
Almond Variety Detection using
Deep Learning

Benarous Ahmed Omar Farouq - a41369

Thesis presented to the School of Technology and Management in the scope of

the Master in Information Systems.

Supervisors:

Prof. Maria João Tinoco Varanda Pereirar

This document does not include the suggestions made by the board.

Bragança

2019-2020

Dedication

I dedicate my dissertation work to my family. A special feeling of gratitude

to my loving parents, whose words of encouragement and push for tenacity

ring in my ears. I also dedicate this dissertation to my many friends who have

supported me throughout the process. I will always appreciate all they have

done.

v

Acknowledgment

In the name of Allah, the Most Gracious, the Most Merciful

I would like to express my deep sense of gratitude, respect and heartfelt

thanks to Prof. Maria João Tinoco Varanda Pereira, for her great contribu-

tions, encouragement and support during the thesis writing, understanding and

patience that have accompanied me during the research time.

I would like to acknowledge and thank to ESTIG-IPB school division for

providing me of the necessary materials needed to conduct my research and

providing any assistance requested.

I would like to acknowledge and thank to ESA-IPB school division for allow-

ing me to conduct my research and providing any assistance requested. Special

thanks goes to the members of the lab Professors Nuno Rodrigues and José

Alberto Pereira for their continued support.

Finally I would like to thank all professor of the hassiba benbouali university

where i have started my journey of studying computer science. And special

thank and acknowledgment to all community of computer science, this dynamic

and healthy community is the reason why computer science, which is very new

vi

field compared to other sciences, has evolved so dramatically fast and now have

huge impact on almost everything.

vii

Abstract

Quality is the major factor for modern industries because the high-quality of

products is the basis for success in today’s highly competitive market, so im-

proving the product quality is not a choice is paramount to any business to be

even competitive.

This thesis aims to solve one of the many problems that exist in today’s mar-

ket, with regard to the quality and how to evaluate the quality before putting

the product in the market.

We have implemented a Deep-learning based technique that helps classify/iden-

tify almonds based only on their visual features, this can help in many ways from

which we can mention: supply chain optimization, Sorting food, and matching

customer taste

In the conclusion of this thesis, we propose many features that can be de-

veloped that can be added to our model, from scaling it to other products, to

deploying it, in order to reach the full potential of our solution.

Keywords: Deep learning, Computer Vision, Food Quality

viii

Resumo

A qualidade é o principal fator para as indústrias modernas porque a alta qual-

idade dos produtos é a base para o sucesso no mercado altamente competitivo

de hoje, portanto, melhorar a qualidade do produto não é uma escolha é fun-

damental para qualquer empresa ser ainda competitiva.

Esta tese visa solucionar um dos muitos problemas que existem no mercado

atual, no que diz respeito à qualidade e como avaliar a qualidade antes de colo-

car o produto no mercado.

Implementamos uma técnica baseada em aprendizagem profunda que ajuda a

classificar / identificar amêndoas com base apenas em seus recursos visuais, isso

pode ajudar de várias maneiras, das quais podemos mencionar: otimização da

cadeia de fornecimento, classificação automática de alimentos e resposta per-

sonalizada/adaptada ao cliente.

Na conclusão desta tese, propomos muitos recursos que podem ser desen-

volvidos e que podem ser adicionados ao nosso modelo, desde o dimensiona-

mento para outros produtos, até a implantação, a fim de atingir todo o poten-

cial da nossa solução.

ix

Palavras-chave: Deep learning, Computer Vision, Food Quality .

x

Contents

1 Introduction 1

1.1 Introduction of the problem . 1

1.2 Heads-Up of Deep Learning . 4

1.3 Case of Study . 7

2 State of the Art and background 9

2.1 Introduction . 9

2.2 Review/Comparison between different techniques 10

3 Data collection and Pre-Proccesing 17

3.1 Data Gathering and labeling . 17

3.2 Image pre-processing and feature extraction 20

3.2.1 Methods Used . 21

3.2.2 Steps of the processing 22

3.3 Conclusion of the final results of the segmentation 30

4 Deep Learning Based Classification 31

4.1 Material Used . 31

4.1.1 Hardware . 31

4.1.2 Software . 32

4.2 Deep learning Model . 35

xi

4.2.1 Convolution models . 35

4.2.2 Model Implementation (Design And training) 36

4.3 Result and discussion . 49

4.3.1 Performance Metrics and model evaluation 50

4.3.2 Default Baseline Models 53

4.3.3 Built-in invariance . 54

4.3.4 Network depth . 55

4.3.5 Batch size Normalisation Impact on Generalisation . . . 55

4.3.6 Regularization of Deep Learning model 58

4.3.7 Determining Whether to Gather More Data 63

5 Deployment (Software As a service) 67

5.1 Serving of the model . 67

5.1.1 Tensorflow Serving . 67

5.1.2 Docker and google cloud 69

5.1.3 Make First HTTP Request 69

5.2 Back-end for the model . 71

5.2.1 Overview Architecture 71

6 Conclusion 77

6.1 Reviews and usefulness of the solution 77

6.2 Further work . 79

6.2.1 Further work on the model 79

6.2.2 Further development on the software 81

xii

List of Figures

1.1 Visualisation of the whole scope of the field 6

2.1 The block Diagram of the detection system [8]. 11

2.2 The schematic diagram of the experimented apparatus [8]. . . . 11

3.1 Stacked images of all the different classes 19

3.2 GrayScale histogram from an almonde image sampled from the

dataset . 24

3.3 Stacked image after segmentation 30

4.1 Tensorflow EcoSystem [17]. 34

4.2 Model definition (parameters , architecture) 38

4.3 The visualisation of the model using tensorboard 38

4.4 Accuracy curve during the training 39

4.5 Structure of the model with the number of parameters 40

4.6 The visualisation of the model using tensorboard 41

4.7 Accuracy curve During the training 42

4.8 Structure of the model with the number of parameters 44

4.9 Visualisation of the model using tensorboard 45

4.10 Loss and accuracy of V1 AlexNet 46

4.11 Visualisation of the model . 47

4.12 Model Architecture with details of the parameters 48

xiii

4.13 Results of the v2 Alexnet . 49

4.14 Dropout trains an ensemble consisting of all subnetworks 63

5.1 Architectures of Tensorflow Serving Framework [21]. 68

5.2 Terminal explanation of the HTTP request 70

5.3 Overview Architecture of the software 72

xiv

Acronyms

ANN Artificial Neural networks.

API Application Programming Interface.

ASICs application-specific integrated circuits.

BE Back End.

CNN Convolutional Neural Network.

CV Computer vision.

CVPR Conference on Computer Vision and Pattern Recognition.

DAO Data Access Object.

DB Data Base.

DL Deep learning.

DSPs digital signal processors.

ESTiG Escola Superior de Tecnologia e Gestão.

FDA Food and Drug Administration.

xv

FE Front End.

FPGAs field-programmable gate arrays.

GRU Gated Recurrent Unit.

HTTP HyperText Transfer Protocol.

HV Human Vision.

ICDAR International Conference on Document Analysis and Recognition.

IPB Instituto Politécnico de Bragança.

ISBI International Symposium on Biomedical Imaging.

LSTM Long-Short Term Memory.

ML Machine learning.

NCATS National Center for Advancing Translational Sciences.

NIH National Institutes of Health.

NN Neural Network.

PCA Principal component analysis.

PSD power spectral density.

SAAS Software As a service.

SGD Stochastic gradient descent.

SL Statistical Learning.

xvi

SVM Support Vector Machine.

xvii

Chapter 1

Introduction

This thesis intends to find a solution for a problem that CIMO (Mountain

Research Center) of Polytechnic Institute of Bragança faces when dealing with

a big variety of almonds. In this first chapter, we will be first introducing the

general view of the problem that we are trying to solve and also introducing

the field of deep learning and how it can be used to solve similar problems

and second deploying the solution as SAAS (software as a service) allowing

future students to scale/build on top of it to solve similar issues. This thesis is

developed in CeDRI (Research Centre Digitization and Intelligent Robotics) of

Polytechnic Institute of Bragança.

1.1 Introduction of the problem

Quality is a key factor for the modern food industry because the high-quality

of products is the basis for success in today’s highly competitive market. In the

food industry, the quality evaluation still heavily depends on manual inspection,

which is tedious, laborious, and costly, and is easily influenced by physiological

factors, inducing subjective and inconsistent evaluation results. To satisfy the

1

increased awareness, sophistication, and greater expectation of consumers, it is

necessary to improve the quality evaluation of food products [1]. If the quality

evaluation is achieved automatically, production speed and efficiency can be im-

proved in addition to the increased evaluation accuracy with an accompanying

reduction in production costs.

Despite the fact that the food industry includes a diverse set of businesses

such as agriculture, food processing, marketing, and sale, and that its value

and importance in the increasingly globalized world is unsurpassed, it is sur-

prising that the process of food quality evaluation is still mostly done manually

by trained people. This approach is costly, inherently subjective, and prone to

error. Thus, there exists a demand to increase the levels of objectivity, consis-

tency, and efficiency in food quality evaluation. The digital image processing

techniques and pattern recognition algorithms can be an important part of this

endeavor [2]. Computer vision is a rapid, economic, consistent, and even more

accurate and objective inspection tool, computer vision systems have been used

increasingly in the food industry for quality evaluation purposes. The appli-

cation potential of computer vision to the food industry has long been recog-

nized. The food industry ranks among the top 10 industries using computer

vision technology [3], which has been proven successful for the objective and

non-destructive quality evaluation of several food products. Being an objec-

tive, rapid and non-contact quality evaluation tool, computer vision has been

attracting much Research and development attention from the food industry,

and rapid development has been increasingly taking place on quality inspection

of a wide range of food products [2]. Combined with an illumination system,

a computer vision system is typically based on a personal computer (PC) in

connection with electrical and mechanical devices to replace human manipula-

tive effort in the performance of a given process. Illumination is an important

2

prerequisite of image acquisition for food quality evaluation. The quality of the

captured image can be greatly affected by the lighting condition. A high-quality

image can help to reduce the time and complexity of the subsequent image pro-

cessing steps, which can decrease the cost of an image processing system. A

different application may require a different illumination strategy [4]. Reported

that most lighting arrangements could be grouped as one of the following: front

lighting, backlighting, and structured lighting. For image processing algorithms,

software implementation on a PC allows for rapid development, debug, and test.

However, as image sizes grow larger and algorithms become more complex, the

speed will be slower and cannot satisfy the requirement of high speed in real-

time systems. Conversely, hardware implementation offers much greater speed

than a software one. There are several viable options for hardware implemen-

tation of image processing algorithms, such as application-specific integrated

circuits (ASICs), digital signal processors (DSPs), and field-programmable gate

arrays (FPGAs). Although the speed can be improved by hardware imple-

mentation, one must consider the increase in development cost for creating a

custom hardware design. Therefore, hardware designers usually use some sorts

of PC programming environment to implement a design to verify functionality

prior to a lengthy hardware design. In this thesis, we will focus on two main

components: first is the design and implementation of the deep learning model

and second the software part of it from developing the back-end Apis to the

serving/deployment phase.

The learning technique is one of the essential features for food quality eval-

uation using computer vision, as the aim of computer vision is to ultimately

replace the human visual decision-making process with automatic procedures.

Computer vision tries to clone human behavior of performance in color, con-

tent, shape, and texture inspection [5] . Backed by powerful learning systems,

3

computer vision provides a mechanism in which the human thinking process is

simulated artificially and can help humans in making complicated judgments

accurately, quickly, and very consistently over a long period [3]. Learning tech-

niques can be employed to learn meaningful or nontrivial relationships automat-

ically in a set of training data and produce a generalization of these relationships

that can be used to interpret new, unseen test data [1]. Therefore, using sample

data, a learning system can generate an updated basis for improved classifica-

tion of subsequent data from the same source, and express the new basis in

intelligible symbolic form. Nevertheless, there is a definite need for research

dealing with the combination of computer vision and learning techniques for

food quality inspection [1].

1.2 Heads-Up of Deep Learning

The term Deep Learning was introduced to the machine learning community by

Rina Dechter in 1986 and to artificial neural networks by Igor Aizenberg and

colleagues in 2000, in the context of Boolean threshold neurons [3].

