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Abstract 17 

Counterfactual-model-based mediation analysis can yield substantial insight into the causal 18 

mechanism through the assessment of natural direct effects (NDEs) and natural indirect effects 19 

(NIEs). However, the assumptions regarding unmeasured mediator–outcome confounding and 20 

intermediate mediator–outcome confounding that are required for the determination of NDEs 21 

and NIEs present practical challenges. To address this problem, we introduce an instrumental 22 

blocker, a novel quasi-instrumental variable, to relax both of these assumptions, and we define 23 

a swapped direct effect (SDE) and a swapped indirect effect (SIE) to assess the mediation. We 24 

show that the SDE and SIE are identical to the NDE and NIE, respectively, based on a causal 25 

interpretation. Moreover, the empirical expressions of the SDE and SIE are derived with and 26 

without an intermediate mediator–outcome confounder. Then, a bias formula is developed to 27 

examine the plausibility of the proposed instrumental blocker. Moreover, a multiply robust 28 

estimation method is derived to mitigate the model misspecification problem. We prove that 29 

the proposed estimator is consistent, asymptotically normal, and achieves the semiparametric 30 

efficiency bound. As an illustration, we apply the proposed method to genomic datasets of lung 31 

cancer to investigate the potential role of the epidermal growth factor receptor in the treatment 32 

of lung cancer.   33 
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1. Introduction 1 

1.1. Mediation analysis and mediator–outcome confounding 2 

Causal mediation analysis is a technique used to investigate the mechanism of a confirmed 3 

causal effect. Methods have been proposed for various settings, including binary outcomes, 4 

time-varying covariates, and multiple mediators (Huang and Cai, 2015; Lin et al., 2017; Lin et 5 

al., 2017; VanderWeele and Tchetgen Tchetgen, 2017; VanderWeele and Vansteelandt, 2010; 6 

VanderWeele and Vansteelandt, 2014; Zheng and van der Laan, 2012). Although mediation 7 

analysis is popular and well-adapted to various applications, one concern that makes 8 

researchers hesitant to adapt causal mediation analysis is mediator–outcome confounding 9 

(Pearl, 2001; Robins and Greenland, 1992). Specifically, the aim of causal mediation is to 10 

decompose the causal effect of a treatment into its natural direct effect (NDE) and natural 11 

indirect effect (NIE) and thus quantify the importance of a particular mediator in the 12 

mechanism. To identify the NDE and NIE through causal mediation analysis based on 13 

empirical data, we assume that all mediator–outcome (M–Y) confounders are measured (i.e., 14 

the “no unmeasured M–-Y confounding” assumption is satisfied) and are not affected by the 15 

treatment (i.e., the “no treatment-induced M–Y confounding” or “no intermediate M–Y 16 

confounding” assumption is satisfied). However, both these assumptions present practical 17 

challenges. M–Y confounding is often not fully controllable even if the treatment is randomly 18 

assigned. For example, epidermal growth factor receptor (EGFR) and its cognate ligands are 19 

associated with numerous cancers, including lung cancer (Lynch et al., 2004; Pao and 20 

Chmielecki, 2010), and they appear to promote solid tumor growth (Nicholson et al., 2001). 21 

To explore the mediating role of EGFR in the effect of treatment on cancer mortality, mediation 22 

analysis was conducted with the expression of EGFR as the mediator. The assumption of no 23 

confounding due to unmeasured EGFR-related mortality is always violated because the 24 
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common causes of EGFR and mortality, such as genetic and epigenetic variants, are not fully 1 

understood; this makes it challenging to collect comprehensive data. Moreover, the assumption 2 

of no intermediate M–Y confounding is also a considerable limitation in practical applications. 3 

This is because the NDE and NIE results based on the no intermediate M–Y confounding 4 

assumption cannot be verified through randomized controlled trials (RCTs).  5 

1.2. Related works 6 

According to a recent literature review, several methods have been developed for 7 

mediation analysis when the assumptions of no unmeasured M–Y confounding and no 8 

intermediate M–Y confounding are infeasible. The first technique, called sensitivity analysis, 9 

derives the bounds of the bias that arises due to these assumptions not holding and assesses the 10 

possible influence on the observed direct and indirect effects accordingly (Ding and 11 

Vanderweele, 2016; Hafeman, 2011; Smith and VanderWeele, 2019; VanderWeele and Chiba, 12 

2014). For example, Ding and Vanderweele (2016) proposed sharp bounds of the NDE and 13 

NIE to represent the strength of unmeasured M–Y confounding. Although sensitivity analysis 14 

is a valuable method for the quantification of robustness to confounding in the M–Y 15 

relationship, it cannot be used to identify and estimate the direct and indirect effects when these 16 

assumptions are violated.  17 

Some other studies have emphasized the estimation of direct and indirect effects in the 18 

presence of an unmeasured M–Y confounder or an intermediate M–Y confounder (Lin and 19 

VanderWeele, 2017; Miles et al., 2017; Miles et al., 2020; Talloen et al., 2016; Tchetgen and 20 

VanderWeele, 2014; VanderWeele, 2011; Vansteelandt and VanderWeele, 2012). For an 21 

intermediate M–Y confounder, Tchetgen and VanderWeele (2014) proposed a monotonicity 22 

assumption on the confounder and revealed that the NDE can be nonparametrically identified 23 

in the case of a binary confounder. Lin and VanderWeele (2017) applied the interventional 24 

approach to define a new measure for estimating the direct and indirect effects without 25 
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assuming the absence of intermediate M–Y confounders. In the interventional approach, which 1 

was initially proposed by Geneletti (2007), the counterfactual value of the mediator defined for 2 

the NIE and NDE is replaced with a stochastic intervention of the counterfactual distribution 3 

of the mediator in the absence of a treatment. Similarly, another causal definition for the 4 

indirect effect allows for an intermediate M–Y confounder and estimates the path-specific 5 

effect through the mediator alone (Miles et al., 2017; Miles et al., 2020). The aforementioned 6 

studies have focused on intermediate M–Y confounding; by contrast, Talloen et al. (2016) 7 

proposed an unbiased estimator of the indirect effect (i.e., the effect mediated through a lower-8 

level mediator) based on linear models. This approach, which was developed for educational 9 

psychology, can be used to identify the indirect effect in the presence of unmeasured M–Y 10 

confounding at the upper level but not if the lower-level M–Y confounder is unmeasured. 11 

 12 

1.3. Unsolved problems and contributions of the present study 13 

Although existing methods have each addressed some set of issues in M–Y confounding, 14 

both of the aforementioned assumptions cannot be simultaneously relaxed. Moreover, in most 15 

of these methods, the estimated direct and indirect effects cannot be interpreted as the NDE 16 

and NIE, respectively. To address these weaknesses, the present study proposes a new model 17 

that allows the researcher to assess the direct and indirect effects without having to make either 18 

assumption. We introduce a novel quasi-instrumental variable called the instrumental blocker 19 

