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Abstract 

 

This work presents a study on the effects of fire in non-loadbearing 

Light Steel Framing (LSF) walls. Since there is still a desire to use a much more 

simplified method in routine fire resistance design, the objective of this study is 

to propose an equation that describes the effective width for calculating the fire 

resistance through one dimensional simplified analysis also described in this 

study. The one dimensional analysis was possible by considering fourteen 

layers, where five layers are presented on the gypsum exposed wall, four layers 

on the cavity and five more layers on the gypsum unexposed wall. The heat 

flow is considered as one path in both of the gypsum layers but divided into five 

different paths in the cavity, considering heat transfer between different 

materials, only in the y direction. Two different methods for the calculation of 

the effective width were proposed and validated with eleven different 

configurations of LSF walls, with experimental and numerical two-dimensional 

results, in order to find which method is more effective. Lastly, parametric 

studies were made using seven different cavity insulation materials, five 

different spacing between studs and five different cavity spacing, maintaining 

every other specification as constant, to understand their role in fire resistance 

of LSF non-loadbearing walls. 

 

 

Keywords: LSF Walls, Fire Resistance, Ansys APDL, Advanced Calculation 

Method, One Dimensional Analysis, Effective Width. 
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Resumo 

 

Este trabalho apresenta um estudo nos efeitos de incêndios em 

estruturas de paredes leves em aço enformado a frio não portantes. Como há 

ainda um desejo de usar um método muito mais simplificado para encontrar 

um design de resistência ao fogo, o objetivo deste estudo é propor uma 

equação que descreva a largura efetiva para o cálculo da resistência ao fogo 

através de análise uni-dimensional que também é descrita neste estudo. A 

análise uni-dimensional foi possível considerand quatorze camadas, onde 

cinco camadas estão apresentadas na parede de gesso exposta ao fogo, 

quatro camadas na cavidade e mais cinco camadas na parede de gesso não 

exposta ao fogo. O fluxo de calor é considerado com um único caminho em 

ambas as paredes de gesso, porém dividido em cinco caminhos diferentes na 

cavidade, considerando transferência de calor entre materiais diferentes, 

apenas na direção y. Dois diferentes métodos para o cálculo da largura efetiva 

foram propostos e validados com onze diferentes configurações de paredes 

leves em aço enformado a frio, com resultados experimentais e numéricos de 

duas dimensões, a fim de encontrar qual método é mais eficaz. Por fim, 

estudos paramétricos foram realizados utilizando sete diferentes materiais de 

isolamento na cavidade, cinco diferentes espaçamentos entre os montantes 

verticais e cinco diferentes espaçamentos de cavidade, mantendo todas as 

outras especificações constantes, a fim de entender seu papel na resistência 

ao fogo de paredes leves em aço enformado a frio não portantes. 

 

 

Palavras chave: Paredes de LSF, Resistência ao Fogo, Método Avançado de 

Cálculo, Análise Uni-dimensional, Largura Efetiva. 
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Nomenclature 

 

𝑊𝐿  effective width 

𝐵𝑊  length of the web 

𝐵𝐿  length of the lip 

𝐵𝐹  length of the flange 

𝑇𝑆  thickness of the steel section 

𝑇𝐺  thickness of the gypsum board 

𝛼   convection coefficient of the fire side 

𝜀𝑓   emissivity coefficient of the fire side 

𝜀𝐺   emissivity coefficient of the sheathing material (gypsum) 

𝜎   Stefan-Boltzmann constant (5.67×10-8 W/m2K4) 

𝜆𝑠   thermal conductivity of steel 

𝜌𝑠   density of steel 

𝐶𝑝𝑠   specific heat of steel 

𝜆𝑖   thermal conductivity of insulation 

𝜌𝑖   density of insulation 

𝐶𝑝𝑖   specific heat of insulation 

𝜆𝐺   thermal conductivity of gypsum board 

𝜌𝐺   density of gypsum board 

𝐶𝑝𝐺   specific heat of gypsum board 

𝑄̇𝑛 heat transfer rate on the 𝑛 layer 

𝑄̇𝐶𝑂𝑁𝐷𝑎,𝑏 heat conduction between layers 𝑎 and 𝑏 

𝑄̇𝐶𝐴𝑃𝑛 heat capacity for layer 𝑛 

𝑇𝑓𝑖𝑟𝑒   temperature of the fire side, which is defined by ISO 834 

𝑇𝑛   temperature in the 𝑛 layer 

𝑇𝑛
𝑖−1   temperature of the 𝑛 layer in the previous timestep 

Δ𝑡   timestep of the simulation 
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1. Introduction 

 

Finite Element simulation methods for heat transfer are now sufficiently mature 

and accessible, however there is still a desire to use a much more simplified method 

in routine fire resistance design. For this purpose, it is necessary to present more about 

the structure of the wall in this study. 

According to Santos [1], buildings in Europe are responsible for 40% of the 

energy consumption, having the space conditioning (heating and cooling systems) an 

important share, which also depends on climate. Alternatives to traditional structural 

systems for buildings have emerged, e.g. lightweight steel framing (LSF) systems. The 

LSF construction systems have as base-material a steel structure, made of bended 

cold formed steel plates, which are usually prismatic and have a thin-walled cross 

section. 

The use of steel as a construction material has grown greatly in the last few 

years, due to its advantages: cost efficiency, reduced weight, exceptionally solid in 

relation to weight, stability of shape in case of humidity, rapid on-site erection, excellent 

acoustic properties, easy to prefabricate, great potential for recycling and reuse and 

incombustibility (category A material) [2]. However, if not addressed correctly, thermal 

bridges could penalize the thermal behaviour and energy efficiency of steel buildings. 

Thermal bridges is the name given for highly conductive members spaced along the 

wall, which allow higher heat transfer than that through less conductive areas [3], [4]. 

Therefore, in recent years, there has been an effort to assess and improve the thermal 

behaviour of constructive solutions with steel structures. Although such adverse 

conditions can be easily avoided by proper thermal design of wall systems, these 

effects have not been well understood and thermal data has been lacking.  

 

1.1. Objectives 

 

This work presents a study of the fire effects on a non-loadbearing wall Light 

Steel Frame (LSF) structure through numerical and simple calculation methods for a 

thermal analysis. 

Special numerical tasks aim to develop an accurate one-dimensional model to 

predict fire resistance using Matlab programing. The validation of the Matlab program 



2 

with experiments and a 2D finite element model using ANSYS Mechanical APDL is 

presented. 

Specific tasks are included to be investigated by three parametric studies, 

where the first one is used to evaluate the influence of cavity insulation materials on 

the fire resistance using seven different configurations, the second one is used to 

evaluate the influence of the spacing between studs on the fire resistance using five 

different configurations and the last one is used to evaluate the influence of the cavity 

spacing on the fire resistance using five different configurations. 

 

1.2. Light Steel Framing Constructions 

 

Steel is now in use for over 100 years. Although the immediate thought when 

considering steel is associated with skyscrapers and bridges, the choice for this 

material is emerging in industrial, commercial and institutional buildings. Light steel 

framing has been an increasing choice in low to medium rise structures, such as 

schools, shopping malls, box stores, stacked row houses, hotels, assisted care 

residences and office buildings. LSF can be used in either the floor, roof or wall 

assemblies in buildings from one to six stories in height. It can be used alone to provide 

all necessary structural elements or in combination with other materials for a greater 

building diversity and scope  

LSF is a novel construction technology that has been considered vastly for 

cold climate countries due to its good thermal and structural behavior [5]. The main 

advantages of lightweight steel frame is their weight, their incombustibility, their high 

load-bearing capacity and a wide range of possible uses. Light steel frames if 

combined with improved plating and insulation materials can be an interesting option 

to achieve different applications in modern constructions [2]. 

Steel can be practically used in an unlimited number of ways, since it has a 

variety of sections, assembly techniques, associations with other materials and forming 

methods. Its different finishes and wide range of forms makes it a good choice for all 

requirements. Besides being environmentally safe, this material is also magnetic, 

which makes it easy to be extracted from disparate waste heaps. Every single piece 

collected, including scraps, can be fully recycled to produce extremely fine qualities 

[2].  
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Steel can be used to make members that are durable, separable, 

dismountable and reusable, which makes it a type of building that protects natural 

resources, since it uses very little of the earth’s non-renewable reserves. 

The material and thickness of the sheathing used to cover the steel structure 

is usually dependable on the physical constraints of the member. Plasterboards or 

fiberplaster plates are preferred for internal partitions because they provide good 

acoustic properties when they are used to cover thin sections, are easy to paint and 

wallpaper and provide some type of heat resistance in the event of a fire. Lightweight 

steel construction can be used to build up to four storey buildings at low cost [2]. 

As pointed out by Gunalan [6], there are two main families in steel construction: 

hot-rolled shapes and members built up of plates and girders, and cold-formed 

sections from steel sheet, strip, plates or flat bars in roll-forming machines or by press 

brake or bending brake operations, which are known as cold-formed steel structural 

members. 

According to Soares et. al. [7], the Light Steel Framing (LSF) constructions are 

composed of studs and tracks made from thin C, U, Z, Σ, Top-hat and I-shaped cold-

formed sections and the thickness of the sheet can range between 0.45 to 6 mm. 

 

Fig. 1 – Examples of cold-formed cross-section profiles. [7] 

Light steel wall frame systems are commonly used in a variety of contemporary 

building constructions, especially as a non-loadbearing wall. Fire resistance of LSF 

walls is an important factor to prevent the spread of fire and eventually the building 

collapse. One or more layers of the proper combination of certain materials and 

members usually provide the fire protection. The thin steel sections must be covered 

by a sheathing to protect them from the fire. Gypsum plates have been approved as 

fire protection materials, as well as insulation materials such as rockwool, glassfiber 

and mineral fiber, which are going to be taken into account in this research [7]. 
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Two distinct numerical methods were considered in this investigation. The two 

dimensional finite element model uses incremental and nonlinear transient thermal 

analysis (ANSYS). The one dimensional strip model uses incremental and nonlinear 

transient solution and was developed for comparison, assuming that heat flows across 

the section by well-defined patterns.  

 

1.3. Plan of Thesis 

 

The second chapter of this thesis presents the state of the art, which is a 

retrospective about the studies related with the fire resistance of LSF structures.  

The third chapter brings an explanation about the analitical methods studied 

with the purpose of helping to create an equation to describe the effective width, which 

is the main objective of this study. 

The fourth chapter presents the fire, the fire curves and the fire resistance 

requirements considered in this study. 

The fifth chapter presents the specifications of the simplified calculation 

method and the proposed equations for the calculation of the effective width, as well 

as the specifications of the advanced calculation method.  

The sixth chapter shows the validation of both the simple and advanced 

calculation methods, compared to experimental analysis made by several authors. 

Three parametric analysis, to study the effect of the materials of the cavity 

insulation, the spacing between studs and the cavity spacing, are all presented in the 

seventh chapter. 

The eighth chapter presents the comparison between every result, most 

importantly comparing both of the simple calculation methods proposed in this study.  

The conclusions and future work are given in the ninth chapter. More 

information about the materials and methods used are presented in the appendix 

pages. 
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2. State of the Art 

 

This chapter presents a review of the research of the LSF walls. Both 

experimental and numerical investigation of LSF wall panels under fire conditions 

achievements are going to be presented. The state of the art explores the current 

knowledge of the LSF wall panels on a time line basis, including the behavior of all the 

components, failure modes, temperature fields and displacement behavior. 

 

2.1. Preliminary Studies 

 

In 1946, the American Iron and Steel Institute (AISI) introduced the first design 

principles. A research made by Prof. G. Winter on cold formed steel elements at 

Cornell University in 1963 analyzed the effects of cold-straining on structural sheet 

steels and corner properties of cold-formed steel shapes. AISI then sponsored a 

research investigation at Cornell University with the objective of identifying the effects 

of cold-forming on the mechanical properties, as well as on structural behaviour of 

members. 

In 1961, the British steel standard was modified to include the design of cold 

formed steel members, based on the work of Prof. A. H. Chilver. The Australian 

standard for the design of cold formed steel structural members was first published in 

1974. It was based on the American specifications of the 1968 edition, but with 

modifications to beams and columns design curves to keep them in line with the 

Australian Steel Structures Code [8]. 

In 1970, Chajes et al. [9] studied the cold working to which steel sheets are 

subjected when being cold-formed into structural shapes for light-gauge steel 

construction, presenting good results for the mechanical resistance and properties 

strong enough to handle a structure. Several cold-forming processes are used for the 

production of light-gauge steel construction structural members, such as cold-rolling 

and brakeforming, and it is well known that stretching and bending cold working affects 

the mechanical properties of mild structural steel. The work by Chajes et al. verified 

that the cold-forming causes a significant increase in yield strength of corners and a 
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smaller increase on flat surfaces of thin-walled steel members, validating the LSF 

construction model. 

In 1985, Schwartz and Lie [10] studied the resistance of exposed surfaces 

under fire conditions guided by the ASTM E119 criterion for the unexposed surface. 

The information and data increased the knowledge between the unexposed surface 

temperature rise criterion of ASTM E119 and the ignition temperature of common 

combustible materials, assuming three different modes of failure: structural collapse of 

the assembly, openings in the assembly allowing hot gases and flames to pass 

through, or excessive heat transfer through the assembly, making the temperature of 

the unexposed surface hot enough to ignite materials in contact or in close proximity. 

The conclusion of this study is that the standard have a large safety factor included 

and more economic solutions could be performed. 

In 1994, Mehaffey et al. [11] presented the finite difference numerical model to 

perform studies across heat transfer in surfaces and between surfaces and cavities. 

The model was validated with experimental tests. A similar study is presented in this 

work, in which it is assumed an one-dimensional finite difference numerical model and 

proposed an equation for the effective width to be considered. Also, the results are 

validated with experimental tests. 

 

2.2. Light Steel Frame Studies 

 

In 1994, Barbour [3] decided to make twenty three different tests in Light Steel 

Framing walls since until then the available data was obtained by different researchers, 

using various measurement methods, under diverse conditions, and therefore were 

inconsistent. 

With steel framing, the heat transfer in the y-direction (laterally in the plane of 

the wall normal to the x-direction) can be as significant as the heat transfer in the x-

direction. As heat is transferred along the y-direction, the other materials of the non-

homogeneous wall are exposed to different temperature distributions, thereby 

changing the heat transfer characteristics of the wall. However, the capacity of the 

adjacent facing materials to transmit heat to the metal is limited. Also, contact between 

materials limits heat transfer through contact resistance. Contact resistance is the 

change attributed to the temperature drop across the interface between materials, and 
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for steel framing, can be a large factor. Most contact resistances between materials 

are small, but since the area of metal in contact with other materials is larger than the 

thickness of the metal through the layer of insulation, it does have a large effect on the 

heat transfer characteristics of the wall [3]. 

According to Barbour [3], the insulation is much more effective on the external 

than on the cavity. Small differences in flange size have little effect on the overall wall 

R-value. Temperatures did not vary considerably from the web side of the stud to the 

open side of the stud. The temperature gradients on the sheathing material are larger 

in LSF walls with a material with low R-value for sheathing, than that of materials with 

high R-value as sheathing. In his studies, no condensation was noted on the warm 

surface, interior or exterior, and although some condensation was noted on the interior 

of the cold side, it shouldn’t be considered as an effect of the steel framing. 

Another discover made by Barbour [3] is that, by comparing both interior and 

exterior surface temperatures of the warm side of the sheathing material, as the R-

value of the sheathing increases, the temperature over the cavity is mostly constant, 

but the temperature over the stud increases. This is an indication of a reduction of heat 

flowing through the stud for larger R-value sheathing and a reduction in possible 

thermal bridging effects. 

In 1995, McGowan and Desjarlais [12] conclude that neither the parallel-path 

nor the isothermal-planes method should be used exclusive of the other. These are 

intended to be complementary methods that provide the upper and lower limites of the 

actual result. 

According to several authors [12], [3] the addition of a higher R-value sheathing 

material (or insulated sheathing) makes the thermal resistance of the whole wall 

increase, since it probably reduces the thermal bridging effect. 

 

2.3. Cavities and Composites: the new concept 

 

In 1994, Sultan and Lougheed [13] performed several small scale fire tests of 

gypsum board clad steel wall assemblies (914 x 914 mm) using different cavity 

insulations, such as glass fibers, rock fibers and cellulose fibers. Their conclusions 

were that the rock and cellulose fiber cavity insulations both improved the fire 

resistance by approximately 30 minutes, in comparison to non-insulated wall 
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assemblies, whereas there was only a small benefit for specimens using glass fiber as 

cavity insulation. On the warm side of the wall assembly with insulated cavities, the 

internal side of the gypsum board heated up more rapidly, reaching temperatures of 

700°C much earlier in comparison to non-insulated wall assemblies. Same as the 

exposed plasterboard, the exposed side of the cavity also reached highed 

temperatures in comparison to non-insulated assemblies.  

In 1995, Sultan [14] performed full scale fire resistance tests on non-load 

bearing gypsum board wall assemblies and concluded that when rock fiber insulation 

was used, there is a noted increase in the fire resistance rating by 54% over the non-

insulated wall assembly. However, the use of glass fiber as insulation cavity did not 

affect the fire perfomance whereas the cellulose fiber insulation reduced the fire 

resistance of the wall. 

In 2003, Feng et al. [15] conducted fire tests on non-load bearing small scale 

wall systems and noted that the thermal performance of wall panels improved with the 

use of cavity insulation. 

Kosny and Yarbrough, 2006 [16], also provided the conclusion that fiberglass 

batts used for cavity insulation in the internal areas between steel-stud flanges doesn’t 

bring significant improvements of the steel-stud wall thermal performance. 

Kolarkar and Mahendran, 2008 [17], show that the use of glass fiber as cavity 

insulation led to poor thermal performance of stud walls, whereas the thermal 

performance of externally insulated steel stud walls was superior than the traditionally 

built stud walls with or without cavity insulation. 

Because of the contradicting results seen in previous researches about the 

benefits of cavity insulation to the fire rating of stud wall systems, further research is 

required.  
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3. Analitical Methods 

 

This section will present a few different analitical methods that shows the 

calculation of the R-value of a LSF wall in a simplified process. The study of these 

methods is relevant for this work as being helpful for the analysis of the simplified 

method proposed. 

