developed in [1] also be extended to apply
to dispersive media? It is one of our goals in this article
to answer this question positively by showing that the
null-tetrad approach can be extended to incorporate the
influence of a plasma medium on the deflection angle and
other optical quantities when static, asymptotically flat
and spherically symmetric spacetimes are considered.
Moreover, we will show that for spherically symmetric

lenses it is also possible to write these optical quanti-
ties in terms of the different components of the energy-
momentum tensor and the parameters which character-
ize the plasma medium. These new expressions present
a clear advantage with respect to the usual standard ex-
pressions based on derivatives and integration of different
metric components, because in the last case it is not easy
to see how the different components of Tαβ contribute to
the optical scalars. In particular, we showed in [1] that
the deflection angle at first order can be written in terms
of the energy-momentum tensor components as

α = b

∫ λls

−λl

[

4π

(

̺+ Pr

)

+
b2

r2

(

3M

r3
− 4π̺

)]

dy, (2)

where b is the impact parameter, ̺, Pr and M are the
mass density, radial pressure and mass function respec-

tively, r =
√

b2 + y2, and −λl, and λls represent the
value of the y-coordinate of the observer and source po-
sition respectively (the lens is assumed to be centered at
r = 0).
A crucial point in [1] that allowed us to study the de-

flection angle and related quantities in terms of the cur-
vature scalars was the use of the geodesic deviation equa-
tion which gives information of how a family of nearby
null geodesics deviate from each other.
The first problem that arises when trying to extend

that procedure to the study of light rays in a plasma
media, is that photons in general do not follow null or
timelike geodesics. A detailed discussion and formula-
tion for that problem using a geodesic deviation equa-
tion was recently presented in [61]. However, we want to
present here a more practical choice, which makes use of
a 4-dimensional optical metric and where the computa-
tion of the different optical scalars follow from the study
of the spatial projection of null geodesics in this optical

spacetime.
An essential idea to incorporate the plasma effect in

this approach is the Gordon metric introduced by Gor-
don in 1923 [62]. As it is well known, this metric is
an effective 4-dimensional Lorentzian metric whose null

geodesics are in one-to-one correspondence with timelike
curves followed by light rays in a nondispersive media.
However, even when this nice property does not remain
valid for dispersive media, we will see below that in the
case of a static spacetime the spatial orbits of light rays
derived from the study of null geodesics of a modified
Gordon-like metric are the same as those obtained from
the usual Hamiltonian approach. It will be precisely this
result which will allow us to use the formalism developed
by Gallo and Moreschi [1] to the description of the motion
of photons even for dispersive media.
On the other hand, there is a very well known corre-

spondence between propagation of photons in an homoge-
neous plasma and massive test particles in a pure gravity
field [63]. It is also our purpose to extend this correspon-
dence to a more general kind of motion. In particular, we
will establish for the first time a correspondence between
the motion of light rays in a nonhomogeneous plasma
and the orbits of massive charged test particles governed
by an external electrical field in addition to gravity. The
analogy will be possible due to the existence of a Rie-
mannian metric (known as Jacobi metric) introduced by
Gibbons [64] and collaborators and exhaustively studied
in later works [65–68]. In this way, we will demonstrate
that the Gibbons-Werner method originally conceived to
study null geodesics, and extended by us to the case of
plasma media, can also be used to study the nongeodesic
motion of massive test particles that interact not only
gravitationally with the background but also through ex-
ternal fields of nongravitational origin.
This work is organized as follows. In Section II we

show that the spatial orbits deduced from a Gordon-like
metric associated with a static spacetime filled with a dis-
persive medium are exactly the same of those obtained
from the usual Hamiltonian approach. In Section III we
use the same metric to incorporate the plasma effects in
the optical scalars and the deflection angle through the
null tetrad approach. In Section IV we compute the de-
flection angle and the optical scalars in spherically sym-
metric spacetimes for arbitrary distributions of matter
and for any electronic charge density profile using the
null tetrad approach and the Gauss-Bonnet method. In
Section V we show an analogy between the nongeodesic
motion of charged massive particles and the one of pho-
tons propagating in a nonhomogeneous plasma, and ap-
ply these results to the study of the deflection angle of
a massive charged test particle in a Reissner-Nordström
spacetime. An Appendix with details and clarifications
is also included.

II. SPATIAL ORBITS ASSOCIATED TO A

GORDON-LIKE METRIC

Let us consider a light ray with 4-momentum pα prop-
agating in a general spacetime (M, gαβ) and filled with
a dispersive medium moving at velocity uα. In that
spacetime, the photon frequency measured by an ob-
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server at rest with respect to the medium will be given
by ω(xα) = pαu

α. The dispersive medium is completely
characterized by its refractive index, a function of the
coordinates and the frequency ñ(xα, ω(xα)) that satisfies
the following dispersion relationship [69],

ñ2 = 1− pαp
α

(pβuβ)2
. (3)

In that situation the Hamiltonian governing the dynam-
ics of the photon is given by

H(x, p) =
1

2
(gαβ + (ñ2 − 1)uαuβ)pαpβ . (4)

and the light rays paths are obtained as solutions of
Hamilton’s equations,

dxα

dλ
=
∂H

∂pα
,

dpα
dλ

= − ∂H

∂xα
, (5)

with the constraint

H(x, p) = 0. (6)

In 1923 Gordon was the first to introduce a symmetric
tensor g̃αβ with respect to which it is possible to describe
the propagation of photons in a medium characterized
by a refractive index ñ(xa, ω) [62]. This tensor can be
written as,

g̃αβ(x, p) = gαβ + (ñ2 − 1)uαuβ, (7)

with inverse g̃αβ , defined as g̃αβ g̃αγ = δβγ ,

g̃αβ(x, p) = gαβ −
(

1− 1

ñ2

)

uαuβ. (8)

In terms of this tensor the Hamiltonian (4) reads,

H̃(x, p) =
1

2
g̃αβ(x, p)pαpβ, (9)

In general this tensor is not a metric, because it also
depends of the four-momentum pα through ω. From (9)
and (7) it follows that the equations of motion can be
written as

dxα

dλ
= g̃αβpβ +

∂ñ2

∂ω
ω2uα, (10)

dpα
dλ

= −1

2
g̃βγ,αpβpγ . (11)

Note that if the medium described by the refractive index
ñ is nondispersive, that is

∂ñ

∂ω
= 0, (12)

it follows that g̃αβ will depend only of the spacetime co-
ordinates xα and it becomes a Lorentzian metric [69].
Moreover, in such a case the second term of (10) van-
ishes and hence the light rays becomes null geodesics of

the metric g̃αβ . That is, the Gordon tensor reduces to a
Lorentzian metric (known as the Gordon optical metric)
and the motion of the light rays in the physical space-
time can be alternatively described as null geodesics of
the g̃αβ given by (8).
The situation is different for a dispersive media, in that

case the second term of (10) is not vanishing, and there-
fore the light rays do not follow null geodesics with re-
spect to g̃αβ. However, let us also consider a static space-

time with a timelike Killing vector ξα =
(

∂
∂t

)α
written

as

ds2 = g00dt
2 + gijdx

idxj ; (13)

filled with a dispersive medium which is also static, that
is, the spatial components of the 4-velocity uα of the
medium with respect to the coordinate system {t, xi} are
zero. The resulting tensor is therefore dependent on the
spatial coordinates xi, possibly of N physical parameters
sN characterizing the geometry and the 4-momentum pα
trough ω = pαu

α = p0u
0. The corresponding equations

of motion for the light rays reduce to

dx0

dλ
= g̃00p0 +

∂ñ2

∂ω
ω2u0, (14)

dxi

dλ
= g̃ijpj, (15)

dp0
dλ

= 0, (16)

dpi
dλ

= −1

2
g̃βγ,ipβpγ . (17)

together with the constraint (6).
Motivated by these equations of motion, we would like

to construct a slightly modified Gordon metric depending
only on the spatial coordinates (without any pα depen-
dence) and in such a way that even when their associated
null geodesics will be not in one-to-one correspondence
with the spacetime curves determined by the equations
(14)-(17), the spatial orbits will be the same. Note that
in the static case, ω = p0u

0 and therefore, the refractive
index ñ for a dispersive medium in general will have a
dependence on p0, in particular ∂n

∂p0
= ∂n

∂ωu
0 6= 0. In

order to construct a new metric that avoids this depen-
dency we introduce the quantity ω̂ = p̂0u

0, where p̂0
is a new parameter unrelated for the moment with the
timelike component p0 of four momentum pα of the pho-
ton. In order to do that, let us consider a new metric
tensor ĝαβ(x) in the same way as in (8) but where the
refractive index is replaced by a function only depending
on the spatial coordinates, assuming the metric is static.
This proxy function for the refractive index is given by
n = n(xi) = ñ(xi, ω̂(xi)), that is, we have replaced ω
(which depends on pα) by ω̂ which does not share this
dependence. By replacing this expression for the refrac-
tive index into (8) we obtain the following Gordon-like
optical metric,

ĝαβ(x, sN , p̂0) = gαβ −
(

1− 1

n2

)

uαuβ, (18)
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where we have made explicit the dependence of the re-
sulting metric tensor ĝαβ(x, sN , p̂0) on the N physical
parameters sN describing the physical metric and also
on the new parameter sN+1 = p̂0. The null geodesics of
ĝαβ follow from

