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Abstract

This thesis covers general mathematical and simulation models for the reliability and

availability analysis of repairable systems along with estimation methods and model selec-

tion criterion. A combined mathematical and simulation model called the Failure-Repair

Process is proposed, based on the trend-renewal process. This model is based on a binary

state system, where the system may only be in one of two states: working or failed. This

model is then integrated into a general-purpose tool, for automated modelling of repair-

able systems. The classical Akaike information criterion is used to automate the choice

of failure and repair models that best fit the available data. Estimators for different per-

formance measures of the systems are studied, such as point and mean availability, rate

of occurrence of failures and a first order reliability estimator based on the Kaplan-Meier

estimator. Numerical studies are conducted in the proposed non-analytical estimators for

the availability, leading to a robust mean availability estimator and a intuitive but sample

demanding point availability estimator. Furthermore, a complete quantitative study is

conducted on real data from the food industry together with a presentation of the im-

plemented tool functionalities. Overall, the proposed model is able to adapt very well

to real data with different characteristics, and, consequently, the resulting performance

indicators are befitting to practice.

Keywords: repairable systems; trend-renewal process; simulation; reliability analysis;

availability.
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Resumo

Esta tese aborda modelos matemáticos e de simulação para a análise de confiabilidade

e disponibilidade de sistemas reparáveis, juntamente com métodos de estimação e critério

de seleção de modelos. Um modelo matemático e de simulação combinados denominado

Failure-Repair Process é proposto, baseado no trend-renewal process. Este modelo consiste

em um sistema de caracterização binária, onde o sistema pode estar em apenas um de dois

estados: em funcionamento ou falha. Este modelo é então integrado em uma ferramenta

de uso geral, para modelagem automatizada de sistemas reparáveis. O clássico critério de

informação de Akaike é usado para automatizar a escolha dos modelos de falha e reparo

que melhor se ajustam aos dados disponíveis. São estudados estimadores para diferentes

medidas de desempenho dos sistemas, tais como disponibilidade pontual e média, taxa

de ocorrência de falhas e um estimador de confiabilidade de primeira ordem baseado

no estimador Kaplan-Meier. Estudos numéricos são conduzidos nos estimadores não-

analíticos propostos para a disponibilidade, levando a um estimador de disponibilidade

média robusto e um estimador de disponibilidade puntual intuitivo, mas que demanda

grandes amostras. Além disso, é realizado um estudo quantitativo completo sobre dados

reais da indústria de alimentos juntamente com uma apresentação das funcionalidades da

ferramenta implementada. De maneira geral, o modelo proposto é capaz de se adaptar

muito bem a dados reais com diferentes características e, consequentemente, os indicadores

de desempenho resultantes são adequados à prática.

Palavras-chave: sistemas reparáveis; trend-renewal process; simulação; análise de

confiabilidade; disponibilidade.
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Chapter 1

Introduction

Reliability and availability analysis are useful not only for predicting system behaviour,

but also to verify how the system is responding or not to external factors, like proper

maintenance. The performance of a repairable system may usually be measured with its

availability, which is the proportion of time that the system is functioning. As repairable

system are complex in nature, we need proper mathematical tools to able to treat the

data.

Traditionally, when modelling complex repairable systems, we divide the failure pro-

cesses into perfect, minimal and imperfect repair processes. The first one represents the

case where after each repair the system is set to an as-good-as-new state. Such beha-

viour occurs naturally when considering individual parts or when a system is comprised

of different parts, but only a few of them are responsible for the majority of maintenance

interventions. On the other hand, the minimal repair policy represents systems made

out of several different parts, where each part repair does not influence significantly the

overall reliability of the system. In other words, under minimal repair, the reliability of

the system does not change with each repair action, namely, the system after the repair

is as-bad-as-old. Last but not least, imperfect repair processes are the ones which fall

between perfect and minimal repair. In general, these models are more complex and can

capture more subtle system behaviours.

A general repairable system has a characteristic degradation curve, backed up by

1



2 CHAPTER 1. INTRODUCTION

empirical evidence. Such a curve is called the bathtub curve and has 3 main portions,

which are characterised by the 3 types of failure that may happen: early failures, random

failures and wear-out failure. The curve is defined by a decreasing rate of occurrence of

failures for the first stage, then a seemingly constant rate in the second stage; and, lastly,

an increasing rate for the last stage.