According to McGowan and Desjarlais [12], the best method for analysis of the 

R-value of a steel framed wall is by physical testing, followed by computer simulation, 

the ASHRAE 90.1, ISO 6946, and lastly, the modified zone method. 

 

3.1. Multilayered Plane Walls 

 

Çengel, 2002 [18] presents plane walls, having several layers of different 

materials, so the easiest way to determine the rate of steady heat transfer through 

such composite walls is by using the termal resistance concept. That way, the 

conduction resistance to heat flow of each wall is defined by 𝐿/𝑘𝐴, where 𝐿 is the 

thickness of the wall, 𝑘 is its thermal conductivity and 𝐴 is the area, connected in series, 

or in other words dividing the temperature difference between two surfaces at known 

temperatures by the total thermal resistance between them.  
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Fig. 2 – Thermal resistance network for heat transfer through a two-layer plane wall subjected to 
convection on both sides [18]. 

 

Using a concept of walls with a layer of insulation, when there is two layers, 

the rate of steady heat transfer can be expressed by Eq. 1, see Fig. 2. 

 

totalR
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Q 21  


 Eq. 1 

 

where 𝑇∞1 is the temperature of side 1, 𝑇∞2 is the temperature of the side 2 and 𝑅𝑡𝑜𝑡𝑎𝑙  

is the total thermal resistance, which can be expressed as 
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where 𝑅𝑐𝑜𝑛𝑣,1 represents the convection resistance of side 1, 𝑅𝑤𝑎𝑙𝑙,1 represents the 

thermal resistance of layer 1, 𝑅𝑤𝑎𝑙𝑙,2 represents the thermal resistance of layer 2 and 

𝑅𝑐𝑜𝑛𝑣,2 represents the convection resistance of side 2.  

On plane walls of three or more layers, an additional resistance should be 

added for each additional layer. 

 

3.2. Parallel Path Method 

 

For calculations of this method, a component wall can be divided into parallel 

heat flow paths of different conductances that extend from surface to surface. The heat 

flows through these paths are assumed to be independent from one another, and the 

thermal conductance for each path is calculated using a series relationship analogous 

to electrical resistance. The average resistance is found by multiplying the resistance 

of each path by the fraction of the total area over which the heat flow path acts [3], [4]. 

This method shows relatively accurate results for one-dimensional heat flow 

transfer, where there is little or no heat exchange between the “parallel” paths in the 

assembly. The parallel-path calculation is most useful in cases of simple sandwich 

constructions or wood-frame assemblies, as shown in Eq. 3. The equations below are 

given for both R-values and U-factors, considering the concept of thermal transmission 

(U) or the concept of thermal resistance (R). 

 

TRARARAQ TTT  ...)///( 332211 , Eq. 3 

TAUAUAUQ  ...)( 332211   

 

where Q is the heat flow through a defined area with multiple adjacent assemblies; RTi 

is the thermal resistance for assembly “i”, generally obtained by summing the 

resistance of each layer of material in the assembly including inner and outer air films; 

Ui is the heat transmission coefficient in W/(m²∙K) for assembly “i” including the effect 

of the interior and exterior surface films; Ai is the area of assembly “i”, in m2 and ∆T is 

the difference between the internal and external air temperatures. 
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Fig. 3 – Calculation schematic for the parallel path method [4]. 

For a region as shown in Fig. 3, the following equation may be used. 
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3.3. Isothermal Planes (Serie-Parallel Path) Method 

 

Differently from the parallel-path method, if one assumes that heat can flow 

laterally in any component, this creates isothermal planes parallel to the building 

surfaces, which is the concept of this method. Resistances of adjacent components 

are combined in parallel, resulting in effective resistances acting in series. The thermal 

resistance equals the sum of these effective series. Typically, this number is smaller 

than that obtained using the parallel path method [3]. 

The concept of parallel-path method is not likely to provide reliable results in 

buildings with highly conductive structural members or other components, such as 

steel, aluminium or glass. In such cases, the isothermal planes method is an alternate 

for calculating the U-value. 

This method uses an uniform temperature (isothermal) for the high conductive 

planes separating less conductive layers, therefore it is used to analyze heat flow 

through wood-framed assemblies or masonry walls, since the method divides the 
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construction assembly into series of layers. A good example of use for this method are 

hollow masonry units. The solid webs connecting the face shells are quite conductive 

compared to the air spaces in the hollow cores, and the face shells conduct heat 

laterally. Usually, the thermal resistance through the isothermal planes method is 

smaller than the one obtained through the parallel-path method. [3] 

For a two-core masonry wall, as shown in Fig. 4, the layer with the webs and 

cores is calculated using the parallel-path method to get to an average R-value for the 

layer, and then this result is added to the R-values of the two face shells in series. That 

way, in the isothermal planes method, the air-to-air R-value is calculated through Eq. 

5. 
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where 𝑅𝑒 and 𝑅𝑖 are exterior and interior air-film resistances; 𝑅𝑓𝑒 and 𝑅𝑓𝑖 are exterior 

and interior face resistances; 𝑎𝑤 and 𝑎𝑐 are fractions of the total heat flow area for the 

webs and air-cores; 𝑅𝑤 and 𝑅𝑐 are R-values (calculated for the space between faces) 

for all webs and air-filled cores. 

 

 

Fig. 4 – Calculation schematic for the isothermal plane method [4].  
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3.4. Zone Method 

 

Both the previous described methods assume the heat flow as being 

perpendicular to the wall. However, if a thermal bridge, such as a steel framing 

member, is placed in the wall component next to a material with low thermal 

conductivity, then there is a need for a two-dimensional effects analysis. One of the 

first methods to be developed to overcome this problem and provide a simplified 

solution was the American Society of Heating, Refrigeration, and Air Conditioning 

Engineers (ASHRAE) Zone method [19]. An area “weighing factor” is applied to the 

section of the wall with the thermal bridge, and this section is known as Zone A, the 

area affected by thermal bridge. The width of this zone is overstated compared to the 

one used in the usual parallel path calculation and is calculated from equation Eq. 6 

[3]. 

The zone method is ideal for structures with widely spaced metal members of 

substancial cross-section area, since the isothermal planes method calculation results 

in values that are too low in this case [19]. 

The zone method calculation involves two separate computations – one for a 

chosen limited portion, Zone A, in which contains the highly conductive element, and 

the other for the remaining portion of simpler construction, Zone B. Then, these two 

computations should be combined using the parallel flow method and the average 

transmittance per unit overall area should be calculated. Due to the basic laws of heat 

transfer, the conductances 𝐶𝐴 of elements are added in parallel and the resistances 

𝑅
𝐴⁄  of elements are added in series.  

The metal element determines the surface shape of Zone A, for example, for 

a rod perpendicular to panel surfaces, the Zone A is a circle of diameter 𝑊; for a steel 

stud, as seen in Fig. 5 , it is a strip of width 𝑊 that is centered on the stud. 

The difference between this method and the parallel path method is how 𝑊 is 

estimated. Using the parallel method, 𝑊 = 𝐿, whereas using the zone method, 𝑊 is 

calculated empirically though Eq. 6. The value of 𝑑 should not be less than 13 mm for 

still air [19]. 

 

dmW 2  Eq. 6 
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where 𝑚 is the width or diameter of metal heat path terminal in millimeters and 𝑑 is the 

distance from panel surface to metal in millimeters. 

The dissimilarity between this calculation and the parallel-path method is the 

way of estimating the area of the wall that is thermally affected by thermal bridging. 

According to several authors, the accuracy of above methods are unsatisfactory [20]. 

This method is not applicable to steel profiles perpendicular to one another 

and according to Barbour [3], it should be used for large spacemens between largely 

conductive materials. Also, this method is limited to cases in which there is insulation. 

 

 

Fig. 5 – Calculation schematic for the zone method [4]. 

 

3.5. Ashrae Modified Zone Method 

 

Similarly to the parallel path method and the zone method, the modified zone 

method is based on parallel-path calculations. As in parallel method, this zone can be 

assumed to be equal the length of the stud flange L, or it can be calculated as a sum 

of the length of the stud flange and a distance doubled from wall surface to metal ∑di, 

such as in zone method. In the modified zone method, the width of the zone depends 

on three parameters: ratio between thermal resistivity of sheathing material and cavity 

insulation, size (depth) of stud and thickness of sheathing material [19]. 
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Fig. 6 – Modified Zone Method R-value Calculation Representation for Metal Stud Walls. [19] 

 

The Fig. 6 shows the width 𝑊 of the zone of thermal bridge around a steel 

stud. The wall cross section is divided into two zones: 𝑤 and the cavity zone 𝑐𝑎𝑣. 

Layers of wall materials are grouped into an exterior and interior surface sections, 

being A for sheathing and siding and B for wallboard, as well as interstitial sections I 

(cavity insulation) and II (steel stud flange). In ASHRAE [19], there is a form which can 

be copied and used as a calculation form. 

If it is assumed that the layers of wall materials in wall section A is thicker than 

those of section B, than they can be described as: 
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 Eq. 7 

 

where 𝑛 is the number of material layer (of thickness 𝑑𝑖) between steel stud flange and 

wall surface for section A and 𝑚 is the number of material layer (of thickness 𝑑𝑗) for 

section B [19].  

Then, the width of the zone of thermal anomalies around the metal stud 𝑤 can 

be estimated by 
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 Eq. 8 

 

where 𝐿 is the stud flange size, 𝑑𝑖 is the thickness of material layer in section A and 𝑧𝑓 

is the zone factor, which can be obtained from Fig. 7 (𝑧𝑓 = 2 for zone method). 
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Fig. 7 – Modified Zone Factor for Calculating R-value of Metal Stud Walls with Cavity Insulation. [19] 

 

3.6. ISO 6946 Method 

 

The International Organization for Standardization (ISO) 6946 method is a 

numerical simulation carried out in accordance with ISO 10211. It is valid for 

components consisting of thermally homogenous or inhomogeneous layers and which 

may contain air layers up to 0.3 m thick and metal fasteners. [21] 

This method is used for steady-state conditions and assumed to be 

independent of actual conditions, such as indoor temperature or effect of wind or solar 

radiation. 

The thermal transmitance is given by Eq. 9. 

 

Rtot
U

1
  Eq. 9 

 

where 𝑈 is the thermal transmitance (W/(m²∙K)); 𝑅𝑡𝑜𝑡  is the total thermal resistance 

(m²∙K/W), obtained from Eq. 12. 

If the total correction is less than 3% of 𝑈, there is no need to be applied. 

However, if it is higher than 3% of 𝑈, then it should be applied in accordance with 

Annex E of ISO 6949 [21]. 

The thermal resistance of opaque components is given by Eq. 10. 
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where 𝑅𝑐;𝑜𝑝 is the thermal resistance of opaque component (m²∙K/W); 𝑅𝑠𝑖 is the thermal 

resistance of internal surface (m²∙K/W); 𝑅𝑠𝑒 is the thermal resistance of external 

surface (m²∙K/W); e 𝑈 is the thermal transmittance, determined by Eq. 9. 

The surface resistances are the same as used to calculate the thermal 

transmittance. 

If thermal conductivity is given, the thermal resistance of the layer can be 

obtained from Eq. 11. 

 



d
R   Eq. 11 

 

where 𝑅 is the thermal resistance (m²∙K/W); 𝑑 is the thickness of the material layer in 

the component (m); 𝜆 is the design thermal conductivity of the material (W/(m∙K)).  

Values of 𝜆 should be calculated in accordance to ISO 10456 is based on 

measured data; in any other case, values of λ are obtained from tables A.1 and B.1 of 

ISO 6946 [21]. 

The total thermal resistance, 𝑅𝑡𝑜𝑡, of a plane building component consisting of 

thermally homogeneous layers perpendicular to the heat flow shall be calculated by 

Eq. 12. 

 

sensitot RRRRRR  ...21  Eq. 12 

 

where R1, R2...Rn are the design thermal resistances of each layer (m²∙K/W). 

When calculating the resistance of internal building componentes (partitions, 

etc.), or a component between the internal environment and an unheated space, 

𝑅𝑠𝑖 applies on both sides. 

This method is not valid for cases where the ratio of the upper limit of thermal 

resistance to the lower limit of thermal resistance exceeds 1.5 [21]. The method is not 

applicable to cases where insulation is bridged by metal. For metal fasteners, the 
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method can be used as if there were no metal fasteners and the result corrected in 

accordance with E.3 of ISO 6946 [21]. 
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4. Fire 

 

This chapter presents the thermal behaviour of the LSF wall assembly during 

a fire and some considerations that are proved to be necessary to perform numerical 

and experimental studies in this field of investigation. 

To present a fire, there is a need of three important factors: a heat source, fuel 

and a oxidizing, starting when the mix of fuel and oxidizer is hot enough to ignite [22]. 

 

4.1. Heat Transfer Theory 

 

Çengel [18] pointed out that the science of thermodynamics deals with the 

amount of heat transfer as a system undergoes a process from one equilibrium state 

to another, and makes no reference to how long the process will take. However, 

engineering often takes more interest in knowing the rate in heat transfer, which is the 

topic of the science of heat transfer. 

Although thermodynamics and heat transfer are different concepts, the laws of 

thermodynamics lay the framework for the science of heat transfer. The first law 

requires that the rate of energy transfer into a system be equal to the rate of increase 

of the energy of that system. The second law requires that heat be transferred in the 

direction of decreasing temperature [18]. 

According to Çengel [18], the first law of thermodynamics states that the 

“energy can neither be created nor destroyed; it can only change forms”. Therefore, 

every bit of energy must be accounted for during the process. The principle of 

conservation of energy (or energy balance) may be expressed as the Eq. 13. 

 

(

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦
𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔

 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
) − (

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦
𝑙𝑒𝑎𝑣𝑖𝑛𝑔

𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
) = (

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 
𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓

𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
) Eq. 13 

 

Considering that energy can be transferred to or from a system by heat, work 

and mass flow, and that the total energy of a simple compressible system consists of 

internal, kinetic and potential energies, the energy balance for any system undergoing 

any process can be expressed as Eq. 14 or, in the rate form, as Eq. 15. 
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systemoutin EEE   Eq. 14 

dt

dE
EE

system

outin    
Eq. 15 

 

There are three basic mechanisms of heat transfer: conduction, convection 

and radiation. Conduction is defined as the transfer of energy from one more energetic 

particles of a substance to the less energetic ones as a result of interactions between 

the particles; Convection is the mode of heat transfer between a solid surface and a 

liquid or gas that is in motion and involves the combined effects of conduction and fluid 

motion; Lastly, radiation is the energy emitted by matter in the form of electromagnetic 

waves as a result of the changes in the electronic configurations of the atoms or 

molecules [18], [23]. 

For conduction, consider steady heat conduction through a large plane wall of 

thickness Δ𝑥 = 𝐿 and area 𝐴, as shown in Fig. 8. The temperature difference across 

the wall is Δ𝑇 = 𝑇2 − 𝑇1. Experiments have shown that the rate of heat transfer 𝑄̇ 

through the wall is doubled when the temperature difference Δ𝑇 across the wall of the 

area 𝐴 normal to the direction of heat transfer is doubled, but is halved when the wall 

thickness 𝐿 is doubled. Thus it can be concluded that the rate of heat conduction 

through a plane is proportional to the temperature difference across the layer and the 

heat transfer area, but is inversely proportional to the thickness of the layer, which can 

be expressed as Eq. 16 [18], [23]. 

 

 

Fig. 8 – Heat conduction through a large plane wall of thickness Δ𝑥 and area 𝐴. [24] 
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where the constant of proporcionality 𝜆 is the thermal conductivity of the material 

(W/m°C), which is a measure of the ability of a material to conduct heat.  

As for convection, consider the cooling of a hot block by blowing cool air over 

its top surface, as presented in Fig. 9. Energy is first transferred to the air layer next to 

the block through conduction. This energy is then carried awayca from the surface of 

the block through convection, that is, by the combined effects of conduction within the 

air that is due to random motion of air molecules and the bulk or macroscopic motion 

of the air that removes the heated air near the surface and replaces it by the cooler air. 

Despite the complexity of convection, the rate of convection heat transfer is observed 

to the proportional to the temperature difference, and is expressed by Newton’s law of 

cooling as Eq. 17 [17], [19]. 

 

 

Fig. 9 – Heat transfer from a hot surface to air by convection. [24]  

 

Q̇
conv

=hAs(Ts-T∞) 
Eq. 17 

 

where ℎ is the convection heat transfer (W/m2∙°C), 𝐴𝑠 is the surface area through which 

convection heat transfer happens, 𝑇𝑠 is the surface temperature and 𝑇∞ is the 

temperature of the fluid sufficiently far from the surface. 
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Unlike conduction and convection, the transfer of energy by radiation does not 

require the presence of an intervening medium. It is fastest and suffers no attenuation 

in a vacuum, as this is how the energy of the sun reaches the earth. 

Radiation is usually considered to be a surface phenomenom for solids that 

are opaque to thermal radiation such as metals, wood, and rocks since the radiation 

emitted by the interior regions of such material can never reach the surface, and the 

radiation incident on such bodies is usually absorbed within a few microns from the 

surface. The maximum rate of radiation that can be emitted from a surface at an 

absolute temperature 𝑇𝑠 is given by the Stefan-Boltzmann law as Eq. 18 describes [18], 

[23].  

 

4

max, ssemit TAQ   Eq. 18 

 

where 𝜎 is the Stefan-Boltzmann constant (= 5.67 ∙ 10−8 W/m2∙K4). The idealized 

surface that emits radiation at this maximum rate is called blackbody, which is 

represented in Fig. 10. 

 

 

Fig. 10 – Blackbody radiation represents the maximum amount of radiation that can be emitted from a 
surface at a specified temperature. [24] 

 

4.2. Natural Fire Curve 

 

According to Truong et. al. [25], natural fire models include the heating and 

cooling phase, while standard fires considers the heating phase only. In literature, most 

researches on building structures in fire conditions only focus on the behavior of 

structures during the heating phase, however recent authors have examined the 

possibility of structural collapse during the cooling phase, but their focus is mainly on 

the possibility of structural collapse and the minimum value of heating time that the 

structures fail. 
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The natural fire curve is composed of some periods: the ignition-smouldering, 

the flashover, heating and cooling phases. 

As presented by some authors [26], [27], the ignition period is not included in 

the standard models of fire because of its low temperatures and the fact that it does 

not have significant influence in the fire resistance of the structures. Although this 

period does not have a structural significance, it is the period where the toxic gases 

are produced. 