The first general, working learning algorithm for supervised, deep feedfor-

ward, multilayer perceptrons was published by Alexey Ivakhnenko and Lapa in

1967. A 1971 paper described already a deep network with 8 layers trained by

the group method of data handling algorithm [3], figure 1.1 visualizes the whole

scope of the field.

Other deep learning working architectures, specifically those built for com-

puter vision, began with the Neocognitron introduced by Kunihiko Fukushima

in 1980 [34]. In 1989, Yann LeCun et al. applied the standard back-propagation

algorithm, which had been around as the reverse mode of automatic differen-

tiation since 1970 to a deep neural network with the purpose of recognizing

4

handwritten ZIP codes on mail [3]. While the algorithm worked the training

required 3 days.

In 2012, a team led by George E. Dahl won the "Merck Molecular Activity

Challenge" using multi-task deep neural networks to predict the bio-molecular

target of one drug in 2014, Hochreiter’s group used deep learning to detect

off-target and toxic effects of environmental chemicals in nutrients, household

products, and drugs and won the "Tox21 Data Challenge" of National Institutes

of Health (NIH) , Food and Drug Administration (FDA), and National Center

for Advancing Translational Sciences (NCATS).

Significant additional impacts in image or object recognition were felt from

2011 to 2012. Although Convolutional Neural Network (CNN) trained by back-

propagation had been around for decades, and GPU implementations of Neural

Network (NN) for years, including CNN, fast implementations of CNN with

max-pooling on GPUs in the style of Ciresan and colleagues were needed to

progress on computer vision. In 2011, this approach achieved for the first time

superhuman performance in a visual pattern recognition contest. Also in 2011,

it won the International Conference on Document Analysis and Recognition (IC-

DAR) Chinese handwriting contest, and in May 2012, it won theInternational

Symposium on Biomedical Imaging (ISBI) image segmentation contest. Until

2011,CNN did not play a major role at computer vision conferences, but in June

2012, a paper by Ciresan et al. at the leading conference Conference on Com-

puter Vision and Pattern Recognition (CVPR) showed how max-pooling CNN

on GPU can dramatically improve many vision benchmark records. In Octo-

ber 2012, a similar system by Krizhevsky et al won the large-scale ImageNet

competition by a significant margin over shallow machine learning methods. In

November 2012, Ciresan et al.’s system also won the ICPR contest on analysis

of large medical images for cancer detection, and in the following year also the

5

MICCAI Grand Challenge on the same topic. In 2013 and 2014, the error rate

on the ImageNet task using deep learning was further reduced, following a sim-

ilar trend in large-scale speech recognition. The Wolfram Image Identification

project publicized these improvements [6].

Image classification was then extended to the more challenging task of gen-

erating descriptions (captions) for images, often as a combination of CNNs and

Long-Short Term Memory (LSTM). Some researchers assess that first Ima-

geNet (October 2012) victory anchored the start of a "deep learning revolution"

that has transformed the AI industry. In March 2019, Yoshua Bengio, Geof-

frey Hinton, and Yann LeCun were awarded the Turing Award for conceptual

and engineering breakthroughs that have made deep neural networks a critical

component of computing.

Figure 1.1: Visualisation of the whole scope of the field

6

1.3 Case of Study

Almonds are one of the most nutritious of all nuts. They have the highest protein

content of any nut and are packed with vitamin E, calcium, iron, magnesium,

phosphorus, and zinc. As products with high nutrition are advantageous.

Almond production is about to double in Portugal with new plantations in

the last decade, according to the National Center for Dried Fruits (CNCFS).

According to official data, since 2010, this dried fruit has been growing and

with the new plantations that will start to bear fruit in two or three years,

the national production will double to 40 thousand tons. Plantations that are

emerging in areas without cultivation tradition, such as the Alentejo. Still, both

in this and other dried fruit productions the country still has plenty of room to

grow and it is this perspective, as well as the technical and scientific progress

that will be highlighted at the II National Symposium on Dried Fruits. The

initiative brings together Portuguese, Spanish and Italian experts, and is open

to technicians and farmers. Ten years ago, in Alentejo, there were “between 300

and 500 hectares of almond and now there are 10 thousand hectares” [7]. In

Trás-os-Montes there was “a 10 percent growth” and, within two to three years,

the country is expected to have “twice the production of almonds in a shell”,

equivalent to “40 thousand tons”. The sub-row of dried fruits that still leads

the way in Portugal is the chestnut, with production concentrated mainly in

Trás-os-Montes. This is, according to Albino Bento, who is also a researcher at

the Polytechnic Institute of Bragança, the only sub-row of dried fruits in which

the country is a self-sufficient and net exporter. Direct production is worth

about 70 million euros, a figure from which the almond is approaching with the

prospect of increased production equivalent to a financial movement of about

60 million euros for the producer, according to those officials [7].

7

Still, Portugal is far from self-sufficient in almond production and continues

to import, with the United States dominating 80 percent of the world market.

The Portuguese are also starting now to invest in walnut production, with an

annual harvest of 4 thousand tons, and still shyly in hazelnut and pistachio or

carob [7].

There are numerous factors such as product variety, different steps of plant-

ing, growing, and harvesting that play a role in promoting the quality of agricul-

tural products. One of the most important post-harvest processing operations,

directly related to improving the quality of the products, is the grading or sort-

ing operation. Increasing the quality of the almond product utilizing a new

and reliable technique is a key factor in exporting and economic profitability

of the final product. For implementing such operations, both Human Vision

(HV) and Computer vision (CV) are being used. However, the human-based

vision methods are becoming less attractive due to their high costs, low speeds,

requiring experienced staff for grading of the product, and low accuracies. In

recent years, the application of advanced techniques based on Computer Vision

for grading different agricultural products due to its high accuracy, low cost,

and high speed has become more widespread, the software solution that we will

propose in this thesis would be first dedicated to the Escola Superior Agrária

de Bragança labs and after the proof of concept it shall be deployed to serve

and help almond Producers in the Region [7].

8

Chapter 2

State of the Art and background

In this chapter we will be discussing the state of the art related to our case of

study, we have chosen two works to review where both of them aim to classify

the almonds using different feature extraction techniques.

2.1 Introduction

Learning techniques have been applied increasingly for food quality using com-

puter vision, which includes an artificial neural network, statistical learning,

fuzzy logic, genetic algorithm, and decision tree. Artificial Neural networks

(ANN) and Statistical Learning (SL) remain the primary learning methods in

the field of computer vision for food quality evaluation. Among the applications

of learning algorithms in computer vision for food quality evaluation, most of

them are for classification and prediction, however, there are also some for im-

age segmentation and feature selection, In this Section, we will be discussing

some of the methods used to try to solve similar problems to the one we are

tackling.

9

2.2 Review/Comparison between different tech-

niques

Acoustic Based Classification

The first study that I have encountered while working on this subject was one

by Simin Khalesi, Asghar Mahmoudi and Hosainpour Adel entitled "Detection

of Walnut Varieties Using Impact Acoustics and Artificial Neural Networks"

[8]. In this paper, they have built an acoustic-based intelligent system that

classifies different types of walnut by extracting their acoustic features. The

system consisted of a feeding platform, an impact plate, an acoustic unit, and

a PC based data acquisition system. A 2-meter V-shaped steel profile was used

as a feeding platform and a chain was used for adjusting the slid angle. At 300

inclination of the slid, the best trajectory for walnuts was obtained. Flatter

angles of incline would tend to bounce twice before falling off of the plate since

in a more inclined angle the trajectory would not be as consistent. This angle

was determined by trial and error. Preliminary experimental results indicated

that steel plates proved better than glass or wooden for separating different

walnut genotypes sounds. The impact plate was made up of a polished block

of stainless steel approximately 150×150×20 mm. The mass of a single walnut

is negligible compared to the mass of the impact plate, hence the possibility

of vibrations from the plate interfering with acoustic emissions from nuts was

minimized. The drop distance from the endpoint of the feeder to the impact

plate was 25 cm. The impact plate in a horizontal situation produces proper

sound signals for complementary processing. A low-cost Panasonic Electret

capsule microphone (VM-034CY model), sensitive to frequencies up to 100 kHz,

was used for capturing impact sound signals. The microphone was installed

10

inside an isolated acoustic chamber to eliminate environmental noise effects.

To prevent the chamber from acoustic reflections, it was filled with glass wool.

Microphone output was sent to a PC based data acquisition system, where it was

digitized using a sound card (Intel® 82801 BA/BAM AC 97Audio controller) at

a sampling frequency of 44.1 kHz, with 16 bit resolution. The personal computer

was used for acquiring, saving and processing of data as well as classification

samples. A schematic diagram describing the overall detection system is shown

in figure 2.1 and figure 2.2. Parallel hardware and software architecture is used

to perform the described duty [8].

Figure 2.1: The block Diagram of the detection system [8].

Figure 2.2: The schematic diagram of the experimented apparatus [8].

11

To find the best combinations of potential features and optimal ANN con-

figuration, they have used 15 different combinations of principal component

features that were selected and tested by a neural network (Table 2.1). These

features were fed to the ANN models and their performances were determined

by evaluation of the mean square error (MSE), correct detection rate (CDR),

and correlation coefficient (r). In summary, the best combination was 16 ampli-

tudes and 31 power spectral density (PSD) features. The phase angles features

had not enough potential to discriminate between sangi and kaghazi walnuts.

The final structure of the network was 47 input nodes, 18 hidden nodes, and

2 output nodes. This relatively low number of input vector was used to guard

against the possibility of over-fitting the neural network [8].

12

Table 2.1: Results of selecting and testing by neural Networks [8].

In summary for these techniques, regarding the result that they got and the

accuracy of the model that they have built is quite impressive. The obvious

disadvantages of this method can be divided into 4 aspects: scalability, deploy-

ment, inference and cost of realization. In terms of deployment of the model,

it will be incredibility complicated since if anyone wants to use it need to build

this system from scratch. The only re-usable part is the trained Neural Network

but for features extraction. So, you can only use the same acoustic system and

the cost of realization can’t be estimated exactly. Compared to this model, the

system we are going to present later in this thesis is more adaptable.

13

Almonds classification using supervised learning methods

The title of this section is the title of a paper published by Elila Halac, Emir

Sokic, Emir Turajlic from the Faculty of Electrical Engineering Sarajevo. So, in

order to be able to distinguish among different types of almonds, training set-

s/images for supervised learning methods needed to be generated. Therefore,

various species of almonds are chosen, captured by a digital camera, sorted and

labeled so that they may be easily identified. The base consists of a total of

110 images sorted in five classes (raw, blanched, roasted, roasted blanched, un-

known/hazelnuts) with three states (whole, parted, and damaged). All images

are captured under equal conditions (same digital camera, same position, same

background). In terms of image pre-processing and features extraction they

have used 4 techniques to segment the image: Region-based methods, Edge-

based methods, Fuzzy Clustering and K means clustering. After that they

based their study on 5 main extracted shape features: Eccentricity, Circular-

ity, Major Axis Length, Radius, Roundness and one color feature after that.

Then they applied a PCA (Principle component analysis) in order to reduce

less efficient/unused features. After that the model was followed by a classifier

Either a Simple Fully Collected layer neural network or a SVM (Support Vector

Machine). Table 2.2 will summarise their results [5].

14

Table 2.2: Showing the results of the used methods [1]

As summary/criticism for this model, despite the accuracy of the model

that they have got, there are few weaknesses|flaws that need to be raised about

this model. Primarily, it’s a complex model, it has many phases in it (we

mentioned around 5 in the explanation before) and most of them requires human

intervention except the final phase which is the classification. Due to that, at

the serving|inference time it would require the same level of intervention.

15

Chapter 3

Data collection and

Pre-Proccesing

In this chapter, we will be discussing the first step of the project and perhaps

the hardest part which is the collection and labeling of the dataset and then

pre-processing it to be able to feed it to the classifier.