(IB), with behavior similar to that of a conventional instrumental variable (Angrist et al., 1996), 20 

to model the intervention. The IB is primarily characterized by an antagonistic interaction with 21 

the treatment through the mediator’s mechanism, and the intervention blocks the path from the 22 

treatment to the mediator. Specifically, when the IB is present, the status of the mediator with 23 

treatment is equivalent to the status of mediator without treatment. This equivalence in the 24 

presence of the IB facilitates the relaxation of the two M–Y confounding assumptions. The 25 
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assumptions and properties of the proposed IB are explicitly detailed in Section 2, and the 1 

swapped direct effect (SDE) and swapped indirect effect (SIE) are accordingly defined as 2 

alternatives for the NDE and NIE, respectively. 3 

This study makes three substantial contributions. First, we explicitly establish the 4 

assumptions of the IB and detail its properties. Based on the IB, the SDE and SIE are interpreted 5 

as the NDE and NIE, respectively, and they rely on testable assumptions. Moreover, we conduct 6 

a sensitivity analysis by establishing bias formulas for the SDE and SIE to evaluate the 7 

plausibility of the assumptions required for the IB. Second, as mentioned, the SDE and SIE can 8 

be identified in the presence of unmeasured M–Y confounding and intermediate M–Y 9 

confounding. Two empirical expressions are separately derived with and without an 10 

intermediate M–Y confounder. By excluding both of the M–Y confounding assumptions from 11 

identification, the SDE and SIE have the advantage of being widely applicable. Third, we 12 

propose a robust estimator for the SDE and SIE based on the union of the three semiparametric 13 

model spaces; therefore, this estimator is less sensitive to model misspecification compared 14 

with previous methods. Furthermore, the proposed robust estimator is consistent and 15 

asymptotically normal. If all models can be correctly specified, then the robust estimator 16 

achieves the semiparametric efficiency bound. 17 

The remainder of this paper is organized as follows: Section 2 introduces the definitions, 18 

assumptions, and identifications of the SDE and SIE with and without an intermediate M–Y 19 

confounder. Section 3 presents the sensitivity analysis and establishes a bias formula to 20 

examine the plausibility of the assumptions required for the IB. Section 4 introduces the robust 21 

estimators of the SDE and SIE and demonstrates its asymptotic properties. Section 5 details 22 

the results of a simulation study conducted to evaluate the performance of the proposed 23 

estimator. Section 6 applies the developed method to a genomic study of lung cancer. Finally, 24 

in Section 7, we conclude this study by discussing the contributions and limitations of the 25 
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proposed method. 1 

 2 

2. Swapped direct and indirect effects 3 

2.1. Notations, causal structures, and counterfactual models 4 

Let 𝐴 denote a binary treatment, 𝑀 the mediator, C the baseline confounders, 𝑌 the 5 

outcome, and 𝑍 a binary IB. The causal relationships between these variables are illustrated 6 

in the directed acyclic graph shown in Figure 1(A). To conduct a causal mediation analysis, 7 

we further introduce counterfactual models to define all effects (Robins and Greenland, 1992). 8 

Let 𝑌(𝑎) and 𝑀(𝑎) denote the counterfactual values of 𝑌 and 𝑀, respectively, where 𝐴 9 

is set to 𝑎. Similarly, let 𝑌(𝑎, 𝑚) denote the counterfactual of 𝑌 when 𝑀 is set to 𝑚 and 10 

𝐴 is set to 𝑎. Additionally, let 𝑌(𝑎, 𝑀(𝑎∗)) denote the counterfactual value of 𝑌 when the 11 

treatment is set to 𝑎 and when the mediator is set to its value when treatment is set to 𝑎∗. 12 

Analogously to the counterfactual values for the natural direct and indirect effects, we focus 13 

on the counterfactual values when the treatment is set as 𝐴 = 𝑎 and the IB is set as 𝑍 = 𝑧; 14 

then, the outcome and mediator are defined as 𝑌(𝑎, 𝑧) and 𝑀(𝑎, 𝑧), respectively. 15 

Next, we define consistency and composition assumptions (Gibbard and Harper, 1978; 16 

Robins and Greenland, 1992; VanderWeele and Vansteelandt, 2009). According to the 17 

consistency assumption for 𝑌(𝑎, 𝑚) , the outcome 𝑌  is observed as 𝑌(𝑎, 𝑚)  when the 18 

observed values of 𝐴  and 𝑀  are 𝑎  and 𝑚 , respectively. For 𝑀(𝑎) , the consistency 19 

assumption states that the observed mediator 𝑀  is equal to 𝑀(𝑎)  when the observed 20 

treatment is given by 𝐴 = 𝑎. Therefore, according to the composition assumption, 𝑌(𝑎) =21 

𝑌(𝑎, 𝑀(𝑎)) and 𝑌(𝑎, 𝑧) = 𝑌(𝑎, 𝑧, 𝑀(𝑎, 𝑧)). 22 

 23 
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 1 

Figure 1. Direct acyclic graph of causal relationships between variables. (A) 𝐶, 𝐴, 𝑀, 𝑍, and 𝑌 2 

denote the confounder, treatment, mediator, IB, and outcome, respectively. 𝑈  represents an 3 

unmeasured M–Y confounder. (B) 𝐿 represents an intermediate M–Y confounder.  4 

 5 

2.2. Review of natural direct and indirect effects 6 

First, we consider the standard decomposition of the total causal effect or total effect (TE) 7 

in mediation analysis. The goal of mediation analysis is to evaluate the importance of a 8 

mediator within the mechanism of a confirmed TE. Technically, this method decomposes the 9 

TE into the part that is transmitted through mediator (the NIE) and the part that is not (the 10 

NDE). The TE, NDE, and NIE are defined as follows based on an additive scale (Pearl, 2001; 11 

Robins and Greenland, 1992): 𝜓(1,1) − 𝜓(0,0) , 𝜓(1,0) − 𝜓(0,0) , and 𝜓(1,1) − 𝜓(1,0) , 12 

respectively, where 𝜓(𝑎, 𝑎∗) ≡ 𝐸(𝑌(𝑎, 𝑀(𝑎∗)))  is termed the conventional mediation 13 

parameter (Pearl, 2001; Robins and Greenland, 1992). To identity the NDE and NIE, four 14 

assumptions are required: (S1) no unmeasured treatment–mediator confounding; (S2) no 15 

unmeasured M–Y confounding; (S3) no unmeasured treatment–outcome confounding; (S4) no 16 

intermediate M–Y confounding. Typically, (S1), (S2), and (S3) are referred to as the 17 

exchangeability assumptions, and (S4) is termed the cross-world assumption (Robins and 18 
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Greenland, 1992). In practice, (S3) can be verified in an RCT, but this verification is difficult 1 

to achieve. In addition, (S4) is an untestable assumption, and (S3) and (S4) often restrict the 2 

utility of the NDE and NIE for assessing direct and indirect effects. In the following section, 3 

we propose a new definition for the direct and indirect effects without (S3) and (S4). 4 

 5 

2.3. Definitions of the SDE and SIE 6 

This section proposes alternatives for the NDE and NIE based on the IB. 𝑍 serves as an 7 

IB with respect to 𝐴, 𝑀, and 𝑌 if 𝑍 meets four conditions: (1) 𝑍 is associated with 𝑀; (2) 8 

the presence of 𝑍 blocks the path from 𝐴 to 𝑀; (3) in the absence of 𝐴, 𝑍 has no causal 9 

effect on 𝑀 ; (4) 𝑍  affects the outcome 𝑌  only through 𝑀 . These four conditions are 10 

formalized, respectively, in the following assumptions: 11 

Assumption 1. 𝑃(𝑀|𝑍) ≠ 𝑃(𝑀). 12 

Assumption 2. 𝑀(𝑎 = 1, 𝑧 = 1) = 𝑀(𝑎 = 0, 𝑧 = 1).  13 

Assumption 3. 𝑀(𝑎 = 0, 𝑧) = 𝑀(𝑎 = 0, 𝑧∗) = 𝑀(𝑎 = 0) for all 𝑧 and 𝑧∗.  14 

Assumption 4. 𝑌(𝑎, 𝑧, 𝑚) = 𝑌(𝑎, 𝑧∗, 𝑚) = 𝑌(𝑎, 𝑚) for all 𝑎, 𝑧, 𝑧∗, and 𝑚. 15 

Assumptions 1 and 4 for the IB are similar to those for conventional instrumental variables 16 