The flashover period is when the fire is expanded to the compartment, which 

occurs when the temperature near the ceiling is between 450°C and 600°C or when 

the heat flux in the floor reaches 20 W/m2. The continuous combustion period is the 

period immediately after the flashover and it is the period when the maximum 

temperature is obtained and this value remains approximately constant. This period is 

when high levels of carbon dioxide (𝐶𝑂2) and carbon monoxide (𝐶𝑂) are verified, which 

is caused by the heat release of most of the fuel [26], [27]. 

Lastly, the cooling period is when the rest of the fuel is burned and the heat of 

combustion decreases until the complete end of fire [26], [27]. 

 

 

Fig. 11 – Natural fire curve compared to ISO 834 fire curve.[25] 
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4.3. Standard Fire Curves 

 

The standard models of fire considers the natural fire curve and have an 

independent nature of space and fire load density. These curves normally is an 

approximation of the flashover and the continuous combustion, which are the most 

critical periods of fire in both structural and termal studies. 

The Eurocode 1 [28], presents three nominal curves of fire: the standard curve, which 

is ISO834 [29] (same as BS 476 part 20 [30]), the external elements curves and the 

curve of fire caused by hydrocarbons. The standard curve is represented in Eq. 19, 

where 𝜃𝑔 is temperature of the gas in Celsius and 𝑡 is time in seconds, and plotted in 

Fig. 12. For this case, the coefficient of heat transfer is 𝛼𝑐 = 25 𝑊/𝑚2 ∙ 𝐾.  

 

)18(log34520 10  tg  Eq. 19 

 

 

Fig. 12 – Standard Fire Curve (ISO 834). 

However, since the initial temperature of different articles analyzed in this 

study varied greatly, it was decided to use a variation of ISO834, which is defined by 

Australian Standard AS1530.4 [31]. This fire curve is also used in Queensland 

University of Technology, whose works are presented in this study for validation. The 
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equation that describes the fire curve for this standard is presented in Eq. 20, where 

𝜃𝑔 is temperature of the gas in Celsius, 𝜃0 is initial temperature in Celsius and 𝑡 is time 

in seconds 

 

)18(log345 100  tg   Eq. 20 

 

4.4. Fire Resistance Requirements 

 

Each component of the non-loadbearing wall system, such as the panels, 

insulation, lightweight steel structure and its location determines the whole member’s 

fire resistance category. The classification of the member is decided especially by the 

spacing of plates, the thickness and number of coating layers, the thermal properties 

of the materials as well as the width of the insulation material. 

The fire resistance of non-load bearing LSF walls is obtained by standards 

such as the EN 1363-1 (Fire Resistance Tests – General Requirements) [32], EN 1364-

1 (Fire Resistance Tests for Non-load Bearing Elements – Walls) [33]. 

 

 EN 1363-1 

 

When subjected to standard fire exposure conditions, this standard establishes 

the general principles for determining the fire resistance of different elements of 

construction. According to this standard, fire resistant construction should satisfy three 

fire resistance requirements, namely stability, insulation and integrity [32]. 

Load-bearing capacity (Stability - R): For load-bearing elements of a structure, 

they shall not collapse in such a way that they no longer perform the load-bearing 

function for which they were constructed. 

Insulation (I): For elements of a structure such as walls and floors which have 

a function of separating two parts of a building, the average temperature of the 

unexposed face of the element shall not increase above the initial temperature by more 

than 140°C while the maximum temperature at any point of this face shall not exceed 

the initial temperature by more than 180°C. 
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Integrity (E): Initial integrity failure shall be deemed to have occurred when a 

cotton pad is ignited or when sustained flaming, having duration of at least 10s, 

appears on the unexposed face of the elements. 

The performance criterion used to validate the fire resistance of non-load 

bearing walls in this study is the insulation criterion (I). The insulation (I) criterion shall 

automatically be assumed not to be satisfied when the integrity (E) criterion ceases to 

be satisfied. 

The main performance criterion given by this standard is the stability criterion 

(R), although this criterion is not analyzed in this study, since it concerns about the fire 

resistance of non-load bearing walls. 

 

 EN 1364-1 

 

This standard contains the procedures to perform experimental tests to 

measure the fire resistance of a non-loadbearing wall to resist the fire propagation from 

one side to another [33]. 

This standard requires that a rigid frame with high stiffness and low thermal 

expansion is needed to fix the specimen. The dimension of the specimen should follow 

the rule that if the width or height of the construction element is smaller than 3 m, the 

specimen should be tested in its actual size. However, if one of the dimensions of the 

construction element is bigger than 3 m, the dimension of the specimen tested should 

not be less then 3 m. All the specimens used in this study follows the rules of this 

standard. 
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5. Numerical Simulation 

 

Since physical tests are usually expensive, numerical methods can be used to 

estimate the insulation-I criterium of fire resistance. For this purpose, this study 

presents an analysis in both one-dimensional simplified calculation method and two-

dimensional advanced calculation method. This section of the research presents the 

one-dimensional simplified calculation method with a proposed approach for 

calculating the effective width to be analyzed. 

Ignoring heat transfer in the longitudinal direction of the LSF wall panel, the 

heat transfer can then be considered 2-dimensional, in both thickness and width 

directions. Nevertheless, Feng et al. [34] and Shahbazian et al. [35] presented 

numerical simulations with results that suggest that for compressive resistance of the 

steel stud, it is acceptable to assume the temperature distribution on the thickness 

direction to be linear using the average temperatures in the two flanges of the cross-

section. Fig. 13 shows the actual temperature distribution in the flange section and the 

acceptable simplified temperature distribution based on Feng et al [34]. 

 

 

Fig. 13 – (a) Actual temperature distribution; (b) Acceptable temperature distribution according to Feng 
et al. [34] 

 

If heat transfer in the panel width direction is not dealt with explicitly, then this 

allows for a considerable simplification to be made.  However, as demonstrated by 

some authors [36], [37], there is a strong heat transfer in the width direction between 
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steel flanges and the adjacent materials, so it is important to include this effect in the 

temperature calculation method for the steel section. One way of including this effect 

is to use the weighted average of thermal resistances in the wall panel width direction. 

The method for calculating the weighted average of thermal resistances is presented 

in Section 5.1. The accuracy of the proposed temperature calculation method will be 

assessed by comparing the simulation results using the avanced calculation method 

finite element software ANSYS APDL for steel temperatures. 

 

5.1. Proposed Approach for Calculating the Effective 

Width 

 

All methods presented in Section 3 are one-dimensional numerical solutions 

for calculating the R-value of the composite wall. However, for steel framing, it 

frequently is necessary to account for multi-dimensional effect, e.g. consider heat 

transfer in the width direction. One method of including this effect is finite-difference 

computer solution. Differently from analytical solutions, which allow temperature 

determination at any point in the wall, the finite-difference solution allows for 

determination of temperature only at discrete points. These points, or nodes, are 

defined by dividing the wall into small control volumes and placing a node in the center. 

The node represents the average temperature of the control volume. From this 

selection, an appropriate energy conservation equation can be chosen for each node. 

The complete set of equations is then solved simultaneously for the temperature at 

each node. 

One way of accounting for the width direction without the need of making a two 

dimensional analysis is to use the weighted average of thermal resistances in the wall 

panel width direction.  

For the research made in this study, the reference construction element model 

is described by Eq. 27 as follows. 
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where 𝜆 is the thermal conductivity, 𝑇 is the temperature, 𝜌 is the density, 𝐶𝑝 is the 

specific heat, 𝑦 is the vertical location in the wall, 𝑡 is the time step. 

The method used in this study is based on one-dimensional analysis, 

considering the finite difference method and the lumped thermal method. 

This model uses 14 regions or layers with width equal to the effective width 

(𝑊𝐿 = 𝑇𝐼 + 𝐵𝐹 + 𝐵𝐼) and 14 nodes to define temperature in the cross section that 

includes the steel stud, as shown in Fig. 14 a). It is divided as 3 layers in each side 

(layers 2, 3, 4, 11, 12, 13) with similar geometry (thickness of TG/4) and material 

properties, two layers in between sheathing and steel/insulation materials with similar 

properties (layers 5 and 10), two more layers with similar geometry and material (layers 

6 and 9), as well as layers 7 and 8, and two boundary layers, one on the fire side and 

one on the ambient temperature side (layers 1 and 14). 

The model was submitted to fire in one side (convection and radiation 

boundary conditions) and to room temperature in the unexposed side (convection 

boundary condition). Heat flow pattern is shown in Fig. 14 b), representing the heat 

resistance possibility to heat conduction through the cross section. 

 

 

Fig. 14 – One dimensional heat transfer. a) Layers and nodes for heat transfer; b) Heat flow pattern. 
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This model is based on the heat balance of each layer, taking into 

consideration the amount of heat flux entering the layer and the amount of heat flux 

leaving the layer, as represented in the following. 

 

(
ℎ𝑒𝑎𝑡 

𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔
 𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟

) − (
ℎ𝑒𝑎𝑡

𝑙𝑒𝑎𝑣𝑖𝑛𝑔
𝑡ℎ𝑒 𝑙𝑎𝑦𝑒𝑟

) = (
ℎ𝑒𝑎𝑡 𝑐ℎ𝑎𝑛𝑔𝑒

𝑡𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 𝑙𝑎𝑦𝑒𝑟
𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

) 

 

If it is considered a small time interval, the heat transfer between any two layers 

can be written as Eq. 22. The amount of heat required to increase the temperature of 

a layer from the previous time step 𝑇𝑖
𝑡−1  to the current one 𝑇𝑖  is defined by Eq. 23. 

 

R

T
Q




  Eq. 22 

 

where ΔT is temperature difference between these two layers and Σ𝑅 is the total 

thermal resistance in the heat transfer path. 

 

dt

dT
RQ capacity  Eq. 23 

 

where 𝑡 is time and Σ𝑅𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is the total capacitance (mass times specific heat) of the 

layer. 

 

The thermal resistance calculated in this study uses the weighted average of 

the materials within the heat transfer path. Table 1 details how this analysis is made.  
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Table 1 – Details of heat transfer and thermal resistance. 

Heat transfer Thermal resistance 

Between fire and gypsum board on the 

fire exposed side (layer 1) 

Total of the thermal boundary layer and 

½ of the gypsum layer. 

Heat conduction between two adjacent 

gypsum layers (2-3, 3-4, 4-5, 10-11, 11-

12, 12-13) 

Total of the 2 halves each layer. 

Between slice of gypsum boar on the air 

side with the air layer (layer 14) 

Total of the air layer and ½ the gypsum 

layer. 

Between a gypsum slice and a steel or 

between two adjacent steel slices 

Should include different materials that 

are present in these slices. Fig. 15 

shows the materials to be considered for 

layers 5 to 10. For each layer, the 

thermal resistances are in parallel, 

therefore they should be calculated 

using 
1

𝑅𝑡𝑜𝑡𝑎𝑙
=

1

𝑅1
+

1

𝑅2
+ ⋯ +

1

𝑅𝑛
 where 𝑛 is 

the layer of thermal resistances in 

parallel. 

 

To calculate the heat capacitance of each layer, all the materials within that 

layer must be included. In Fig. 15 it is shown the parallel heat resistance terms and in 

Fig. 16 it is shown the thermal capacitance terms for different multi-material layers. 

 

 

Fig. 15 – Heat resistance from layer 5 to 10, based on Shahbazian [36]. 
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Fig. 16 – Heat capacitance for each layer of the panel, based on Shahbazian [36]. 

 

Equations 25-38 are the representation of this concept in each of the 14 layers 

used in this study. Eq. 24 was linearized to solve a system of linear equations.  
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The parameter 𝑅𝐶𝑂𝑁𝐷𝑖𝑗 represents the resistance to heat flow by conduction 

expected from node 𝑖 to node 𝑗 due to parallel heat flow pattern and should be 

calculated as the equivalent resistance. This parameter should be evaluated at the 

average temperature of both nodes 𝑖 and 𝑗. The parameter 𝑅𝐶𝐴𝑃𝑖 represents the 

inverse of the thermal capacitance of layer 𝑖 and should be evaluated at the 

temperature of layer 𝑖. 

The thermal conductivity of gypsum 𝜆𝐺 should be evaluated at the average 

temperature of the nodes involved, while the density 𝜌𝐺 and the specific heat 𝐶𝑝𝐺 

should be evaluated at the temperature level of the corresponding layer [36]. The time 

step was defined to be 1 s and validate the stability criterion [38]. 

A full description and exact solution procedure of the discretisation of this 

method as adopted in the present work, applied to multi-layer construction elements, 

can be found in Appendix A and the matrix input for the one-dimensional analysis can 

be found in Appendix B. 

To auxiliate on the calculation of this method, it was used the Matlab R2016a 

software. The diagram of the application of this program is presented in Fig. 17. 

Appendix E will present the program of the Specimen 10 of the Polytechnic Institute of 

Bragança as reference for every other program, since for each wall configuration there 

is the need to change the variables defined and the material properties. 

 

 

Fig. 17 – Diagram of the Matlab application program. 

 

To calculate the thermal resistance and heat capacitance, it is necessary to 

determine the effective width of the panel that should be included in the calculations. 

Variable Definition

Wall dimensions

Initial Temperature

Total simulation time

Parameters Definition

Effective Width

Convection Coefficient

Emissivity Coefficient

Stefan-Boltzmann Constant

Incremental Time 
Solution

i=1 until NSUBSTEPS

TIME = TIME + 
TIMESTEP

Linearization of the 
Radiation 

Coefficient

Definition of the Equilibrium 
Equations

Average Temperature of the 
Layer: i = (Ti + Ti+1)/2

Eqi: Ki,i-1; Ki,i; Ki,i+1

LOAD: Fi

Solving System of 
Equations

X = MATRIX-1 ∙ LOADT
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Fig. 18 shows the model of the proposed geometry for this heat transfer calculation 

method. Fig. 19 shows the cases studied in this research, in which WLmax considers 

the effective width as being the whole width between two steel sections and WLmin 

considers only the width of the flange as the effective width. The WLmax will over-predict 

the temperatures in the flange of the steel stud on the exposed side and under-predict 

the temperatures in the flange on the unexposed side, while WLmin will have an 

opposite result. 

 

Fig. 18 – Proposed geometry for heat transfer calculation. 

 

Fig. 19 – Maximum and minimum values for the effective width (WL). 

 

First, it was proposed both the maximum and minimum values for the effective 

width possible, presented in Fig. 19 to find a relative good choice for the effective width 

for each case and configuration. After that, it was proposed different dimensions for 

the effective width by adding 50 by 50 mm to the minimum width (which is the flange 

size, 𝐵𝐹) until it reached the maximum width (which is two times the spacing between 

studs plus the flange size, or in other words, 2 ∙ 𝑆𝑃 + 𝐵𝐹) to gather the unexposed side 
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curve of temperature as a function of time and compare it to the results of both the 

experimental and the advanced method calculation analysis, the latter specially for 

those cases where the experimental test did not reach the fire resistance insulation 

criterion (I). 

To find the best effective width from the proposed widths, it was used two 

different comparison methods: the Pearson Correlation and the Relative Error.  

The Pearson Correlation is calculated by Eq. 38. It varies from -1 to 1, where 

-1 means that the values being compared are inversally proportional to one another (if 

one is going up, the other is going down, and vice-versa) and 1 positive means that 

both sets of data are moving accordingly to one another. 
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The Relative Error is presented by Eq. 39 and provides the error between each 

temperature in time. It was made an arithmetic mean of every value for Relative Error 

to find the best effective width when comparing to the experimental test or advanced 

calculation method. 
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The Manchester University specimen was not analyzed in this study because 

it does not consider a small scale of the whole wall.  

For achieving the best effective width equation, some different approaches 

were made. These approches are presented in the following sections and are going to 

be compared to every validation result further in this study. Each method used a 

different comparison method, and therefore the results for each is going to be 

presented in their sections. 
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5.1.1. Calculation Method 1 

 

This method used the comparison with the experimental results for the 

specimens made in Polytechnic Institute of Bragança and with the advanced 

calculation results for every other specimen. 

After analyzing roughly the best possible effective width for each case 

presented using the Relative Error, it was possible to observe the results presented in 

Table 2. 

 

Table 2 – The best effective width used for the calculation method 1.  

Case University 
Cavity 

Insulation 

Minimum 
Width 
(𝐵𝐹) 
[mm] 

Maximum 
Width (2 ∙
𝑆𝑃 + 𝐵𝐹) 

[mm] 

Best 
Effective 

Width 
Advanced 

[mm] 

Best Effective 
Width 

Experimental 
[mm] 

Spec. 4 
Queensland 
University - 1 

Rock fibre 40 1040 225 ‒ 

Spec 5 
Queensland 
University - 1 

Glass fibre 40 1040 150 ‒ 

Spec 6 
Queensland 
University - 1 

Cellulose 
fibre 

40 1040 1040 ‒ 

Spec. 3 
Queensland 
University - 2 

Rock fibre 40 1240 145 ‒ 

Spec. 4 
Queensland 
University - 2 

Glass fibre 40 1240 175 ‒ 

Spec. 5 
Queensland 
University - 2 

Cellulose 
fibre 

40 1240 40 ‒ 

Spec. 3 
Polytechnic 
Institute of 
Bragança 

Rock fibre 43 423 ‒ 300 

Spec. 
10 

Polytechnic 
Institute of 
Bragança 

Rock fibre 43 889 ‒ 150 

Spec. 
15 

Polytechnic 
Institute of 
Bragança 

Superwool 43 889 ‒ 225 

Spec. 
16 

Polytechnic 
Institute of 
Bragança 

Superwool 43 889 ‒ 200 

 

Since the effective width values encountered by both of the Cellulose fibre 

analysis are inconsistent (either the minimum or maximum value for the effective 

width), and also it does not have a linear growth pattern (it goes up and down while the 

effective width is either constantly increasing or decreasing), it was assumed that the 

thermal properties for the Cellulose fibre was not corresponding to the real behavior 
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and therefore the values for the effective width of both tests for the Cellulose fibre were 

not considered for the calculation of the equation for the effective width. 

Spec. 16 from the Polytechnic Institute of Bragança was also not considered 

in the final equation for the effective width because of its geometry, which includes two 

studs in the middle of the wall, as shown in section 6.1.4, and this effect is not 

considered by the equations for heat transfer used in this study. 