3.1 Data Gathering and labeling

In order to be able to distinguish among different types of almonds, training

sets/images for supervised learning methods needed to be generated. Therefore,

various species of almonds are chosen, captured by a digital camera, sorted and

labeled so that they may be easily identified. The base consists of a total of

around 1000 images sorted in sixteen classes equally (1-tardy nonpareil, 2-fra

gulio grade, 3-atocha, 4-picantil, 5-pri morsky, 6-peerless, 7-moncaio, 8-marta,

9-ferralise, 10-garrigaes, 11-masbovera, 12-ai, 13-planeta, 14-texas, 15-philys,

16-desmayo lagueto). All images are captured under equal conditions (same

smart phone camera Honor 8x, same background) although the position was

17

taking randomly so any class had multiple random positions in order to give

our model a better generalization. The dataset structure is represented by Ta-

ble 3.1, while the stacked different classes from the dataset are shown in Figure

3.1. The entire dataset can be downloaded from the following URL:

https://drive.google.com/drive/folders/13xUelFiqSXQYVYQrcIDyVWmTKp6owBH7

Class Name Number of images collected

1-tardy nonpareil 152

2-fra gulio grade 213

3-atocha 193

4-picantil 171

5-pri morsky 161

6-peerless 153

7-moncaio 155

8-marta 182

9-ferralise 304

10-garrigaes 157

11-masbovera 202

12-ai 195

13-planeta 180

14-texas 252

15-philys 161

16-desmayo lagueto 215

Table 3.1: Classes with number of data collected per each

18

https://drive.google.com/drive/folders/13xUelFiqSXQYVYQrcIDyVWmTKp6owBH7

Figure 3.1: Stacked images of all the different classes

In the collection process many considerations were taken into account from

which we can mention the popular generalisation problem that happens when

you train learners (including humans) so once you train the model on a training

set and got a result (if there is a pattern) it would be challenging to get the

same result at the testing set when some of the domain features will change.

As an example, in our case, is the face (position) of the almond unit since it’s

almost a ball it has an very large number of faces so by taking an image of an

almond using just one position would cause a miss-match at the testing time.

For that matter we have decided to introduce entropy in the data-collection

by taking as many positions (angles) as possible in order to make the model

generalise better at the testing set. Following up on the generalisation prob-

lem the background also was chosen carefully when doing this phase, so all the

collected images had a white background. Additionally lighting conditions for

some images were taken using flash and some of them not.

The data set was collected from Institute Polytechnico Bragança at the agri-

culture School by the help and assistance of staff of the Laboratório de Agro-

biotecnologia (Professors Nuno Rodrigues and José Alberto Pereira)

19

3.2 Image pre-processing and feature extrac-

tion

In real life a huge amount of data can be collected in order to tackle a spe-

cific problem. The catch is how to extract only the necessary (useful) features

that help to solve the problem. Manual features extraction has shown that it

is quite limited when dealing with complex/hidden features. So the solution is

to develop relatively automatic processes and techniques in order to solve that.

Feature extraction is a part of the dimensionality reduction process in which an

initial set of the raw data is divided and reduced to more manageable groups.

So when you want to process it will be easier. A main and most important

characteristic of these large data sets is that they have a large number of vari-

ables. These variables require a lot of computing resources to process them. So,

feature extraction basically helps to get the best feature from those big data

sets by select and/or combine variables into features, effectively reducing the

amount of data. These features are easy to process, but still able to describe

the actual data set with accuracy and originality. The technique of extracting

the features is useful when you have a huge dataset (whether in the number of

rows or columns) and we want to avoid redundant data and reduce the number

of resources without losing important or relevant information [9].

In the past, the feature extractors were often hand-crafted. The problem

with this approach is that we do not always know in advance which features

are interesting. The trend in machine learning has been towards learning the

feature detectors as well, which enables using the complete data [10] .

Prior to performing feature extraction, image segmentation needs to be con-

ducted. Different methods of image segmentation may be applied, such as:

20

Threshold methods, Region-based methods, Edge-based methods, Fuzzy Clus-

tering, and one of the most popular methods being K-means clustering algo-

rithm. K-means clustering algorithm is an unsupervised algorithm that may

be used to segment the area of interest from the background. The algorithm

consists of two separate phases. In the first phase, it computes k centroids ran-

domly, where k is given in advance. In the second phase, it joins each point

to the cluster which has the smallest distance from the centroid. The distance

between points and centroid may be computed using different methods and

the most popular is Euclidean distance. Since every image has one almond

and relatively homogeneous background, there are two clusters to classify. We

used the faster implementation of K-means (using pre-allocation and parallel

operations) to optimize algorithm time. The L a b space color is used for seg-

mentation, where a and b components are used to differentiate almond from the

background. As a result of clustering, there are two images; one of them is the

segmented almond and the other one is the background. Figure 3.3 illustrates

the process of segmentation using the example of the first class of the almond

(tardy nonpareil).

3.2.1 Methods Used

In our process we have tried many manual thresh holding techniques in order

to segment the image and localize the almonds in the picture by denoising it

and remove the background. The process can be divided into 4 major steps.

21

3.2.2 Steps of the processing

Bluring the image

In this phase, we have used OpenCV 2.0 functions to blur images. When we blur

an image, we make the color transition from one side of an edge in the image to

another smooth rather than sudden. The effect is to average out rapid changes

in pixel intensity. The blur, or smoothing, of an image, removes “outlier” pixels

that may be noise in the image. Blurring is an example of applying a low-pass

filter to an image. In computer vision, the term “low-pass filter” applies to

removing noise from an image while leaving the majority of the image intact.

A blur is a very common operation we need to perform before other tasks such

as edge detection. There are several different blurring functions in the OpenCV

2.0 module, so we will focus on just one here, the Gaussian blur [11] . In a

blur, we consider a rectangular group of pixels surrounding the pixel to filter.

This group of pixels, called the kernel, moves along with the pixel that is being

filtered. So that, the filtered pixel is always in the center of the kernel, the width

and height of the kernel must be odd. In the example shown in figure 3.3, the

kernel is square, with a dimension of seven pixels. To apply this filter to the

current pixel, a weighted average of the color values of the pixels in the kernel

is calculated. In a Gaussian blur, the pixels nearest the center of the kernel are

given more weight than those far away from the center. This averaging is done

on a channel-by-channel basis, and the average channel values become the new

value for the filtered pixel. Larger kernels have more values factored into the

average, and this implies that a larger kernel will blur the image more than a

smaller kernel.

Using OpenCV 2.0 with python this operation can be done in two lines of

22

code

read image

show = cv2.imread(image, cv2.IMREAD_COLOR)

applying the blur

imgBlur = cv2.GaussianBlur(show, (7, 7), 1)

Graying the Image

In this second phase, we have used OpenCV 2.0 functions to apply thresholding

to an image. Thresholding is a type of image segmentation, where we change

the pixels of an image to make the image easier to analyze. In thresholding, we

convert an image from color or grayscale into a binary image, i.e., one that is

simply black and white. Most frequently, we use thresholding as a way to select

areas of interest of an image, while ignoring the parts we are not concerned

with, we will use the masks returned by these functions to select the parts of

an image we are interested in.

The process works like this: first, we will load the original image, blur it (as

explained in the previous section) and then convert it to grayscale. Then, we

will use the bigger than (>) operator to apply the threshold t, a number in the

closed range [0.0, 1.0]. Pixels with color values on one side of t will be turned

“on,” while pixels with color values on the other side will be turned “off.” In

order to use this function, we have to determine a good value for t. How might

we do that? Well, one way is to look at a grayscale histogram of the image

using an OpenCV function when we run this code shown below you will get the

histogram shown in figure 3.2.

read image

show = cv2.imread(image, cv2.IMREAD_COLOR)

23

Calculating the Histogram

hist = cv2.calcHist(images, channels, mask, histSize,

ranges[, hist[, accumulate]])

Some explanations about this code:

1. Channels: it is the index of a channel for which we calculate histogram.

For a grayscale image, its value is [0] and for a color image, you can

pass [0], [1], or [2] to calculate a histogram of blue, green, or red channel

respectively.

2. Mask: mask image. To find a histogram of the full image, it is given as

“None”.

3. HistSize: this represents our BIN count. For full scale, we pass [256].

4. ranges : this is our RANGE. Normally, it is [0,256].

Figure 3.2: GrayScale histogram from an almonde image sampled from the
dataset

24

Since the image has a white background, most of the pixels in the image are

white. This corresponds nicely to what we see in the histogram: there is a spike

near the value of 1.0. If we want to select the shapes and not the background,

we want to turn off the white background pixels, while leaving the pixels for

the shapes turned on. So, we should choose a value of t somewhere before the

large peak and turn pixels above that value “off”.

One other way to do it is to create a simple Track Bar that has properties

of the image such as (saturation, hue value ..) and customize it manually to

extract the values that will help you to separate the object from the background.

Edge and Shape detection using Canny Dilation Algorithms to image

After getting our thresh hold values whether using histograms or using the man-

ual track-bar method we can now move to the next phase which is applying the

filters using Canny dilate. So, we first separated the image from the background

and then we going to use this function to detect the edges/shape of the object.

Canny edge detection is a technique to extract useful structural information

from different vision objects and dramatically reduce the amount of data to

be processed. It has been widely applied in various computer vision systems.

Canny has found that the requirements for the application of edge detection on

diverse vision systems are relatively similar. Thus, an edge detection solution

to address these requirements can be implemented in a wide range of situations.

The general criteria for edge detection include:

1. Detection of edge with low error rate, which means that the detection

should accurately catch as many edges shown in the image as possible;

2. The edge point detected from the operator should accurately localize on

the center of the edge;

25

3. A given edge in the image should only be marked once, and where possible,

image noise should not create false edges.

To satisfy these requirements Canny used the calculus of variations – a

technique that finds the function which optimizes a given function. The optimal

function in Canny’s detector is described by the sum of four exponential terms,

but it can be approximated by the first derivative of a Gaussian.

Among the edge detection methods developed so far, the Canny edge detec-

tion algorithm is one of the most strictly defined methods that provide good

and reliable detection. Owing to its optimally to meet with the three criteria

for edge detection and the simplicity of process for implementation, it became

one of the most popular algorithms for edge detection [12].

For the Second Technique which is Dilation, it is one of the basic operations

in mathematical morphology. Originally developed for binary images, it has

been expanded first to gray-scale images, and then to complete lattices. The

dilation operation usually uses a structuring element for probing and expanding

the shapes contained in the input image [13].

These operation can be applied using the following code

#Graying the image

imgGray = cv2.cvtColor(imgBlur, cv2.COLOR_BGR2GRAY)

edge detection

imgCanny = cv2.Canny(imgGray, threshold1, threshold2)

Shape detection

26

kernel = np.ones((5, 5))

imgDil = cv2.dilate(imgCanny, kernel, iterations=1)

What this code does is basically first applies the gray filter and then uses

the Canny function with the gray image as an input and two other parameters

which are the two thresh holds values extracted using the previous track-Bar

Method. After getting the cannied Image, we pass it to the dilate function

giving the kernel of 5*5 as argument which is used for structuring element used

for dilation. If element=Mat(), a 3 x 3 rectangular structuring element is used.

The kernel can be created using getStructuringElement Function.

Find the contours of the image

The last step and the final stage of the processing is to get the contours of the

object (almond in the image). Contouring is the process of identifying struc-

tural outlines of objects in an image which in turn can help us identify the

shape of the object [14]. Well, when we perform edge detection, we find the

points where the intensity of colors changes significantly, and then we simply

turn those pixels on. However, contours are abstract collections of points and

segments corresponding to the shapes of the objects in the image. As a result,

we can manipulate contours in our programs such as counting the number of

contours, using them to categorize the shapes of objects, cropping objects from

an image (image segmentation), and much more. Contour detection is not the

only algorithm for image segmentation though, there are a lot of others, such

as the current state-of-the-art semantic segmentation, hough transform, and K-

Means segmentation.

To perform this operation we execute this line of code:

read image

27

show = cv2.imread(image, cv2.IMREAD_COLOR)

get all the contours in the image

contours, hierarchy = cv2.findContours(imgDil,

cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)

The findContours function of OpenCV 2.0 uses by default the SATODHI

SUZUK Algorithm. This was one of the first algorithms that define the hi-

erarchical relationships among the borders. This algorithm also differentiates

between the outer boundary or the hole boundary. The steps of the algorithm

are discussed below:

1. Step-1 If it is an outer border (i.e. fij = 1 and fi,j-1 = 0) then increment

the NBD and set (i2, j2) as (i, j-1). Else if it is a hole border, increment

NBD. Set (i2, j2) as (i, j+1) and LNBD = fij in case fij >1. Otherwise,

go to step 3 [15].