(Angrist et al., 1996). Specifically, Assumption 1 is similar to the relevance assumption for an 17 

instrumental variable, and Assumption 4 is similar to the exclusion restriction. In addition, 18 

Assumptions 2 and 3 state that the distribution of the mediator with the treatment (i.e., 𝐴 = 1) 19 

in the presence of the IB (i.e., 𝑍 = 1) is identical to the distribution of the mediator without 20 

treatment (i.e., 𝐴 = 0). From the perspective of mechanistic interaction, Assumptions 2 and 3 21 

further imply that the IB and the treatment have an antagonistic or agonistic interaction effect 22 

on the mediator (Lin et al., 2019). That is, if the treatment is present and the IB is absent, then 23 

the mediator is produced. Antagonistic treatment interactions can be observed empirically in 24 

many medical or biological studies. For example, in a lung cancer study, the amplification of 25 

YES1—the gene that encodes a protein that functions as a tyrosine kinase—is a mechanism of 26 



 9 

acquired resistance to EGFR inhibition in EGFR-mutant lung cancer (Fan et al., 2018). 1 

Therefore, YES1 may have an antagonistic effect on the therapeutic effects of EGFR-tyrosine 2 

kinase inhibitors (TKIs).  3 

Next, we define a new mediation parameter as 𝜙(𝑎, 𝑧) = 𝐸(𝑌(𝑎, 𝑧)) ; this is the 4 

expectation of the counterfactual value of 𝑌 with the treatment set to 𝑎 and the IB set to 𝑧. 5 

The definitions of the SDE and SIE provided based on this parameter as follows: 6 

 7 

Definition 1. SDE and SIE 8 

Given the IB 𝑍, the SDE and SIE of treatment A on the outcome Y are separately defined as  9 

𝑆𝐷𝐸 ≡ 𝜙(𝑎 = 1, 𝑧 = 1) − 𝜓(𝑎 = 0, 𝑎∗ = 0) and  10 

𝑆𝐼𝐸 ≡ 𝜓(𝑎 = 1, 𝑎∗ = 1) − 𝜙(𝑎 = 1, 𝑧 = 1), 11 

where 𝜓(𝑎, 𝑎∗) ≡ 𝐸(𝑌(𝑎, 𝑀(𝑎∗))) and 𝜙(𝑎, 𝑧) = 𝐸(𝑌(𝑎, 𝑧)). 12 

 13 

The SDE and SIE provide an alternative approach to define the direct and indirect effects. 14 

Although the formulations of the SDE and SIE differ from those of the NDE and NIE, the 15 

following theorem demonstrates that the SDE and SIE can be strictly interpreted as the NDE 16 

and NIE, respectively, under Assumptions 1 to 4. 17 

 18 

Theorem 1. (Equivalence) 19 

If an IB satisfies Assumptions 1 to 4 and the composition assumption, then SDE = NDE and 20 

SIE = NIE. 21 

 22 

To prove Theorem 1, we first prove that 𝜙(1,1) is identical to 𝜓(1,0); the proof is as follows:  23 

𝜙(1,1) ≡ 𝐸(𝑌(𝑎 = 1, 𝑧 = 1))  24 

= 𝐸(𝑌(𝑎 = 1, 𝑧 = 1, 𝑀(𝑎 = 1, 𝑧 = 1))) (by the composition assumption) 25 

= 𝐸(𝑌(𝑎 = 1, 𝑧 = 1, 𝑀(𝑎 = 0, 𝑧 = 1))) (by Assumption 2) 26 

= 𝐸(𝑌(𝑎 = 1, 𝑀(𝑎 = 0, 𝑧 = 1))) (by Assumption 4) 27 

= 𝐸(𝑌(𝑎 = 1, 𝑀(𝑎 = 0))) (by Assumption 3) 28 

= 𝜓(1,0). 29 
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 1 

Accordingly, we can obtain  2 

SDE = 𝜙(1,1) − 𝜓(0,0) = 𝜓(1,0) − 𝜓(0,0) = NDE and 3 

SIE = 𝜓(1,1) − 𝜙(1,1) = 𝜓(1,1) − 𝜓(1,0) = NIE. 4 

Thus, Theorem 1 guarantees the equivalence of the SDE and SIE with the NDE and NIE. The 5 

result of Theorem 1 is valuable because it implies that the empirical expressions of the SDE 6 

and SIE (Sections 2.4 and 2.5) can also be used to assess the NDE and NIE. In Section 2.4, we 7 

identify the SDE and SIE in the absence of intermediate confounding regardless of M–Y 8 

confounding, that is (A4) holds but (A3) is relaxed. Furthermore, we identify the SDE and SIE 9 

in the presence of intermediate confounding (A3) but without requiring (A4) in Section 2.5.   10 

 11 

2.4. Identification of the SDE and SIE in the absence of 12 

intermediate confounding  13 

We assume no intermediate confounding between the mediator and outcome (S4), as 14 

illustrated in Figure 1(A). For observational data, a set of confounders 𝐶 must be included in 15 

the analysis to avoid confounding: 16 

Assumption 5. 𝑀(𝑎, 𝑧) ⊥ (𝐴, 𝑍)|𝐶 for all 𝑎 and 𝑧. 17 

Assumption 6. (𝑌(𝑎, 𝑧, 𝑚), 𝑀(𝑎, 𝑧)) ⊥ (𝐴, 𝑍)|𝐶 for all 𝑎, 𝑧, and m. 18 

Conditioned on the measured confounders 𝐶 , Assumptions 5 and 6 state that there is no 19 

unmeasured confounding of the associations of the mediator with the treatment and the IB or 20 

of the associations of the outcome with the treatment and the IB. These assumptions correspond 21 

with (S1) and (S2). The assumption of no unmeasured M–Y confounding is no longer required 22 

for the identification of the SDE and SIE because the IB meets the three assumptions for the 23 

instrumental variable in the M–Y association. Assumptions 1 and 4 satisfy the relevance and 24 

exclusion assumptions, and Assumption 6 implies the exchangeability assumption for the IB 25 

and the outcome. Thus, the IB is a proper instrumental variable in the path from the mediator 26 
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to the outcome. Assumptions 1 to 6 can be formulated under a nonparametrical structural 1 

equation model (NPSEM; Pearl, 2009) to obtain a nonparametric algebraic interpretation of the 2 

diagram shown in Figure 1(A). This formulation is detailed in Appendix A. 3 

 According to Definition 1, the SDE and SIE are defined in terms of the differences 4 

between the conventional mediation parameter 𝜓(𝑎, 𝑎∗)  and the proposed mediation 5 

parameter 𝜙(𝑎, 𝑧) . 𝜓(𝑎, 𝑎∗)  and 𝜙(𝑎, 𝑧)  should both be identified from data. Given 6 

Assumption 6 and the consistency assumption, 𝜓(1,1) and 𝜓(0,0) can be simply identified 7 

as ∫ 𝐸(𝑌|𝐴 = 1, 𝑐)𝑃𝑟(𝑐)𝑑𝑐
𝑐

  and ∫ 𝐸(𝑌|𝐴 = 0, 𝑐)𝑃𝑟(𝑐)𝑑𝑐
c

 , respectively, where 𝑃𝑟(⋅)  is a 8 

probability function. The identification of 𝜙(1,1) is described in Theorem 2. 9 

 10 

Theorem 2. (Identification of 𝝓(𝟏, 𝟏) without intermediate confounding) 11 

Under Assumptions 1 to 6 and the consistency assumption, 𝜙(1,1) = 𝐸(𝑌(𝑎 = 1, 𝑧 = 1)) is 12 

identified from the data as the expression 𝑄, where  13 

𝑄 = ∫ 𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝑐)𝑃𝑟(𝑚|𝐴 = 0, 𝑐)𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚)
𝑐,𝑚