While different values for roughly the best effective width was found for each 

case, the first idea is to make the effective width a variable of the spacing between 

studs and the flange size, not considering the material for the insulation cavity. 

Therefore, an average for each best effective width was made, grouping the best 

effective widths for the same size of walls, where the specimens with wall width of 975 

mm, 1120 mm and 1960 mm, would have an effective width of 225 mm, 187.5 mm and 

160 mm, respectively. 

From these results, it was possible to make an approximation value that would 

satisfy every geometry and material, and the graph for this approximation is presented 

in Fig. 20. 

 

 

Fig. 20 – Graph of TI as a function of SP according to analysis made by the author. 
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This graph presents 𝑇𝐼 as a function of the spacing between studs 𝑆𝑃 and the 
equation is represented by Eq. 40, in milimeters. 

 

58.1964241.00003.0 2  SPSPTI  Eq. 40 

 

Through Eq. 40, it is possible to write an equation that describes the effective 

width (𝑊𝐿) as being 2 times the equation for 𝑇𝐼 as a function of 𝑆𝑃 plus the flange size 

𝐵𝐹. This equation is demonstrated in Eq. 41 and should be used in milimeters. 

 

BFSPSPWL  )58.1964241.00003.0(2 2  Eq. 41 

 

5.1.2. Calculation Method 2 

 

For this method, the analysis for each effective width used mostly the results 

from the Pearson Correlation and can be seen in Table 3. 
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Table 3 – The best effective width used for the calculation method 2. 

Case University 
Cavity 

Insulation 

Minimum 
Width 
(𝐵𝐹) 
[mm] 

Maximum 
Width (2 ∙
𝑆𝑃 + 𝐵𝐹) 

[mm] 

Best 
Effective 

Width 
Advanced 

[mm] 

Best Effective 
Width 

Experimental 
[mm] 

Spec. 4 
Queensland 
University - 1 

Rock fibre 40 1040 225 ‒ 

Spec. 5 
Queensland 
University - 1 

Glass fibre 40 1040 150 ‒ 

Spec. 6 
Queensland 
University - 1 

Cellulose 
fibre 

40 1040 1040 ‒ 

Spec. 3 
Queensland 
University - 2 

Rock fibre 40 1240 350 ‒ 

Spec. 4 
Queensland 
University - 2 

Glass fibre 40 1240 350 ‒ 

Spec. 5 
Queensland 
University - 2 

Cellulose 
fibre 

40 1240 40 ‒ 

Spec. 3 
Polytechnic 
Institute of 
Bragança 

Rock fibre 43 423 155 350 

Spec. 
10 

Polytechnic 
Institute of 
Bragança 

Rock fibre 43 889 165 230 

Spec. 
15 

Polytechnic 
Institute of 
Bragança 

Superwool 43 889 145 250 

Spec. 
16 

Polytechnic 
Institute of 
Bragança 

Superwool 43 889 150 165 

 

Just like in the calculation method 1, values for the specimens which used 

cellulose fibre were discarted, as were the values for the specimen 16 of the 

Polytechnic Institute of Bragança. 

From this values presented in Table 3, it was decided to use only the values 

from the advanced calculation method, since the experimental value for Spec. 3 from 

the Polytechnic Institute of Bragança seems to be very different from the advanced 

calculation value, while the other studies from the same university show closer values 

for both the advanced calculation method and the experimental tests. 

For that same reason, it was decided not to consider the spacing between 

studs as a variable, since the advanced calculation results from Spec. 3 of the 

Polytechcnic Institute of Bragança, which has a spacing of 190 mm, and Spec. 10 from 

the same university, which has a spacing of 423 mm, are not very far from each other. 

The next step was grouping the values from the same wall width, since the 

idea is to consider every material in a single equation and not different equations for 
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different materials, and an average of these values were used, where for the walls of 

widths of 975 mm, 1120 mm and 1960 mm, it was considered the effective width of 

155 mm, 187.5 mm and 350 mm, respectively. 

From the results gathered, it was possible to understand a pattern between 

the effective width and the wall width of each specimen. These results made it possible 

to consider equation Eq. 42, in which the effective width (WL) is equal to 15% of the 

wall width (WW). 

 

WWWL  15.0  Eq. 42 

 

5.2. Advanced Calculation Method 

 

Another method used for this analysis is the advanced calculation method, 

using a 2D analysis of the heat transfer and considering the whole width of the wall. 

Although this method still does not consider the 3D effect of heat transfer, it is a close 

approximation of the physical tests results. This method is used for the validation of 

the Simple Calculation Method proposed in this study. 

 

5.2.1. ANSYS Mechanical APDL 

 

This study presents an analysis in 2D using ANSYS Mechanical APDL to 

provide comparison with the proposed simplified method from Matlab. In this study, it 

was considered the same small-scale wall assembly used in the physical tests from 

the validation articles. 

Differently from the simplified calculation method, the advanced calculation 

method considers in between studs interference, the heat not following a linear path 

and possible thermal bridges. Nevertheless, both advanced and simplified calculation 

methods do not consider the 3D effect of heat transfer that exists in the physical tests. 

The convergence criterion for this method is based on the heat flow, with a 

tolerance of 1E-3 and a minimum reference value of 1E-6. The mesh was defined with 

different numbers of element divisions in each section, which are represented in Fig. 

21.  
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Fig. 21 – Number of element divisions for each section. 

 

. This numerical model considers perfect thermal contact between materials 

and the mesh of Specimen 10 from Polytechnic Institute of Bragança is represented in 

Fig. 22 

 

 

Fig. 22 – Finite Element mesh used for specimen 10 from Polytechnic Institute of Bragança. 

 

5.2.1.1. Element Description 
 

PLANE55 is an element in Ansys Mechanical APDL which is represented in 

Fig. 23 and will be used in this study because of its 2D thermal conduction capability. 

The element has four nodes with a single degree of freedom, temperature, at each 

node. 

 

Fig. 23 – PLANE55 element description. 
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 It is applicable to a 2D, steady-state or transient thermal analysis and can also 

compensate for mass transport heat flow from a constant velocity field. 

There is an option that allows the element to model nonlinear steady-state fluid 

flow through a porous medium. With this option, the thermal parameters are interpreted 

as analogous fluid flow parameters. 

In this study, it will be used PLANE55 2D Thermal Solid, represented by Fig. 

24, in which there is a matrix of conductivity and heat generation load vector, with the 

quad geometry and 2 x 2 integration points. Therefore, the equation to be used is that 

for the 2-D 4-node and axisymmetric quadrilateral solid elements without extra shape 

functions, represented by Eq. 43. 

 

 

Fig. 24 – PLANE55 2-D Thermal Solid. 
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Eq. 43 

 

5.2.1.2. Boundary Conditions 
 

For the boundary conditions of this method, it is considered convection in the 

exposed side with a coefficient of 𝛼𝑓𝑖𝑟𝑒 = 25.0 𝑊/𝑚2𝐾 and a convection in the 

unexposed side, with a coefficient of 𝛼𝑢𝑛𝑒𝑥 = 9.0 𝑊/𝑚2𝐾 which considers also the 

radiation on the unexposed side. For the radiation, it is considered a coefficient of 

𝜀𝑓𝑖𝑟𝑒 = 1.0 for the exposed side. 
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Fig. 25 – Boundary conditions of the advanced calculation method. 

 

The initial temperature changes with each analysis, from 14°C to 28.5°C, along 

with the geometry of the wall specimens. The gypsum and steel properties can be 

found in Appendix C, along with the insulation materials. 
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6. Validation of the Numerical Models 

 

To validate the analysis made in this study, both the results from the avanced 

calculation method and tests developed by authors were used, such as Kolarkar et al. 

[39], Rusthi et al. [40], [41], Feng et al. [15], Khetata et al. [42], [43] and Piloto [44]. 

The tests were separated by the Universities where they were made, being 

Kolarkar and Rusthi at Queensland University of Technology identified as tests 1 and 

2, respectively, Feng at University of Manchester, and Khetata and Piloto at 

Polytechnic Institute of Bragança. 

Most researches made by other authors are presented only with the average 

of temperatures on different places of the wall to consider it a point. Since the results 

made by the simplified calculation method considers only a region of one stud, the 

maximum value is considered (or, in other words, it is the critical stud in the wall). To 

make a fair comparison between results, those results in which there is not a maximum 

value for each point, the simplified calculation results are compared to the advanced 

calculation results, in which it is possible to obtain the maximum value. 

The Relative Error presented in Eq. 39 is used for the validation of the results 

in this topic.  

 

6.1. Experimental Studies 

 

This Section presents the experimental studies made by different authors that 

were used for the validation of the methods described in this study. 

 

6.1.1. University of Manchester 

 

This study made by Feng et al. [15], in 2003,  was developed in the fire-testing 

laboratory of the Manchester Centre for Civil and Construction Engineering. Only  

Specimen of ID Tlip12-a3 was used for the analysis in this study. The overall size of 

the panel was 300 x 300 mm. The parameters of this experimental investigation include 

the types of steel cross-section (lipped channel 100 x 54 x 15 x 1.2 mm), one gypsum 

board on both sides (12.5 mm on each side), and mineral wool as insulation material. 
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All channels were pre-hot dip galvanised to BS EN 10147 with a G275 coating. The 

gypsum boards used were Fireline Gyproc board manufactured by British Gypsum 

Limited and the interior mineral wool was the 100 mm thick Isowool 1000, also 

manufactured by British Gypsum Limited. 

 

Table 4 – Feng[15] studies considered in this research. 

Spec. Geometry Cavity Insulation 
Gypsum 
Boards 

Tlip12-a3 

 

Mineral wool 12.5 mm 

 

 

Tests were carried out in the small gas fired furnace which is lined with stack 

bonded cermaic wool with a working volume of 1.5 x 1.5 x 1.5 m. The test panels were 

positioned in the four 300 x 300 mm apertures located on the front panel of the furnace. 

The furnace was computer controlled and the average temperature rise in the furnace, 

which was obtained from four control thermocouples inside the furnace, was according 

to the BS: 476 Part 20 – Cellulosic fire curve [30]. Numerous thermocouples were 

placed in each test specimen in order to monitor its temperature distributions. Detailed 

locations of thermocouples are shown in Table 1. All fire tests were terminated after 2 

hours of fire exposure. 

 

 

Fig. 26 – Experimental tests for the Mineral wool cavity insulation made by Feng et al. [15]. 
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The material properties used in this study were: steel, as presented by 

Eurocode 3 Part 1.2 [45], gypsum as presented by Sultan [38] and mineral wool as the 

cavity insulation, as presented by Feng et al. [15]. Further information about the 

material properties can be found in Appendix C. 

 

Table 5 – Fire resistance values for Manchester University. 

Spec. 

Fire Res. 

Exp. (Ave) 

[min] 

Fire Res. 

Num. Simple 

Method 1 

[min] 

Fire Res. 

Num. Simple 

Method 2 [min] 

Fire Res. 

Num. Adv. 

(Max) [min] 

Fire Res. 

Num. Adv. 

(Ave) [min] 

Tlip12-

a3 
>120 >1200 84 105 768 

 

6.1.2. Queensland University of Technology – 1 

 

In 2012, Kolarkar and Mahendran [39] made a research in which they used 

various configurations of wall panels to predict their resistance to fire through physical 

tests.  

Table 6 - Kolarkar [39] studies considered in this research. 

Spec. 
Kolarkar. 

Geometry Cavity Insulation 
Gypsum 
Boards 

4 

 

Glass fiber 
2 x 16 = 32 

mm 

5 

 

Rock fiber 
2 x 16 = 32 

mm 

6 

 

Cellulose fiber 
2 x 16 = 32 

mm 
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The specimens used for analysis in this study were specimens 4, 5 and 6, 

presented in Table 6. They were made using small scale steel wall frame assemblies 

of 1280 mm x 1015 mm. The wall assemblies consisted of three cold-formed steel 

lipped channel section studs (90 mm x 40 mm x 15 mm x 1.15 mm) spaced at 500 mm. 

The studs were fabricated from G500 steel sheets with a minimim yield strength of 500 

MPa. Test frames were built by attaching the studs to the top and bottom tracks made 

of 1.15 mm G500 steek unlipped channel sections (92 mm x 50 mm) using 12 mm long 

self-drilling wafer head screws. Test specimens were built by lining the test frames with 

two layers of gypsum plasterboards (FireSTOP) manufactured by Boral Plasterboard. 

These plasterboards were 1280 mm x 1015 mm with a thickness of 16 mm and a mass 

density of 13 kg/m2. 

K type thermocouple wire were located on the steel frame, three on each stud 

at mid-height to measure the temperatures of the hot flange, web and the cold flange. 

Additional thermocouples were attached at the mid-height of the plasterboard to 

measure temperatures inside the wall cavity and on the fire exposed surface. To 

measure the temperature of the ambient surface of the wall assembly, five more 

thermocouples were attached to the unexposed surface of the plasterboard, one 

thermocouple at the center of the wall and one at the center of each quarter section of 

the wall, giving a total of 20 thermocouples. 

Test Specimen 4 was lined on both sides by two layers of plasterboard (2 x 2). 

The base layer plasterboards were first attached to the three studs by 25 mm long self-

drilling bugle head screws at 300 mm centers. The face layer plasterboards were then 

attached by 45 mm long self-drilling bugle head screws at 300 mm centers and 

penetrating the studs midway between the base layer screws. Test Specimen 4 was 

built with cavity filled with two layers of 50 mm thick glass fiber mats of original density 

13.88 kg/m3 compressed to 90 mm thickness (cavity depth) giving the insulation a 

density of 15.42 kg/m3. The cavities of the studs and tracks were also packed with 

insulation to eliminate any air pockets.  

Test Specimen 5 was built similar to Test Specimen 4, but with rock fiber of 

density 100 kg/m3 used as cavity ionsulation. Two 25 mm thick mats were places in 

the cavity leaving a gap of 40 mm between the insulation and Plasterboard three. Test 

Specimen 6 was built similar to Specimens 4 and 5, but with cellulose fibre wet sprayed 

into the cavity until it was filled. The calculated density of cavity cellulose insulation 

was 125 kg/m3. 
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Further information about the validation can be found on the Data Sheets in 

Appendix D. 

 

  

 

 

Fig. 27 – Experimental tests for the (a) glass fibre, (b) rock fibre and (c) cellulose fibre cavity 

insulation made by Kolarkar et al. [39] 

 

Although the insulation do not entirely fill the cavities, as stated by the author, 

in the analysis made in this study it is considered to be completely filled both in the one 

dimensional and two dimensional analysis, without any air gap. 

The materials properties considered for the simulations are in Appendix C. 

Steel properties were obtained from EN 1993-1-2 [45], gypsum plasterboard properties 

were obtained from Sultan, 1996 [38] and insulation properties varied for each material, 

being: rock fiber from TALAT [46] and glass fiber and cellulose fiber from Keerthan et 

al. [47], also mentioned by Kolarkar and Mahendran [39]. 

Results of the validation and fire resistance of the wall assemblies used by 

Kolarkar can be seen in Table 7. 
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Table 7 – Fire resistance values for Queensland University of Technology – 1. 

Spec.  
Cavity 

Insulation 

Fire Res. 
Exp. (I) (Ave) 

[min]  
 

Fire Res. 
Num.l 
Simple 

Method 1 
[min] 

Fire Res. 
Num. 

Simple 
Method 2 

[min] 

Fire Res. 
Num Adv. 
(I) (Max) 

[min]  

Fire Res. 
Num. Adv. 
(I) (Ave) 

[min]  

4 
Glass 
fiber 

>200 153 151 152 152 

5 Rock fiber 197 231 228 232 273 

6 
Cellulose 

fiber 
>200 190 189 194 192 

 

6.1.3. Queensland University of Technology – 2 

 

In 2015, Rusthi et al. [40] made researches using a 3-D FE Model to validate 

the researches made by Kolarkar in 2010 [41]. In this study, both results of Kolarkar 

[41] and Rusthi [40] studies are going to be used to validate the numerical method 

proposed. 

The details of the models is described in Table 8. The specimens used in this 

analysis are the 3, 4 and 5, with insulation material of Glass fibre, Rock fibre and 

Cellulose fibre, respectively. 

 

Table 8 –Rusthi [40] studies considered in this research. 

Model 
No. 

Geometry Insulation 

3 

 

Glass fibre 

4 

 

Rock fibre 

5 

 

Cellulose fibre 

 

 

These are walls systems with two boards each side of 16 mm gypsum 

plasterboards and lipped channel studs (90 x 40 x 15 x1.15 mm) spaced at 600 mm. 
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The tests were conducted for 2.4 m x 2.1 m LSF walls exposed to standard fire time-

temperatures curve on one side. 

  

 

 

Fig. 28 – Experimental tests for the (a) glass fibre, (b) rock fibre and (c) cellulose fibre cavity insulation 
made by Kolarkar [41] and studied by Rusthi et al. [40] 

 

The 3D FE models were developed in Abaqus/CAE with only two middle studs 

and gypsum plasterboards. The other studs were replaces with gypsum plasterboards, 

because according to the author, only the middle two studs are the critical studs in the 

tests. The model was rescaled to 0.6m height to reduce the analysis time. All the 

componentes were modelled using 8-node linear heat transfer brick elements 

(DC3D8). A mesh density of 50 mm on the x-y plane and 2 mm through thickness mesh 

of the model components was selected based on a sensitivity analysis of Models 1 and 

2 and comparison of stud and plasterboards time-temperature profiles. 
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Table 9 – Fire resistance values for Queensland University of Technology – 2. 

Spec. 
Cavity 

Insulation 

Fire Res. 
Exp. [min] 

(Ave) 

Fire Res. 
FE 

Model 
[min] 
(Ave) 

Fire Res. 
Num. 

Simple 
Method 1 

[min]  

Fire Res. 
Num. 

Simple 
Method 2 

[min] 

Fire Res. 
Num. 

Advanced 
(Max) 
[min] 

Fire Res. 
Num. 