2. Step-2 Now, from this starting point, we will trace the border. This can

be done as:

Starting from (i2, j2) look around clockwise the pixels in the neighborhood

of (i, j) and find a nonzero pixel and denote it as (i1, j1). If no nonzero

pixels are found, set fij = -NBD and go to step 4. Set (i2, j2) = (i1, j1)

and (i3, j3) = (i,j). Starting from the next element of the pixel (i2, j2)

in the counterclockwise order, again traverse the neighborhood of the (i3,

j3) in the counterclockwise direction to find the first nonzero pixel and set

it to (i4, j4). Change the value of the current pixel (i3, j3) as if the pixel

at (i3, j3 +1) is a 0-pixel belonging to the region outside the boundary,

set the current pixel value to -NBD. if the pixel at (i3, j3 +1) is not a

0-pixel and the current pixel value is 1, set the current pixel value to NBD.

Otherwise, do not change the current pixel value. if in step 2.3, we return

28

to the starting point again i.e (i4, j4) = (i, j) and (i3, j3) = (i1, j1) go to

step 3. Otherwise, set (i2, j2) = (i3, j3) and (i3, j3) = (i4, j4) and go back

and restart the step 2 [15].

3. Step-3 If fij != 1 then set LNBD = |fij| and start scanning from the next

pixel (i, j+1). Stopping criteria is when we reached the bottom right

corner of the image [15].

After we applied the function to find contours we just take the biggest one

in the image (Of course there are other methods to extract the more relevant

contour but for our case, this one worked fine) and then we corp the image using

those coordinates. The following code will do so:

get all the contours in the image

contours, hierarchy = cv2.findContours(imgDil,

cv2.RETR_EXTERNAL

s, cv2.CHAIN_APPROX_NONE)

use only the biggest contour/object

for cnt in contours:

area_contours.append(cv2.contourArea(cnt))

contour_used = contours[np.argmax(area_contours)]

corp the image using the Biggest contour areea

x, y, w, h = cv2.boundingRect(contour_used)

resized_image = cv2.resize(show[y:y + h, x:x + w],

(nrows, ncolumns)

, interpolation=cv2.INTER_CUBIC)

stacked_images = stack_images(0.8, [show

29

, imgBlur, imgGray, imgCanny, imgDil, resized_image]

+ drawn_contours)

cv2.imshow("stack images ", stacked_images)

cv2.waitKey(0)

return resized_image

3.3 Conclusion of the final results of the seg-

mentation

The images shown in 3.3 are the results of each step of the processing/segmenta-

tion applied in our project starting with the original picture at the left going to

the blurred one beside it and then the grayed one from there you apply dialect

and canny consecutively. Finally you extract the contours and corp the image.

Figure 3.3: Stacked image after segmentation

30

Chapter 4

Deep Learning Based

Classification

In this chapter, we will be discussing the Deep Learning model that we have

built and all the inspiration behind Convolutional Neural Networks as well the

Material (software/hardware) used in development phase.

4.1 Material Used

4.1.1 Hardware

The implementation environment was a MacbookPro laptop computer with an

Intel Core i9-7210 3.70 GHz CPU, 16 GBs of RAM, and NVIDIA GeForce

840M GPU.The Final model training was done on the google cloud platform

in AI Platform Training and Prediction API instance type. The Dataset

collection was done by a smartphone Honor8x Camera 20 MP, f/1.8, 27 mm

(wide), PDAF, 2 MP, (depth) with LED flash, panorama, HDR.

31

4.1.2 Software

Image Processing tools

The Framework used for all the image processing/segmentation detailed in the

previous part was done using Python OpenCV 2.0, OpenCV (Open Source Com-

puter Vision Library), originally developed by Intel in 2000, is a multi-platform

library, totally free for academic and commercial use, for the development of

applications in the area of Computer Vision, simply following the BSD license

model Intel. OpenCV has Image and Video I/O Processing, Data Structure,

Linear Algebra, Basic GUI (Graphical User Interface) modules with indepen-

dent window system, mouse and keyboard control, in addition to more than

350 computer vision algorithms such as image filters, camera calibration, object

recognition, structural analysis, and others. Its image processing is in real time.

This library was developed in the C / C ++ programming languages. It also

supports programmers who use Java, Python, and Visual Basic and want to

incorporate the library into their applications. Version 1.0 was released in late

2006 and 2.0 was released in September 2009 [16].

As for our solution require some Numeric Calculation Numpy, the Python lib-

erty was used for that matter.NumPy offers comprehensive mathematical func-

tions, random number generators, linear algebra routines, Fourier transforms,

and more. And also in terms of performance, the core of NumPy is a well-

optimized C code. Enjoy the flexibility of Python with the speed of compiled

code.

Deep learning Framework

TensorFlow is unarguably one of the most popular deep learning frameworks.

Developed by the Google Brain team, TensorFlow supports languages such as

32

Python, C++, and R to create deep learning models along with wrapper li-

braries. It is available on both desktop and mobile.

The most well-known use case of TensorFlow has got to be Google Translate

coupled with capabilities such as natural language processing, text classification,

summarizing, speech/image/handwriting recognition, forecasting, and tagging

[17].

TensorFlow’s visualization toolkit, TensorBoard, provides effective data vi-

sualization of network modeling and performance.

TensorFlow Serving, another tool of TensorFlow, is used for the rapid de-

ployment of new algorithms/experiments while retaining the same server archi-

tecture and APIs. It also provides integration with other TensorFlow models,

which is different from the conventional practices and can be extended to serve

other models and data types.

TensorFlow is one of the most preferred deep learning frameworks as it is

Python-based, supported by Google, and comes loaded with top-notch docu-

mentation and walkthroughs to guide you.

Highlights of TensorFlow :

1. Robust multiple GPU support;

2. Graph visualization and queues using TensorBoard;

3. Known to be complex and has a steep learning curve;

4. Excellent documentation and community support.

33

Figure 4.1: Tensorflow EcoSystem [17].

As a comparison to the framework that we have chosen, Pytorch is perhaps

also one of the popular frameworks out there. It was developed by Facebook

and was first publicly released in 2016. It was created to offer production

optimizations similar to TensorFlow while making models easier to write figure

4.1 shows tensorflow ecoSystem.

1. Debugging Since computation graph in PyTorch is defined at run-time

you can use our favorite Python debugging tools such as pdb, ipdb, Py-

Charm debugger or old trusty print statements. This is not the case with

TensorFlow. You have an option to use a special tool called tfdbg which

allows to evaluate tensorflow expressions at runtime and browse all tensors

and operations in session scope. Of course, you won’t be able to debug

any python code with it, so it will be necessary to use pdb separately [18].

2. Visualization Tensorboard is awesome when it comes to visualization .

This tool comes with TensorFlow and it is very useful for debugging and

34

comparison of different training runs. For example, consider you trained

a model, then tuned some hyperparameters and trained it again. Both

runs can be displayed at Tensorboard simultaneously to indicate possible

differences. Tensorboard can: display model graph , plot scalar variables

, visualize distributions and histograms, visualize images, visualize em-

bedding or play audio. Tensorboard competitor from the PyTorch side is

visdom. It is not as feature-complete, but a bit more convenient to use.

Also, integrations with Tensorboard do exist. Nevertheless you are free to

use standard plotting tools such as matplotlib and seaborn [18].

3. Deployment If we start talking about deployment TensorFlow is a clear

winner for now: is has TensorFlow Serving which is a framework to deploy

your models on a specialized gRPC server. Mobile is also supported.

When we switch back to PyTorch we may use Flask or another alternative

to code up a REST API on top of the model. This could be done with

TensorFlow models as well if gRPC is not a good match for your use case.

However, TensorFlow Serving may be a better option if performance is

a concern. Tensorflow also supports distributed training which PyTorch

lacks for now [18].

4.2 Deep learning Model

4.2.1 Convolution models

Convolutional networks, also known as convolutional neural networks, or CNNs,

are a specialized kind of neural network for processing data that has a known

grid-like topology. Examples include time-series data, which can be thought of

as a 1-D grid taking samples at regular time intervals, and image data, which

35

can be thought of as a 2-D grid of pixels. Convolutional networks have been

tremendously successful in practical applications. The name “convolutional

neural network” indicates that the network employs a mathematical operation

called convolution. Convolution is a specialized kind of linear operation. Con-

volutional networks are simply neural networks that use convolution in place of

general matrix multiplication in at least one of their layers [19].

Convolutional networks are perhaps the greatest success story of biologi-

cally inspired artificial intelligence. Though convolutional networks have been

guided by many other fields, some of the key design principles of neural net-

works were drawn from neuroscience. The history of convolutional networks

begins with neuroscientific experiments long before the relevant computational

models were developed. Neurophysiologists David Hubel and Torsten Wiesel

collaborated for several years to determine many of the most basic facts about

how the mammalian vision system works [3]. Their accomplishments were even-

tually recognized with a Nobel prize. Their findings that have had the greatest

influence on contemporary deep learning models were based on recording the

activity of individual neurons in cats. They observed how neurons in the cat’s

brain responded to images project precise locations on a screen in front of the

cat. Their great discovery was that neurons in the early visual system responded

most strongly to very specific patterns of light, such as precisely oriented bars,

but responded hardly at all their patterns [3].

4.2.2 Model Implementation (Design And training)

RGB based with Fully Connected Dense Network

In the first iteration of defining our model, we have started by using a dense

network to be trained only on RGB (Red Green Blue) of the image, so at the

36

beginning, we read the image per class and I have used the function shown

below to calculate the mean value of each 3 channel of the image:

Function Definition

def get_mean_RGB(img):

return np.mean(img[:, :, 0]), np.mean(img[:, :, 1]),

np.mean(img[:, :, 2])

read image

show = cv2.imread(image, cv2.IMREAD_COLOR)

Extract the MEAN RGB of each channel

mean_r,mean_g,mean_b = get_mean_RGB(show)

And by the same way, after calculating the mean RGB of each image, we

built a dense network consisting of 3 input Neurons, 16 as output neurons (the

classes are encoded using the one-hot encoding method), and 4, 5 Neurons in the

hidden layers the figure 4.2 and figure 4.3 shows the model definition parameters

as well as the visualization of the model using tensorboard.

37

Figure 4.2: Model definition (parameters , architecture)

Figure 4.3: The visualisation of the model using tensorboard

After training this model on just 5 classes out of the 16 classes that we have

38

and using all the images, round 100 per each class and training around 10000

iterations, we got poor results. Despite many tuning by changing the number

of layers /neurons and also by changing the optimizers, result iterations seemed

to stay the same. We evaluated the model using the Accuracy Metric (Default

in TensorFlow) that creates two local variables, total and count that are used

to compute the frequency with which y-pred matches y-true. This frequency

is ultimately returned as categorical accuracy: an idempotent operation that

simply divides the total by count.

Apparently the color is not enough to distinguish between the almonds so

we have to dig deeper and extract more relevant features. The figure 4.4. Below

the accuracy curve during the training is shown:

Figure 4.4: Accuracy curve during the training

39

Image based with Fully Connected Dense Network

In the second iteration of the implementation after we realized that using just

the color of the object is not enough to classify it, we have implemented a Dense

network consisting of 50176 input layer after applying the flattening of the image

using the flatten layer of Keras. It consists on 6 Dense layers as hidden layers

around 4096 neurons each and by 5 output softmax neurons according to the 5

classes that we have. Figure 4.5 below shows the structure of the network along

with the number of trainable parameters per each layer.

Figure 4.5: Structure of the model with the number of parameters

As said, the model was trained using just 5 classes out of the 16 and all the

steps of the pre-processing described in the previous part have been applied.

The figure 4.6 show a visualization of the model using tensorboard.