Ĥ =
1

2
ĝαβ(x, sN , p̂0)pαpβ (19)

which is an homogeneous function of pα, together with
the constraint Ĥ = 0 and are given by

dx0

dλ
= ĝ00(x, sN , p̂0)p0, (20)

dxi

dλ
= ĝij(x, sN , p̂0)pj , (21)

dp0
dλ

= 0 (22)

dpi
dλ

= −1

2
ĝβγ,i(x, sN , p̂0)pβpγ . (23)

Now, let us assume that we solve these equations of mo-
tion by setting the new parameter p̂0 to take the same nu-
merical value that p0 (which must be a constant through-
out the world-lines of the light rays because of (22)). In
that situation, we see that with the exception of the first
of these expressions, all of them agree with equations
(14)-(17), and in particular the spatial orbit will be ex-
actly the same. That is, the spatial orbit of the timelike
curves followed by light rays in a dispersive medium in
the physical metric gαβ are the same of those which fol-
low from the study of the null geodesics of ĝαβ satisfying
Eqs.(20)-(23) after setting the parameter p̂0 to take the
value p0. As the approach to study optical scalars pre-
sented in [1] depends on integration on null geodesics,
this result will be very useful in order to extend it to
dispersive media.
Until now our considerations have been general. From

here, we will concentrate on the situation where the dis-
persive media is given by a cold plasma. That is, let us
consider a static spacetime (M, gαβ) filled with a cold
nonmagnetized plasma described by the refractive index,

ñ2(x, ω(x)) = 1− ω2
e(x)

ω2(x)
. (24)

As before, in the previous expression ω(x) is the photon
frequency as measured by a static observer and ωe(x) is
the electron plasma frequency,

ω2
e(x) =

4πe2

me
N(x), (25)

where e and me are the charge and mass of the electron
respectively; N(x) is the electron number density in the
plasma.
In this kind of plasma, the Hamiltonian governing the

trajectory of photons given by (4) reduces to [7],

H(x, p) =
1

2
(gαβpαpβ + ω2

e(x)), (26)

where the path of light rays are obtained as solutions of
the Hamilton’s equations,

dxα

dλ
=
∂H

∂pα
,

dpα
dλ

= − ∂H

∂xα
, (27)

with the constraint H(x, p) = 0.
If we consider a static and spherically symmetric space-

time

gαβdx
αdxβ = A(r)dt2 −B(r)dr2 − C(r)dΩ2, (28)

where dΩ2 = dϑ2+sin2 ϑdϕ2 is the metric of a unit sphere
and we also consider a plasma density profile with the
same symmetries, that is ω2

e(x) = ω2
e(r), it is easy to

show from (27) that the spatial orbits are described by
the equation [7]

(

dr

dϕ

)2

=
C(r)

B(r)

(

p2t
p2ϕ

C(r)ñ2(r)

A(r)
− 1

)

, (29)

with pt ≡ p0 and pϕ result both constants of motion asso-
ciated to the energy and angular momentum respectively.
As we discussed above, if the medium is dispersive,

as in the case of a cold plasma, the solutions of Hamil-
ton’s equations associated with (19) do not agree with
the ones associated with (26) and then the Hamiltonian

Ĥ does not describe the actual trajectory of a photon
in the spacetime. Despite of this limitation, the spatial
orbits coincide.
Let us see this particular case in more detail. If we

assume that the plasma is static with respect to the ob-
servers following integral curves of the Killing vector field
∂
∂t , we can take

uα =
δα0

√

A(r)
. (30)

In this case the Gordon-like metric ĝαβ is given by the
expression,

ĝαβdx
αdxβ =

A(r)

n2(r)
dt2 −B(r)dr2 − C(r)dΩ2, (31)

with

n2(r) = 1− ω2
e(r)

ω̂(r)
= 1− ω2

e(r)A(r)

ω2
∞

, (32)

where we have used that ω̂(r) = p̂0u
0 = ω∞/

√

A(r),
and we have identified p̂0 with the numerical value of
which be later the photon frequency ω∞ measured by an
observer at the asymptotic region. As discussed above,
this is only a parameter which takes the numerical value
of ω∞ and not should be thought a dynamical variable
depending on pα.
Due to the spherical symmetry, we can take ϑ = π/2

without loss of generality and from the Hamiltonian
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Ĥ(x, p) = 1
2 ĝ

αβ(x)pαpβ with the constraint Ĥ(x, p) = 0
we get that the null geodesics must satisfy,

p2tn
2(r)

A(r)
− p2r
B(r)

−
p2ϕ
C(r)

= 0; (33)

where again pt is a rename of p0. By using the Hamilton’s
equations associated to Ĥ we can see that

dr

dλ
= − pr

B(r)
,

dϕ

dλ
= − pϕ

C(r)
; (34)

and that pt and pϕ are conserved quantities associated

to the Killing vectors ∂
∂t and ∂

∂ϕ respectively. Therefore

the spatial orbital equation reads,

dr

dϕ
=
C(r)

B(r)

pr
pϕ
. (35)

Finally, upon substituting for pr from (33) we get,

(

dr

dϕ

)2

=
C(r)

B(r)

(

p2t
p2ϕ

C(r)n2(r)

A(r)
− 1

)

, (36)

which exactly matches with the spatial orbits (29) de-
scribed by the physical metric (28) if we identify the re-
spective constants of motion.
It is important to note that a necessary condition to

obtain the equivalence for the spatial orbits was to con-
sider the dispersive medium to be at rest with respect
to the static observers. In general, if we consider a 4-
velocity with a nonvanishing spatial part (ui 6= 0), in the
equations of motion derived from the Gordon-like metric

will lack terms of the form ∂n2

∂ω ω
2ui which otherwise are

present in the true spatial orbits of the photons in the
presence of plasma determined by the Eq.(10).

III. GORDON-LIKE METRIC APPLIED TO

THE STUDY OF GRAVITATIONAL LENSES

USING THE NULL TETRAD APPROACH

In this section we argue that because the spatial or-
bits of light rays in a plasma can be found by studying
null geodesics in the associated 4-dimensional Gordon-
like metric, it is possible to apply the null tetrad approach
with a gravitational lens surrounded by plasma. The null
tetrad approach was used by Gallo and Moreschi in [1]
to study the bending angle and optical scalars in pure
gravity.

A. Review of the null tetrad approach in

gravitational lensing

Let us consider a past-null geodesic congruence start-
ing at the observer position O and ending at the source
position S. The tangent vector to a fiducial null geodesic
of this congruence is given by ℓ = ∂

∂λ . The observer is

assumed to be placed at λ = 0 and the source at λ = λs.
We complete a null tetrad {ℓα, nα,mα, m̄α} at the ob-
server position where mα and m̄α are orthogonal to the
observer 4-velocity uα. Then we parallel transport the
tetrad along the congruence up to the source position.
The deviation vector, with vanishing Lie derivative

along the congruence, can be written as

ζα = ζm̄α + ζ̄mα + ζℓℓ
α. (37)

It has been well discussed in the literature (see for exam-
ple [70–72]) that the geodesic deviation equation which
describes the deviation vector along the congruence can
be reduced to

ℓ(ℓ(X )) = −QX , (38)

where

X =

(

ς
ς̄

)

, Q =

(

Φ00 Ψ0

Ψ̄0 Φ00

)

(39)

and

Φ00 = −1

2
Rαβℓ

αℓβ, Ψ0 = Cαβγδℓ
αmβℓγmδ. (40)

Although equation (38) does not determine the evolution
of the component ζℓ, it is sufficient to obtain an expres-
sion for the optical scalars and deflection angle in the
weak field approximation [1, 31]. To use this approach
we only need to know how the deviation vector changes
in the plane expanded by mα and m̄α.
Let us assume that a thin lens is placed at λ = λl

and let us define λls = λs − λl. As explained in [31], in
this approach the normalized convergence and shear at
second order defined as,

κ̃ =
λs
λlsλl

κ, γ̃ =
λs
λlsλl

γ, (41)

are given by the following expressions

κ̃ = κ̃Φ(1) + κ̃Φ(2) + κ̃δΦ + κ̃ΦΦ + κ̃ΨΨ, (42)

where

κ̃Φ(i) =

∫ λs

0

Φ
(i)
00dλ, i = 1, 2, (43)

κ̃δΦ =

∫ λs

0

δx(1)α(λ)
∂Φ

(1)
00

∂xα

∣

∣

∣

∣

x(0)(λ)

dλ, (44)

κ̃ΦΦ = − 1

λlλls

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′) (45)

× Φ
(1)
00 (λ

′)Φ
(1)
00 (λ)dλ

′dλ,

κ̃ΨΨ = − 1

λlλls

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′) (46)

× Ψ
(1)
0 (λ′)Ψ

(1)
0 (λ)dλ′dλ,

and

γ̃ = γ̃Ψ(1) + γ̃Ψ(2) + γ̃δΨ + γ̃ΦΨ + γ̃ΨΦ, (47)
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with

γ̃Ψ(i) =

∫ λs

0

Ψ
(i)
0 dλ, i = 1, 2, (48)

γ̃δΨ =

∫ λs

0

δx(1)α(λ)
∂Ψ

(1)
0

∂xα

∣

∣

∣

∣

x(0)(λ)

dλ, (49)

γ̃ΦΨ = − 1

λlλls

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′) (50)

× Φ
(1)
00 (λ

′)Ψ
(1)
0 (λ)dλ′dλ,

γ̃ΨΦ = − 1

λlλls

∫ λs

0

∫ λ

0

λ′(λs − λ)(λ − λ′) (51)

× Ψ
(1)
0 (λ′)Φ

(1)
00 (λ)dλ

′dλ.