Advanced 
(Ave) 
[min] 

3 
Glass 
fibre 

>110 >110 161 156 156 156 

4 
Rock 
fibre 

>110 >110 244 284 243 289 

5 
Cellulose 

fibre 
>110 >110 201 201 238 >240 

 

6.1.4. Polytechnic Institute of Bragança 

 

The presented study was made by Khetata et al. [42], [43] and Piloto [44] in 

the Laboratory of the Polytechnic Institute of Bragança. Specimens 3, 10, 15 and 16 

were analyzed for this study and the overall size of the panel was 975 x 1000 mm walls 

exposed to standard fire time-temperatures curve on one side. The details of these 

models is presented in Table 10. 

 

Table 10 – Khetata et al. [42], [43] and Piloto[44] studies considered in this research. 

Spec. 
No. 

Geometry 
Cavity 

Insulation 

Spacing 
between 

Studs 

3 

 

Rock fibre 190 

10 

 

Rock fibre 423 

15 

 

Super 
wool 

423 

16 

 

Super 
wool 

401.5 
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These panels have a geometry with one board each side of 12.5 mm gypsum 

plasterboards, with studs made of steel GD280 using the profile C90x43x15x1.5 and 

horizontal members (tracks) made of steel GD280 using the profile U93x43x1.5. The 

reference code gives the dimensions of the web, flange, lip and thickness of steep, 

respectively. The materials properties used for gypsum are those presented by Sultan 

[38], for steel are those presented by Eurocode 3 [45], for the rockfibre cavity insulation 

material are presented by TALAT [46] and for the superwool cavity insulation material, 

it is presented by the Morgan Datasheets [48], [49]. 

 

  

  

Fig. 29 – Experimental tests for Spec. 3, 10, 15 and 16, respectively, made by Khetata et al. [37], [42], 
[43] and Piloto [44]. 

 

One side of the wall is submitted to fire while the other side is assumed to 

remain at room temperature. The boundary conditions are in accordance to EN1991-

1-2 [28], assuming heat transfer by radiation (emissivity of fire 𝜀𝑓𝑖𝑟𝑒 = 1) and 

convection (convection coefficient 𝛼𝑓𝑖𝑟𝑒 = 25 [𝑊/𝑚2𝐾]) in the exposed side and heat 

transfer by convection (convection coefficient 𝛼𝑢𝑛𝑒𝑥 = 9 [𝑊/𝑚2𝐾] to include the 
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radiation component) in the unexposed side. The temperature in the exposed side 

follows the standard BS 476 – Part 20 [30]. 

For the rock fibre cavity insulation, the results are presented in Table 11 and 

for the superwool cavity insulation, results are presented in Table 12. 

 

Table 11 - Fire resistance values for Polytechnic Institute of Bragança for rock fibre. 

Spec. 
No. 

Fire Res. 
Exp. 
[min] 
(Max) 

Fire Res. 
Exp. 
[min] 
(Ave) 

Fire 
Res. IR 

[min] 
(Ave) 

Fire 
Res. 
Num. 

Simple 
Method 
1 [min] 

Fire 
Res. 
Num. 

Simple 
Method 
2 [min] 

Fire Res. 
Num. 

Advanced 
[min] 
(Max) 

Fire Res. 
Num. 

Advanced 
[min] 
(Ave) 

3 88 99 90 90 74 76 102 
10 79 94 99 78 74 77 97 

 

Table 12 – Fire resistance values for Polytechnic Institute of Bragança for superwool. 

Spec. 
No. 

Fire Res. 
Exp. 
[min] 
(Max) 

Fire Res. 
Exp. 
[min] 
(Ave) 

Fire 
Res. IR 

[min] 
(Ave) 

Fire 
Res. 
Num. 

Simple 
Method 
1 [min] 

Fire 
Res. 
Num. 

Simple 
Method 
2 [min] 

Fire Res. 
Num. 

Advanced 
[min] 
(Max) 

Fire Res. 
Num. 

Advanced 
[min] 
(Ave) 

15 95 115 115 92 84 85 118 

16 86 100 104 92 84 85 106 
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7.  Parametric Studies  

 

This chapter presents some parametric analysis, following the same 

designations as the Specimen 10 of the Polytechnic Institute of Bragança studies.  

Firstly, it was made a parametric analysis of the effect of the Cavity Insulation 

Material on the fire resistance, keeping every other variable still. After that, it was 

made a parametric analysis of the effect of the spacing between studs and lastly a 

parametric analysis of the effect of the web size in the fire resistance. 

 

7.1. Parametric Analysis of the Cavity Insulation 

 

The parametric analysis of the cavity insulation considers the variation of the 

material in the cavity insulation of the wall specimen and its densities.  

 

 

Fig. 30 – Configuration in scale for Spec. 10 used and the variation of the cavity insulation material. 

 

This parametric analysis keeps every dimension fixed in the model according 

to Specimen 10, with a spacing between studs of 423 mm. The fire resistance was 

determined for all cases, taking into consideration the insulation criterion (I).  
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Table 13 – Fire resistance of the wall assemblies used for parametric analysis of the cavity insulation. 

Case 
Cavity 

Insulation 

Density of 
Cavity 

Insulation 
[kg/m3] 

Fire Res. 
Simple Method 

1 (I) [min]  

Fire Res. 
Simple 

Method 2 
(I) [min] 

Fire Res. 
Advanced 
Method (I) 

[min]  

1 Rock fibre 75 141 74 76 

2 Rock fibre 100 155 78 80 

3 Rock fibre 300 >240 106 103 

4 Glass fibre 15.42 49 51 51 

5 Cellulose fibre 125 75 66 70 

6 Superwool 128 >240 84 85 

7 Mineral wool 25 >240 76 78 

 

Table 13 presents the results of this parametric analysis. Using method 1, for 

cases 1, 2, 4 and 5 the relative error is 85.5%, 93.7%, 3.9% and 7.1%, while using 

method 2, the relative error for every case is 2.6%, 2.5%, 2.9%, 0%, 5.7%, 1.17%, 

2.5%, respectively. 

 

7.2. Parametric Analysis of the Spacing Between Studs 

 

This parametric analysis considers different spacing between studs to see their 

influence in the fire resistance according to the insulation criterion (I) of the LSF non-

loadbearing wall. The geometry considered was the same as Specimen 10 from the 

Polytechnic Institute of Bragança studies and the cavity insulation material chosen was 

75 kg/m3 density Rock Fibre. 

 

Fig. 31 – Configuration in scale for Spec. 10 used and the variation of the spacing between studs. 
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It is important to note that to make the spacing between studs larger but not 

change the configuration of the wall, it was needed to make the wall width also larger. 

That means that while the spacing between studs grows, also does the wall width. 

 

Table 14 –Fire resistance of the wall assemblies used for parametric analysis of the spacing between 
studs. 

Case 
Spacing 

between studs 
[mm] 

Fire Resistance 
Simplified Method 1 

(I) [min] 

Fire Resistance 
Simplified Method 

2 (I) [min] 

Advanced Method 
Fire Resistance (I) 

[min]  

8 400 141 73 76 
9 500 141 73 76 

10 600 141 68 77 
11 700 141 66 77 
12 800 141 65 77 

 

Table 14 presents the results of the parametric studies. The relative error for 

cases 8 and 9 using method 1 is 85.5%, while for cases 10, 11 and 12 the error is 

83.1%. Using method 2, the error for cases 8 and 9 is 3.9%, and for cases 10, 11 

and 12, it is 11.6%, 14.2% and 15.5%, respectively. 

 

7.3. Parametric Analysis of the Cavity Spacing 

 

This study considers the change in the cavity spacing and, consequently, the 

web size to analyze the fire resistance according to the insulation criterion (I) in a non-

loadbearing LSF wall system.  

 

 

Fig. 32 – Configuration in scale for Spec. 10 used and the variation of the cavity spacing. 

 

The analysis uses the same geometry as Specimen 10 of the Polytechnic 

Institute of Bragança studies, with a spacing between studs of 423 mm and cavity 

insulation material as Rock fibre with a density of 75kg/m3. 
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Table 15 – Characteristics and fire resistance of the wall assemblies used for parametric analysis of 
the web size. 

Case Web size [mm] 
Fire Res. Simple 
Method 1 (I) [min] 

Fire Res. Simple 
Method 2 (I) [min] 

Fire Res. 
Advanced Method 

(I) [min]  

13 45 78 48 55 
14 90 141 73 76 
15 120 201 95 93 
16 150 >240 123 112 
17 240 >240 >240 190 

 

Table 15 presents the fire resistance of both the simplified and advanced 

method for fire resistance using the insulation criterion (I).  

For cases 13, 14 and 15, the relative error between results for the method one 

are 41.8%, 85.5%, 116.1%, respectively, while for method 2, the relative error are 

12.7%, 3.9%, 2.1%, respectively and 9.8% for case 16.  
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8.  Comparison of Results 

This section of the study presents the results and comparison of each 

analysis and both methods proposed for the simple calculation method. 

8.1. University of Manchester 

In Fig. 33, it is shown the configuration and discrete points of analysis that 

were gathered by the experimental and numerical data for the results from Feng et al. 

[15]. The numbers and red points symbolize the placement of the thermocouples. 

 

Fig. 33 – Configuration and discrete points of analysis for the University of Manchester 

Fig. 34 presents the experimental results in each distinct point, as shown in 

the graph by “EXP”, the Finite Element model made by Feng et al [15], represented by 

“FE”, the results from the advanced calculation method made in this study, represented 

by “ANSYS”, and both of the simple calculation methods proposed, represented by 

“M1” and “M2”.  

Both the advanced and simple calculation methods did not consider the exact 

same points as the experimental and finite element analysis made by Feng et al. [15], 

but actually considered a point between P2 and P3 and between P4 and P5. For that 

reason, in the graph there is two curves considered P2_P3 and P4_P5 which 

represents the temperature in the middle of those respective flanges. 
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Fig. 34 – Graph of experimental and numerical results for the University of Manchester. 

 

Fig. 35 shows the insulation criterion (I) and curves for the unexposed surface, 

for every study also presented in Fig. 34. Since this study only consideres a wall of 

dimensions 300 x 300 mm, every temperature is considered the maximum temperature 

for the unexposed wall. The relative error for the fire resistance according to the 

insulation criterion (I) of both the simple calculation methods and also the advanced 

method, when compared to the experimental and the advanced calculation methods 

are presented in Table 16. 



61 

 

Fig. 35 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for 
University of Manchester. 

Table 16 – Relative error of results by University of Manchester. 

 
Relative Error Simple 

Method 1 [%] 
Relative Error Simple 

Method 2 [%] 

Relative Error 
Advanced Method 

[%] 

Exp. – – – 
Adv. – 20 – 

 

 

8.2. Queensland University of Technology – 1 

 

This study presents the experimental results in each discrete point, for the 

three different configurations used by Queensland University of Technology – 1, where 

the difference between each configuration is solely the cavity insulation material. Since 

the wall configuration and placement of thermocouples are the same for the three 

specimens analysed,  Fig. 36 is a representation of the configuration of the wall and 

the discrete points used by Kolarkar et al. [39]. The numbers and red points symbolize 

the placement of the thermocouples. 
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Fig. 36 – Configuration and discrete points of analysis for the Queensland University of 

Technology – 1. 

The graphs for the results of experimental and numerical data for Spec. 4, 

which is the configuration with glass fibre cavity insulation material, are shown in Fig. 

37, followed by the comparison of the curves for the unexposed wall and insulation 

criterion (I) in Fig. 38. In sequence, Fig. 39 shows the experimental and numerical 

results for Spec. 5, with rock fibre cavity insulation material, and Fig. 40 shows the 

comparison of the curves for the unexposed wall and insulation criterion (I). Lastly, 

Figs. Fig. 41 and Fig. 42 shows the same results for the Spec. 6, with cellulose fibre 

cavity insulation material. 

 It was decided to show only the points that were considered more important 

for the analysis, which in this case are P1, P4, P5, P6 and P9. The names used for the 

legend of the graph are the same as the ones explained in the University of 

Manchester. 

The graph for the insulation criterion (I) shows the average temperature for the 

experimental and advanced calculation methods, which is represented by the dotted 

lines, and the maximum temperature for the advanced and simplified calculation 

methods, which is represented by the solid lines. 
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Fig. 37 – Graph of experimental and numerical results for Spec. 4 of Queensland University of 
Technology – 1. 

 

 

Fig. 38 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 4 

of Queensland University of Technology – 1. 
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Fig. 39 – Graph of experimental and numerical results for Spec. 5 of Queensland University of 
Technology – 1. 

 

 

Fig. 40 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 5 

of Queensland University of Technology – 1. 
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Fig. 41 – Graph of experimental and numerical results for Spec. 6 of Queensland University of 
Technology – 1. 

 

 

Fig. 42 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 6 

of Queensland University of Technology – 1. 
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Table 17 shows the relative error for both of the simplified methods and the 

advanced method, when compared to the experimental and advanced calculation 

results. When the curve of reference, which is either the experimental or advanced, 

does not meet the insulation criterion (I), the relative error cannot be calculated. 

 

Table 17 – Relative error of results by Queensland University of Technology – 1. 

 Cavity Insulation 
Relative Error 

Simple Method 
1 [%] 

Relative Error 
Simple Method 

2 [%] 

Relative Error 
Advanced 

Method [%] 

Exp.  Glass fibre – – – 

Exp. Rock fibre 17.25 15.73 38.58% 

Exp.  Cellulose fibre – – – 

Adv.  Glass fibre 0.65 0.65 – 

Adv. Rock fibre 0.43 1.73 – 

Adv. Cellulose fibre 2.06 2.58 – 

 

8.3. Queensland University of Technology – 2 

The second configuration from Queensland University of Technology is 

presented by Rusthi et al. [40], where it was made an FE analysis of the experimental 

research made by Kolarkar [41]. Likewise the Queensland University of Technology – 

1, it uses the same wall configuration with changes in the cavity insulation material, 

using glass fibre for Spec. 3, rock fibre for Spec. 4 and cellulose fibre for Spec. 5. The 

wall configuration in this study is presented in Fig. 43, where the numbers and red dots 

represent the thermocouples placements. 

 

 

Fig. 43 - Configuration and discrete points of analysis for the Queensland University of Technology – 
2. 
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The graphs for the results of experimental and numerical data for Spec. 3 are 

shown in Fig. 44 and the comparison of the curves for the unexposed wall and 

insulation criterion (I) are in Fig. 45. For Spec. 4, the results of experimental and 

numerical data are in Fig. 46, and Fig. 47 shows the comparison of the curves for the 

unexposed wall and insulation criterion (I). For Spec. 5, Figs Fig. 48 and Fig. 49 show 

its results. 

The points decided to account for in this analysis are the ones for P1, P3, P4, 

P5 and P7. The results of the Finite Element model made by Rusthi et al. [40] are 

represented in the graphs by “FE”. Both experimental e finite element model are 

considered as average temperatures for the unexposed surface of the wall. 

 

 

Fig. 44 – Graph of experimental and numerical results for Spec. 3 of Queensland University of 
Technology – 2. 
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Fig. 45 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 3 

of Queensland University of Technology – 2. 

 

Fig. 46 – Graph of experimental and numerical results for Spec. 4 of Queensland University of 
Technology – 2. 
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Fig. 47 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 4 

of Queensland University of Technology – 2. 

 

 

 

 

Fig. 48 – Graph of experimental and numerical results for Spec. 5 of Queensland University of 
Technology – 2. 
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Fig. 49 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 5 
of Queensland University of Technology – 2. 

 

The relative error is presented in Table 18 for both the simple calculation 

methods proposed and the advanced calculation method, when compared to the 

experimental and advanced calculation results. The experimental or finite element 

model do not meet the insulation criterion (I). 

 

Table 18 - Relative Error of results by Queensland University of Technology – 2. 

 
Cavity 

Insulation 

Relative Error 
Simple Method 1 

[%] 

Relative Error 
Simple Method 2 

[%] 

Relative Error 
Advanced 

Method [%] 

Exp. Glass fibre – – – 
Exp. Rock fibre – – – 
Exp. Cellulose fibre – – – 
Adv. Glass fibre 3.2 0 – 
Adv. Rock fibre 0.41 16.8 – 
Adv. Cellulose fibre 15.55% 15.55% – 

 

8.4. Polytechnic Institute of Bragança 

 

For the Polytechnic Institute of Bragança, there are four different wall configurations 

with the same placement of thermocouples. For that reason, Fig. 50 shows only the 
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configuration for Spec. 3 and is used as reference for the thermocouple placement of 

the other configurations.  

 

 

Fig. 50 – Configuration and discrete points of analysis for the Polytechnic Institute of Bragança. 

For this analysis, besides the experimental, advanced and simple calculation 

methods, there is also the Infra-Red (IR), which is data collected from the unexposed 

wall by an Infra-Red. There is sufficient data to be able to point out maximum and 

average temperature of the unexposed wall for the experimental and numerical 

simulations, but the IR data is only considered to be the average because there may 

be errors in the collection of this data. 

The results of Spec. 3 are shown in Figs. Fig. 51 and Fig. 52, for Spec. 10, in 

Figs. Fig. 53 and Fig. 54. Figs Fig. 55 and Fig. 56 show the results for Spec. 15 and 

Figs Fig. 57 and Fig. 58, for Spec. 16. 

 

Fig. 51 – Graph of experimental and numerical results for Spec. 3 of Polytechnic Instititue of 
Bragança. 
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Fig. 52 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 3 
of Polytechnic Institute of Bragança. 

 

 

 

Fig. 53 – Graph of experimental and numerical results for Spec. 10 of Polytechnic Instititue of 
Bragança. 
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Fig. 54 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 10 
of Polytechnic Institute of Bragança. 

 

 

Fig. 55 – Graph of experimental and numerical results for Spec. 15 of Polytechnic Instititue of 
Bragança. 
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Fig. 56 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 15 
of Polytechnic Institute of Bragança. 

 

 

Fig. 57 – Graph of experimental and numerical results for Spec. 16 of Polytechnic Instititue of 
Bragança. 
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Fig. 58 – Graph of the unexposed wall temperature compared to the insulation criterion (I) for Spec. 16 
of Polytechnic Institute of Bragança. 

 

 

Table 19 shows the relative error of the advanced calculation and methods 1 

and 2 when compared to the experimental, IR and advanced calculation values. Since 

the only results for IR are from the average temperature of the unexposed surface of 

the wall, it cannot be compared to the simple methods, since those represent the 

maximum temperature of the unexposed surface of the wall and the error would be 

greater due to that. 

 

Table 19 – Relative Error of results by Polytechnic Institute of Bragança. 