40

Figure 4.6: The visualisation of the model using tensorboard

In this second iteration using the full features of the image after training

this model on just 5 classes out of the 16 classes that we have and using all the

images round 100 per each class and it was trained around 10000 iterations we

got poor results. The accuracy seems to be stuck at 70 percent which is better

compared to the first iteration but not enough as a final solution. Once again,

we evaluated the model using the Accuracy Metric (Default in TensorFlow) that

creates the two local variables, total and count, used to compute the frequency

with which y-pred matches y-true. This frequency is ultimately returned as

41

categorical accuracy: an idempotent operation that simply divides the total by

count Figure 4.7.

Figure 4.7: Accuracy curve During the training

The image-based training seems promising compared to the first iteration,

that’s why we gonna continue down this road by just changing the model from

a simple ANN to a convolutional NeuralNetwork as we will show in the next

section.

Image Bases with AlexNet V1

In the third iteration of the development and after we got a relatively good

result using the features of the image compared to using just the color, we

decided to use a convolutional based model to process/classify the almonds.

The Model Architecture was based on ImageNet model September 10, 2012. For

42

a bit of context, ImageNet is a large visual database designed for use in visual

object recognition software research. More than 14 million images have been

hand-annotated by the project to indicate what objects are pictured and in at

least one million of the images, bounding boxes are also provided. ImageNet

contains more than 20,000 categories with a typical category, such as balloon or

strawberry, consisting of several hundred images. The database of annotations

of third-party image URLs is freely available directly from ImageNet, though

the actual images are not owned by ImageNet since 2010, the ImageNet project

runs an annual software contest, the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC), where software programs compete to correctly classify and

detect objects and scenes. The challenge uses a trimmed list of one thousand

non-overlapping classes [19].

The architecture of our network is summarized in Figure 4.8. It contains

eight learned layers —five convolutional and three fully-connected. The Re-

markable things about the model architecture compared to its predecessors is

the activation function where before this model the standard Activation Func-

tion was the Tanh function given by:

f(x) = 2/(1 + e−2x)− 1 (4.1)

In this model, it was changed to a non-saturating non-linearity called ReLU

function given by:

f(x) = max(0, x) (4.2)

Deep convolutional neural networks with ReLUs train several times faster

than their equivalents with Tanh units.

43

Figure 4.8: Structure of the model with the number of parameters

Once again, the model was trained using just 5 classes out of the 16 and all

the steps of the pre-processing in the previous part have been applied. Figure

4.9 below shows a visualization of the model using tensorboard.

44

Figure 4.9: Visualisation of the model using tensorboard

In this third iteration of the development, we trained our models using

stochastic gradient descent with a batch size of 8 examples with a 10 percent

validation set and on 10000 iterations. We initialized the weights in each layer

from a zero-mean Gaussian distribution with a standard deviation of 0.01. We

45

initialized the neuron biases in the second, fourth, and fifth convolutional lay-

ers, as well as in the fully-connected hidden layers, with the constant 1. This

initialization accelerates the early stages of learning by providing the ReLUs

with positive inputs. We initialized the neuron biases in the remaining layers

with the constant 0.

Our results on the almonds dataset using this model was as follows Accuracy:

89 percent. The figure 4.10 below shows the accuracy and the loss curve during

the training. The training lasted more than 5 days.

Figure 4.10: Loss and accuracy of V1 AlexNet

Image Bases with AlexNet V2

Given the impressive results of the previous model compared to the Dense

network beforehand, we have decided to follow up on that by optimizing the

AlexNet both in terms of accuracy and training time (which the V1 of it took

46

more than five days to get trained). So, in this final iteration of the implemen-

tation, we altered the architecture of Alexnet by making it smaller by removing

neurons and also layers. After considerable trials we arrived at this architecture

which was optimal at the time. We have basically removed some of the hidden

layers after we realized that the model is taking too long in training due to it

is bigger size. So by removing some of the hidden layers (both convolutional

and dense) the result got improved and with way less training time. The model

details are explained in figure 4.11 and 4.12.

Figure 4.11: Visualisation of the model

47

Figure 4.12: Model Architecture with details of the parameters

The result of this model was 94 percent on the testing set with the same

iterations and batch size as the previous one 10000 and 8, using the same

optimizers ADAM and it was trained on 16 classes (Figure 4.13).

48

Figure 4.13: Results of the v2 Alexnet

4.3 Result and discussion

In this section, we will analyze our results further and discuss some of the

model tuning techniques that we used, with references to the literature, how

convolutional neural networks can be refined.

Successfully applying deep learning techniques requires more than just a good

knowledge of what algorithms exist and the principles that explain how they

work. A good machine learning practitioner also needs to know how to choose

an algorithm for a particular application and how to monitor and respond to

feedback obtained from experiments to improve a machine learning system.

During day to day development of machine learning systems, practitioners need

to decide whether to gather more data, increase or decrease model capacity, add

or remove regularizing features, improve the optimization of a model, improve

approximate inference in a model, or debug the software implementation of the

49

model. All of these operations are at the very least time-consuming to try out,

so it is important to be able to determine the right course of action rather than

blindly guessing. In the next subsection, we will be discussing this journey and

why we chose what we have chosen [3].

4.3.1 Performance Metrics and model evaluation

Metric

Determining the goals of the experiment, in terms of which error metric to use,

is a necessary first step because the error metric will guide all of the future

actions. Note that in most applications, it is impossible to achieve absolute

zero error. The Bayes error defines the minimum error rate that can hope to

achieve, even if we have infinite training data and can recover the true proba-

bility distribution. This is because the input features may not contain complete

information about the output variable, or because the system might be intrinsi-

cally stochastic and, of course, we will also be limited by having a finite amount

of training data.

To evaluate the abilities of a machine learning algorithm, we had designed a

quantitative measure of the performance of our model. Usually, performance

measure P is specific to the task T being carried out by the system. In our

task is classification task and the performance measure that we used is the

Accuracy. Accuracy is just the proportion of examples for which the model

produces the correct output. We can also obtain equivalent information by mea-

suring the error rate, the proportion of examples for which the model produces

incorrect output. We often refer to the error rate as the expected 0-1 loss. The

0-1 loss on a particular example is 0 if it is correctly classified and 1 if it is not.

The code below shows the function implemented in TensorFlow used for that

50

matter :

Function Definition

def test(X, Y, model_version):

try:

model = keras.models.load_model

('model/alexnet/saved_model/'

+ model_version)

except (ImportError, IOError) as error:

print("Error Loading model ", error)

else:

print("Model Summary :")

model.summary()

scores = model.evaluate(X, Y, verbose=0)

print((model.metricsNames[1], scores[1] * 100))

return scores

where model.metricsNames[1] was defined in the model definition before

start the training when we compiled the model, as this

model.compile(loss='categorical_crossentropy', optimizer='adam',

metrics=['accuracy'])

Usually, we are interested in how well the machine learning algorithm per-

forms on data that it has not seen before since this determines how well it will

work when deployed in the real world. We, therefore, evaluate these perfor-

mance measures using a test set of data that is separate from the data used for

training the machine learning system.

However, many applications require more advanced metrics. Sometimes it is

much more costly to make one kind of mistake than another. For example, an

51

e-mail spam detection system can make two kinds of mistakes: incorrectly clas-

sifying a legitimate message as spam, and incorrectly allowing a spam message

to appear in the inbox. It is much worse to block a legitimate message than

to allow a questionable message to pass through. Rather than measuring the

error rate of a spam classifier, we may wish to measure some form of the total

cost, where the cost of blocking legitimate messages is higher than the cost of

allowing spam messages.

Cross validation

Dividing the dataset into a fixed training set and a fixed test set can be prob-

lematic if it results in the test set being small. A small test set implies statistical

uncertainty around the estimated average test error, making it difficult to claim

that algorithm A works better than algorithm B on the given task. When the

dataset has hundreds of thousands of examples like ours, this is not a serious is-

sue. When the dataset is too small, alternative procedures enable one to use all

the examples in the estimation of the mean test error, at the price of increased

computational cost. These procedures are based on the idea of repeating the

training and testing computation on different randomly chosen subsets or splits

of the original dataset. To that matter, we used one of the most common of

these is the k-fold cross-validation procedure, in which a partition of the dataset

is formed by splitting it into k non-overlapping subsets. The test error may then

be estimated by taking the average test error across k trials. On trial I, the i-th

subset of the data is used as the test set, and the rest of the data is used as the

training set. This can be implemented easily with Keras where you just have

to pass validation split to the model.fit() function.

52

4.3.2 Default Baseline Models

After choosing performance metrics and goals, the next step in any practical

application is to establish a reasonable end-to-end system as soon as possible.

Depending on the complexity of the problem, it may even be possible to begin

without using deep learning. If the problem has a chance of being solved by

just choosing a few linear weights correctly, as a simple statistical model like

logistic regression.

After observing the problem that we want to solve it clearly falls into an “AI-

complete” category so it is obvious that simple models stated above are not

gonna even approach the solution by any far that is why we have decided to

go with a deep learning-based model. So as the first step we had to choose the

general category of the model based on the structure of the data. Since our data

is labeled it is clear that we are going to the user a model from the supervised

learning bucket. After the next step is to examine whether our data (inputs)

has a topological structure and the answer is yes, almost all images require

extraction of it is topological structure in order to build a good classifier. Next is

checked if our input or output has a sequence structure (latent representation of

variable). In this case, the input is an image (matrices of pixels) and the output

is a fixed label so there’s no need to use sequence models such as gated recurrent

net (LSTM or GRU) or it is variants. A reasonable choice of the optimization

algorithm is Stochastic gradient descent (SGD) with momentum with a decaying

learning rate (popular decay schemes that perform better or worse on different

problems include decaying linearly until reaching a fixed minimum learning rate,

decaying exponentially, or decreasing the learning rate by a factor of 2-10 each

time validation error plateaus). Another very reasonable alternative which is

the one we used at the end is Adam. Batch normalization can have a dramatic

53

effect on optimization performance, especially for convolutional networks and

networks with sigmoidal nonlinearities. While it is reasonable to omit batch

normalization from the very first baseline, it should be introduced quickly if

optimization appears to be problematic.

These were the steps that we have followed to construct our solution. Other

details of the model implementation such as regularisation and network depth

will be discussed in the next few sections.

4.3.3 Built-in invariance

A fundamental problem of computer vision is learning to separate the properties

of the image from the inherent properties of the object itself. In practical terms,

this means that the object detector has to be invariant to shifts in viewpoint,

lighting, noise, and other conditions caused by the properties and placement of

the camera and by the environment of the object, rather than the object itself.

We have shown that using deep learning techniques we can acquire most of this

invariance automatically from the training data, given that the training data is

sufficiently diverse as we explained in chapter 3. This way, it is up to the data

to show which invariance types are useful to learn. The developer of the system

does not have to take each one into consideration separately. However, while

learning the invariance is a useful property, it has to be balanced with practical

considerations, such as efficiency. Convolutional networks differ somewhat from

“blank slate” deep learning in that they force translation invariance to hold

as a structural property of the network. Pooling and stride operations which

are a big part of the CNN architecture where in our model we have used the

max pooling and strides size of 4,4 in most of the layers in the final AlexnetV2.

These operations cause invariance to small changes in pixel-level information

while keeping the network down to a manageable size.

54

Invariance assumptions also can be made by the region proposal methods. Se-

lective Search and Edge Boxes evaluate the objectness based on hand-crafted

techniques. Faster R-CNN and other integrated methods sidestep this by learn-

ing to generate the regions. Later discussion and potential improvements will

be mentioned in the section further work.

4.3.4 Network depth

Since deep networks have been responsible for much of the improvement in

image processing/classification given any task, it is relevant to ask whether

the networks could be made deeper still. For AlexNet networks (our base

model), it has been experimentally found that, for a given problem, there is a

certain optimal number of layers, after which training and test error start to

increase. This is called the degradation problem. The reasons for this behavior

are currently not wholly known. So the only way to manage this is in an

empirical way where you try and see the results and it is exactly what we did.

In the example in AlexNetV2, we have removed 4 layers in the dense part

of the network and 3 convolutional layers. In the past, the back-propagation

algorithm suffered from vanishing gradients, but this problem was mitigated by

replacing sigmoidal activation functions with (Relu) rectified linear units as in

our case we used them with Tanh (Hyperbolic function).