The notation has to be read as follows. The terms κ̃Φ(i)

indicate the contribution to the convergence due to the
scalar Φ00 at ith order, while the term κ̃δΦ indicates
that a first order correction to the photon path δx(1)α

is included via the term δx(1)α∂αΦ
(1)
00 . The quantity

Φ
(1)
00 is the Φ00 scalar at the same order. The last two

terms in (42) indicate the contribution by Φ
(1)
00 (λ)Φ

(1)
00 (λ

′)

and Ψ
(1)
0 (λ)Ψ

(1)
0 (λ′) respectively. Similar interpretation

should be given for each term in (47). In addition in [31]
we obtained an expression for the rotation optical scalar
which is zero for spherically symmetric spacetimes (for
more details see [31]). Finally, the deflection angle can
be expressed in terms of κ̃ and γ̃ as,

α = b(κ̃+ γ̃), (52)

where b is the impact parameter.
The advantage of this approach is that we can study

separately the contribution to the optical scalars and de-
flection angle given by the energy-momentum distribu-
tion (through the Ricci tensor and Einstein equations)
and by the Weyl curvature (through the Weyl tensor).
As we have shown in the previous section, light rays

follow exactly the same spatial orbits both in the physical
spacetime (whose dynamics is determined by the Hamil-
tonian (26)) and in the 4-dimensional optical spacetime
(following null geodesics of (31)). Therefore, since the
t = constant spacelike sections of both spacetimes have
the same spatial metric, in both spaces the angles are
defined in the same way. In particular, it also applies to
the deflection angle of light rays, which implies that we
can use the machinery originally adapted only to cases of
pure gravity to study deflections of light rays in a gravita-
tional environment where a dispersive medium is present.

B. Gravitational lenses surrounded by an

homogeneous plasma

In this subsection we will use two simple examples to
demonstrate the use of the previous formalism to calcu-
late optical scalars and deflection angle in an homoge-
neous plasma medium (ωe = constant).

Let us first examine the Schwarzschild lens model at
linear order, and after that a situation a little more com-
plicated: the parametrized-post-Newtonian (PPN) lens
model, at second order.

1. Schwarzschild lens model

Let us calculate the first order contributions to the
deflection angle and optical scalars for a static spherically
symmetric lens described by the Schwarzschild metric (in
isotropic coordinates),

ds2 =
(1− m

2r )
2

(1 + m
2r )

2
dt2 −

(

1 +
m

2r

)4

d~x2, (53)

where d~x2 = dx2+dy2+dz2 and r =
√

x2 + y2 + z2. We
will consider the case in which the lens is surrounded by
an homogeneous plasma (ωe=constant) with refractive
index

n2(r) = 1− ω2
e

ω2(r)
= 1− ω2

e

ω2
∞

(1− m
2r )

2

(1 + m
2r )

2
, (54)

where the gravitational redshift has already been taken
into account, that is ω(r) = ω∞/

√

A(r) with ω∞ the
photon frequency as measured by an asymptotic observer
which can be related to the frequency ωo measured by an
observer which is placed at finite distance ro from the lens
by ω∞ = ωo

√

A(ro). In the rest of this work, we always
assume that the observer is at great distance from the
lens, and therefore we can take ω∞ ≈ ωo.
The Gordon-like metric associated to (53) is given by

dŝ2 =
1

n2(r)

(1 − m
2r )

2

(1 + m
2r )

2
dt2 −

(

1 +
m

2r

)4

d~x2. (55)

By doing the change of variable,

t̃ =
t

√

1− ω2
e

ω2
∞

, (56)

and expanding at first order in the mass parameter, we
obtain the following expression for the Gordon-like met-
ric,

dŝ2 ≈
(

1− 2m

rn2
o

)

dt̃2 −
(

1 +
2m

r

)

d~x2, (57)

where we have defined,

no =

√

1− ω2
e

ω2
∞

. (58)

In order to compute the bending angle and the optical
scalars using the formalism developed in this section, we
have to integrate the curvature scalars Φ00 and Ψ0 along
the actual null curve followed by a photon from the source
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to the receiver. In the weak gravitational lensing regime
the actual path can be thought as a null geodesic in the
flat background plus higher order corrections. Since the
curvature scalars are already linear order quantities, in
order to compute the optical scalars and the deflection
angle at this order it is enough to approximate the actual
path by the null geodesic on the background. This is
known as the Born approximation.
We choose a Cartesian coordinate system with respect

to which this curve propagates in the y negative direction
and we will perform the integral toward the past from the
observer to the source position (The observer is assumed
to be at the asymptotic region). Then the tetrad adapted
to this curve in the background can be selected as (see
[1] for more details),

la =(−1, 0, 1, 0), ma =
1√
2
(0, i, 0, 1),

m̄a =
1√
2
(0,−i, 0, 1), na =

1

2
(−1, 0,−1, 0).

(59)

It is convenient to introduce coordinates b and ϑ repre-
senting the impact parameter and polar angle measured
from z related to Cartesian coordinates by,

z =b cos(ϑ) = 0,

x =b sin(ϑ) = b,
(60)

where in the last equality we used the spherical symmetry
which allows us to work in the plane ϑ = π/2 without
loss of generality.
As in previous works [1, 31], we choose the origin

of the coordinate system in the lens’s position λl and
parametrize the geodesic by

(x(λ), y(λ), z(λ)) =(x, y − λl, z)

=(b, y − λl, 0).
(61)

By computing Φ00 and Ψ0 we get

Φ00 =
m

2

b2 − 2λ2 + 4λλl − 2λ2l
(b2 + (λ− λl)2)5/2

(

1− 1

n2
o

)

, (62)

Ψ0 = −3m

2

b2

(b2 + (λ− λl)2)5/2

(

1 +
1

n2
o

)

. (63)

In particular, we can see that for the vacuum case (n2
o =

1) we get Φ00 = 0 and consequently the convergence is
zero.
By using the relations (42) and (47) at first order one

obtains for the optical scalars,

κ =0,

γ =
λlλls
λs

2m

b2

(

1 +
1

1− ω2
e/ω

2
∞

)

.
(64)

Notice that even when the Gordon-like metric does not
satisfy the Einstein’s field equations, the convergence co-
incides with its value in the vacuum case which is zero.

That is, at first order the homogeneous plasma has not
influence in the convergence.
Finally, from (52) we obtain the deflection angle,

α =
2m

b

(

1 +
1

1− ω2
e/ω

2
∞

)

, (65)

which is in complete agreement with the known ex-
pression found using a standard coordinate-dependent
method[9].

2. Parametrized-post-Newtonian (PPN) lens model

In order to compute the optical scalars and deflection
angle at second order with this approach we will consider
a more general lens model described by the parametrized-

post-Newtonian (PPN) metric whose line element is given
by,

ds =

(

1− 2m

r
+

2βm2

r2

)

dt2 −
(

1 +
2µm

r
+

3νm2

2r2

)

d~x2,

(66)
By making the change of variable t̃ = t

no
, the Gordon-

like metric associated with the PPN metric is given by,

dŝ2 =

(

1− 2m

n2
or

+
2m2

n4
or

2
(βn2

o + 2(1− n2
o))

)

dt̃2

−
(

1 +
2µm

r
+

3νm2

2r2

)

d~x2.

(67)

In order to calculate the deflection angle we need to make
a parallel transport of the null tetrad (59) at first order
along the vector ℓa. Then, we obtain

ℓt = −1 +

(

1
√

b2 + λ2l
− 2

√

b2 + (λ− λl)2

)

m

n2
o

(68)

ℓx =
(1 + n2

oµ)

b

(

λl − λ
√

b2 + (λ − λl)2
− λl

√

b2 + λ2l

)

m

n2
o

,

(69)

ℓy = 1−
(

n2
oµ− 1

√

b2 + (λ− λl)2
+

1
√

b2 + λ2l

)

m

n2
o

, (70)

ℓz = 0; (71)

mt =
i

b
√
2

(

λ− λl
√

b2 + (λ− λl)2
+

λl
√

b2 + λ2l

)

m

n2
o

, (72)

mx =
i√
2
− i µ√

2

m
√

b2 + (λ − λl)2
, (73)

my =
µ√
2

i

J

(

λ− λl
√

b2 + (λ− λl)2
+

λl
√

b2 + λ2l

)

m, (74)



8

mz =
1√
2
− µ√

2

m
√

b2 + (λ− λl)2
; (75)

The correction to the background null geodesic, which
follows from the integration of the ℓa components at first
order is

δxt =

(

λ
√

b2 + λ2l
− 2 arcsinh(

λ− λl
b

)

− 2 arcsinh(
λl
b
)

)

m

n2
o

,

(76)

δxx =
(n2

oµ+ 1)

b

(

√

b2 + λ2l −
√

b2 + (λ− λl)2

− λλl
√

b2 + λ2l

)

m

n2
o

,

(77)

δxy =

[

(1− n2
oµ)

(

arcsinh(
λ− λl
b

) + arcsinh(
λl
b
)

− λ
√

b2 + λ2l

)

− µλ
√

b2 + λ2l

]

m

n2
o

,

(78)

δxz = 0. (79)

TABLE I: Convergence. The computation of each terms in
(42) for the PPN metric

PPN

κ̃
Φ(1) 0

κ̃
Φ(2)

πm2

16n2
ob

3 (
3

n2
o
− 16− 6νn2

o + 2µ+ 9n2

oµ
2 + 8β)

κ̃δΦ − πm2

8n4
ob

3 (−2 + n2

oµ+ n4

oµ
2)

κ̃ΦΦ
πm2

32n4
ob

3 (1− 2n2

oµ+ n4

oµ
2)

κ̃ΨΨ − 15πm2

32n4
ob

3 (1 + 2n2

oµ+ n4

oµ
2)