 Spec. 
Rel. Error Simple 

Method 1 [%] 
Rel. Error Simple 

Method 2 [%] 

Rel. Error 
Advanced Method 

(Ave) [%] 

Exp. 3 2.27 15.9 3.03 

Exp. 10 1.26 6.32 3.19 

Exp. 15 3.15 11.5 2.6 

Exp. 16 6.98 2.3 6 

IR 3 – – 13.3 

IR 10 – – 2.02 
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IR 15 – – 2.6 

IR 16 – – 1.92 

Adv. 3 18.42 2.6 – 

Adv. 10 1.29 3.90 – 

Adv. 15 8.2 1.2 – 

Adv. 16 8.2 1.2 – 

 

8.5. Parametric Studies 

For the cavity insulation study, the results for the relative error between both 

simple calculation methods and the advanced calculation method in the fire resistance 

time are presented in Table 20. Values that show a dash (–) is because they did not 

meet the insulation criterion (I) for fire resistance and therefore the relative error cannot 

be calculated. 

 

Table 20 – Relative error for the cavity insulation material study. 

Case. Rel. Error Simple Method 1 [%] Rel. Error Simple Method 2 [%] 

1 85.5 2.60 

2 93.7 2.50 

3 – 2.90 

4 3.90 0 

5 7.10 5.70 

6 – 1.17 

7 – 2.50 

 

Table 21 presents the relative error for the study in which the spacing between 

studs was analysed and both of the simple calculation methods proposed were 

compared to the advanced calculation method. 
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Table 21 – Relative error for the spacing between studs study. 

Case Rel. Error Simple Method 1 [%] Rel. Error Simple Method 2 [%] 

8 85.5 3.90 

9 85.5 3.90 

10 83.1 11.60 

11 83.1 14.20 

12 83.1 15.50 

 

Lastly, Table 22 shows the relative error for both of the simple calculation 

methods proposed when compared to the advanced calculation method, for the study 

of the influence of the cavity spacing in the fire resistance time. 

 

Table 22 – Relative error for the cavity spacing study. 

Case Rel. Error Simple Method 1 [%] Rel. Error Simple Method 2 [%] 

13 41.80 12.70 

14 85.50 3.90 

15 116.10 2.10 

16 – 9.80 

17 – – 
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9. Conclusions and Future Work 

This chapter will present both the conclusions of the study made in this work 

and ideas for future works related to this topic. 

 

9.1. Conclusions 

 

This study had the main objective of proposing a new equation for the effective 

width considered when analysing the non-loadbearing LSF wall panel in an one-

dimensional heat transfer. 

In order to achieve this objective, it was necessary to use the minimum and 

maximum width possible for each configuration and test which width would provide a 

better approximation compared to either the experimental tests or the advanced 

method analysis. After finding the best width possible for each case, the cellulose fibre 

properties were found to be inconsistent with the results, since the best width for each 

case with the cellulose fibre properties presented in Rusthi [40] and Keerthan [47] 

would be either the minimum or maximum values possible. Due to this reason, the 

cellulose fibre studies were disconsidered of the full analysis to find an effective width, 

along with Specimen 16 of the Polytechnic Institute of Bragança because of its 

configuration, which is not considered by the equations of heat transfer used in this 

study. 

After proposing two different methods for calculating the effective width, it was 

time for the validation of these values to see if the equation actually presented a 

considerable result. The equations were used to predict the effective width (WL) of 

every wall panel that was analyzed in this study. 

The largest error for the Fire Resistance according to the insulation criterion 

(I) value for method 1 was an error of 18.42% for spec 03 of Polytechnic Institute of 

Bragança, when comparing to the results of the advanced calculation analysis, while 

for method 2, the largest error was of 16.8% for the rock fibre cavity insulation of the 

Queensland University of Technology – 2, when comparing to the results of the 

advanced calculation analysis. 

For the parametric studies, the largest error for method 1 was of 116.1% for 

case 15, with a web size of 120 mm, while for method 2, it was of 15.5% for case 12 

with a spacing between studs of 800 mm. 
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From the observation of this study, it is clear that the method 1 had a very large 

error when used in the parametric studies, since it was proposed using results from 

the experimental tests and the parametric studies used a comparison with the 

advanced calculation analysis alone. On the other hand, method 2 presented relative 

error not too high compared to every single analysis, which makes it the most 

interesting method in this study. 

 

9.2. Future Work 

 

From this presented study, it is possible to understand the need in analysing a 

few other concepts that were not approached, as follows: 

 Study various other configurations both in small scale physical tests and 

simulation approach, specially for different sizes of spacing between studs and 

wall width, since the parametric studies of the spacing between studs showed 

that the fire resistance of those walls did not change if the wall width grew 

accordingly, which isn’t the case for the studies used for validation, since most 

walls are close to each other in width size; 

 Study different materials in the cavity insulation, and propose a different 

equation for each material for a more controlled outcome; 

 Study different panels configurations, e.g. sandwich sheathing wall (gypsum-

composite-gypsum configuration); 

 Study the effect on changing spacing between studs along with the materials 

of both cavity insulation and sheathing insulation (as in the sandwich 

configuration). 
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A. Appendix – Detailed Heat Balance Equations 

 Layer 1 
 

 

12,11 CAPCOND QQQ    

t

TTTG
WLCpWLTT

TG
WLTTWLTT

i

GG

G

fireGffire























 ][

8
][

4

][][
1

11

21

4

1

4

1 


  

 Layer 2 

 

23,22,1 CAPCONDCOND QQQ    

t

TTTG
WLCpWLTT

TG
WLTT

TG

i

GG

GG

































 ][

4
][

4

][

4

1

22
3221 


 

 

 

 

 

 



A.2 

 Layer 3 
 

 

34,33,2 CAPCONDCOND QQQ    

t

TTTG
WLCpWLTT

TG
WLTT

TG

i

GG

GG

































 ][

4
][

4

][

4

1

33

4332 


 

 Layer 4 
 

 

45,44,3 CAPCONDCOND QQQ    

t

TTTG
WLCpWLTT

TG
WLTT

TG

i

GG

GG

































 ][

4
][

4

][

4

1

44
5443 


 

 Layer 5 
 

 

56,55,4 CAPCONDCOND QQQ    



A.3 

5

1

55

6,5

65

54 ][

4

CAP

i

COND

G

R

TT

R

TT
WLTT

TG

















 

6,5
3_

6,5
3_

6,5
2_

6,5
2_

6,5
1_

6,5
1_

6,5 11111

1

isissi

COND

RRRRRR

R






  

5
2_

5
1_

5
1_

5 111

1

isi

GCAP

RRR

RR



  

R for conduction 

TI

TSBL
TS

widthcond

thick
R

i

i











2

6,5
1_  

TS

TSBL
TS

R
s

s








2

6,5
1_  

)2(6,5
2_

TSBF

TS
R

s

s





 

)2(

2

6,5
2_

TSBF

TSBL

R
i

i







 

TS

TSBL
TS

R
s

s









 





2

6,5
3_

 

BI

TSBL
TS

R
i

i








2

6,5
3_  

R for capacity 

WL
TG

Cp

t
R

GG

G













8


 

TITSCp

t
R

ii

i




5

1_  

BFTSCp

t
R

ss

s




5

1_  

BITSCp

t
R

ii

i




5

2_  

 

 

 

 

 



A.4 

 Layer 6 
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B.1 

B. Appendix – Matrix of Heat Transfer 

Matrix of Heat Transfer for the finite-difference method 

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 LOAD 

EQ1 𝑘11 𝑘12 0 0 0 0 0 0 0 0 0 0 0 0 𝐹1 

EQ2 𝑘21 𝑘22 𝑘23 0 0 0 0 0 0 0 0 0 0 0 𝐹2 

EQ3 0 𝑘32 𝑘33 𝑘34 0 0 0 0 0 0 0 0 0 0 𝐹3 

EQ4 0 0 𝑘43 𝑘44 𝑘45 0 0 0 0 0 0 0 0 0 𝐹4 

EQ5 0 0 0 𝑘54 𝑘55 𝑘56 0 0 0 0 0 0 0 0 𝐹5 

EQ6 0 0 0 0 𝑘65 𝑘66 𝑘67 0 0 0 0 0 0 0 𝐹6 

EQ7 0 0 0 0 0 𝑘76 𝑘77 𝑘78 0 0 0 0 0 0 𝐹7 

EQ8 0 0 0 0 0 0 𝑘87 𝑘88 𝑘89 0 0 0 0 0 𝐹8 

EQ9 0 0 0 0 0 0 0 𝑘98 𝑘99 𝑘910 0 0 0 0 𝐹9 

EQ10 0 0 0 0 0 0 0 0 𝑘109 𝑘1010 𝑘1011 0 0 0 𝐹10 

EQ11 0 0 0 0 0 0 0 0 0 𝑘1110 𝑘1111 𝑘1112 0 0 𝐹11 

EQ12 0 0 0 0 0 0 0 0 0 0 𝑘1211 𝑘1212 𝑘1213 0 𝐹12 

EQ13 0 0 0 0 0 0 0 0 0 0 0 𝑘1312 𝑘1313 𝑘1314 𝐹13 

EQ14 0 0 0 0 0 0 0 0 0 0 0 0 𝑘1413 𝑘1414 𝐹14 
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𝑅𝐶𝐴𝑃5

𝑇5
𝑖−1 

𝐹6 = −
1

𝑅𝐶𝐴𝑃6

𝑇6
𝑖−1 

𝐹7 = −
1

𝑅𝐶𝐴𝑃7

𝑇7
𝑖−1 

𝐹8 = −
1

𝑅𝐶𝐴𝑃8

𝑇8
𝑖−1 

𝐹9 = −
1

𝑅𝐶𝐴𝑃9

𝑇9
𝑖−1 

𝐹10 = −
1

𝑅𝐶𝐴𝑃10

𝑇10
𝑖−1 

𝐹11 = −𝜌
𝐺

𝐶𝑝
𝐺

𝑊𝐿 (
𝑇𝐺

4
)

1

𝛥𝑡
𝑇11

𝑖−1 

𝐹12 = −𝜌
𝐺

𝐶𝑝
𝐺

𝑊𝐿 (
𝑇𝐺

4
)

1

𝛥𝑡
𝑇12

𝑖−1 

𝐹13 = −𝜌
𝐺

𝐶𝑝
𝐺

𝑊𝐿 (
𝑇𝐺

4
)

1

𝛥𝑡
𝑇13

𝑖−1 

𝐹14 = −𝛼𝐶𝑇𝑎𝑚𝑏𝑊𝐿 − 𝜌
𝐺

𝐶𝑝
𝐺

𝑊𝐿 (
𝑇𝐺

8
)

1

𝛥𝑡
𝑇14

𝑖−1
 

𝛼𝑅 = 𝜀𝑓𝜀𝐺𝜎(𝑇𝑓𝑖𝑟𝑒 + 𝑇1)(𝑇𝑓𝑖𝑟𝑒
2 + 𝑇1

2) 
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C. Appendix – Material Properties 

Material Properties 

  

Steel propeties according to EN 1993-1-2:2005 
[45]. 

Gypsum properties according to Sultan [38]. 

  

Rockwool, density 75 kg/m3, properties 
according to TALAT [46]. 

Rockwool, density 100 kg/m3, properties 
according to TALAT [46]. 

  

Rockwool, density 300 lg/m3, properties 
according to TALAT [46]. 

Glass fibre properties according to Keerthan 
[47]. 
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Cellulose fibre properties according to Keerthan 
[47]. 

Mineral wool properties according to Feng et al. 
[15]. 

 

Superwool properties according to Morgan DataSheet [48], [49]. 
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D. Appendix – Data Sheets 

Description 

Author: Feng, M.; Wang, Y. C.; Davies, 
J. M. [15] 

Test no.: 
Tlip12-a3 

Insulation: Isowool 1000 

Local: University of Manchester, UK. Year: 2002 Gypsum board: 12.5 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- Images on the left are from the experimental test and the mesh from the ABAQUS program 

used by the author for the finite element analysis; 

- FE in the graph represents the results of the finite element analysis made by the author. 
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SIM. 

1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 246.7 M2:45 M1: >1200 M2: 84 Ave: 768 Max: 105 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 20 min t = 40 min 

 

 

 

 

t = 60 min t = 80 min 

 

 

 

 

t = 105 min (TMAX) t = 768 min (TAVE) 
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Description 

Author: Kolarkar, P.; Mahendran, M. [39] Test no.: 4 Insulation: Glassfibre 15.42 kg/m3  

Local: Queensland University of 
Technology, AUS 

Year: 2011 Gypsum board: 2 x 16 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: 

Part 2 was used; 

- The second graph represents 

temperatures in each stud. 
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SIM. 

1 

WL Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 159.06 M2: 168 M1: 153 M2:151 Ave: 152 Max: 152 

 

Mesh from Ansys 

 
 

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 30 min t = 60 min 

 

 

 

 

t = 90 min t = 120 min 

 

 

 

 

t = 152 min (TMAX) t = 152 min (TAVE) 
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Description 

Author: Kolarkar, P.; Mahendran, M. [39] Test no.: 5 Insulation: Rockwool 100kg/m3 

Local: Queensland University of Technology, 
AUS 

Year: 2011 Gypsum board: 2 x 16 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: 

Part 2 was used; 

- The second graph represents 

temperatures in each stud, left to 

right. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 159.06 M2: 168 M1: 231 M2: 228 Ave: 273 Max: 232 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 50 min t = 100 min 

 

 

 

 

t = 150 min t = 200 min 

 

 

 

 

t = 232 min (TMAX) t = 274 min (TAVE) 
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Description 

Author: Kolarkar, P.; Mahendran, M. [39] Test no.: 6 Insulation: Cellulose fibre 125kg/m3  

Local: Queensland University of 
Technology, AUS 

Year: 2011 Gypsum board: 2 x 16 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: 

Part 2 was used; 

- The second graph represents 

temperatures in each stud, left to 

right. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1:159.06 M2: 168 M1: 190 M2: 189 Ave: 192 Max: 194 

 

Mesh from Ansys 

 
 

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 40 min t = 80 min 

 

 

 

 

t = 120 min t = 160 min 

 

 

 

 

t = 192 min (TAVE) t = 194 min (TMAX) 
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Description 

Author: Rusthi, M.; Keerthan, P.; 
Ariyanayagam, A.; Mahendran, M. [40] 

Test no.: 3 Insulation: Glass fibre 15.42kg/m3  

Local: Queensland University of 
Technology, AUS 

Year: 2015 Gypsum board: 2 x 16 mm 

 

 *scale drawing of the entire wall 

 

 
 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- Images on the left are from the experimental test and the mesh from the ABAQUS program 

used by the author for the finite element analysis; 

- FE in the graph represents the results of the finite element analysis made by the author. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 140.24 M2: 294 M1: 244 M2: 156 Ave: 289 Max: 243 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 30 min t = 60 min 

 

 

 

 

t = 90 min t = 120 min 

 

 

 

 

t = 156 min (TAVE) t = 156 min (TMAX) 
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Description 

Author: Rusthi, M.; Keerthan, P.; 
Ariyanayagam, A.; Mahendran, M. [40] 

Test no.: 4 Insulation: Rockwool 100kg/m3  

Local: Queensland University of 
Technology, AUS 

Year: 2015 Gypsum board: 2 x 16 mm 

 

 *scale drawing of the entire wall 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- Images on the left are from the experimental test and the mesh from the ABAQUS program 

used by the author for the finite element analysis; 

- FE in the graph represents the results of the finite element analysis made by the author. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 140.24 M2: 294 M1: 244 M2: 284 Ave: 289 Max: 243 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 50 min t = 100 min 

 

 

 

 

t = 150 min t = 200 min 

 

 

 

 

t = 243 min (TMAX) t = 289 min (TAVE) 
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Description 

Author: Rusthi, M.; Keerthan, P.; 
Ariyanayagam, A.; Mahendran, M. [40] 

Test no.: 5 Insulation: Cellulose fibre 125kg/m3  

Local: Queensland University of 
Technology, AUS 

Year: 2015 Gypsum board: 2 x 16 mm 

 

 *scale drawing of the entire wall 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- Images on the left are from the experimental test and the mesh from the ABAQUS program 

used by the author for the finite element analysis; 

- FE in the graph represents the results of the finite element analysis made by the author. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 140.24 M2: 294 M1: 201 M2: 201 Ave: 201 Max: 203 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 40 min t = 80 min 

 

 

 

 
t = 120 min t = 160 min 

 

 

 

 

t = 201 min (TAVE) t = 203 min (TMAX) 
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Description 

Author: Piloto, P. A. G. [44] Test no.: 3 Insulation: Rock fibre 75kg/m3  

Local: Polytechnic Institute of 
Technology, PT. 

Year: 2018 Gypsum board: 12.5 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- IR in the graph represents the values made by an infrared thermometer of the ambient side. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 296.66 M2: 146.25 M1: 90 M2: 73 Ave: 102 Max: 76 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 15 min t = 30 min 

 

 

 

 

t = 45 min t = 60 min 

 

 

 

 

t = 76 min (TMAX) t = 102 min (TAVE) 
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Description 

Author: Khetata, S. M.; Piloto, P. A. G., 
Gavilán, A. B. R. [42], [43] 

Test no.: 10 Insulation: Rock fibre 75kg/m3  

Local: Polytechnic Institute of 
Technology, PT. 

Year: 2019 Gypsum board: 12.5 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- IR in the graph represents the values made by an infrared thermometer of the ambient side. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 184.73 M2: 146.25 M1: 90 M2: 73 Ave: 102 Max: 76 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 15 min t = 30 min 

 

 

 

 

t = 45 min t = 60 min 

 

 

 

 

t = 76 min (TMAX) t = 97 min (TAVE) 
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Description 

Author: Khetata, S. M.; Piloto, P. A. G., 
Gavilán, A. B. R. [42], [43] 

Test no.: 15 Insulation: Superwool  

Local: Polytechnic Institute of 
Technology, PT. 

Year: 2019 Gypsum board: 12.5 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- IR in the graph represents the values made by an infrared thermometer of the ambient side. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 184.73 M2: 146.25 M1: 92 M2: 84 Ave: 118 Max: 85 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 20 min t = 40 min 

 

 

 

 

t = 60 min t = 80 min 

 

 

 

 

t = 85 min (TMAX) t = 118 min (TAVE) 

  



D.21 

Description 

Author: Khetata, S. M.; Piloto, P. A. 
G.; Gavilán, A. B. R. [43]  

Test no.: 16 Insulation: Superwool  

Local: Polytechnic Institute of 
Technology, PT. 