. 14 

 15 

In this empirical expression for 𝑄, 𝜈(𝜒) denotes a probability measure of a combination of 16 

random variables 𝜒. The proof of Theorem 2 is provided in Appendix A. The expression of 𝑄 17 

does not coincide with the mediation formula proposed by Pearl (2009; 2010) for the empirical 18 

expressions of the NDE and NIE. However, if the IB is independent of the outcome conditional 19 

on the treatment, mediator, and confounder (i.e., 𝑌 ⊥ 𝑍|𝐶, 𝑀, 𝐴 ), which is a necessary 20 

condition for (S3), then the expression of 𝑄  can be reduced to Pearl’s mediation formula. 21 

According to Theorem 2, the SDE and SIE can be directly identified under Assumptions 1 to 6 22 

as follows: 23 

SDE = ∫ [𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝑐)𝑃𝑟(𝑚|𝐴 = 0, 𝑐) − 𝐸(𝑌|𝐴 = 0, 𝑐)]𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚)
𝑐,𝑚

 and 24 

SIE = ∫ [𝐸(𝑌|𝐴 = 1, 𝑐) − 𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝑐)𝑃𝑟(𝑚|𝐴 = 0, 𝑐)]𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚)𝑚
𝑐,𝑚

. 25 



 12 

Based on Theorem 1, the empirical expressions of the SDE and SIE can be used to quantify the 1 

NDE and NIE. Moreover, the assumptions required for the SDE and SIE are more plausible 2 

than those required for the NDE and NIE because the results of the SDE and SIE can be verified 3 

through RCTs in principle. This reveals that the development of the SDE and SIE provides 4 

considerable progress for mediation analysis. Notably, we assume no intermediate confounding 5 

in this section. However, this assumption is not necessary for identifying the SDE and SIE; we 6 

exclude this untestable assumption in Section 2.5. 7 

 8 

2.5. Identification of the SDE and SIE in the presence of 9 

intermediate confounding  10 

 In this section, we assume that an intermediate confounder, 𝐿, is present in the causal 11 

diagram, as shown in Figure 1(B). In the presence of 𝐿, the assumptions for identification are 12 

modified to the following: 13 

Assumption 2’. 𝑀(𝑎 = 1, 𝑧 = 1, 𝑙) = 𝑀(𝑎 = 0, 𝑧 = 1, 𝑙) for all 𝑙. 14 

Assumption 3’. 𝑀(𝑎 = 0, 𝑧, 𝑙) = 𝑀(𝑎 = 0, 𝑧∗, 𝑙) = 𝑀(𝑎 = 0, 𝑙) for all 𝑧, 𝑧∗, and 𝑙.  15 

Assumption 4’. 𝑌(𝑎, 𝑧, 𝑙, 𝑚) = 𝑌(𝑎, 𝑧∗, 𝑙, 𝑚) = 𝑌(𝑎, 𝑙, 𝑚) for all 𝑎, 𝑧, 𝑧∗, 𝑙, and 𝑚. 16 

Assumption 5’. (𝑀(𝑎, 𝑧, 𝑙), 𝐿(𝑎)) ⊥ (𝐴, 𝑍)|𝐶 for all 𝑎, 𝑧, and 𝑙. 17 

Assumption 6’. (𝑌(𝑎, 𝑧, 𝑙, 𝑚), 𝑀(𝑎, 𝑧, 𝑙), 𝐿(𝑎)) ⊥ (𝐴, 𝑍)|𝐶 for all 𝑎, 𝑧, 𝑙, and m. 18 

Assumption 7’. 𝑀(𝑎, 𝑧, 𝑙) ⊥ 𝐿|𝐶 for all 𝑎, 𝑧, and 𝑙. 19 

These assumptions are verified using an NPSEM based on the diagram of Figure 1(B) in 20 

Appendix A. In contrast to Assumptions 2 and 3, Assumptions 2’ and 3’ indicate that the IB can 21 

block the path from 𝐴  to 𝑀  no matter what the value of the intermediate confounder is. 22 

Similarly, according to Assumption 4’, the exclusion restriction is independent of 𝐿 . 23 

Conditional on 𝐶 , Assumptions 5’ to 7’ ensure no unmeasured confounding from the 24 

associations that 𝐿, 𝑀, and 𝑌 each have with 𝐴 or 𝑍 and of the association that 𝑀 has 25 

with 𝐿. Unmeasured confounding of the association between 𝑀 and 𝑌 is permitted for the 26 

SDE and SIE. The identification of 𝜙(1,1) in the presence of intermediate confounding is 27 



 13 

described in Theorem 3. 1 

 2 

Theorem 3. (Identification of 𝝓(𝟏, 𝟏) with intermediate confounding) 3 

Given an intermediate confounder 𝐿 , under Assumptions 2’ to 7’ and the consistency 4 

assumption, 𝜙(1,1) = 𝐸(𝑌(𝑎 = 1, 𝑧 = 1)) is identified from data as 𝑄𝐿, where  5 

𝑄𝐿 = ∫ 𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑙, 𝑚, 𝑐) × 𝑃𝑟(𝑚| 𝐴 = 0, 𝑙, 𝑐)𝑃𝑟(𝑙|𝐴 = 1, 𝑐)𝑃𝑟(𝑐)
𝑐,𝑚,𝑙

𝑑𝜈(𝑐, 𝑚, 𝑙). 6 

 7 

The proof of Theorem 3 is provided in Appendix A. According to Theorem 3, the SDE and SIE 8 

can be identified under Assumptions 2’ to 7’ as follows: 9 

SDE = ∫ [𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑙, 𝑚, 𝑐) × 𝑃𝑟(𝑚| 𝐴 = 0, 𝑙, 𝑐)𝑃𝑟(𝑙|𝐴 = 1, 𝑐) − 𝐸(𝑌|𝐴
𝑐,𝑚,𝑙

10 

= 0, 𝑐)]𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚, 𝑙)  and 11 

SIE = ∫ [𝐸(𝑌|𝐴 = 1, 𝑐) − 𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑙, 𝑚, 𝑐) × 𝑃𝑟(𝑚| 𝐴 = 0, 𝑙, 𝑐)𝑃𝑟(𝑙|𝐴
𝑐,𝑚

12 

= 1, 𝑐)]𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚, 𝑙). 13 

In the following sections, we develop a sensitivity analysis and robust estimator for the SDE 14 

and SIE in the absence of intermediate confounding. Both techniques can be extended to the 15 

case with an intermediate confounder.  16 

 17 

3. Sensitivity analysis and bias formulas 18 

To assess the plausibility of assumptions required for the IB (i.e., Assumptions 1 to 4), 19 

this section establishes the bias formulas for the SDE and SIE and evaluates the sensitivity of 20 

the results due to the violation of these assumptions. We place particular emphasis on 21 

Assumptions 2 to 4. Assumption 1 is the statistical independence of the mediator and the IB, 22 

and the methods for testing independence can be applied to this assumption. After relaxing 23 

Assumptions 2 to 4, the SDE and SIE can be identified using alternative empirical expressions, 24 

which are referred to as wSDE and wSIE, respectively, and obtained as follows:    25 