TABLE II: Shear. The computation of each terms in (47) for
the PPN metric

PPN

γ̃
Ψ(1)

2m

b2
(µ+ 1

n2
o
)

γ̃
Ψ(2)

πm2

16n2
ob

3 (48−
3

n2
o
− 24β + 18n2

oν + 6µ− 39n2

oµ
2)

γ̃δΨ
3πm2

8n4
ob

3 (2 + 7n2

oµ+ 5n4

oµ
2)

γ̃ΦΨ
9πm2

32n4
ob

3 (n
4

oµ
2 − 1)

γ̃ΨΦ
9πm2

32n4
ob

3 (n
4

oµ
2 − 1)

The corresponding curvature scalars are given by

Φ00 = Φ
(1)
00 +Φ

(2)
00 , (80)

Ψ0 = Ψ
(1)
0 +Ψ

(2)
0 (81)

where the expressions for the linear terms are given by

Φ
(1)
00 =

m

2

b2 − 2λ2 + 4λλl − 2λ2l
(b2 + (λ− λl)2)5/2

(

µ− 1

n2
o

)

, (82)

Ψ
(1)
0 = −3m

2

b2

(b2 + (λ− λl)2)5/2

(

µ+
1

n2
o

)

. (83)

The second order corrections terms are more compli-
cated,

Ψ
(2)
0 =

m2

[b2 + (λ− λl)2]5/2(ω2
∞ − ω2

e)
2
×
{

− 3[µ(ω2
∞ − ω2

e) + ω2
∞]2(2b2 + λ2l + λλl)

√

b2 + λ2l

+
(ω2

∞ − ω2
e)

2[b2 + (λ− λl)2]1/2

[

b2[2ω2
∞(4β + µ) + (ω2

∞ − ω2
e)(15µ

2 − 6ν)]− 6(ω2
∞ − ω2

e)(λ − λl)
2µ2 − 12ω2

∞(λ− λl)
2µ

− 13ω2
∞(ω2

∞ − 2ω2
e)b

2 + 6ω4
∞(λ − λl)

2

ω2
∞ − ω2

e

]}

,

(84)
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Φ
(2)
00 =

m2

2(ω2
∞ − ω2

e)

{

1

(b2 + (λ− λl)2)3

[

b2
(

4βω2
∞ − 3µ2(ω2

∞ − ω2
e) + 4µω2

∞

)

− b2ω2
∞

ω2
∞ − ω2

e

(5ω2
∞ − 8ω2

e)

+ (λ− λl)
2

(

18µ2(ω2
∞ − ω2

e)− 4βω2
∞ − 10µω2

∞ − 6ν(ω2
∞ − ω2

e) + 2ω2
∞

ω2
∞ − 4ω2

e

ω2
∞ − ω2

e

)]

+
1

√

b2 + λ2l (b
2 + (λ − λl)2)7/2

[

2b4
(

µ2(ω2
∞ − ω2

e)− 2µω2
∞

)

+ 2b4
ω4
∞

ω2
∞ − ω2

e

+ 8µω2
∞(λ− λl)

4

+ 2b2(λ− λl)

(

2µω2
∞(λ− λl)− µ2(λ − 4λl)(ω

2
∞ − ω2

e)

)

− 2b2(λ− λl)(λ + 2λl)
ω4
∞

ω2
∞ − ω2

e

− 2µ2(ω2
∞ − ω2

e)(2λ− 5λl)(λ− λl)
3 − 2(2λ+ λl)(λ − λl)

3 ω4
∞

ω2
∞ − ω2

e

]}

.

(85)

By replacing these expressions into Eqs.(42) and (47) and
taking the limits λl → ∞ and λls → ∞ we obtain,

κ̃ =
πm2

8n2
ob

3
(−8 + 4β − 3n2

oν − 8µ), (86)

γ̃ =
2m

b2

(

µ+
1

n2
o

)

+
3

8

πm2

n2
ob

3
(8 − 4β + 3n2

oν + 8µ). (87)

These expressions generalize the results recently derived
by us in [31].
In the Tables I and II we can see the contribution of

each term to the convergence and shear, respectively. Ex-
cept for the term κ̃Φ(1) , which remains equal to zero as in
the pure gravity case, each of them are modified by the
presence of the plasma. In particular, if we only consider
first order corrections in the mass parameter, the pres-
ence of the plasma will contribute to the shear but not
to the convergence.
Finally, from the relation (52) we obtain the deflection

angle

α =
2m

b

(

µ+
1

n2
o

)

+
πm2

b2

(

2− β + 2µ

n2
o

+
3

4
ν

)

, (88)

recovering the result obtained previously by us in [59]
using the Gauss-Bonnet theorem.

IV. DEFLECTION ANGLE AND OPTICAL

SCALARS IN TERMS OF

ENERGY-MOMENTUM DISTRIBUTIONS FOR

LENSES SURROUNDED BY PLASMA

In [1] Gallo and Moreschi have shown that for spher-
ically symmetric spacetimes, expressions for the deflec-
tion angle and optical scalars can be obtained in terms
of the energy-momentum distribution. Particular cases
of these expressions were recently reobtained by De Leon
and Vega using the Gauss-Bonnet theorem [56]. Deriv-
ing these expressions require use of a null tetrad adapted
to the geometry of the matter distribution. In addition,

we must find the transformation between this tetrad and
one adapted to the motion of photons at first order ([1]).
As we mentioned in the Introduction, to have expres-

sions for the deflection angle in terms of the energy-
momentum tensor instead of the metric components have
several advantages. We will see how to extend this ap-
proach to the case of lenses surrounded by a cold nonmag-
netized plasma. Finally, we will compare these results
with those obtained by using the alternative geometrical
method based on the Gauss-Bonnet theorem.

A. Using the null tetrad approach

Let (M, gαβ) be a static, spherically symmetric and
asymptotically flat spacetime with a line element given
by

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θdϕ2), (89)

with

A(r) = e2Φ(r), B(r) =
1

1− 2M(r)
r

. (90)

A more general energy-momentum distribution compat-
ible with spherical symmetry is described by an energy-
momentum tensor given by

Ttt = ̺e2Φ(r); (91)

Trr =
Pr

(

1− 2M(r)
r

) ; (92)

Tθθ = Pt r
2; (93)

Tϕϕ = Pt r
2 sin(θ)2; (94)

where we have introduced the notion of radial component
Pr and tangential component Pt.
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The Einstein field equations

Gαβ = −8πTαβ, (95)

in terms of the previous variables are [1]

dM

dr
= 4πr2̺, (96)

r2
dΦ

dr
=
M + 4πr3Pr

1− 2M(r)
r

, (97)

r3
(

d2Φ

dr2
+ (

dΦ

dr
)2
)

(1− 2M

r
)

+ r2
dΦ

dr
(1− M

r
− dM

dr
)

− r
dM

dr
+M = 8πr3Pt.

(98)

The conservation equation is

dPr

dr
= −(̺+ Pr)

dΦ

dr
− 2

r
(Pr − Pt). (99)

1. Gordon-like metric

In Section II we have proved that spatial orbits fol-
lowed by photons in a cold nonmagnetized plasma are
the same for both the physical metric gαβ and an effec-
tive optical metric ĝαβ given by (31), where for a spheri-
cally symmetric cold nonmagnetized plasma the index of
refraction is given by

n2(r) = 1− ω2
e(r)

ω2
∞

A(r). (100)

As before, ω∞ is the photon frequency measured by an
asymptotic observer.
As we are interested in small deviation from the flat

background it is enough to make the following approxi-
mations to the metric components,

A(r) ≈ 1 + 2Φ(r), (101)

B(r) ≈ 1 +
2M(r)

r
=: B̃(r). (102)

In addition, let us consider electron plasma frequencies
of the form,

ω2
e(r) ≈ ω2

e0 +KeN1(r), (103)

where Ke =
4πe2

me
, being e and me the charge and mass of

electron, respectively. In this case we are assuming that
ω2
e0 = constant and

KeN1(r)

ω2
e0

≪ 1, lim
r→∞

N1(r) = 0. (104)

It is convenient to introduce the definition

ño =

√

1− ω2
e0

ω2
∞

, (105)

and make the change of variable

t̃ =
t

ño
. (106)

In this way the Gordon-like metric can be expressed as
follows,

dŝ2 = Ã(r)dt̃2 − B̃(r)dr2 − r2(dθ2 + sin2 θdϕ2), (107)

where

Ã(r) = 1 +
2Φ(r)

ñ2
o

+
KeN1(r)

ω2
∞ñ

2
o

, (108)

and B̃(r) given by (102).