Year: 2019 
(unpublished) 

Gypsum board: 12.5 mm 

 

 

 

 

Observations: 

- Dimensions in millimeters; 

- Steel properties from Eurocode 3: Part 2 was used; 

- IR in the graph represents the values made by an infrared thermometer of the ambient side. 
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SIM. 
1 

WL [mm] Matlab Fire resistance (min) Ansys Fire resistance (min) 

M1: 184.73 M2: 146.25 M1: 92 M2: 84 Ave: 106 Max: 85 

 

Mesh from Ansys 

  

Comparison between all results Unexposed curves with insulation criterion (I) 

Ansys results through time 

 

 

 

 

t = 20 min t = 40 min 

 

 

 

 

t = 60 min t = 80 min 

 

 

 

 

t = 85 min (TMAX) t = 106 min (TAVE) 
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E. Appendix – Matlab Program 

Main program – Specimen 10 

clc; 

clear all; 

close all; 

  

  

% variable declaration 

%  

% NSTEP= number of time steps 

% NSTRIP= number of strip layers of materials 

% MATRIX= conductivity matrix 

% NODALTEMP(NTSRP)= NODAL TEMPERATURE 

% TEMPINITIAL 

% LOAD= load vector 

% BF= width of the flange 

% BW= length of the web 

% BL= length of the lip 

% TS= thickness of the steel profile 

% TI= effective width on the left side 

% BI= effectiv width on the right side 

% TIMESTEP= time step size for incremental solution 

% TOTALTIME=  total time of simulation 

% NSUBSTEPS=TOTALTIME/TIMESTEP 

% TIME= TIME VARIABLE 

% TG= thickness of the gypsum board 

% ALPHACFIRE= convection coefficient for exposed side 

% ALPHACUNEX= convection coefficient for unexposed side 

% EPSILONFIRE= emissivity of the fire 

% EPSILONM= emissivity of the material exposed to fire (Gypsum) 

% TGAS= temperature of the fire 

% TAMB= room temperature 

% LAMDAG = conductivity of the gypsum 

% ROG= specific mass of gyspum 

% CPG= specific heat of gypsum 

% LAMDAI= conductivity of the insulation (Rock fibre) 

% ROI= specific mass of the insulation (Rock fibre) 

% CPI=specific heat of the insulation (Rock fibre) 
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% LAMDS=conductivity of STEEL 

% ROS=specific mass of the STEEL 

% CPS=specific heat of the STEEL 

%   

% RCON56= specific resistance for heat flux by conduction from layer 5 to 

layer 6 

% RS156= specific resistance for heat flux by conduction through steel S1 

from layer 5 to layer 6 

% RS256= specific resistance for heat flux by conduction through steel S2 

from layer 5 to layer 6 

% RI256= specific resistance for heat flux by conduction through 

insulation I2 from layer 5 to layer 6 

% RS356= specific resistance for heat flux by conduction through steel S3 

from layer 5 to layer 6 

% RI356= specific resistance for heat flux by conduction through 

insulation I3 from layer 5 to layer 6 

%  

% RCAP5= inverse of the capacitance of layer 5 

% RG= inverse of the capacitance of gyspum 

% RI15= inverse of the capacitance of the insulation (ROCKWOOL) on the 

left, layer 5 

% RS15= inverse of the capacitance of steel, layer 5 

% RI25= inverse of the capacitance of the insulation (ROCKWOOL) on the 

right, layer 5 

%   

% RCOND67= specific resistance for heat flux by conduction from layer 6 

to layer 7 

% RI167= specific resistance for heat flux by conduction through 

insulation I1 from layer 6 to layer 7 

% RS167= specific resistance for heat flux by conduction through steel S1 

from layer 6 to layer 7 

% RI267= specific resistance for heat flux by conduction through 

insulation I2 from layer 6 to layer 7inverse of the capacitance of gyspum 

% RS267= specific resistance for heat flux by conduction through steel S2 

from layer 6 to layer 7 

% RI367= specific resistance for heat flux by conduction through 

insulation I3 from layer 6 to layer 7 

% RI467= specific resistance for heat flux by conduction through 

insulation I4 from layer 6 to layer 7 

%  

% RCAP6=inverse of the capacitance of layer 6 

% RI16= inverse of the capacitance of the insulation (ROCKWOOL) on the 

left, layer 6 

% RS16= inverse of the capacitance of steel on the left, layer 6 

% RI26= inverse of the capacitance of the insulation (ROCKWOOL) on the 

center, layer 6 
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% RS26= inverse of the capacitance of steel on the right, layer 6 

% RI36= inverse of the capacitance of the insulation (ROCKWOOL) on the 

right, layer 6 

%  

% RCOND78= specific resistance for heat flux by conduction from layer 7 

to layer 8 

% RI178= specific resistance for heat flux by conduction through 

insulation I1, on the left, from layer 7 to layer 8 

% RS178= specific resistance for heat flux by conduction through steel 

S1, on the left, from layer 7 to layer 8 

% RI278= specific resistance for heat flux by conduction through 

insulation I2, on the center, from layer 7 to layer 8 

% RI378= specific resistance for heat flux by conduction through 

insulation I3, on the center rigth, from layer 7 to layer 8 

% RI478= specific resistance for heat flux by conduction through 

insulation I4, on the rigth, from layer 7 to layer 8 

%  

% RCAP7=inverse of the capacitance of layer 7 

% RI17= inverse of the capacitance of the insulation (ROCKWOOL) on the 

left, layer 7 

% RS17= inverse of the capacitance of steel on the left, layer 7 

% RI27= inverse of the capacitance of the insulation (ROCKWOOL) on the 

center, layer 7 

% RI37= inverse of the capacitance of the insulation (ROCKWOOL) on the 

center rigth, layer 7 

% RI47= inverse of the capacitance of the insulation (ROCKWOOL) on the 

right, layer 7 

% COND89= specific resistance for heat flux by conduction from layer 8 to 

layer 9 

% RI189= specific resistance for heat flux by conduction through 

insulation I1, on the left, from layer 8 to layer 9 

% RS189= specific resistance for heat flux by conduction through steel 

S1, on the left, from layer 8 to layer 9 

% RI289= specific resistance for heat flux by conduction through 

insulation I2, on the center, from layer 8 to layer 9 

% RI389= specific resistance for heat flux by conduction through 

insulation I3, on the center rigth, from layer 8 to layer 9 

% RS289= specific resistance for heat flux by conduction through steel 

S2, on the right, from layer 8 to layer 9 

% RI489= specific resistance for heat flux by conduction through 

insulation I4, on the rigth, from layer 8 to layer 9 

%  

% RCAP8=inverse of the capacitance of layer 8 

% RI18= inverse of the capacitance of the insulation (ROCKWOOL) on the 

left, layer 8 

% RS18= inverse of the capacitance of steel on the left, layer 8 
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% RI28= inverse of the capacitance of the insulation (ROCKWOOL) on the 

center, layer 8 

% RI38= inverse of the capacitance of the insulation (ROCKWOOL) on the 

center rigth, layer 8 

% RI48= inverse of the capacitance of the insulation (ROCKWOOL) on the 

right, layer 8 

%  

% RCOND910= specific resistance for heat flux by conduction from layer 9 

to layer 10 

% RI1910= specific resistance for heat flux by conduction through 

insulation I1, on the left, from layer 9 to layer 10 

% RS1910= specific resistance for heat flux by conduction through steel 

S1, on the left, from layer 9 to layer 10 

% RI2910= specific resistance for heat flux by conduction through 

insulation I2, on the center, from layer 9 to layer 10 

% RS2910= specific resistance for heat flux by conduction through steel 

S2, on the center, from layer 9 to layer 10 

% RS3910= specific resistance for heat flux by conduction through steel 

S3, on the right, from layer 9 to layer 10 

% RI3910= specific resistance for heat flux by conduction through 

insulation I3, on the rigth, from layer 9 to layer 10 

%  

% RCAP9=inverse of the capacitance of layer 9 

% RI19= inverse of the capacitance of the insulation (ROCKWOOL) on the 

left, layer 9 

% RS19= inverse of the capacitance of steel on the left, layer 9 

% RI29= inverse of the capacitance of the insulation (ROCKWOOL) on the 

center, layer 9 

% RS29= inverse of the capacitance of steel on the right, layer 9 

% RI39= inverse of the capacitance of the insulation (ROCKWOOL) on the 

right, layer 9 

%  

% RCAP10=inverse of the capacitance of layer 10 

% RG2= inverse of the capacitance of gyspum (UNXPOSED SIDE) 

% RI110= inverse of the capacitance of the insulation (ROCKWOOL) on the 

left, layer 10 

% RS110= inverse of the capacitance of steel from the flange, layer 10 

% RI210= inverse of the capacitance of the insulation (ROCKWOOL) on the 

right, layer 10 

%  

% TAVE12= AVERAGE TEMPERATURE OF NODALTEMP(1) AND NODALTEMP(2) USED TO 

CALCULATE THE THERMAL CONDUCTIVITY 

% TAVE23= AVERAGE TEMPERATURE OF NODALTEMP(2) AND NODALTEMP(3) USED TO 

CALCULATE THE THERMAL CONDUCTIVITY 

% TAVE34= AVERAGE TEMPERATURE OF NODALTEMP(3) AND NODALTEMP(4) USED TO 

CALCULATE THE THERMAL CONDUCTIVITY 
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% TAVE45= AVERAGE TEMPERATURE OF NODALTEMP(4) AND NODALTEMP(5) USED TO 

CALCULATE THE THERMAL CONDUCTIVITY 

% TAVE56= AVERAGE TEMPERATURE OF NODALTEMP(5) AND NODALTEMP(6) USED TO 

CALCULATE THE THERMAL RESISTANCE RCOND56 

% TAVE67= AVERAGE TEMPERATURE OF NODALTEMP(6) AND NODALTEMP(7) USED TO 

CALCULATE THE THERMAL RESISTANCE RCOND67 

% TAVE78= AVERAGE TEMPERATURE OF NODALTEMP(7) AND NODALTEMP(8) USED TO 

CALCULATE THE THERMAL RESISTANCE RCOND78 

% TAVE89= AVERAGE TEMPERATURE OF NODALTEMP(8) AND NODALTEMP(9) USED TO 

CALCULATE THE THERMAL RESISTANCE RCOND89 

% TAVE910= AVERAGE TEMPERATURE OFDNODALTEMP(9) AND NODALTEMP(10) USED TO 

CALCULATE THE THERMAL RESISTANCE RCOND910 

% TAVE1011= AVERAGE TEMPERATURE Of NODALTEMP(10) AND NODALTEMP(11) USED 

TO CALCULATE THE THERMAL CONDUCTIVITY 

% TAVE1112= AVERAGE TEMPERATURE OF NODALTEMP(11) AND NODALTEMP(12) USED 

TO CALCULATE THE THERMAL CONDUCTIVITY 

% TAVE1213= AVERAGE TEMPERATURE OF NODALTEMP(12) AND NODALTEMP(13) USED 

TO CALCULATE THE THERMAL CONDUCTIVITY 

% TAVE1314= AVERAGE TEMPERATURE OF NODALTEMP(13) AND NODALTEMP(14) USED 

TO CALCULATE THE THERMAL CONDUCTIVITY 

%  

% X(NSTRIP)= result of the temperature in each layer, from 1 to 14 for a 

specific time 

% XFINAL(NSTRIP, NSUBSTEPS)= result of the tmeperature in each layer and 

for every substep in time 

  

       

%%LSF DIMENSION DEFINITION 

  

WW=0.975;           %wall width (if necessary) 

BF=0.043;           %flange length (m) 

BW=0.090;           %web length (m) 

BL=0.015;           %lip length (m) 

TS=0.0015;          %steel profile thickness (m) 

TG=0.0125;          %gypsum thickness (m) 

WL=0.15*WW;         %effective width (m) 

TEMPINITIAL=20;     %initial temperature for every node (°C) 

TAMB=20;            %room temperature for unexpposed side (°C) 

TOTALTIME=14400;      %total time for simulation (s) 

NSUBSTEPS=3600;     %number of time steps -> integer 

  

NSTRIP=14;           %layer number 

TIMESTEP=TOTALTIME/NSUBSTEPS; 
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%%Definition of parameters 

  

TI=(WL-BF)/2; 

BI=TI; 

  

%convection coefficient 

  

ALPHACFIRE=25.0; 

ALPHACUNEX=9.0; 

  

%emissivity coefficient 

  

EPSILONFIRE=1.0; 

EPSILONM=0.8; 

  

%other parameters 

STEFAN=5.67e-8; 

  

MATRIX=zeros(14,14); 

MATRIX1=zeros(14,14); 

NODALTEMP(1,1:14)=TEMPINITIAL; 

OLDNODALTEMP(1,1:14)=TEMPINITIAL; 

  

TIME=0.; 

  

XFINAL=zeros(NSUBSTEPS, NSTRIP); 

X=zeros(NSTRIP,1); 

ALPHAR=zeros(1,NSUBSTEPS); 

  

%%Time incremental solution 

  

for i=1:NSUBSTEPS; 

         

    %in each time step, the vector of the nodal temperature is separated 

into 

    %old and actual 

  



E.7 

    TIME=TIME+TIMESTEP; 

     

%     %Variables initialization  

     

    %Linearization of radiation coefficient 

     

    

ALPHAR(i)=EPSILONFIRE*EPSILONM*STEFAN*((TGAS(i,TIME)+273.1)+(NODALTEMP(1)

+273.1))*((TGAS(i,TIME)+273.1)^2+(NODALTEMP(1)+273.1)^2); 

     

    %%Definition of the equilibrium equations 

     

    %EQUATION 1 

     

    TAVE12=(NODALTEMP(1)+NODALTEMP(2))/2; 

     

    MATRIX(1,1)=-(ALPHAR(i)+ALPHACFIRE)*WL-LAMDAG(TAVE12)*WL/(TG/4.)-

ROG(NODALTEMP(1))*CPG(NODALTEMP(1))*WL*(TG/8.)/TIMESTEP; 

     

    MATRIX(1,2)=+LAMDAG(TAVE12)*WL/(TG/4.); 

     

    MATRIX(1,3:14)=0.; 

     

    LOAD(1)=-(ALPHAR(i)+ALPHACFIRE)*TGAS(i,TIME)*WL-

ROG(NODALTEMP(1))*CPG(NODALTEMP(1))*WL*(TG/8.)*1/TIMESTEP*NODALTEMP(1); 

      

    %EQUATION 2 

     

    TAVE23=(NODALTEMP(2)+NODALTEMP(3))/2; 

     

    MATRIX(2,1)=WL*LAMDAG(TAVE12)/(TG/4.); 

    MATRIX(2,2)=-WL*LAMDAG(TAVE12)/(TG/4.)-WL*LAMDAG(TAVE23)/(TG/4.)-

ROG(NODALTEMP(2))*CPG(NODALTEMP(2))*WL*(TG/4.)/TIMESTEP; 

    MATRIX(2,3)=LAMDAG(TAVE23)*WL/(TG/4.); 

     

    MATRIX(2,4:14)=0.; 

     

    LOAD(2)=-

ROG(NODALTEMP(2))*CPG(NODALTEMP(2))*WL*(TG/4.)*1/TIMESTEP*NODALTEMP(2); 

       %EQUATION 3 
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      TAVE34=(NODALTEMP(3)+NODALTEMP(4))/2; 

   

      MATRIX(3,1)=0.; 

     

      MATRIX(3,2)=WL*LAMDAG(TAVE23)/(TG/4.); 

      MATRIX(3,3)=-WL*LAMDAG(TAVE23)/(TG/4.)-WL*LAMDAG(TAVE34)/(TG/4.)-

ROG(NODALTEMP(3))*CPG(NODALTEMP(3))*WL*(TG/4.)/TIMESTEP; 

      MATRIX(3,4)=+LAMDAG(TAVE34)*WL/(TG/4.); 

       

      MATRIX(3,5:14)=0.; 

      

      LOAD(3)=-

ROG(NODALTEMP(3))*CPG(NODALTEMP(3))*WL*(TG/4.)*1/TIMESTEP*NODALTEMP(3); 

      

      %EQUATION 4 

       

      TAVE45=(NODALTEMP(4)+NODALTEMP(5))/2; 

       

      MATRIX(4,1:2)=0.;     

       

      MATRIX(4,3)=WL*LAMDAG(TAVE34)/(TG/4.); 

      MATRIX(4,4)=-WL*LAMDAG(TAVE34)/(TG/4.)-WL*LAMDAG(TAVE45)/(TG/4.)-

ROG(NODALTEMP(4))*CPG(NODALTEMP(4))*WL*(TG/4.)/TIMESTEP; 

      MATRIX(4,5)=+LAMDAG(TAVE45)*WL/(TG/4.); 

       

      MATRIX(4,6:14)=0.; 

       

      LOAD(4)=-

ROG(NODALTEMP(4))*CPG(NODALTEMP(4))*WL*(TG/4.)*1/TIMESTEP*NODALTEMP(4); 

             

      %EQUATION 5 

       

      TAVE56=(NODALTEMP(5)+NODALTEMP(6))/2; 

     

      RI156=(TS+(BL-TS)/2)/(LAMDAI(TAVE56)*TI); 

      RS156=(TS+(BL-TS)/2)/(LAMDAS(TAVE56)*TS); 

      RS256=(TS)/(LAMDAS(TAVE56)*(BF-2*TS)); 

      RI256=((BL-TS)/2)/(LAMDAI(TAVE56)*(BF-2*TS)); 
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      RS356=(TS+(BL-TS)/2)/(LAMDAS(TAVE56)*TS); 

      RI356=(TS+(BL-TS)/2)/(LAMDAI(TAVE56)*BI); 

     

      RCOND56=1/(1/RI156+1/RS156+1/(RS256+RI256)+1/RS356+1/RI356); 

     

      RG=TIMESTEP/(ROG(NODALTEMP(5))*CPG(NODALTEMP(5))*TG/8.*WL); 

      RI15=TIMESTEP/(ROI(NODALTEMP(5))*CPI(NODALTEMP(5))*TS*TI); 

      RS15=TIMESTEP/(ROS(NODALTEMP(5))*CPS(NODALTEMP(5))*TS*BF); 