 14 

wSDE = ∫ [𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝑐)𝑃𝑟(𝑚|𝐴 = 0, 𝑍 = 1, 𝑐) − 𝐸(𝑌|𝐴 = 0, 𝑐)]𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚)
𝑐,𝑚

. 1 

wSIE = ∫ [𝐸(𝑌|𝐴 = 1, 𝑐) − 𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝑐)𝑃𝑟(𝑚|𝐴 = 0, 𝑍 = 1, 𝑐)]𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚)
𝑐,𝑚

. 2 

The detailed derivations of these are shown in Appendix B. Notably, wSDE and wSIE cannot 3 

be interpreted as the NDE and NIE because Assumptions 2 to 4 have been relaxed. Intuitively, 4 

the difference between the empirical expressions of SDE (or SIE) and wSDE (or wSIE) can be 5 

used to quantify the bias arising from the violation of Assumptions 2 to 4. Accordingly, we 6 

suggest the bias formulas for the IB in Theorem 4 as follows. 7 

 8 

Theorem 4. (Bias formulas for SDE and SIE)  9 

Suppose that the assumptions of no unmeasured confounding (Assumptions 5 and 6) hold and 10 

that the IB is a binary variable. Let 𝛥(𝑚, 𝑐) ≡ 𝑃𝑟(𝑚|𝐴 = 0, 𝑐) − 𝑃𝑟(𝑚|𝐴 = 0, 𝑍 = 1, 𝑐) 11 

define the conditional correlation between the outcome and IB as 𝜌𝑌,𝑍(𝑚, 𝑐) ≡12 

𝑐𝑜𝑟𝑟(𝑌, 𝑍|𝐴 = 1, 𝑚, 𝑐), and let the conditional probability of the IB be defined as 𝑝(𝑚, 𝑐) ≡13 

𝑃𝑟 (𝑍 = 1|𝐴 = 1, 𝑚, 𝑐). Then, the bias formulas for SDE and SIE are given by 𝐵(𝛥, 𝜌𝑌,𝑍, 𝑝) 14 

and −𝐵(𝛥, 𝜌𝑌,𝑍, 𝑝), respectively, where 15 

𝐵(𝛥, 𝜌𝑌,𝑍, 𝑝) = ∫ [𝐸(𝑌|𝐴 = 1, 𝑚, 𝑐)𝛥(𝑚, 𝑐) +
𝑐,𝑚

  16 

 𝜌𝑌,𝑍(𝑚, 𝑐)𝜎𝑌(𝑚, 𝑐)√(1 − 𝑝(𝑚, 𝑐))/𝑝(𝑚, 𝑐)𝛥(𝑚, 𝑐)] 𝑃𝑟(𝑐)𝑑𝜈(𝑐, 𝑚) 17 

and 𝜎𝑌(𝑚, 𝑐) ≡ 𝑉𝑎𝑟(𝑌|𝐴 = 1, 𝑚, 𝑐).   18 

 19 

The proof is given in Appendix B. In Theorem 4, the bias formulas rely on 𝛥(𝑚, 𝑐), 𝜌𝑌,𝑍(𝑚, 𝑐), 20 

and 𝑝(𝑚, 𝑐) , which depend on the IB. 𝛥(𝑚, 𝑐) , 𝜌𝑌,𝑍(𝑚, 𝑐) , and 𝑝(𝑚, 𝑐)  can be the 21 

predetermined functions of 𝑚 and 𝑐 that are suggested by experts. For example, the function 22 

𝜌𝑌,𝑍(𝑚, 𝑐) can be determined based on prior knowledge about the strength of the association 23 

between the outcome and IB. Alternatively, 𝛥(𝑚, 𝑐) , 𝜌𝑌,𝑍(𝑚, 𝑐) , and 𝑝(𝑚, 𝑐)  can be 24 

empirically estimated from the data through a parametric approach. 𝐵(𝛥, 𝜌𝑌,𝑍, 𝑝) can be used 25 

to assess how plausible the SDE and SIE are in an application. The nonparametric 26 



 15 

bootstrapping method is suggested to estimate 𝐵(𝛥, 𝜌𝑌,𝑍, 𝑝) in practice. 1 

 2 

4. Robust estimation 3 

4.1. Three semiparametric estimators 4 

 In this section, we describe estimation methods for the SDE and SIE. We mainly focus on 5 

estimating 𝑄  because the remaining components of the SDE and SIE (i.e., 𝜓(1,1)  and 6 

𝜓(0,0) ) can easily be estimated by using marginal structure models or G-computation. To 7 

estimate 𝑄 , models must be specified for 𝐸(𝑌|𝐴, 𝑍, 𝑀, 𝐶; 𝛼) , 𝑃𝑟(𝑀|𝐴, 𝑍, 𝐶; 𝛽) , 8 

𝑃𝑟(𝑍|𝐴, 𝐶; 𝛾), and 𝑃𝑟(𝐴|𝐶; 𝛿), which correspond to the outcome, mediator, treatment, and IB, 9 

respectively, and 𝛼 , 𝛽 , 𝛾 , and 𝛿  are the parameters in the corresponding models. We 10 

estimate 𝛼, 𝛽, 𝛾, and 𝛿 by using the maximum likelihood approach, and the estimates of 11 

these parameters are denoted as  �̂� , �̂� , 𝛾 , and 𝛿 , respectively. We first introduce three 12 

semiparametric estimators for 𝑄 for the following sets of model assumptions: 13 

(A) ℳ𝐴 : the models for 𝐸(𝑌|𝐴, 𝑍, 𝑀, 𝐶; 𝛼) , 𝑃𝑟(𝑀|𝐴, 𝑍, 𝐶; 𝛽) , and 𝑃𝑟(𝑍|𝐴, 𝐶; 𝛾)  are 14 

correctly and separately specified. 15 

(B) ℳ𝐵: the models for 𝑃𝑟(𝑀|𝐴, 𝑍, 𝐶; 𝛽), 𝑃𝑟(𝑍|𝐴, 𝐶; 𝛾), and 𝑃𝑟(𝐴|𝐶; 𝛿) are correctly and 16 

separately specified. 17 

(C) ℳ𝐶  : the models for 𝐸(𝑌|𝐴, 𝑍, 𝑀, 𝐶; 𝛼)  and 𝑃𝑟(𝐴|𝐶; 𝛿)  are correctly and separately 18 

specified. 19 

In ℳ𝐴 , the model for the treatment is unrestricted, in ℳ𝐵 , the model for the outcome is 20 

unrestricted, and, in ℳ𝐶  , the models for the mediator and IB are unrestricted. Each 21 

semiparametric estimator is based on a specific set of model assumptions. In Section 4.2, we 22 

propose a multiply robust estimator of 𝑄 based on the three semiparametric estimators for the 23 

union of ℳ𝐴, ℳ𝐵, and ℳ𝐶 . 24 

 The three semiparametric estimators of 𝑄, denoted as �̂�𝐴, �̂�𝐵, and �̂�𝐶, are given by 25 

�̂�𝐴 = ℙ𝑛 {∫ [𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝐶; �̂�)
𝑚

{∫𝑃𝑟(𝑚|𝐴 = 0, 𝑧, 𝐶; �̂�)𝑃𝑟(𝑧|𝐴 = 0, 𝐶; �̂�)𝑑𝜈(𝑧)
𝑧

} 𝑑𝜈(𝑚)} , 26 



 16 

�̂�𝐵 = ℙ𝑛 {
∫ 𝑃𝑟(𝑀|𝐴 = 0, 𝑧, 𝐶; �̂�)𝑃𝑟(𝑧|𝐴 = 0, 𝐶; �̂�)𝑑𝜈(𝑧)

𝑧
×𝐼(𝐴=1,𝑍=1)