4.3.5 Batch size Normalisation Impact on Generalisation

We have trained our last version of the model AlexNetV2 using stochastic

gradient descent (SGD) variant called adam. This method (and its variants)

operate in a small-batch regime wherein a fraction of the training data, say

32–512 data points, is sampled to compute an approximation to the gradient.

55

It has been observed in practice that when using a larger batch there is a degra-

dation in the quality of the model, as measured by its ability to generalize as it

was detailed in [16] paper (on large-batch training for deep learning: generaliza-

tion gap and sharp minima). They investigate the cause for this generalization

drop in the large-batch regime and present numerical evidence that supports

the view that large-batch methods tend to converge to sharp minimizers of the

training and testing functions and as is well known, sharp minima lead to poorer

generalization. In contrast, small-batch methods consistently converge to flat

minimizers, following up on their result and after we have evaluated our model

on the testing set we decided to change our batch size from 32 to 16 and then

to 8 in the final architecture and it did effectively improve the generalization

gap by 3 percent.

Deep Learning has emerged as one of the cornerstones of large-scale ma-

chine learning. The problem of training these networks is one of non-convex

optimization. Mathematically, this can be represented as :

min
x∈Rn

f(x) := 1
M

M∑
i=1

fi(x) (4.3)

where f(x) is a loss function for data point I ∈ {1, 2, · · ·,M} which captures

the deviation of the model prediction from the data, and x is the vector of

weights being optimized. The process of optimizing this function is also called

training of the network. Stochastic Gradient Descent (SGD) and its variants

are often used for training deep networks and that is why we have decided to go

with it. These kinds of methods minimize the objective function f by iteratively

56

taking steps of the form :

xk+1 = xk − αk

 1
|Bk|

∑
i∈Bk

∇fi (xk)
 (4.4)

where Bk ∈ {1, 2, · · ·,M} is the batch sampled from the dataset and k is

the step size an iteration k. These methods can be interpreted as gradient

descent using noisy gradients, which and are often referred to as mini-batch

gradients with batch size Bk. SGD and its variants (like adam) are employed

in a small-batch regime, where |Bk | M and typically Bk ∈ {32, 64, · · ·, 512}.

These configurations have been successfully used in practice for a large number

of applications not just ours. Many theoretical properties of these methods are

known. These include guarantees of (a) convergence to minimizers of strongly-

convex functions and stationary points for non-convex functions), (b) saddle

point avoidance, and (c) robustness to input data. Stochastic gradient and it

is variant methods have, however, a major drawback: owing to the sequential

nature of the iteration and small batch sizes, there is a limited avenue for

parallelization. While some efforts have been made to parallelize SGD for Deep

Learning, the speed-ups and scalability obtained are often limited by the small

batch sizes. One natural avenue for improving parallelism is to increase the

batch size |Bk|. This increases the amount of computation per iteration, which

can be effectively distributed. However, this leads to a loss in generalization

performance. In other words, the performance of the model on testing data sets

is often worse when trained with large-batch methods as compared to small-

batch methods. In their experiments, Jorge and Mikhail have found a drop in

generalization (also called generalization gap) to be as high as 5 percent even

for smaller networks [20].

57

4.3.6 Regularization of Deep Learning model

Regularization is central problem in machine learning it is how to make an al-

gorithm that will perform well not just on the training data, but also on new

inputs. Many strategies used in machine learning are explicitly designed to re-

duce the test error, possibly at the expense of increased training error. These

strategies are known collectively as regularization. A great many forms of reg-

ularization are available to the deep learning practitioner whether in theory or

some of them are embedded in implementation frameworks such as TensorFlow.

In fact, developing more effective regularization strategies has been one of the

major research efforts in the field. In practice, an overly complex model family

does not necessarily include the target function or the true data-generating pro-

cess, or even a close approximation of either. We rarely have access to the true

data-generating process so we can never know for sure if the model family being

estimated includes the generating process or not. Most applications of deep

learning algorithms, however, are to domains where the true data-generating

process is almost certainly outside the model family. Deep learning algorithms

are typically applied to extremely complicated domains. For which the true

generation process essentially involves simulating the entire universe. To some

extent, we are always trying to fit a square peg (the data-generating process)

into a round hole (our model family). What this means is that controlling the

complexity of the model is not a simple matter of finding the model of the right

size, with the right number of parameters. Instead, we might find—and indeed

in practical deep learning scenarios, we almost always do find—that the best

fitting model (in the sense of minimizing generalization error) is a large model

that has been regularized appropriately.

In few next paragraphs, we will briefly discuss some of the regularization

58

techniques used across the field and that we took into consideration before

choosing the one that we used.

Parameter Norm Penalties

Regularization has been used for decades prior to the advent of deep learning.

Linear models such as linear regression and logistic regression allow simple,

straightforward, and effective regularization strategies. Many regularization ap-

proaches are based on limiting the capacity of models, such as neural networks,

linear regression, or logistic regression, by adding a parameter norm penalty to

the objective function J. We denote the regularized objective function by J:

J̃(θ;X,y) = J(θ;X,y) + αΩ(θ) (4.5)

where is a hyperparameter that weighs the relative contribution of the

norm penalty term, , relative to the standard objective function J. Setting

alpha to 0 results in no regularization. Larger values of alpha correspond to

more regularization. When our training algorithm minimizes the regularized

objective function J it will decrease both the original objective J on the training

data and some measure of the size of the parameters θ (or some subset of the

parameters). Different choices for the parameter norm omega can result in

different solutions being preferred. In this section, we discuss the effects of the

various norms when used as penalties on the model parameters, however, this

method performed quite poorly compared to the final network regulator that

we have used (dropout) but it is worth it to try all the methods since it is an

empirical field.

59

L1 and L2 Parameter Regularization

In terms of layers, weight regularization w have also considered the L1 and L2

methods. The L2 parameter norm penalty is commonly known as weight decay.

This regularization strategy drives the weights closer to the origin1by adding

a regularization term ridge regression, where the RSS is modified by adding

the shrinkage quantity. Now, the coefficients are estimated by minimizing this

function. Here, is the tuning parameter that decides how much we want to

penalize the flexibility of our model. The increase in flexibility of a model is

represented by an increase in its coefficients, and if we want to minimize the

loss function, then these coefficients need to be small. This is how the Ridge

regression technique prevents coefficients from rising too high. Also, notice that

we shrink the estimated association of each variable with the response, except

the intercept 0, This intercept is a measure of the mean value of the response

when xi1 = xi2 = . . . = xip = 0. its term is:

n∑
i=1

yi − β0 −
p∑

j=1
βjxij

2

+ λ
p∑

j=1
β2

j = RSS + λ
p∑

j=1
β2

j (4.6)

Lasso is another variation that we took into consideration, in which the

above function is minimized. It is clear that this variation differs from ridge

regression only in penalizing the high coefficients. It uses |j|(modulus)instead

of squares of , as its penalty. In statistics, this is known as the L1 norm.

Bagging and Other Ensemble Methods

Bagging(short for bootstrap aggregating) is a technique for reducing general-

ization error by combining several models. The idea is to train several different

models separately, then have all the models vote on the output for test exam-

ples. This is an example of a general strategy in machine learning called model

60

averaging. Techniques employing this strategy are known as ensemble methods.

The reason those model averaging works is that different models will usually not

make all the same errors on the test set. Different ensemble methods construct

the ensemble of models in different ways. For example, each member of the en-

semble could be formed by training a completely different kind of model using

a different algorithm or objective function. Bagging is a method that allows the

same kind of model, training algorithm, and the objective function to be reused

several times. Specifically, bagging involves constructing k different datasets.

Each dataset has the same number of examples as the original dataset, but each

dataset is constructed by sampling with replacement from the original dataset.

This means that, with high probability, each dataset is missing some of the ex-

amples from the original dataset and contains several duplicate examples. The

model i is then trained on dataset i. The differences between examples are in-

cluded in each dataset result in differences between the trained models, however

when we combined the SGD algorithm with the dropout (which we will detail

in the next section) it resulted in the same results because the SGD do exactly

the same thing but in a different way. It divides the data into mini-batches

combined with the dropout that isolates some part of the network at a random

time during the training by dropping some of the neurons [3].

Dropout

Dropout is one of many choices that we have used in our experiment as it was

detailed in the chapter 3 in the iterations second, third, and forth where we have

added potential dropout neurons/layers throughout all the network, this method

provides a computationally inexpensive but powerful method of regularizing a

broad family of models. To a first approximation, dropout can be thought of as

a method of making bagging practical for ensembles of very many large neural

61

networks. Bagging involves training multiple models and evaluating multiple

models on each test example. This seems impractical when each model is a

large neural network, since training and evaluating such networks is costly in

terms of run-time and memory. It is common to use ensembles of five to ten

neural networks—Szegedy et al. (2014a) used six to win the ILSVRC—but

more than this rapidly becomes unwieldy. Dropout provides an inexpensive

approximation to training and evaluating a bagged ensemble of exponentially

many neural networks. Specifically, dropout trains the ensemble consisting of

all sub-networks that can be formed by removing non-output units from an

underlying base network. In most modern neural networks, based on a series of

affine transformations and non-linearities, we can effectively remove a unit from

a network by multiplying its output value by zero. This procedure requires some

light modification for models such as radial basis function networks, which take

the difference between the unit’s state and some reference value. The figure

4.14 below shows dropout trains an ensemble consisting of all sub-networks [3].

62

Figure 4.14: Dropout trains an ensemble consisting of all subnetworks

Many other regularization techniques exist out there in the field from which

we can name: Dataset Augmentation, Adversarial training, Noise Robustness,

Semi-Supervised Learning, transfer learning ..., we have chosen these specific

ones that we took into our consideration when we built our model even though

we dropped some of them from the final architecture, and then we ended up

using the dropout method combined with SGD algorithm.

4.3.7 Determining Whether to Gather More Data

After the first end-to-end system is established, it is time to measure the per-

formance of the algorithm and determine how to improve it. Many machine

learning novices are tempted to make improvements by trying out many dif-

ferent algorithms. However, it is often much better to gather more data than

to improve the learning algorithm [3]. How can we decide whether to gather

63

more data? First, we determine whether the performance on the training set is

acceptable. If performance on the training set is poor, the learning algorithm

is not using the training data that is already available, so there is no reason

to gather more data. Instead, it is recommended to try to increase the size of

the model by adding more layers or adding more hidden units to each layer to

extract more hidden features. Also, it is recommended to try to improve the

learning algorithm, for example by tuning the learning rate hyper-parameter,

however in our case by using the adam optimizer the learning rate is adjusted

during the training automatically. If large models and carefully tuned optimiza-

tion algorithms do not work well, then the problem might be the quality of the

training data. The data may be too noisy or may not include the right inputs

needed to predict the desired outputs. This suggests starting over, collecting

cleaner data, or collecting a richer set of features. If the performance on the

training set is acceptable, then measure the performance on a test set. If the

performance on the test set is also acceptable, then there is nothing left to be

done. If test set performance is much worse than training set performance,

then gathering more data is one of the most effective solutions. When decid-

ing whether to gather more data, it is also necessary to decide how much to

gather. It is helpful to plot curves showing the relationship between training

set size and generalization error. By extrapolating such curves, one can predict

how much additional training data would be needed to achieve a certain level

of performance. Usually, adding a small fraction of the total number of exam-

ples will not have a noticeable impact on generalization error. It is therefore

recommended to experiment with training set sizes on a logarithmic scale, for

example doubling the number of examples between consecutive experiments [3].

If gathering much more data is not feasible, the only other way to improve

64

generalization error is to improve the learning algorithm itself. This becomes

the domain of research and not the domain of advice for applied practitioners

[3].

65

Chapter 5

Deployment (Software As a

service)

In this chapter, we will be discussing the post-development phase of our project

which is the deployment of the model as Software As a service (SAAS). It can be

seen as an explanation of the technologies used to achieve this. Note that some

part of the architecture explained later in this part is still under development

or Beta Version.

5.1 Serving of the model

5.1.1 Tensorflow Serving

Tensorflow Serving is an open-source ML model serving project by Google. In

Google’s own words, “Tensorflow Serving is a flexible, high-performance serving

system for machine learning models, designed for production environments. It

makes it easy to deploy new algorithms and experiments while keeping the

same server architecture and APIs. Tensorflow Serving provides out-of-the-box

67

integration with Tensorflow models, but can be easily extended to serve other

types of models and data. Figure 5.1 shows the architectures of tensforflow

serving framework

There are a number of ML model serving platforms in the market right now.