2. Null tetrad adapted to the geometry of the matter
distribution and curvature components

In [1] Gallo and Moreschi constructed a null tetrad
in terms of the metric components A(r) and B(r) for
a static, spherically symmetric and asymptotically flat
spacetime with a metric like (89). In order to include
the effects of the plasma we can repeat those calcula-
tions to obtain a principal null tetrad {ℓ̃aP , ña

P , m̃
a
P , ˜̄m

a
P }

associated to the Gordon-like metric (107) in terms of

the coefficients Ã(r) and B̃(r). Explicitly we have,

ℓ̃aP =
1

Ã

(

∂

∂t̃

)a

+
1

√

ÃB̃

(

∂

∂r

)a

, (109)

ña
P =

1

2

[(

∂

∂t̃

)a

−

√

Ã

B̃

(

∂

∂r

)a]

, (110)

m̃a
P =

eiϕ√
2r

[(

∂

∂θ

)a

− i

sin(θ)

(

∂

∂ϕ

)a]

, (111)

where the coefficients Ã(r) and B̃(r) are given by (108)
and (102), respectively. However, let us note that in order
to compute the leading linear order contributions to the
associated curvature scalars we only need to consider the
previous principal null tetrad at zero order, that is, we
can set Ã = B̃ = 1.
As it was shown in [1], at linear order, the transforma-

tion between the null tetrad {ℓa,ma, m̄a, na} adapted to
the motion of the light rays under study and the princi-
pal null tetrad adapted to the energy-momentum distri-
bution induces the following transformation on the cur-
vature scalars Φ00 and Ψ0,

Ψ0 = 3
b2

r2
Ψ̃2(r)e

2iϑ, (112)
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Φ00 =
2b2

r2
(Φ̃11 −

1

4
Φ̃00) + Φ̃00, (113)

where Ψ̃2, Φ̃00 and Φ̃11 are the curvature scalars calcu-
lated from the Gordon-like metric (107) and using the

tetrad {ℓ̃aP , ña
P , m̃

a
P , ˜̄m

a
P }, at first order. Explicitly, they

are given by,

Φ̃00 =
rM ′(r) −M(r)

r3
+

1

rñ2
o

(

KeN
′
1(r)

2ω2
∞

+Φ′(r)

)

, (114)

Φ̃11 =
M(r)

2r3
+

1

4ñ2
o

(

KeN
′′
1 (r)

2ω2
∞

+Φ′′(r)

)

, (115)

Ψ̃2 =
rM ′(r)− 3M(r)

6r3
− 1

6rñ2
o

(

Ke

2ω2
∞

(N ′

1(r)

− rN ′′

1 (r)) + Φ′(r)− rΦ′′(r)

)

.

(116)

Using the Einstein field equations (96), (97) and the
conservation equation (99) it is possible to express these
curvature components in terms of the energy-momentum
tensor components and the functionM(r), which because
of (96) contains the same information that ̺(r),

Φ̃00 =4π

(

̺(r) +
Pr(r)

ñ2
o

)

+
M(r)

r3

(

1− 1

ñ2
o

)

+
Ke

2rω2
∞ñ

2
o

N ′

1(r),

(117)

Φ̃11 =
π

ñ2
o

(

̺(r) + 2Pt(r) − Pr(r)

)

+
M(r)

2r3

(

1− 1

ñ2
o

)

+
Ke

8ω2
∞ñ

2
o

N ′′

1 (r),

(118)

Ψ̃2 =
4π

3ñ2
o

(

Pt(r) − Pr(r)

)

+

(

2

3
π̺(r) − M(r)

2r3

)

×
(

1 +
1

ñ2
o

)

+
Ke

12rω2
∞ñ

2
o

(

rN ′′

1 (r)−N ′

1(r)

)

.

(119)
Relations (112) and (113) together with the previous

expressions for the curvature scalars allow us to write the
optical scalars and the deflection angle in terms of the
energy-momentum tensor components and the electronic
density profile. In particular, from the relations (42),
(47) and (52) we finally obtain,

κ̃ =

∫ λls

−λl

[

4π

(

̺+
Pr

ñ2
o

)

+
4πb2

ñ2
or

2
(Pt − Pr)

+
1

r2

(

3b2

2r3
M − M

r
− 2πb2̺

)(

1− 1

ñ2
o

)

− b2Ke

4r3ω2
∞ñ

2
o

(N ′

1 − rN ′′

1 ) +
Ke

2rω2
∞ñ

2
o

N ′

1

]

dy,

(120)

γ̃ =

∫ λls

−λl

b2

r2

[

4π

ñ2
o

(Pr − Pt) +

(

3

2

M

r3
− 2π̺

)

×
(

1 +
1

ñ2
o

)

+
Ke

4rω2
∞ñ

2
o

(N ′

1 − rN ′′

1 )

]

dy,

(121)

α =b

∫ λls

−λl

[

4π

(

̺+
Pr

ñ2
o

)

+
b2

r2

(

3M

r3
− 4π̺

)

− M

r3

(

1− 1

ñ2
o

)

+
KeN

′
1

2rω2
∞ñ

2
o

]

dy,

(122)

where we are integrating in the y coordinate defined in
Eq.(61).
As before, λl denotes the distance from the observer

to the center of the lens if the spacetime were flat. In a
similar way, λls = λs − λl. These expressions generalize
the results obtained in [1] for pure gravity (ño = 1 and
N1 = 0). In particular it is easy to see that in that limit
Eq.(122) reduces to (2).

3. λls → ∞ and λl → ∞

In typical astrophysical situations, it is often conve-
nient to assume that both the observer and the source
are far away from the lens. In this case, by replacing
the extremes of integration λls → ∞ and λl → ∞ and
integrating by parts, we can show that the explicit depen-
dence on ̺(r) can be omitted in (120), (121) and (122).
By using the Einstein field equation (96) we can write

̺(r) as a first derivative of M(r) and then integrate by
parts all the terms containing ̺(r). Doing that, it is easy
to check the identities,

∫ ∞

−∞

̺(r)dy =
1

4π

∫ ∞

−∞

M(r)

r3

(

1− r2

b2 − r2

)

dy, (123)

∫ ∞

−∞

̺(r)

r2
dy =

1

4π

∫ ∞

−∞

M(r)

r5

(

3− r2

b2 − r2

)

dy, (124)

where the boundary terms vanish due to the spacetime
is asymptotically flat which implies,

lim
y→±∞

M(r)

r2
= 0 and lim

y→±∞

M(r)

r4
= 0. (125)

Using the relations (123) and (124) one can express the
optical scalars and the deflection angle as,

κ̃ =

∫ ∞

−∞

[

4π

ñ2
o

(

Pr +
b2

r2
(Pt − Pr)

)

+
M

2r3

(

1− r2

b2 − r2

)(

1 +
1

ñ2
o

)

− b2Ke

4r3ω2
∞ñ

2
o

(N ′

1 − rN ′′

1 ) +
Ke

2rω2
∞ñ

2
o

N ′

1

]

dy,

(126)
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γ̃ =

∫ ∞

−∞

b2

r2

[

4π

ñ2
o

(Pr − Pt) +
M

2r

(

1

b2 − r2

)

×
(

1 +
1

ñ2
o

)

+
Ke

4rω2
∞ñ

2
o

(N ′

1 − rN ′′

1 )

]

dy,

(127)

α =

∫ ∞

−∞

b

r

[

M

r2

(

1+
1

ñ2
o

)

+
4πrPr

ñ2
o

+
KeN

′
1

2ω2
∞ñ

2
o

]

dy. (128)

It is worthwhile to notice that even when these expres-
sions are very compact and they are potentially very
practical, we have no knowledge about a previous pre-
sentation of them in the literature.

4. Analogy between photons in an homogeneous plasma and
massive particles in pure gravity

As is very well known there exists a correspondence be-
tween the motion of photons in an homogeneous plasma
(N ′

1 = 0) in a given spacetime and the geodesic motion
of massive particles on the same background.
In the context of this work, this correspondence re-

duces to setting N ′
1 = 0 and to identify ño with the speed

v (which represents the initial speed of a test massive par-
ticle as measured by an asymptotic static observer when
the particle was far away from the gravitational source).
For more details see [9, 27, 63]. Then, the deflection angle
αmp for massive particles is given by

αmp =

∫ ∞

−∞

b

r

[

M

r2

(

1 +
1

v2

)

+
4πrPr

v2

]

dy. (129)

Alternatively it can be written as,

αmp =
αM

2

(

1 +
1

v2

)

+
αPr

v2
, (130)

with

αM = 2

∫ ∞

−∞

bM

r3
dy, αPr

= 4π

∫ ∞

−∞

rPrdy. (131)

The expression (130) generalizes the results found in [1]
by including the deflection of massive particles. In par-
ticular, if v = 1, that is, if we consider massless particles,
then the deflection angle reduces to α = αM + αPr

, and
therefore these quantities represent the contribution to
the deflection angle for massless particles due to the total
mass and the radial pressure. Note that these results are
independent of the particular mass density profile under
consideration. In particular, if the spacetime is such that
the pressure can be neglected, the relation between the
deflection angle for massive αmp and massless particles
αγ ≡ αM is given by

αmp =
αγ

2

(

1 +
1

v2

)

. (132)

B. Using the Gauss-Bonnet theorem

In order to check the results found in the previous sub-
section we will use the geometrical method developed by
Gibbons and Werner [34] and extended by us to include
the plasma effects [27]. This method of studying gravi-
tational lenses is based on the use of the Gauss-Bonnet
theorem.
As we have seen in [27] for a spacetime (M, gαβ) with

line element given by (89), spatial projections of the light
propagating through a medium with refractive index n
on the slices t = constant are geodesics of the following
Riemannian optical metric,

dσ2 = goptij dxidxj =
n2(r)

A(r)

(

B(r)dr2 + r2dϕ2

)

, (133)

where we have restricted to the equatorial plane ϑ = π/2
without loss of generality due to the spherical symmetry.
Again, we express the metric functions A(r) and B(r) as,

A(r) = e2Φ(r), B(r) =
1

1− 2M(r)
r

. (134)

For a cold nonmagnetized plasma the refractive index
given by (100) can be equivalently rewritten as

n2(r) = 1− (1− n2
o(r))A(r), (135)

where the redshift has already taken into account and
n2
o(r) is given by,

n2
o(r) = 1− ω2

e(r)

ω2
∞

. (136)