𝑃𝑟(𝑀|𝐴, 𝑍, 𝐶; �̂�)𝑃𝑟(𝑍|𝐴, 𝐶; �̂�)𝑃𝑟(𝐴|𝐶; �̂�)
𝑌}, and 1 

�̂�𝐶 = ℙ𝑛 {
𝐼(𝐴 = 0)

𝑃𝑟(𝐴|𝐶; �̂�)
𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑀, 𝐶; �̂�)}, 2 

where ℙ𝑛[∙] = 𝑛−1 ∑ [∙]𝑖𝑖  is the empirical average operator and 𝐼(∙) is an indicator function. 3 

Under standard regularity conditions, �̂�𝐴 , �̂�𝐵 , and �̂�𝐶  are consistent and asymptotically 4 

normal (CAN) for ℳA, ℳB, and ℳC, respectively, based on the central limit theorem and 5 

Slutsky’s theorem (see Appendix C for details). However, these estimators could be severely 6 

biased if their corresponding model assumptions are violated. For example, �̂�𝐴 and �̂�𝐵 are 7 

inconsistent if the model for the mediator is misspecified, even if the remaining models are 8 

correctly specified. To address this problem, we develop a novel estimator of 𝑄, denoted as 9 

�̂�𝑅, that is multiply robust to model misspecification. More specifically, �̂�𝑅 remains CAN if 10 

the models are correctly specified for at least one of ℳ𝐴, ℳ𝐵, and ℳ𝐶 . Moreover, knowing 11 

which model assumptions are correct is unnecessary. 12 

 13 

4.2. Multiply robust estimators 14 

To motivate the proposed multiply robust estimator of 𝑄, the following theorem provides 15 

the efficient influence function (EIF) for 𝑄 in a nonparametric model ℳ𝑛𝑝, which does not 16 

rests on any assumption on the outcome, mediator, IB, or treatment.  17 

 18 

Theorem 5. (EIF in 𝓜𝒏𝒑)  19 

Under the consistency assumption and on Assumptions 1 to 6, the EIF for 𝑄  in the 20 

nonparametric model ℳ𝑛𝑝 is given by  21 

𝐸𝐼𝐹(𝑂; 𝑄) =
𝑃𝑟(𝑀|𝐴 = 0, 𝐶)𝐼(𝐴 = 1, 𝑍 = 1)

𝑃𝑟(𝑀|𝐴, 𝑍, 𝐶)𝑃𝑟(𝑍|𝐴, 𝐶)𝑃𝑟(𝐴|𝐶)
[𝑌 − 𝐸(𝑌|𝐴, 𝑍, 𝑀, 𝐶)] 22 

+
𝐼(𝐴 = 0)

𝑃𝑟(𝐴|𝐶)
[𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑀, 𝐶) − 𝜉(𝐶)] 23 

+ [𝜉(𝐶) − 𝑄], 24 



 17 

where 𝜉(𝐶) = ∫ [𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝐶)𝑃𝑟(𝑚|𝐴 = 0, 𝐶)𝑑𝜈(𝑚)
𝑚

  and 𝑂 = (𝑌, 𝐴, 𝑍, 𝑀, 𝐶) 1 

denotes the observed data. In addition, the semiparametric efficiency bound of 𝑄 in ℳ𝑛𝑝 is 2 

𝑉𝑎𝑟(𝐸𝐼𝐹(𝑂; 𝑄)). 3 

 4 

The proof of Theorem 5 is provided in Appendix C. Theorem 5 indicates that any regular and 5 

asymptotically linear (RAL) estimators of 𝑄 have an identical influence function 𝐸𝐼𝐹(𝑂; Δ) 6 

and satisfy 7 

√𝑛(�̂� − 𝑄) = √𝑛 (∑ 𝐸𝐼𝐹(𝑂𝑖; 𝑄)
𝑖

) + 𝑜𝑝(1), 8 

where the probability of 𝑜𝑝(1) converges to 0. Theorem 5 motivates the establishment of a 9 

robust estimator of 𝑄 under the union model ℳ𝑈 = ℳ𝐴 ∪ ℳ𝐵 ∪ ℳ𝐶  as follows: 10 

�̂�𝑅 = ℙ𝑛{  �̂�(𝑀, 𝑍, 𝐴, 𝐶)[𝑌 − 𝐸(𝑌|𝐴, 𝑍, 𝑀, 𝐶; �̂�)] + 11 

𝐼(𝐴 = 0)

𝑃𝑟(𝐴|𝐶; 𝛿)
[𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑀, 𝐶; �̂�) − 𝜉(𝐶)] + 𝜉(𝐶) }, 12 

where 13 

�̂�(𝑀, 𝑍, 𝐴, 𝐶) =
∫ 𝑃𝑟(𝑚|𝐴 = 0, 𝑧, 𝐶; �̂�)𝑃𝑟(𝑧|𝐴 = 0, 𝐶; 𝛾)𝑑𝜈(𝑧)

𝑧
× 𝐼(𝐴 = 1, 𝑍 = 1)

𝑃𝑟(𝑀|𝐴, 𝑍, 𝐶; �̂�)𝑃𝑟(𝑍|𝐴, 𝐶; 𝛾)𝑃𝑟(𝐴|𝐶; 𝛿)
 and 14 

𝜉(𝐶) = ∫ [𝐸(𝑌|𝐴 = 1, 𝑍 = 1, 𝑚, 𝐶; �̂�) {∫𝑃𝑟(𝑚|𝐴 = 0, 𝑧, 𝐶; �̂�)𝑃𝑟(𝑧|𝐴 = 0, 𝐶; 𝛾)𝑑𝜈(𝑧)
𝑧

} 𝑑𝜈(𝑚)
𝑚

. 15 

The robust estimator �̂�𝑅  solves the estimating equation defined as 16 

ℙ𝑛{𝐸𝐼𝐹(𝑂; 𝑄, �̂�)  } = 0 , where 𝐸𝐼𝐹(𝑂; 𝑄, �̂�)  represents 𝐸𝐼𝐹(𝑂; 𝑄)  evaluated at �̂� =17 

(�̂�, �̂�, 𝛾, 𝛿). Theorem 6 summarizes the primary properties of �̂�𝑅. The proof is provided in 18 

Appendix C.     19 

 20 

Theorem 6. (Asymptotic property of �̂�𝑹)  21 

Suppose that the assumptions of Theorem 3 hold and that the regularity conditions of Theorem 22 

A.1 in Robins et al. (1992) hold. Then, �̂�𝑅  is RAL for ℳ𝑈 = ℳ𝐴 ∪ ℳ𝐵 ∪ ℳ𝐶  , and its 23 

influence function is given by 24 

𝐼𝐹(𝑂; 𝑄, 𝜽∗) = 𝐸𝐼𝐹(𝑂; 𝑄, 𝜽∗) −
𝜕𝐸𝐼𝐹(𝑂; 𝑄, 𝜽)

𝜕𝜽𝑻
𝐸 (

𝜕𝑈(𝑂; 𝜽)

𝜕𝜽𝑻
)

−1

𝑈(𝑂; 𝜽)|

𝜽=𝜽∗

, 25 

where 𝜽∗  is the probability limit of �̂� , and 𝑈(𝑂; 𝜽)  represents the collection of score 26 



 18 

functions for 𝑃𝑟(𝑌|𝐴, 𝑍, 𝑀, 𝐶; 𝛼) , 𝑃𝑟(𝑀|𝐴, 𝑍, 𝐶; 𝛽) , 𝑃𝑟(𝑍|𝐴, 𝐶; 𝛾) , and 𝑃𝑟(𝐴|𝐶; 𝛿) . Thus, 1 