      RI25=TIMESTEP/(ROI(NODALTEMP(5))*CPI(NODALTEMP(5))*TS*BI); 

     

      RCAP5=RG+1/(1/RI15+1/RS15+1/RI25); 

  

      MATRIX(5,1:3)=0.; 

     

      MATRIX(5,4)=+WL*LAMDAG(TAVE45)/(TG/4.); 

      MATRIX(5,5)=-WL*LAMDAG(TAVE45)/(TG/4.)-1/RCOND56-1/RCAP5; 

      MATRIX(5,6)=1/RCOND56; 

  

      MATRIX(5,7:14)=0.; 

     

      LOAD(5)=-1/RCAP5*NODALTEMP(5); 

         

      %EQUATION 6 

  

      TAVE67=(NODALTEMP(6)+NODALTEMP(7))/2; 

     

      RI167=(BW/4-TS/2)/(LAMDAI(TAVE67)*TI); 

      RS167=(BW/4-TS/2)/(LAMDAS(TAVE67)*TS); 

      RI267=(BW/4-TS/2)/(LAMDAI(TAVE67)*(BF-2*TS)); 

      RS267=((BL-TS)/2)/(LAMDAS(TAVE67)*TS); 

      RI367=((BW-2*BL)/4)/(LAMDAI(TAVE67)*TS); 

      RI467=(BW/4-TS/2)/(LAMDAI(TAVE67)*BI); 

     

      RCOND67=1/(1/RI167+1/RS167+1/RI267+1/(RS267+RI367)+1/RI467); 

  

      RI16=TIMESTEP/(ROI(NODALTEMP(6))*CPI(NODALTEMP(6))*(BL-TS)*TI); 

      RS16=TIMESTEP/(ROS(NODALTEMP(6))*CPS(NODALTEMP(6))*(BL-TS)*TS); 

      RI26=TIMESTEP/(ROI(NODALTEMP(6))*CPI(NODALTEMP(6))*(BL-TS)*(BF-

2*TS)); 
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      RS26=TIMESTEP/(ROS(NODALTEMP(6))*CPS(NODALTEMP(6))*(BL-TS)*TS); 

      RI36=TIMESTEP/(ROI(NODALTEMP(6))*CPI(NODALTEMP(6))*(BL-TS)*BI); 

     

      RCAP6=1/(1/RI16+1/RS16+1/RI26+1/RS26+1/RI36); 

     

      MATRIX(6,1:4)=0.; 

       

      MATRIX(6,5)=+1/RCOND56; 

      MATRIX(6,6)=-1/RCOND56-1/RCOND67-1/RCAP6; 

      MATRIX(6,7)=+1/RCOND67; 

     

      MATRIX(6,8:14)=0.; 

   

      LOAD(6)=-1/RCAP6*NODALTEMP(6); 

             

      %EQUATION 7 

       

      TAVE78=(NODALTEMP(7)+NODALTEMP(8))/2; 

     

      RI178=((BW-2*BL)/2)/(LAMDAI(TAVE78)*TI); 

      RS178=((BW-2*BL)/2)/(LAMDAS(TAVE78)*TS); 

      RI278=((BW-2*BL)/2)/(LAMDAI(TAVE78)*(BF-2*TS)); 

      RI378=((BW-2*BL)/2)/(LAMDAI(TAVE78)*TS); 

      RI478=((BW-2*BL)/2)/(LAMDAI(TAVE78)*BI); 

     

      RCOND78=1/(1/RI178+1/RS178+1/RI278+1/RI378+1/RI478); 

  

      RI17=TIMESTEP/(ROI(NODALTEMP(7))*CPI(NODALTEMP(7))*(BW-2*BL)/2*TI); 

      RS17=TIMESTEP/(ROS(NODALTEMP(7))*CPS(NODALTEMP(7))*(BW-2*BL)/2*TS); 

      RI27=TIMESTEP/(ROI(NODALTEMP(7))*CPI(NODALTEMP(7))*(BW-2*BL)/2*(BF-

2*TS)); 

      RI37=TIMESTEP/(ROI(NODALTEMP(7))*CPI(NODALTEMP(7))*(BW-2*BL)/2*TS); 

      RI47=TIMESTEP/(ROI(NODALTEMP(7))*CPI(NODALTEMP(7))*(BW-2*BL)/2*BI); 

     

      RCAP7=1/(1/RI17+1/RS17+1/RI27+1/RI37+1/RI47); 

       

  

      MATRIX(7,1:5)=0.; 



E.11 

       

      MATRIX(7,6)=+1/RCOND67; 

      MATRIX(7,7)=-1/RCOND67-1/RCOND78-1/RCAP7; 

      MATRIX(7,8)=+1/RCOND78;    

       

      MATRIX(7,9:14)=0; 

       

      LOAD(7)=-1/RCAP7*NODALTEMP(7); 

           

      %EQUATION 8 

       

      TAVE89=(NODALTEMP(8)+NODALTEMP(9))/2; 

     

      RI189=(BW/4-TS/2)/(LAMDAI(TAVE89)*TI); 

      RS189=(BW/4-TS/2)/(LAMDAS(TAVE89)*TS); 

      RI289=(BW/4-TS/2)/(LAMDAI(TAVE89)*(BF-2*TS)); 

      RI389=((BW-2*BL)/4)/(LAMDAI(TAVE89)*TS); 

      RS289=((BL-TS)/2)/(LAMDAS(TAVE89)*TS); 

      RI489=(BW/4-TS/2)/(LAMDAI(TAVE89)*BI); 

     

      RCOND89=1/(1/RI189+1/RS189+1/RI289+1/(RI389+RS289)+1/RI489); 

  

      RI18=TIMESTEP/(ROI(NODALTEMP(8))*CPI(NODALTEMP(8))*(BW-2*BL)/2*TI); 

      RS18=TIMESTEP/(ROS(NODALTEMP(8))*CPS(NODALTEMP(8))*(BW-2*BL)/2*TS); 

      RI28=TIMESTEP/(ROI(NODALTEMP(8))*CPI(NODALTEMP(8))*(BW-2*BL)/2*(BF-

2*TS)); 

      RI38=TIMESTEP/(ROI(NODALTEMP(8))*CPI(NODALTEMP(8))*(BW-2*BL)/2*TS); 

      RI48=TIMESTEP/(ROI(NODALTEMP(8))*CPI(NODALTEMP(8))*(BW-2*BL)/2*BI); 

     

      RCAP8=1/(1/RI18+1/RS18+1/RI28+1/RI38+1/RI48); 

       

      MATRIX(8,1:6)=0.; 

  

      MATRIX(8,7)=+1/RCOND78; 

      MATRIX(8,8)=-1/RCOND78-1/RCOND89-1/RCAP8; 

      MATRIX(8,9)=+1/RCOND89; 

  

      MATRIX(8,10:14)=0.;       



E.12 

  

      LOAD(8)=-1/RCAP8*NODALTEMP(8); 

       

      %EQUATION 9 

  

      TAVE910=(NODALTEMP(9)+NODALTEMP(10))/2; 

     

      RI1910=(BL/2+TS/2)/(LAMDAI(TAVE910)*TI); 

      RS1910=(BL/2+TS/2)/(LAMDAS(TAVE910)*TS); 

      RI2910=((BL-TS)/2)/(LAMDAI(TAVE910)*(BF-2*TS)); 

      RS2910=(TS)/(LAMDAS(TAVE910)*(BF-2*TS)); 

      RS3910=(BL/2+TS/2)/(LAMDAS(TAVE910)*TS); 

      RI3910=(BL/2+TS/2)/(LAMDAI(TAVE910)*BI); 

     

      RCOND910=1/(1/RI1910+1/RS1910+1/(RI2910+RS2910)+1/RS3910+1/RI3910); 

  

      RI19=TIMESTEP/(ROI(NODALTEMP(9))*CPI(NODALTEMP(9))*(BL-TS)*TI); 

      RS19=TIMESTEP/(ROS(NODALTEMP(9))*CPS(NODALTEMP(9))*(BL-TS)*TS); 

      RI29=TIMESTEP/(ROI(NODALTEMP(9))*CPI(NODALTEMP(9))*(BL-TS)*(BF-

2*TS)); 

      RS29=TIMESTEP/(ROS(NODALTEMP(9))*CPS(NODALTEMP(9))*(BL-TS)*TS); 

      RI39=TIMESTEP/(ROI(NODALTEMP(9))*CPI(NODALTEMP(9))*(BL-TS)*BI); 

     

      RCAP9=1/(1/RI19+1/RS19+1/RI29+1/RS29+1/RI39); 

       

      MATRIX(9,1:7)=0.; 

       

      MATRIX(9,8)=+1/RCOND89; 

      MATRIX(9,9)=-1/RCOND89-1/RCOND910-1/RCAP9; 

      MATRIX(9,10)=+1/RCOND910;      

  

      MATRIX(9,11:14)=0.; 

     

      LOAD(9)=-1/RCAP9*NODALTEMP(9); 

             

      %EQUATION 10 

       

      TAVE1011=(NODALTEMP(10)+NODALTEMP(11))/2; 
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      RG2=TIMESTEP/(ROG(NODALTEMP(10))*CPG(NODALTEMP(10))*(TG/8.)*WL); 

      RI110=TIMESTEP/(ROI(NODALTEMP(10))*CPI(NODALTEMP(10))*(TS)*(TI)); 

      RS110=TIMESTEP/(ROS(NODALTEMP(10))*CPS(NODALTEMP(10))*(TS)*BF); 

      RI210=TIMESTEP/(ROI(NODALTEMP(10))*CPI(NODALTEMP(10))*(TS)*BI); 

     

      RCAP10=RG2+1/(1/RI110+1/RS110+1/RI210); 

       

    

      MATRIX(10,1:8)=0.; 

  

      MATRIX(10,9)=+1/RCOND910; 

      MATRIX(10,10)=-1/RCOND910-LAMDAG(TAVE1011)*WL/(TG/4.)-1/RCAP10; 

      MATRIX(10,11)=+LAMDAG(TAVE1011)*WL/(TG/4.); 

  

      MATRIX(10,12:14)=0.; 

     

      LOAD(10)=-1/RCAP10*NODALTEMP(10); 

  

      %EQUATION 11 

  

      TAVE1112=(NODALTEMP(11)+NODALTEMP(12))/2; 

       

      MATRIX(11,1:9)=0.; 

      

      MATRIX(11,10)=+LAMDAG(TAVE1011)*WL/(TG/4.); 

      MATRIX(11,11)=-LAMDAG(TAVE1011)*WL/(TG/4.)-

LAMDAG(TAVE1112)*WL/(TG/4.)-

ROG(NODALTEMP(11))*CPG(NODALTEMP(11))*(TG/4.)*WL/TIMESTEP; 

      MATRIX(11,12)=+LAMDAG(TAVE1112)*WL/(TG/4.); 

       

      MATRIX(11,13:14)=0.;      

       

      LOAD(11)=-

ROG(NODALTEMP(11))*CPG(NODALTEMP(11))*WL*(TG/4.)*1/TIMESTEP*NODALTEMP(11)

; 

           

     %EQUATION 12 
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      TAVE1213=(NODALTEMP(12)+NODALTEMP(13))/2; 

       

      MATRIX(12,1:10)=0.; 

       

      MATRIX(12,11)=+LAMDAG(TAVE1112)*WL/(TG/4.); 

      MATRIX(12,12)=-LAMDAG(TAVE1112)*WL/(TG/4.)-

LAMDAG(TAVE1213)*WL/(TG/4.)-

ROG(NODALTEMP(12))*CPG(NODALTEMP(12))*(TG/4.)*WL/TIMESTEP; 

      MATRIX(12,13)=+LAMDAG(TAVE1213)*WL/(TG/4.); 

  

      MATRIX(12,14)=0.; 

     

      LOAD(12)=-

ROG(NODALTEMP(12))*CPG(NODALTEMP(12))*WL*(TG/4.)*1/TIMESTEP*NODALTEMP(12)

; 

      

      %EQUATION 13 

  

      TAVE1314=(NODALTEMP(13)+NODALTEMP(14))/2; 

       

      MATRIX(13,1:11)=0.; 

       

      MATRIX(13,12)=+LAMDAG(TAVE1213)*WL/(TG/4.); 

      MATRIX(13,13)=-LAMDAG(TAVE1213)*WL/(TG/4.)-

LAMDAG(TAVE1314)*WL/(TG/4.)-

ROG(NODALTEMP(13))*CPG(NODALTEMP(13))*(TG/4.)*WL/TIMESTEP; 

      MATRIX(13,14)=+LAMDAG(TAVE1314)*WL/(TG/4.); 

       

       

      LOAD(13)=-

ROG(NODALTEMP(13))*CPG(NODALTEMP(13))*WL*(TG/4.)*1/TIMESTEP*NODALTEMP(13)

; 

            

      %EQUATION 14 

       

      MATRIX(14,1:12)=0.; 

       

      MATRIX(14,13)=+LAMDAG(TAVE1314)*WL/(TG/4.); 

      MATRIX(14,14)=-LAMDAG(TAVE1314)*WL/(TG/4.)-ALPHACUNEX*WL-

ROG(NODALTEMP(14))*CPG(NODALTEMP(14))*(TG/8.)*WL/TIMESTEP; 
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      LOAD(14)=-ALPHACUNEX*TAMB*WL-

ROG(NODALTEMP(14))*CPG(NODALTEMP(14))*WL*(TG/8.)*1/TIMESTEP*NODALTEMP(14)

; 

%        

     %SOLVING SYSTEM OF EQUATIONS 

     

    X=inv(MATRIX)*LOAD'; 

     

    for k=1:NSTRIP 

        XFINAL(i,k)=X(k); 

        NODALTEMP(k)=XFINAL(i,k); 

    end 

  

end %time cycle 

  

T=table((1:TIMESTEP:TOTALTIME)', XFINAL); 

writetable(T, 'specimen10.txt') 

 

Fire Curve – TGAS 

function [ TGAS] = TGAS(i, TIME) 

  

TGAS=20.0+345.*log10(8.0*TIME/60.0+1.0); 

  

end 
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Material Properites – Gypsum 

function [ LAMDAG ] = LAMDAG(TEMP) 

  

if (TEMP<100.0) 

    LAMDAG=0.25; 

elseif (TEMP>=100.0) && (TEMP<400.0) 

    LAMDAG=0.12; 

elseif (TEMP>=400.0) && (TEMP<800.0) 

    LAMDAG=0.00035*TEMP-0.01; 

else 

    LAMDAG=0.0013*TEMP-0.77; 

end 

  

end 

function [ ROG ] = ROG(TEMP) 

  

if (TEMP<80.0) 

    ROG=698; 

else 

    ROG=576; 

end 

  

end 
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function [ CPG ] = CPG(TEMP) 

  

if (TEMP<78.0) 

    CPG=6.146*TEMP+1377; 

elseif (TEMP>=78.0) && (TEMP<85.0) 

    CPG=150*TEMP-9858; 

elseif (TEMP>=85.0) && (TEMP<97.0) 

    CPG=262*TEMP-19501;      

elseif (TEMP>=97.0) && (TEMP<124.0) 

    CPG=476*TEMP-40311; 

elseif (TEMP>=124.0) && (TEMP<139.0) 

    CPG=154507-1097*TEMP; 

elseif (TEMP>=139.0) && (TEMP<148.0) 

    CPG=16601-105*TEMP; 

elseif (TEMP>=148.0) && (TEMP<373.0) 

    CPG=1189-1.27*TEMP; 

elseif (TEMP>=373.0) && (TEMP<430.0) 

    CPG=714; 

elseif (TEMP>=430.0) && (TEMP<571.0) 

    CPG=1151-1.014*TEMP; 

elseif (TEMP>=571.0) && (TEMP<609.0) 

    CPG=1.877*TEMP-501; 

elseif (TEMP>=609.0) && (TEMP<662.0) 

    CPG=44.2*TEMP-26300; 

elseif (TEMP>=662.0) && (TEMP<670.0) 

    CPG=3000; 

elseif (TEMP>=670.0) && (TEMP<685.0) 

    CPG=103570-150*TEMP; 

else 

    CPG=571.0; 

end 

  

end 
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Material Properties – Insulation (Rock fibre) 

function [ LAMDAI ] = LAMDAI(TEMP) 

  

if (TEMP<=375) 

    LAMDAI=0.00019*TEMP+0.045; 

elseif (TEMP>375 && TEMP<=376) 

    LAMDAI=-0.005*TEMP+1.99125; 

elseif (TEMP>376 && TEMP<=600) 

    LAMDAI=0.00031808*TEMP-0.008348214; 

elseif (TEMP>600 && TEMP<=680) 

    LAMDAI=0.00078125*TEMP-0.28625; 

elseif (TEMP>680 && TEMP<=1050) 

    LAMDAI=0.000851351*TEMP-0.333918918; 

elseif (TEMP>1050 && TEMP<=1200) 

    LAMDAI=6.83E-4*TEMP-1.58E-4; 

end 

  

end 

function [ ROI] = ROI(TEMP) 

  

ROI= 75; 

  

end 

function [ CPI] = CPI(TEMP) 

  

if (TEMP<=80) 

    CPI=1.875*TEMP+800; 

elseif (TEMP>80 && TEMP<=500) 

    CPI=0.833333333*TEMP+883.3333333; 

elseif (TEMP>500 && TEMP<=1000) 

    CPI=0.52*TEMP+1040; 

else 

    CPI=0.52*TEMP+1040; 

end 

  

end 

 



E.19 

Material Properties - Steel 

function [ LAMDAS ] = LAMDAS(TEMP) 

  

if (TEMP<800.0) 

    LAMDAS=54-0.0333*TEMP; 

else 

    LAMDAS=27.3; 

end 

  

end 

function [ ROS] = ROS(TEMP) 

  

ROS=7850; 

  

end 

function [ CPS] = CPS(TEMP) 

  

if (TEMP<600.0) 

    CPS=425.0+0.773*TEMP-1.69E-3*TEMP^2+2.22E-6*TEMP^3; 

elseif (TEMP>=600.0) && (TEMP<735.0) 

    CPS=666+13002/(738-TEMP); 

elseif (TEMP>=735.0) && (TEMP<900.0) 

    CPS=545+17820/(TEMP-731); 

else 

    CPS=650.0; 

end 

  

end 

 