In order to calculate the deflection angle using the
Gauss-Bonnet theorem we have to choose a specific do-
main in the optical manifold (Mopt, goptij ). There are
several ways to do that, the most simple domain, and
following the original work of Gibbons and Werner, is to
consider a simply connected region as shown in Fig. 1,
where its boundary is formed by the spatial geodesic γp
followed by the photon in the optical manifold and the
curve CR defined as r(ϕ) = R = constant. Then, the
deflection angle can be computed by [27, 34],

lim
R→∞

∫ π+α

0

[

κg
dσ

dϕ

]∣

∣

∣

∣

CR

dϕ = π − lim
R→∞

∫ ∫

DR

KdS,

(137)
where K is the Gaussian curvature, dS is the surface
element in coordinates (r, ϑ) and κg is the geodesic cur-
vature of CR.
As we are interested only on the linear corrections in

M(r) and Φ(r) to the deflection angle, it is sufficient to
consider rϕ as the background solution,

rϕ =
b

sin(ϕ)
, (138)
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FIG. 1: The points S and O represent the source and observer
position while γp indicates a light ray emitted by the source
and that reaches the observer. b is identified with the impact
parameter.

and, on the other hand, we only need to compute KdS
and κg

dσ
dϕ at first order in M(r) and Φ(r),

KdS =

[

(rΦ′)′

n2
o

+

(

M

r

)′

− (rn′
o)

′

no
+ F

]

drdϕ, (139)

where

F =F(Φn′

o,Φn
′′

o ,Φ
′n′

o, (n
′

o)
2,Mn′

o,Mn′′

o ,M
′n′

o)

=r
(n′

o)
2

n4
o

− 2Φ
(rn′

o)
′

n3
o

+ 6Φr
(n′

o)
2

n4
o

− 4Φ′r
n′
o

n3
o

+
(n′

oM)′

no
− (n′

o)
2M

n2
o

,

(140)

and ′ denotes derivative respect to the radial coordinate.
On the other hand,

κg
dσ

dϕ
= 1− rΦ′

n2
o

− M

r
+
rn′

o

no
+ G, (141)

where G = G(Φn′
o,Mn′

o) is given by

G = 2
rΦn′

o

n3
o

−M
n′
o

no
. (142)

In the following, we will neglect the contributions
plasma×gravity given by the terms F and G. Now let
us consider two situations: one in which the two-form
KdS 6= 0 and the other when it vanishes.

1. KdS 6= 0

If KdS 6= 0 we get the following expression for the
deflection angle,

α = −
∫ π

0

∫ ∞

rϕ

[

(rΦ′)′

n2
o

+

(

M

r

)′

− (rn′
o)

′

no

]

drdϕ. (143)

By integrating by parts and discarding terms of order
O((n′

o)
2,Φ′n′

o), we can rewrite (143) as a line integral

α =

∫ π

0

[

rΦ′

n2
o

+
M

r
− rn′

o

no

]
∣

∣

∣

∣

r=rϕ

dϕ, (144)

where we have assumed that

lim
r→∞

rn′
o

no
= 0 and lim

r→∞

rΦ′

n2
o

= 0, (145)

We transform to a new coordinate y related to r by
y =

√
r2 − b2, thus satisfying tanϕ = b/y. By using the

Einstein equation at first order in M :

Φ′ =
M(r)

r2
+ 4πrPr(r), (146)

we finally obtain an expression for the deflection angle in
terms of components of the energy-momentum tensor for
a lens surrounded by plasma,

α =

∫ ∞

−∞

b

r

[

M

r2

(

1+
1

n2
o

)

+
4πrPr

n2
o

− n′
o

no

]∣

∣

∣

∣

r=ry

dy (147)

where ry =
√

b2 + y2.

2. KdS = 0

This situation could be found for a specific kind of
plasma media. For the case that we are in a pure gravity
situation, this condition is found for example when the
mass distribution is determined by an isothermal density
profile[34]. If KdS = 0 then by discarding the F term
and also all the terms of order O((n′

o)
2,Φ′n′

o), we can see
from Eq.(139) that

(

rΦ′

n2
o

+
M

r
− rn′

o

no

)′

= O((n′

o)
2,Φ′n′

o)−F

= O
(

Φn′

o,Φn
′′

o ,Φ
′n′

o, (n
′

o)
2,Mn′

o,Mn′′

o ,M
′n′

o

)

;

(148)

which implies that the following quantity is constant with
respect to the radial coordinate at the considered order

rΦ′

n2
o

+
M

r
− rn′

o

no
= C = constant. (149)

It should be noted that this constant C is a first order
quantity. Therefore it follows that at this order

[

κg
dσ

dϕ

]
∣

∣

∣

∣

CR

=

[

1− rΦ′

n2
o

− M

r
+
rn′

o

no

]
∣

∣

∣

∣

R(ϕ)

=

[

1− rΦ′

n2
o

− M

r
+
rn′

o

no

]
∣

∣

∣

∣

rϕ

.

(150)
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where we have used the fact that as it is constant, it
can be evaluated along the trajectory rϕ = b/ sin(ϕ) in-
stead of R(ϕ) = constant. Then, the relation (137) for
calculating the bending angle reduces to,

∫ π+α

0

[

1− rΦ′

n2
o

− M

r
+
rn′

o

no

]
∣

∣

∣

∣

rϕ

dϕ = π. (151)

Finally, by splitting the domain of integration from 0 to
π and from π to π + α and approximating,

∫ π+α

π

[

1− rΦ′

n2
o

− M

r
+
rn′

o

no

]
∣

∣

∣

∣

rϕ

dϕ ≈ α, (152)

we obtain

α =

∫ π

0

[

rΦ′

n2
o

+
M

r
− rn′

o

no

]
∣

∣

∣

∣

r=rϕ

dϕ = Cπ. (153)

Note that the integral expression coincides with the ex-
pression for α in the KdS 6= 0 case. That is, for the
practical purpose it is not necessary to discriminate be-
tween the two cases and we can use the same formula for
the bending angle.

3. Comparison

Additionally, if we split ω2
e as in Eq.(103) we get

n2
o = ñ2

o

(

1− KeN1(r)

ñ2
oω

2
∞

)

(154)

and then

− n′
o

no
=
KeN

′
1(r)

2n2
oω

2
∞

. (155)

On the other hand, because of we are assuming that
KeN1(r)

ω2
e0

≪ 1, we can approximate n2
o ≈ ñ2

o, obtaining

finally,

α =

∫ ∞

−∞

b

r

[

M

r2

(

1+
1

ñ2
o

)

+
4πrPr

ñ2
o

+
KeN

′
1

2ω2
∞ñ

2
o

]

dy, (156)

which completely coincides with (128). In this way, we
have obtained the same expression for the deflection an-
gle in terms of the energy-momentum tensor components
using two different geometrical approaches.

V. CORRESPONDENCE BETWEEN THE

SPATIAL MOTION OF PHOTONS IN A

NONHOMOGENEOUS PLASMA AND MASSIVE

PARTICLES IN A GRAVITATIONAL AND

EXTERNAL FIELD

As was discussed above, there exists a well known cor-
respondence between the geodesic motion of test massive

particles in a gravitational field and the motion of pho-
tons in a homogeneous cold plasma medium. In this sec-
tion we show that there exist also a striking correspon-
dence between the nongeodesic motion of test charged
massive particles in a gravitational field where an elec-
trical field is present and the motion of photons in a non
homogeneous cold nonmagnetized plasma.
Let us consider a static spacetime whose line element

is given by,

ds2 = A(xi)dt2 − gijdx
idxj , i, j, k, ... = 1, 2, 3. (157)

The action for a test charged massive particle with charge
q and mass µ moving under the influence of the gravita-
tional field and a static electrical field determined by a
potential U(xi) is given by

S =

∫

L(xi, ẋi)dt, (158)

where the integral is along the world line of the particle
and the Lagrangian density L reads,

L(xi, ẋi) = −µ
√

A(xi)− gij ẋiẋj − qU(xi). (159)

Before continuing, we recall that the most general
Lagrangian for a test massive charged particle in an
Einstein-Maxwell field is given by L = −µ

√

gαβuαuβ −
qAαu

α. Here we are assuming that in the {t, xi} coordi-
nates only A0 6= 0. More importantly, our considerations
will be also valid for any central scalar potential U(xi)
not necessarily of electromagnetic nature.
The motion of the particle can be studied from the

corresponding Euler-Lagrange equations or equivalently
from the Hamilton-Jacobi equations of the Hamiltonian
H(xi, pi) given by the Legendre transformation,

H(xi, pi) = piẋ
i − L(xi, ẋj), (160)

where ẋi = ẋi(xj , pk). The 4-momentum is defined as,

pi =
∂L
∂ẋi

. (161)

For this case the Hamiltonian takes the form,

H(xi, pi) =
√

µ2A(xi) +A(xi)gijpipj + qU(xi). (162)

A few years ago, Gibbons introduced the Jacobi metric
formulation to study the motion of test massive particles
in static spacetimes [64]. In this formulation the motion
of these particles is given by the geodesics of a energy-
dependent Riemmanian metric known as the Jacobi met-
ric.
Moreover, any nongeodesic motion can be described by

a geodesic associated with the Jacobi metric derived from
a given Hamiltonian. In particular, for a test particle
whose motion is described by the Hamiltonian (162) the
Jacobi metric Jij is given by,

Jij = E2
∞ ĝoptij , (163)
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where

ĝoptij =

[(

1− qU(xi)

E∞

)2

− µ2A(xi)

E2
∞

]

gij
A(xi)

. (164)

For a free massless test particle, ĝoptij coincides with the

optical metric goptij in pure gravity.
On the other hand, we know that the photon trajec-

tory in a medium described by a refractive index n are
geodesics with respect to the optical metric

goptij = n2(xi)
gij
A(xi)