�̂�𝑅 is a CAN estimator with asymptotic variance 𝐸(𝐼𝐹(𝑂; 𝑄, 𝜽∗)2). Moreover, �̂�𝑅 achieves 2 

the semiparametric efficiency bound of 𝑄 at the intersection submodel ℳ𝑈 = ℳ𝐴 ∩ ℳ𝐵 ∩3 

ℳ𝐶 , in which all models are correctly specified. 4 

 5 

The asymptotic variance formula of �̂�𝑅 in Theorem 6 follows from the standard M-estimation 6 

method (Stefanski and Boos, 2002), which can be implemented in both simulation and 7 

application studies. Alternatively, the nonparametric bootstrapping method may be used to 8 

estimate the variance and confidence interval in practice (Cheng and Huang, 2010). 9 

 10 

5. Simulation studies 11 

In this section, we discuss simulation studies performed to evaluate the finite sample 12 

performance of the estimators of 𝑄. For comparison, two conventional methods for mediation 13 

analysis, namely G-computation and inverse-probability-weighting (IPW) estimation, are also 14 

applied in simulation studies. Notably, the estimators of G-computation and IPW estimation 15 

correspond to �̂�𝐴 and �̂�𝐵; thus, G-computation and IPW estimation are expected to suffer 16 

from severe bias in the presence of model misspecification. To appropriately mimic the 17 

motivating example, we use a binary outcome and a continuous mediator for the simulation 18 

study. The data generation for the simulations is detailed as follows: 19 

𝐶1~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.5)), 20 

𝐶2~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎2 = 1), 21 

𝐴|𝐶1, 𝐶2~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.5 + 𝐶1 − 𝐶2 − 𝜆1𝐶2
3 )), 22 

𝑍|𝐶1, 𝐶2~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.5 − 𝐶1 + 𝐶2 )), 23 

𝑀|𝐶1, 𝐶2, 𝐴, 𝑍~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0.5𝐶1 − 0.5𝐶2 + 𝐴 − 0.5𝑍 − 𝐴𝑍 + 𝜆2𝐴𝐶2, 𝜎2 = 1), 24 

𝑌|𝐶1, 𝐶2, 𝐴, 𝑍, 𝑀~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(0.3𝐶1 + 0.3𝐶2 − 0.5𝐴 − 𝑀 + 0.4𝑍 + 𝜆3𝐴𝑀)), 25 

where 𝐵𝑒𝑟 denotes the Bernoulli distribution function, 𝑁𝑜𝑟𝑚𝑎𝑙 is the normal distribution 26 

function, and 𝑒𝑥𝑝𝑖𝑡 represents the expit function. In these data generating models, 𝜆1, 𝜆2, 27 



 19 

and 𝜆3, which are arbitrary numbers, are used to control the degree of model misspecification. 1 

Specifically, we fitted 𝐴|𝐶1, 𝐶2, 𝑍|𝐶1, 𝐶2, 𝑀|𝐶1, 𝐶2, 𝐴, 𝑍, and 𝑌|𝐶1, 𝐶2, 𝐴, 𝑍, 𝑀 as follows: 2 

𝐴|𝐶1, 𝐶2~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(𝛿𝐴,0 + 𝛿𝐴,𝐶1
𝐶1 + 𝛿𝐴,𝐶2

𝐶2 )), 3 

𝑍|𝐶1, 𝐶2~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(𝛾𝑍,0 + 𝛾𝑍,𝐶1
𝐶1 + 𝛾𝑍,𝐶2

𝐶2 )), 4 

𝑀|𝐶1, 𝐶2, 𝐴, 𝑍~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝛽𝑀,𝐶1
𝐶1 + 𝛽𝑀,𝐶2

𝐶2 + 𝛽𝑀,𝐴𝐴 + 𝛽𝑀,𝑍𝑍 + 𝛽𝑀,𝐴𝑍𝐴𝑍, 𝜎2), 5 

𝑌|𝐶1, 𝐶2, 𝐴, 𝑍, 𝑀~𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(𝛼𝑌,𝐶1
𝐶1 + 𝛼𝑌,𝐶2

𝐶2 + 𝛼𝑌,𝐴𝐴 + 𝛼𝑌,𝑀𝑀 + 𝛼𝑌,𝑍𝑍)) . 6 

Thus, if 𝜆1, 𝜆2, and 𝜆3 are nonzero in the data generation process, which implies that the 7 

models specified in the estimation are inconsistent with the data generating models, then model 8 

misspecification occurs. Accordingly, we investigate the following three simulation scenarios:  9 

Scenario (1): the model of the outcome can be misspecified, but the remaining models are 10 

correctly specified. That is, in the data generation, 𝜆1 = 0, 𝜆2 = 0, and 𝜆3 = 0, 0.5, 1, 1.5, or 11 

2.  12 

Scenario (2): the model of the mediator can be misspecified, but the remaining models are 13 

correctly specified. That is, in the data generation, 𝜆1 = 0, 𝜆3 = 0, and 𝜆2 = 0, 0.5, 1, 1.5, or 14 

2.  15 

Scenario (3): the model of the treatment can be misspecified, but the remaining models are 16 

correctly specified. That is, in the data generation, 𝜆2 = 0, 𝜆3 = 0, and 𝜆1 = 0, 0.5, 1, 1.5, or 17 

2.  18 

By using these scenarios, we assess the robustness of G-computation, IPW, and the proposed 19 

robust estimation methods when models were misspecified. Simulations were performed 20 

10,000 times with sample sizes of 1,000. The results are summarized in Figure 1. 21 

 For Scenario 1, the top panels of Figure 1 indicate that the estimate produced through G-22 

computation became increasingly biased as the degree of misspecification of the outcome 23 

model ( 𝜆3 ) increased. By contrast, the IPW estimation and robust estimation precisely 24 

estimated 𝑄  regardless of the value of 𝜆3 . This reveals the weakness of G-computation. 25 

Although the implementation of G-computation is more straightforward than that of the other 26 

methods (Snowden et al., 2011), the outcome model must be correctly specified to ensure an 27 

unbiased estimation, which is generally more challenging than correctly specifying the 28 



 20 

mediator or the treatment. The center panels of Figure 1 present the results of Scenario 2, in 1 

which the mediator model was incorrectly specified. In this scenario, the estimates of 𝑄 2 

provided by G-computation and IPW estimation were biased. By contrast, the proposed robust 3 

estimation is theoretically consistent in Scenario 2, and the simulation study confirms that the 4 

proposed robust estimator was unbiased despite slight increases in the empirical variance of 5 

the robust estimator when the degree of mediator model misspecification (𝜆2) was increased. 6 

In Scenario 3, we assessed the performance of three estimators when the treatment was not 7 

correctly specified. The bottom panels of Figure 1 show that the IPW estimator was sensitive 8 

to treatment model, whereas the G-computation approach and the proposed method were robust 9 

to misspecification of the treatment model. Although the IPW estimator is easily computed due 10 

to its straightforward formulation, the applicability of the IPW estimation may be limited if the 11 

treatment model is difficult to specify correctly. In summary, the robust estimator substantially 12 

outperformed the IPW estimator and G-computation in simulation studies.    13 

 14 

 15 



 21 

Figure 2. Bias and 95% confidence intervals for 𝑄 estimation. The x axis represents the degree of model 1 
misspecification. For scenarios 1, 2, and 3 the misspecification degrees are denoted by 𝜆1, 𝜆2, and 𝜆3, 2 
respectively. The y axis represents the bias. Bars represent 95% confidence intervals for the degrees of model 3 
misspecification. The dotted horizontal line represents zero bias.  4 