We chose Tensorflow Serving because of these three reasons, ordered by priority:

• Highly performant. It has proven performance handling tens of millions

of inferences per second at Google according to their website.

• Highly available. It has a model versioning system to make sure there

is always a healthy version being served while loading a new version into

its memory.

• Actively maintained by the developer community and backed by Google

Even though, by default, Tensorflow Serving only supports models built

with Tensorflow, this is not a constraint, though, because Grab is actively

moving toward using Tensorflow [21].

Figure 5.1: Architectures of Tensorflow Serving Framework [21].

68

5.1.2 Docker and google cloud

Docker is a set of platform-as-a-service (PaaS) products that use operating-

system-level virtualization to deliver software in packages called containers.

Containers are isolated from each other and group their own software, libraries,

and configuration files. They can communicate with each other through well-

defined channels. All containers are run by a single operating system kernel

and therefore use fewer resources than virtual machines [22]. The docker is a

virtualization alternative in which the host machine’s kernel is shared with the

virtualized machine or the software in operation, so a developer can add to his

software the possibility of taking the libraries and other dependencies of his

program together with the software with less performance loss than hardware

virtualization of a complete server. Thus, the docker makes operations on in-

frastructure such as web services more interchangeable, efficient, and flexible.

5.1.3 Make First HTTP Request

Using the two tools explained in the previous two sections we have built a docker

image that contains a servebale Tensorflow model with the H5 Format that can

be served in a container exposing a Restful API as well as GRPC endpoint to

make the use of HTTP 2. The Figure 5.2 shows how to pull the image from

Gitlab Registry where the image is stored.

Link to the Repository :https://gitlab.com/master-thesis8 (it may require

the project admin to give you access)

69

https://gitlab.com/master-thesis8

Figure 5.2: Terminal explanation of the HTTP request

#This step may require credentials from the owner of the Repo

docker login --username iterm --password $ACCESS_TOKEN

This step take about 5 minutes since the model has more than 1 gb size

docker pull registry.gitlab.com/master-thesis8/model-tensforflow

Running the image

70

docker run registry.gitlab.com/bytepitch/imagine20x/database

Check if the Container is running

docker ps

After making these steps the model will be served at the port 8500-8501/tcp

and ready to use. After making these steps the model will be served at the port

8500-8501/tcp and ready to use. An image must be sent to the model in form

of a NumPy array by the size 224 224 3. You can use our image processing API

in order to process your image the next section would be an explanation of how

to do that.

5.2 Back-end for the model

5.2.1 Overview Architecture

After We’ve Served the Tensorflow Model in a docker container the next step is

to create a back end to be served as software to the end client the figure below

shows the overview architecture of the different pieces of the software.

71

Figure 5.3: Overview Architecture of the software

The Tensorflow Model Piece has already been explained in the chapter 4,

therefore in the next section we will be detailing other components shown in

the figure 5.3.

Image Processing API

This part is the Web Service of the image processing techniques that we have

developed and explained in the Data Collection and pre-processing part.

1. Protobuf vs. JSON : One of the biggest differences between REST and

gRPC is the format of the payload. REST messages typically contain

JSON. This is not a strict requirement, and in theory you can send any-

thing as a response, but in practice the whole REST ecosystem—including

tooling, best practices, and tutorials—is focused on JSON. It is safe to

say that, with very few exceptions, REST APIs accept and return JSON.

gRPC, on the other hand, accepts and returns Protobuf messages, from a

performance point of view, Protobuf is a very efficient and packed format.

JSON, on the other hand, is a textual format. You can compress JSON,

72

but then you lose the benefit of a textual format that you can easily expect

[23].

2. HTTP/2 vs. HTTP 1.1 : Let’s compare the transfer protocols that REST

and gRPC use. REST, as mentioned earlier, depends heavily on HTTP

(usually HTTP 1.1) and the request-response model. On the other hand,

gRPC uses the newer HTTP/2 protocol. There are several problems that

plague HTTP 1.1 that HTTP/2 fixes. Here are the major ones. HTTP

1.1 is too big and complicated. The growth of page size and the number of

objects, latency issues, head of line blocking. However, the major improve-

ment of HTTP/2 is that it uses multiplexed streams. A single HTTP/2

TCP connection can support many bidirectional streams. These streams

can be interleaved (no queuing), and multiple requests can be sent at

the same time without a need to establish new TCP connections for each

one. In addition, servers can now push notifications to clients via the

established connection (HTTP/2 push) [23].

3. REST supports only the request-response model available in HTTP 1.x.

But gRPC takes full advantage of the capabilities of HTTP/2 and lets

you stream information constantly. There are several types of streaming:

Bidirectional Streaming ,Client-Side Streaming , Server-Side Streaming

[23] .

4. Strong Typing vs. Serialization : The REST paradigm doesn’t mandate

any structure for the exchanged payload. It is typically JSON. Consumers

don’t have a formal mechanism to coordinate the format of requests and

responses. The JSON must be serialized and converted into the target

programming language both on the server side and client side. The se-

rialization is another step in the chain that introduces the possibility of

73

errors as well as performance overhead. The gRPC service contract has

strongly typed messages that are converted automatically from their Pro-

tobuf representation to your programming language of choice both on the

server and on the client. JSON, on the other hand, is theoretically more

flexible because you can send dynamic data and don’t have to adhere to

a rigid structure [23].

5. Support for gRPC in the browser is not as mature. Today, gRPC is used

primarily for internal services which are not exposed directly to the world.

If you want to consume a gRPC service from a web application or from a

language not supported by gRPC then gRPC offers a REST API gateway

to expose your service. The gRPC gateway plugin generates a full-fledged

REST API server with a reverse proxy and Swagger documentation. With

this approach, you do lose most of the benefits of gRPC, but if you need to

provide access to an existing service, you can do so without implementing

your service twice [23].

Following up on the comparison of the two techniques of serving resources

we have decided to make our system oriented toward GRPC support therefore

our system will use GRPC as the main Standard, but without negligent the

Rest endpoint because these APIs can also be served as a third party for other

services/client. Since our image processing was implemented using Python and

OpenCV we have decided to go with python to serve these functions (make

things less complicated) FLASK (python web framework) was chosen in order

to do that, Link to the Repository : https://gitlab.com/master-thesis8/

(it may require to the project admin to give you access). The API exposes an

endpoint noted by /almonds/features the endpoint has 2 verbs one for POST

and one GET, The POST is used to extract features of an image sent in the

body and it returns the corresponding NumPy array to be used later on for

74

https://gitlab.com/master-thesis8/

the classification. The Project is running on docker as well exposing two ports

50051 for GRPC and 3001 Restful, of course in order to access the Grpc you will

be needing the protocol buffer service definition further details about this would

be in the Readme of the Repository. The Repository contains a docker-compose

to run both containers together. Here are steps on how to run then:

enter the Repository

cd path/to/repo

build the images

docker-compose build

Run the docker containers

docker-compose up - d

check if everything is running

docker-compose ps

After Running the containers you can test then by sending images to the

exposed end-points via Postman or BloopRpc

Spring Boot and Postgress as Main Service

The final step of the back-end Development is to Combine the two microservices

that we have built and detailed in the previous sections. We are building a

spring boot web application with a Postgress database to store some of the user

information for later use. This part will have these main features: Handel User

Authentication and Authorization

75

1. Handel User Authentication and Authorisation

2. When it receives a request firstly it calls the image processing API using

GRPC to get the NumPy array after applying the different masks And

then it calls the Tensorflow Model according to the image git (almond,

olives ...) after it gets the result from the TensorFlow model it stores all

these operations in the PostgreSQL and then it serializes the response in

JSON and sends it back the user.

3. Store in the database the previous performed User Request on the API

4. Store the user feedback on the classification results

5. Notify the Pipeline for Tensorflow model after a specific threshold to trig-

ger the new training of the model with the new data and deploy the new

version if it has better accuracy

End Client

The client-side of the software is gonna be a Flutter mobile application, for a bit

of context about flutter Flutter is an open-source user interface development kit

(UI toolkit), created by Google, which allows the creation of natively compiled

applications. Currently, it can compile for Android, iOS, Windows, Mac, Linux,

Google Fuchsia, and the Web. Flutter is becoming on of the leading frameworks

for mobile app development. This part is still under development in the design

phase, where the app is gonna have two layouts one of login/signup after the user

is signing it will show a layout with a list of the previous operation performed

on the API (previous classifications) as well as a button that will activate the

camera and therefore taking a picture to send, perform HTTP request to API

and then get the classification results back.

76

Chapter 6

Conclusion

6.1 Reviews and usefulness of the solution

AI and Deep learning have application in countless areas, any field can even-

tually use it to solve problems that once we thought they are unsolvable. The

model that we have developed in this thesis is just a drop in the ocean on

how Deep Learning can help solve problems, optimize the existing solution and

develop tools that will help change any industry. The biggest advantage of

the presented algorithm is its high precision. The developed classifier is able

to detect many types of almonds (16 in our case of study and it can be in-

creased) with a high accuracy that reached 94 percent in the last iteration of

the development. We can also emphasize on the solution low-cost and on the

model scalability since it can scale to any other case of studies using methods

like transfer learning. Moreover our solution can be easily used and adapted to

work in different devices.

This kind of solutions can be used in different contexts including in industry

real problems, such as:

1. Supply chain optimization – less waste and more transparency As long

77

as food manufacturers are concerned with food safety regulations, they

need to appear more transparent about the path of food in the supply

chain. Here, AI in food manufacturing helps to monitor every stage of

this process — it makes price and inventory management predictions and

tracks the path of goods from where they are grown to the place where

consumers receive it, ensuring transparency. A solution such as Symphony

Retail AI enables us to estimate the demand for transportation, pricing,

and inventory to avoid getting an abundance of goods that end up wasted.

2. Sorting food: optical sorting solutions Previously, a manufacturer had to

hire many people to perform the monotonous and routine actions linked to

food selection. Now, instead of manually sorting large amounts of food by

size and shape (so that it can be canned or bagged), you can use AI-based

solutions to easily recognize which plants should be potato chips and which

are better to use for french fries. Vegetables of an inappropriate color will

also be sorted out by the same system, decreasing the chance that they

are discarded by buyers. Food Sorters and Peelers developed by TORMA

show better processing capacity and availability, which increased food

quality and safety. This is achieved by using core sensor technologies and a

camera that recognizes material based on color, biological characteristics,

and shape (length, width, diameter); the camera has an adaptive spectrum

that is well suited for optical food sorting.

3. Predictive maintenance, remote monitoring, and condition monitoring It

is obvious that manufacturing a lot of goods demands large, complicated,

and intricately constructed mechanisms. The maintenance of such ma-

chines can be rather costly without predictive maintenance – figuring out

the time-to-repair and cost-to-repair indicators through categorizing issues

78

and making predictive alerts. Timely repairs can save up to 50 percent

maintenance time and reduce the costs needed for it by almost 10. To

perform remote monitoring on complicated mechanisms, you can make

a Digital Twin of a machine that will show you the performance data

on parameters and manufacturing processes and boost the throughput.

Machine Learning also allows the identifications of factors that affect the

quality of the manufacturing process with Root Cause Analysis (eliminat-

ing the problem at its very source). With condition monitoring, you can

monitor the equipment’s health in real-time to reach high overall equip-

ment effectiveness (OEE) [24].

4. Matching customer tastes with your business strategy, the idea is to use

historical data to know better each client and their needs. Providing

service and goods that match completely the taste and the needs of each

client will improve the business.

6.2 Further work

As a final conclusion for the thesis and for the work that we have done, I wanted

to present some of the ideas/ features that can be developed based on our work.

As I mentioned earlier, our work is a drop in the sea from what deep learning

can solve in all the fields and all the world, so in this section, you will see Further

work and extents of our thesis project.

6.2.1 Further work on the model

The convolutional model and the image processing that we built can be used as

a starter model for other similar issues that IPB agricultural Lab faces. For ex-

ample, one of the ideas is to apply it on olives classification or even in the same

79

use case (almonds). In this case, we can extend it to more classes of almonds

or we can consider classifying by quality of the almond, by conservation time

and also it is possible to infer the thickness of the shell to know what type of

machine should be used to peel them.