, (165)

which in particular for a cold nonmagnetized plasma n is
given by (100).
By splitting the electronic density profile ω2

e as,

ω2
e(x

i) = ω2
eo +KeN1(x

i), (166)

with ωeo = constant and comparing the refractive index
n with the factor that precedes to

gij
A(xi) in (164) we can

see that if we make the following identifications

ωeo ↔ µ, ω∞ ↔ E∞, (167)

N1(x
i) ↔ qU(xi)

KeA(xi)
(2E∞ − qU(xi)), (168)

and N1(x
i) > 0, then the spatial orbit of a charged mas-

sive particle in a given spacetime when an electrical field
is present is equivalent to the spatial orbit of a photon in
a very particular (energy dependent) nonhomogeneous
plasma, and vice-versa. Note that this analogy is not
only valid when a gravitational field is present, it also
occurs in a Minkowski spacetime. For example, if we as-
sume that we have a fixed electric charge Q generating a
central potential U(r) = Q/r, the orbit of a test particle
of mass µ, charge q and total energy E∞ governed by the
Lorentz force agrees with the orbit of a photon with the
same energy moving in a plasma which in addition to the
homogeneous part of the plasma electronic number den-
sity given by Keµ

2 has also a non-uniform charge density
that must be given by qQ

Ker
(2E∞− qQ

r ), which will be pos-
itive if qQ > 0, that is the repulsive character between
charges can be described by the divergent effect of the
trajectory of a particular photon with energy E∞ in a
particular plasma density profile. Of course, for the rest
of the photons with different energies moving in the same
plasma medium, the correspondence is not achieved.
On the other hand, the Jacobi metric not only allows

us to make the previous analogy between the motion of a
photon in a cold plasma medium and particles in external
fields, it also allows us to use the powerful Gauss-Bonnet
theorem to study the scattering of relativistic particles
following nongeodesic motion, extending in this way the
original purpose of this method which was only restricted
to study of null geodesics. More precisely, for a spher-
ically symmetric spacetime we can use the expression
(147) with no(r) given by

n2
o(r) = 1− 1

E2
∞

(

µ2 +
2qU(r)E∞

A(r)
− q2U(r)2

A(r)

)

, (169)

in order to compute the deflection angle. Keeping only
the leading order terms of that expression, we obtain that
the deflection angle reduces to (156) which if we only keep
the linear terms in U(r) gives:

α ≈
∫ ∞

−∞

b

r

[

M

r2

(

1 +
1

v2

)

+
4πrPr

v2
+

qU ′

E∞v2

]∣

∣

∣

∣

r=ry

dy.

(170)
This equation generalizes the expression found in [1] to a
more general situation where massive particles and non-
gravitational external central potential are allowed.
In the following subsection we show the power of this

technique by computing the deflection angle of relativis-
tic charges particles in a Reissner-Nordstöm spacetime
keeping terms of higher order than in (170). For a de-
tailed study of the Jacobi metric for this particular sit-
uation where a more general kind of orbit are discussed
we refer to the recent work of Das, Sk and Ghosh [68].

A. Deflection angle of charged massive particles in

a Reissner-Nordström spacetime

Let us consider a test charged massive particle moving
in a Reissner-Nordström spacetime

ds2 =

(

1− 2m

r
+
Q2

r2

)

dt2 − dr2

1− 2m
r + Q2

r2

− r2(dϑ2 + sin2 ϑdϕ2),

(171)

and under the action of the electric Coulomb potential

U(r) =
Q

r
. (172)

The energy E∞ and angular momentum J of the particle
measured by a static asymptotic observer are given by the
following expressions [27],

E∞ =
µ√

1− v2
and J =

µvb√
1− v2

. (173)

In the above expression v is the speed of the particle
when it is in the asymptotic region as measured by the
same observer while b is the impact parameter.
Let us start by computing the linear order contribu-

tions to the deflection angle in terms of the energy-
momentum tensor components and the potential as given
by (170). As is well known for a Reissner-Nordströmmet-
ric the mass function M(r) and the radial pressure Pr(r)
are given by

M(r) = m− Q2

2r
, (174)

Pr(r) = − Q2

8πr4
. (175)

By replacing these relations and Eq.(172) into (170) and

taking into account that r =
√

b2 + y2 we find that at



16

linear order the deflection angle is given by

α =
2m

b

(

1 +
1

v2

)

− πQ2

4b2

(

1 +
2

v2

)

− 2qQ

bv2E∞

. (176)

Note that we have obtained this expression in a very easy
way through the use of the Eq.(170), which was derived
in a geometrical way using the null-tetrad approach and
the Gibbons-Werner method.
Let us move now to the computation of higher order

corrections to the deflection angle. It has been proved
in many works that the Gauss-Bonnet method is a very
useful tool to calculate the deflection angle. In order to
apply this method we can proceed in different ways. For
instance, we can calculate the deflection angle of a pho-
ton moving in a nonhomogeneous plasma with electronic
density profile given by (166) and then use the identifica-
tions (167) and (168) with the nongravitational potential
U given by (172). In that case the correspondence is only
physical if the test particle has a charge with the same
sign as the total charge of the black hole. However, the
use of the optical metric as given by (165) is indepen-
dent of the sign of the charges. In our case the effective
refractive index given by,

n2(r) = 1−
(

1− 2m

r
+
Q2

r2

)

(1− v2)− 2qQ

rE∞

+
q2Q2

r2E2
∞

,

(177)
where we have used the first identity in (173) in order
to express the refractive index in terms of the velocity,
charge and energy of the particle.
Now we can apply the Gauss-Bonnet method as devel-

oped in [27] for the nonpure gravity case to compute the
deflection angle. The optical metric reads,

dσ2 = n2(r)

(

dr2

(1− 2m
r + Q2

r2 )
2
+

r2dϕ2

1− 2m
r + Q2

r2

)

. (178)

At this time it is convenient to introduce the following
dimensionless parameter, which we assume are small,

β =
m

b
, γ =

Q2

b2
, δ =

qQ

b2
. (179)

We are interested in the computation of the deflection an-
gle conserving all the terms of order O(β, γ, δ, β2, δ2, βδ);
and therefore we need the following expression for the
two-form KdS,

KdS =

[

− bβ

r2

(

1 +
1

v2

)

+
b2δ

r2v2E∞

− (v4 + 6v2 − 4)

× b2β2

r3v4
+ 2(3v2 − 4)

b3βδ

r3v4E∞

+ (2 + v2)
b2γ

r3v2

+ (2 − v2)
2b4δ2

r3v4E2
∞

]

dϕdr

+O(γ2, β3, δ3, δβ2, βγ, βδ2, δγ),
(180)

or equivalently, in terms of the variable u = 1/r as

KdS =

[

bβ

(

1 +
1

v2

)

− b2δ

v2E∞

+ (v4 + 6v2 − 4)

× ub2β2

v4
− 2(3v2 − 4)

ub3βδ

v4E∞

− (2 + v2)
ub2γ

v2

− (2− v2)
2ub4δ2

v4E2
∞

]

dϕdu

+O(γ2, β3, δ3, δβ2, βγ, βδ2, δγ).
(181)

In order to calculate the deflection angle to the de-
sired order (which include terms of order β2 and δ2) we
have to integrate along a spatial orbit which takes into
account corrections of order β and δ to the straight line
orbit (given by u0 = sin(ϕ)/b). These corrections to the
orbit are needed because even when KdS has already
contributions of order β2 and δ2,1 it also contains linear
terms in these parameters, and therefore it follows that
the integral of these linear terms valued in the β and δ
corrections to the orbit will also produce extra contribu-
tions to the required quadratic order in those parameters.
As we show in Appendix A at the considered order the
orbit is given by

u(ϕ) =
1

b

[

sinϕ+

(

(1− cosϕ) + v2(cos2 ϕ− cosϕ)

)

β

v2

− (1 − cosϕ)
√

1− v2
δ

v2µ

]

.

(182)
It is important to remark again that in this case we only
had to solve the orbit equation up to β and δ orders.
This is the main difference between the use of the Gauss-
Bonnet method for calculating the deflection angle and
the alternative way which follows from the explicit solu-
tion of the spatial orbit equation. In the last approach
one must to solve the orbit equation to the same order
as the one needed for the deflection angle, which is much
more laborious and cumbersome. More details are given
in Appendix A, where the evaluation of the deflection
angle using the orbital equation approach is realized in
detail.
Finally, using the relation (137) where the left-hand

side reduces to α + π due to the spacetime is asymp-
totically flat we obtain the following expression for the
deflection angle,

α =
2m

b

(

1 +
1

v2

)

+
3πm2

4b2

(

1 +
4

v2

)

− πQ2

4b2

(

1 +
2

v2

)

− 2qQ

bv2E∞

+
πq2Q2

2b2v2E2
∞

− 3πqQm

b2v2E∞

.

(183)

1 These terms will contribute to the deflection angle with β2 and

δ2 terms when the required integral is valued at the integration

limit given by the zero order orbit u0.