 5 

6. Application to genomic datasets of lung cancer  6 

 To illustrate our method, we separately analyzed two genomic datasets of lung cancer 7 

from The Cancer Genome Atlas. The first dataset comprised data on 502 patients with lung 8 

squamous cell carcinoma; 9 of these 502 samples were excluded from the analysis due to 9 

incomplete data. The second dataset included 533 patients with lung adenocarcinoma; 19 of 10 

these 533 samples were removed after filtering missing data. The gene expression of primary 11 

tumor samples collected during surgery was measured using Agilent gene expression arrays. 12 

To reduce bias from the abundant transcript reads, the gene expression data were normalized 13 

across samples by using the unit of fragments per kilobase of transcript per million mapped 14 

reads (FPKM).  15 

The elevated expression of EGFR and its cognate ligands are associated with numerous 16 

cancer types, including lung cancer (Lynch et al., 2004; Pao and Chmielecki, 2010), and appear 17 

to promote solid tumor growth (Nicholson et al., 2001). To investigate the mechanism of EGFR 18 

in the treatment (𝐴 ) of lung cancer, we applied the proposed method to both datasets and 19 

assessed the mediating role of EGFR expression in the treatment of patients with lung cancer. 20 

Accordingly, we treated the EGFR expression as a continuous mediator (𝑀) and the vital status 21 

(𝑌 ) as the primary outcome. Moreover, clinical studies have revealed the effect of YES1 22 

amplification on the mechanism of resistance to EGFR inhibitors in lung cancer (Fan et al., 23 

2018; Helena et al., 2018; Ichihara et al., 2017). Therefore, we considered YES1 amplification 24 

(𝑍)–a dichotomous variable recording whether the gene expression level of YES1 is abnormal–25 

as the potential IB in the path from the treatment to EGFR in lung cancer. The bias formula for 26 

the IB proposed in Section 3 was applied to assess the plausibility of YES1 amplification in this 27 
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study. In addition, demographic variables (age, gender, and ethnicity) and clinical variables 1 

(tumor, node, and metastasis staging) were adjusted for as baseline confounders (�̃�). Figure 3 2 

presents the causal diagram.   3 

All variables were fitted according to the causal relationship shown in Figure 3 as follows: 4 

𝐴|�̃� ~ 𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(𝛿0 + 𝛿𝐶�̃�)), 5 

𝑍|�̃� ~ 𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(𝛾0 + 𝛾𝐶�̃�)), 6 

𝑀|�̃�, 𝐴, 𝑍 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝛽0 + 𝛽𝐶�̃� + 𝛽𝐴𝐴 + 𝛽𝑍𝑍 + 𝛽𝐴𝑍𝐴𝑍, 𝜎2), 7 

𝑌|�̃�, 𝐴, 𝑍, 𝑀 ~ 𝐵𝑒𝑟(𝑝 = 𝑒𝑥𝑝𝑖𝑡(𝛼0 + 𝛼𝐶�̃� + 𝛼𝐴𝐴 + 𝛼𝑀𝑀 + 𝛼𝑍𝑍)) . 8 

All the parameters in the preceding models were estimated using the regular maximum 9 

likelihood approach for lung squamous cell carcinoma and lung adenocarcinoma, separately. 10 

Accordingly, the TE, SDE, and SIE were estimated as shown in Table 1. In addition to the SDE 11 

and SIE, we further estimated the NDE and NIE for comparison, although the assumption of 12 

no unmeasured M–Y confounding for the NDE and NIE was violated. SDE and SIE were 13 

estimated using the proposed robust estimation, and the estimations of the TE, NDE, and NIE 14 

were obtained by using the conventional IPW approach (Table 1). The confidence intervals 15 

were determined by using the nonparametric bootstrapping method with 10,000 bootstraps for 16 

simplicity in calculation. 17 

 The estimated bias formulas for the IB in lung squamous cell carcinoma and lung 18 

adenocarcinoma (Table 1) both indicate that the biases arising from the IB assumptions being 19 

violated were slight. This suggested that YES1 was an appropriate IB in this application. The 20 

conclusions regarding the direct and indirect effects from the analyses of lung squamous cell 21 

carcinoma and in lung adenocarcinoma were relatively consistent. Specifically, when mediated 22 

through EGFR expression, the treatment reduced mortality rates by 7.4% and 5.7% in the two 23 

datasets. The estimated SDEs were both positive, reflecting a negative therapeutic effect. The 24 

current treatment may have no significant effect on the patients without EGFR mutation. By 25 

contrast, the results obtained using the natural approaches (i.e., the NDE and NIE) were 26 
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inconsistent between lung squamous cell carcinoma and lung adenocarcinoma. The 1 

inconsistency in the natural approach was probably caused by the violation of the assumption 2 

of no unmeasured M–Y confounding.    3 

 4 

 5 
Figure 3. Causal diagram of the application to lung cancer.  6 

 7 

Table 1. Results for lung squamous cell carcinoma and lung adenocarcinoma 8 

  
Lung squamous cell 

carcinoma 
 Lung adenocarcinoma 

  Estimate 95% CI  Estimate 95% CI 

Proposed method 

 SDE 0.027 (-0.071, 0.124)  0.118 (0.045, 0.189) 

 SIE -0.074 (-0.150, -0.003)  -0.057 (-0.095, -0.019) 

Natural approach 

 NDE -0.042 (-0.103, 0.018)  0.059 (0.001, 0.114) 

 NIE -0.005 (-0.018, 0.005)  0.003 (-0.007, 0.015) 
       

Bias formula 0.019 (-0.013, 0.051)  -0.010 (-0.026, 0.005) 

TE -0.047 (-0.107, 0.011)  0.062 (0.006, 0.116) 

Abbreviations: SDE: swapped direct effect; SIE: swapped indirect effect; NDE: natural direct effect; NIE: natural 9 
indirect effect; TE: total effect; CI: confidence interval. 10 



 24 

 1 

7. Discussion 2 

 This paper proposes a new method, namely the SDE and SIE, for causal mediation 3 

analysis based on the introduction of a novel quasi-instrumental variable, IB, which satisfies 4 

the relevance assumption and exclusion restriction of the conventional instrumental variable 5 

for the M–Y relationship. The proposed SDE and SIE can assess direct and indirect effects, 6 

respectively, in the presence of unmeasured M–Y confounding and intermediate M–Y 7 

confounding; this condition has been addressed in existing methods. Thus, the development of 8 

the SDE and SIE fills this research gap. Moreover, the causal interpretation of the SDE and 9 

SIE coincides with that of the NDE and NIE. This is a crucial theorem for the SDE and SIE 10 

because it implies that their empirical expressions are alternative approaches to inferring the 11 

NDE and NIE under verifiable assumptions. The key to the success of the SDE and SIE is to 12 

employ a variable that satisfies the assumptions for the IB in the analysis. To examine whether 13 

a variable meets the proposed assumptions for the IB, we conducted a sensitivity analysis by 14 

establishing a bias formula for the SDE and SIE. This bias formula enabled a determination of 15 

the plausibility of treating YES1 as the IB in the pathway from treatment to mortality mediated 16 

through EGFR expression. From the perspective of statistical inference, we propose a robust 17 

estimation for the SDE and SIE. Moreover, Theorem 6 demonstrates that the robust estimation 18 

is CAN and achieves the semiparametric efficiency bound. In addition, simulation studies 19 

revealed that the proposed robust estimators mostly outperformed their counterparts in 20 

conventional methods, namely IPW estimation and G-computation, under various scenarios.  21 

 22 

      23 

 24 
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