About image processing improvements as explained in the classification part all

the methods that we have used are kind of static methodologies. All the masks

and filters are generic algorithms, defined by default in OpenCv 2.0, a further

work can be conducted here making these parameters learnable. For example,

where we used the Canny thresh-hold or the blur kernel size, these parameters

can be trained toward one dataset and it will have a better image segmentation

results (both accuracy and generalization).

A general improvement for the CNN model and the image processing together,

is to introduce a region proposal techniques. In our work, we have assumed

that the picture that we feed to the model has only one almond and we segment

the image based on that, wherein the case of using a region proposal techniques

such as Mask Cnn, Fast R-Cnn, Faster Rcnn the extraction of the number of al-

monds, separation of almond from the background would work for images with

multiple almonds in it.

When training the CNN, GPU implementation is necessary. Training the CNN

with merely a CPU implementation can take months to complete for the com-

plete GS1US product category dataset. It is logical to conclude that fine-tuning

the system during this process is not feasible in that time setting. Scalability

does not seem to be an issue with the implementation of GPU computation,

and furthermore, the cloud-based computation can be implemented to decrease

training time even more, when training very large datasets.

80

6.2.2 Further development on the software

As the model can scale for further features the software around should be able

to scale as well and should be able to scale with all the potential features that

we have discussed in the previous section. In order to do that the back end

that we built is totally loosely coupled where the 3 different components of it

can be developed/deployed separately with no issue at all. For example, the

image processing API has an EndPoint for almonds under /almonds/features

and we can as well add olives in the same API by just adding it to the route as

/olives/features. The load balancer in front of it so you can add more instances

of the container and treat the requests in the different instances. The Tensorflow

Serving Component also is highly scalable where TF team recently added the

multiple model deployment per container where you can just give the container

a JSON models config as the following code shows instead of just one model:

json config of the different moldes

model_config_list: {

config: {

name: "model1",

base_path: "/tmp/model",

model_platform: "tensorflow"

},

config: {

name: "model2",

base_path: "/tmp/model2",

model_platform: "tensorflow"

}

}

81

We might need to add a Load balancer here as well, it would be as easy as

the first component since all the APIs are based on restful conventions.

The third component which is the liaison between the two is built using Spring

Boot and Postgresql which are battle-tested matured technologies and we can

easily develop new features in using them. We might just need to add caching

layers using Redis to speed-Up requests processing times.

Hopefully, the ideas in this dissertation will serve as a useful foundation for

the design and architecture of future works, and they will encourage further

research on Deep learning in agricultural-related areas.

82

Bibliography

[1] B. E. Rasool Khodabakhshian, M. Khojastehpour, and M. R. Golzar-

ian, “Combination of conventional imaging and spectroscopy methods for

food quality evaluation”, Conference: WCSE 2014At: Dubai, UAE, 2014.

[Online]. Available: https://www.researchgate.net/publication/

264991916_Combination_of_conventional_imaging_and_spectroscopy_

methods_for_food_quality_evaluation.

[2] B. R. Haohan Wang, “On the origin of deep learning”, conference Neural

and Evolutionary Computing (cs.NE, 2017. [Online]. Available: https:

//arxiv.org/abs/1702.07800.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.

[4] J. Schmidhube, “Deep learning: Our miraculous year 1990-1991”, 2019.

[Online]. Available: http://people.idsia.ch/~juergen/deep-learning-

miraculous-year-1990-1991.html.

[5] E. T. Delila Halac Emir Sokic, “Almonds classification using supervised

learning”, XXVI International Conference on Information, Communi-

cation and Automation Technologies (ICAT), 2017. [Online]. Available:

https://ieeexplore.ieee.org/document/8171603/.

83

https://www.researchgate.net/publication/264991916_Combination_of_conventional_imaging_and_spectroscopy_methods_for_food_quality_evaluation
https://www.researchgate.net/publication/264991916_Combination_of_conventional_imaging_and_spectroscopy_methods_for_food_quality_evaluation
https://www.researchgate.net/publication/264991916_Combination_of_conventional_imaging_and_spectroscopy_methods_for_food_quality_evaluation
https://arxiv.org/abs/1702.07800
https://arxiv.org/abs/1702.07800
http://www.deeplearningbook.org
http://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html
http://people.idsia.ch/~juergen/deep-learning-miraculous-year-1990-1991.html
https://ieeexplore.ieee.org/document/8171603/

[6] P. Domingos, The master Algorithm By Pedro Domingos. Basic Books,

2015.

[7] Almond produtction should double in a decade in portugal, https://www.

sisab.pt/noticias/producao-de-amendoa-devera-duplicar-numa-

decada-em-portugal/?lang=en, 2018.

[8] H. Adel, A. mahmoudi, and S. Khalesi, “Detection of walnut varieties us-

ing impact acoustics and artificial neural networks (anns)”, Modern Ap-

plied Science, 2011. [Online]. Available: https://www.researchgate.

net / publication / 267231434 _ Detection _ of _ Walnut _ Varieties _

Using_Impact_Acoustics_and_Artificial_Neural_Networks_ANNs.

[9] S. Chatterjee, What is feature extraction? feature extraction in image pro-

cessing, https://www.mygreatlearning.com/blog/feature-extraction-

in-image-processing/, Oct. 2020.

[10] O. Stenroos, “Object detection from images using convolutional neural

networks”, semanticscholar, 2017. [Online]. Available: https : / / www .

semanticscholar . org / paper / Object - detection - from - images -

using-convolutional-Stenroos/a6ee78ea9c68d99d6545227fed925a721337bb16.

[11] E. Becker, Image processing with python, https://orcid.org/0000-

0002-6832-0233, 2020.

[12] J. CANNY, “A computational approach to edge detection”, IEEE TRANS-

ACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,

1986. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.420.3300&rep=rep1&type=pdf.

[13] J. Serra, Image Analysis and Mathematical Morphology. Reading, Mas-

sachusetts: Addison-Wesley, 1983.

84

https://www.sisab.pt/noticias/producao-de-amendoa-devera-duplicar-numa-decada-em-portugal/?lang=en
https://www.sisab.pt/noticias/producao-de-amendoa-devera-duplicar-numa-decada-em-portugal/?lang=en
https://www.sisab.pt/noticias/producao-de-amendoa-devera-duplicar-numa-decada-em-portugal/?lang=en
https://www.researchgate.net/publication/267231434_Detection_of_Walnut_Varieties_Using_Impact_Acoustics_and_Artificial_Neural_Networks_ANNs
https://www.researchgate.net/publication/267231434_Detection_of_Walnut_Varieties_Using_Impact_Acoustics_and_Artificial_Neural_Networks_ANNs
https://www.researchgate.net/publication/267231434_Detection_of_Walnut_Varieties_Using_Impact_Acoustics_and_Artificial_Neural_Networks_ANNs
https://www.mygreatlearning.com/blog/feature-extraction-in-image-processing/
https://www.mygreatlearning.com/blog/feature-extraction-in-image-processing/
https://www.semanticscholar.org/paper/Object-detection-from-images-using-convolutional-Stenroos/a6ee78ea9c68d99d6545227fed925a721337bb16
https://www.semanticscholar.org/paper/Object-detection-from-images-using-convolutional-Stenroos/a6ee78ea9c68d99d6545227fed925a721337bb16
https://www.semanticscholar.org/paper/Object-detection-from-images-using-convolutional-Stenroos/a6ee78ea9c68d99d6545227fed925a721337bb16
https://orcid.org/0000-0002-6832-0233
https://orcid.org/0000-0002-6832-0233
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.420.3300&rep=rep1&type=pdf

[14] E. Technologies, Fundamentals of image contours, https://medium.com/

@evergreenllc2020/fundamentals-of-image-contours-3598a9bcc595,

2020.

[15] kang atul., Suzuki contour algorithm opencv, https://theailearner.

com/tag/suzuki-contour-algorithm-opencv/, 2019.

[16] G. Bradski and A. Kaehler, Learning OpenCV. Beijing · Cambridge ·

Farnham · Köln · Sebastopol · Taipei · Tokyo: O’REILLY, 2006.

[17] A. Géron, Hands-On Machine Learning With Scikit-Learn, Keras, And

Tensorflow Concepts, Tools, And Techniques To Build Intelligent Systems.

USA: O’REILLY, 2019.

[18] K. Dubovikov, Pytorch vs tensorflow — spotting the difference, https:

//towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-

difference-25c75777377b, 2017.

[19] A. K. Ilya Sutskever Geoffrey E. Hinton, “Imagenet classification with

deep convolutional neural networks”, Communications of the ACM, 2017,

2012. [Online]. Available: https://papers.nips.cc/paper/2012/file/

c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[20] P. T. P. T. Nitish Shirish Keskar Dheevatsa Mudigere Jorge Nocedal

Mikhail Smelyanskiy, “On large-batch training for deep learning: Gen-

eralization gap and sharp minima”, conference paper at ICLR 2017, 2017.

[Online]. Available: https://arxiv.org/abs/1609.04836.

[21] M. andAshish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

85

https://medium.com/@evergreenllc2020/fundamentals-of-image-contours-3598a9bcc595
https://medium.com/@evergreenllc2020/fundamentals-of-image-contours-3598a9bcc595
https://theailearner.com/tag/suzuki-contour-algorithm-opencv/
https://theailearner.com/tag/suzuki-contour-algorithm-opencv/
https://towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-difference-25c75777377b
https://towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-difference-25c75777377b
https://towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-difference-25c75777377b
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1609.04836

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Mur-

ray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya

Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-

van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng, TensorFlow: Large-scale

machine learning on heterogeneous systems, Software available from ten-

sorflow.org, 2015. [Online]. Available: https://www.tensorflow.org/.

[22] B. GOLUB, Who sold gluster to red hat, now running dotcloud, https:

//icloud.pe/blog/ben-golub-who-sold-gluster-to-red-hat-now-

running-dotcloud/, 2013.

[23] G. Sayfan, Rest vs. grpc: Battle of the apis, https://code.tutsplus.

com/tutorials/rest-vs-grpc-battle-of-the-apis--cms-30711,

2018.

[24] O. Kovalenko, Machine learning and ai in food industry: Solutions and

potential, https://spd.group/machine-learning/machine-learning-

and-ai-in-food-industry/, 2020.

86

https://www.tensorflow.org/
https://icloud.pe/blog/ben-golub-who-sold-gluster-to-red-hat-now-running-dotcloud/
https://icloud.pe/blog/ben-golub-who-sold-gluster-to-red-hat-now-running-dotcloud/
https://icloud.pe/blog/ben-golub-who-sold-gluster-to-red-hat-now-running-dotcloud/
https://code.tutsplus.com/tutorials/rest-vs-grpc-battle-of-the-apis--cms-30711
https://code.tutsplus.com/tutorials/rest-vs-grpc-battle-of-the-apis--cms-30711
https://spd.group/machine-learning/machine-learning-and-ai-in-food-industry/
https://spd.group/machine-learning/machine-learning-and-ai-in-food-industry/

	Introduction
	Introduction of the problem
	Heads-Up of Deep Learning
	Case of Study

	State of the Art and background
	Introduction
	Review/Comparison between different techniques

	Data collection and Pre-Proccesing
	Data Gathering and labeling
	Image pre-processing and feature extraction
	Methods Used
	Steps of the processing

	Conclusion of the final results of the segmentation

	Deep Learning Based Classification
	Material Used
	Hardware
	Software

	Deep learning Model
	Convolution models
	Model Implementation (Design And training)

	Result and discussion
	Performance Metrics and model evaluation
	Default Baseline Models
	Built-in invariance
	Network depth
	Batch size Normalisation Impact on Generalisation
	Regularization of Deep Learning model
	Determining Whether to Gather More Data

	Deployment (Software As a service)
	Serving of the model
	Tensorflow Serving
	Docker and google cloud
	Make First HTTP Request

	Back-end for the model
	Overview Architecture

	Conclusion
	Reviews and usefulness of the solution
	Further work
	Further work on the model
	Further development on the software