17

The first three terms agrees with the ones obtained re-
cently by Pang and Jia [73] where they studied the de-
flection angle of neutral massive particles in a Reissner-
Nordstöm background. The fourth and fifth terms are
also present in a Minkowski spacetime. For that case,
an exact expression for the deflection angle (valid for all
kind of velocities, and magnitude of the deflection angle)
was found by Synge (see Appendix C of [74]). In our
notation his expression reads:

α = −π +
4

K
arctan

√
Γ; (184)

where

K =

√

1− δ2b2

E2
∞ − 1

, (185)

and

Γ =

√

δ2b2µ2 + (E2
∞ − µ2)2 − δE∞b

√

δ2b2µ2 + (E2
∞ − µ2)2 + δE∞b

, (186)

and δ is defined in (179).
Taking into account Eqs.(185) and (186), and by doing

a Taylor expansion of (184) in terms of the parameter δ
we obtain:

α = − 2E∞b

E2
∞ − µ2

δ +
b2π

2(E2
∞ − µ2)

δ2 +O(δ3). (187)

It is easy to check that this expression agrees with the
forth and fifth terms of (183). The last term is a Lorentz
force term which indicates that the dynamics are indeed
in a curved background.

VI. FINAL REMARKS

In this paper we have shown how the formalism of null
tetrads originally proposed to express the deflection angle
for photons in pure gravity in terms of curvature scalars
can be extended to be used when dispersive media are
present. At the same time we have presented expressions
for the optical scalars in terms of the different compo-
nents of the momentum-energy tensor.
On the other hand we have arrived at several of the

same results through the use of another recently proposed
geometrical method that makes use of the Gauss-Bonnet
theorem. In particular, although this method was orig-
inally proposed to study null geodesics, we have shown
that it can be extended to the study of massive particles
even when they do not follow timelike geodesics.
Finally, we have shown that there is an analogy be-

tween the spatial motion of photons in a dispersive
medium and that of test particles subject to an exter-
nal repulsion field. It is valid not only for electrostatic
fields but also for any central potential.
Let also note that even when we have applied the two

types of optical metrics to the weak field regime, there is

not any impediment to apply them to the strong gravi-
tational region. For example, the 4-dimensional Gordon-
like optical metric (31) takes the form:

ĝαβdx
αdxβ =

A(r)

n2(r)
dt2 −B(r)dr2 − C(r)dΩ2

=Ã(r)dt2 −B(r)dr2 − C(r)dΩ2.

(188)

As previously stated light rays which solve Eqs.(27) in
the physical metric follows the same spatial orbits of null
geodesics of this optical metric. As it is well known,
circular null geodesics which define photon spheres at
radius r = rphot of a metric like (188) satisfy the equation

C′(r)

C(r)

∣

∣

∣

∣

r=rphot

=
Ã′(r)

Ã(r)

∣

∣

∣

∣

r=rphot

, (189)

where a prime meaning a derivative with respect to r.
Eq.(189) follows from the study of null geodesics of (188)
or alternatively, in geometrical terms, from asking for the
existence of a 3-dimensional timelike surface S with the
tracefree part of the second fundamental form vanishing
(See [75] for more details). The condition which follows
from (189) applied to the metric (188), namely

C′(r)n(r)A(r) −A′(r)C(r)n(r) + 2C(r)A(r)n′(r) = 0
(190)

agrees with the equation that follows from the Eq.(32) of
Ref.[13], which was derived studying the timelike curves
which are solutions of (27). It would be interesting to
see how these results extend to the case of a rotating
stationary spacetime. In such a situation, instead of an
Riemannian optical metric that encodes the movement
of particles, there is an associated Jacobi-Maupertuis-
Randers-Finsler metric [67]. In future works we will at-
tack this more general situation.
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Appendix A: Bending angle of a charged massive

particle in a Reissner-Nordström spacetime from

direct integration of the orbit equation

In this Appendix we calculate the deflection of charged
massive particles in the Reissner-Nordström spacetime
directly from the spatial orbit equation. As we have seen
in Section II the equation is given by,

(

dr

dϕ

)2

=
C(r)

B(r)

(

p2t
p2ϕ

C(r)n2(r)

A(r)
− 1

)

, (A1)

where A, B and C are the metric components and pϕ and
pt are constants associated with the axial and temporal
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Killing vector fields, respectively. In general one identifies
these constant of motion with the angular momentum J
and energy E of a test particle which measured by an
asymptotic observer reduce to (173). Then,

p2t
p2ϕ

=
1

v2b2
. (A2)

On the other hand, for the Reissner-Nordström space-
time, we get

A(r) = B−1(r) = 1− 2m

r
+
Q2

r2
, C(r) = r2. (A3)

Making the change of variable u = 1/r and taking into
account the Eq.(177), the orbit equation (A1) reduces to,

(

du

dϕ

)2

=
1

b2
+

(

m(1− v2)− qQ

µ

√

1− v2
)

2u

b2v2

−
(

1− Q2(1− v2)

b2µ2v2
(µ2 − q2)

)

u2 + 2mu3

−Q2u4,
(A4)

If we want to calculate the deflection angle at the order
O(β, γ, δ, β2, γ2, δ2, βδ) we have to solve the orbit equa-
tion at the same order. Then, let us consider the follow-
ing ansatz in terms of the parameter defined in (179),

u(ϕ) =u0 + u1(ϕ)β + u2(ϕ)δ + u3(ϕ)γ + u4(ϕ)βδ

+ u5(ϕ)β
2 + u6(ϕ)δ

2

+O(γ2, β3, δ3, δβ2, βγ, βδ2, δγ),
(A5)

where u0 = sinϕ
b and impose the asymptotic condition

lim
ϕ→0

ui(ϕ) = 0. (A6)

It follows that each of the ui(ϕ) functions (i = 1..6) must
satisfy a differential equation of the following form:

cosϕ
dui(ϕ)

dϕ
+ sinϕui(ϕ) = Fi(ϕ, uj(ϕ)), (A7)

with j 6= i. Explicitly, the Fi functions are given by:

F1(ϕ) =
sinϕ

b
(
1

v2
− cos2 ϕ), (A8)

F2(ϕ) = − sinϕ

µv2

√

1− v2, (A9)

F3(ϕ) =
1

2b
(
sin2 ϕ

v2
− cos4 ϕ+ 3 cos2 ϕ− 2), (A10)

F4(ϕ, u1(ϕ), u2(ϕ)) = u2(ϕ)(3 sin
2 ϕ+

1

v2
− 1)− bu1(ϕ)

√
1− v2

µv2
− b

(

u1(ϕ)u2(ϕ) +
du1
dϕ

du2
dϕ

)

, (A11)

F5(ϕ, u1(ϕ)) = u1(ϕ)(2 +
1

v2
− 3 cos2 ϕ)− b

2

[

u21(ϕ) +

(

du1
dϕ

)2]

, (A12)

F6(ϕ, u2(ϕ)) = − b

2µ2v2

{

sin2 ϕ(1 − v2) + 2µ
√

1− v2u2(ϕ) +

[

u22(ϕ) +

(

du2
dϕ

)2]

µ2v2
}

. (A13)

Therefore, we can solve the first three equations for
u1(ϕ), u2(ϕ), u3(ϕ), fixing the respective integration con-
stants in order to satisfy the asymptotic condition (A6),
and after that we can solve the remaining equations for
u4(ϕ), u5(ϕ) and u6(ϕ) using the known expressions for

u1(ϕ) and u2(ϕ) and fixing again the integration con-
stants with the condition (A6).

Doing so, the solution of the orbit equation in term of
the physical parameters is given as follows,
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u(ϕ) =
1

b

[

sinϕ+

(

(1 − cosϕ) + v2(cos2 ϕ− cosϕ)

)

m

bv2
+

(

(2 + v2)ϕ cosϕ− 2 sinϕ− v2 cos2 ϕ sinϕ

)

Q2

4b2v2

−
(

3v2 cos2 ϕ sinϕ− [8 sinϕ(1 + v2)− (12 + 3v2)ϕ] cosϕ+ 2 sinϕ(v2 − 2)

)

m2

4b2v2

− (1− cosϕ)
√

1− v2
qQ

bv2µ
− (sinϕ− 3ϕ cosϕ+ 2 cosϕ sinϕ)

√

1− v2
qQm

b2v2µ

− (ϕ cosϕ− sinϕ)(1 − v2)
q2Q2

2b2v2µ2

]

.

(A14)

At this point it important to remark that if we had
calculated the deflection angle using the Gauss-Bonnet
method we would only need to determine the function u1
and u2. In addition, we need to compute the two-form
KdS at the same order as required for the deflection an-
gle, but this is easier than having to calculate the other
functions ui (i = 3, 4, .., 6). This is an operational ad-
vantage of the Gauss-Bonnet method that allows us to
determine the deflection angle at the desired order in an
easy way.
To finish, we may calculate the deflection angle α as

follows,

α ≈ tanα = lim
ϕ→π

ẏ(ϕ)

ẋ(ϕ)
, (A15)

where “dot” means derivative respect to ϕ and

x(ϕ) = r(ϕ) cosϕ, (A16)

y(ϕ) = r(ϕ) sinϕ. (A17)

Note that in principle one should take the limit of ϕ
going to π + α instead of π. However, it can be checked
that if in Eq.(A15) we take the limit ϕ → π +∆, where
∆ is assumed to be a quantity composed by terms of
order β, γ, and δ they will contribute to the deflection
angle as given by (A18) with terms of higher order than
considered, and therefore it is consistent to take ϕ → π.
Finally, using the relation (A15) we get

α =
2m

b

(

1 +
1

v2

)

− 2qQ

bv2

√
1− v2

µ
+

3πm2

4b2

(

1 +
4

v2

)

− πQ2

4b2

(

1 +
2

v2

)

− 3πqQm

b2v2

√
1− v2

µ
+
πq2Q2

2b2v2
1− v2

µ2
.

(A18)

Using the first expression in (173) for the energy of the
particle we can see that the last expression for the de-

flection angle coincides with the previous one given in
(183).
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