To model each of these behaviours, the standard mathematical tools are the stochastic

processes. Stochastic processes are well defined mathematical entities, with a very strong

theoretical background and a great range of applicability. Arguably, the most used ones

are the Poisson processes, which may used to model constant and varying arrival rates

with its counterparts the Homogeneous Poisson Process and the Nonhomogeneous Poisson

Process, respectively. Another common model is the Renewal Process.

In the case of a renewal process, we are dealing with the perfect repair policy. Mathem-

atically, under the RP, the inter-arrival times are independent and identically distributed,

which means that they can be statistically treated by standard analytical tools. When

in the NHPP, on the other hand, we are under the minimal repair policy and the inter-

arrival times are neither independent nor identically distributed; therefore, one cannot use

standard tools, and must then seek the specific tools available for the analysis of point

processes.

For the imperfect repair cases, there has been plenty of proposed models. One of

which is the so-called trend-renewal process (TRP). Its main property is the fact that it

is a simple generalisation of NHPP properties that also expand the model to the renewal

processes domain. Formally, the TRP is a time-transformed renewal process. That means

it has both the RP and the NHPP as special cases, which makes this model a very powerful

one. One of the most known TRP is the Weibull-Power Law TRP (WPLP). The reason

why it is very interesting is that it is a generalisation of two very important and used

models, the Weibull Renewal Process and the Power Law NHPP. Furthermore, the model

has some analytical properties that make a good choice for a general-purpose tool. One

of which is the fact that both the expected number of failures and its derivative, the rate

of occurrence of failures, are analytically defined.
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When it comes to modelling the repair times of a system, the common approach is to

consider that the data are independent and identically distributed, which simplifies the

analysis. In the classical literature, the most common model for the repair times are the

exponential, normal and lognormal distributions. Arguably, the most fit is the lognormal

distribution, given some of its properties.

To model the data, the model uses the Maximum Likelihood Method in the WPLP

model, since it allows for the construction of well defined functions, which maximises the

probability of a set of data to be generated by a given model. Also, as several models

are presented and discussed, a strong and reliable framework for model selection must

be in place. Such requirement is fulfilled by the classical Akaike information criterion,

which a well known information-theoretic approach to model selection, which minimises

the information loss among a available model set. The use of the Maximum Likelihood

method also allows us to calculate the confidence intervals of each parameter, and those

are available in the final tool.

The limitations with the counting processes is that they do not take into account the

repair times of the system. That is, we are only modelling how the system is degrading

and not seeing the complete picture. A way around that is with the use of simulation. A

simulation model is a computational statistical experiment, that allows us to run several

possible outcomes of the probabilistic event of interest, and draw conclusions from that.

By utilising the correct equation, we are able to simulate different sample paths for the

system and from that we may calculate an estimator of the availability of the system. This

is possible under the assumption that the mean of all the replications for each inter-failure

time, falls in the Central Limit Theorem (CLT), which states that the expected value of

a random variable approaches the sample mean, as the sample size tends to infinity.

The use of simulation models relies heavily on the applicability of the Central Limit

Theorem (CLT). That said, simulation models must be designed with this in mind, since

it simplifies the treatment of the output data, and also gives a strong validation sense to

the model.

Another important measure is the rate of occurrence of failures (ROCOF), which is
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closely related to the expected number of failures, given that the ROCOF is simply the

rate at which the failure occurs in time. For the TRP, the expected number of failures is

well defined, and may be calculated using classical numerical methods for renewal-type

equations. After that, we may apply simple finite difference methods to end-up with the

ROCOF.

The purpose of this thesis is primarily to develop a general-purpose computational

tool that calculates several reliability and availability metrics for a general repairable

system. To do so, we propose a general model that combines mathematical and simulation

techniques in a way that the tool becomes completely automated.

The model must be robust, and be able to give good indicatives of the behaviour of

the system. It must allow for the calculation of some important performance indicators:

the rate of occurrence of failures, the reliability, and both the point and mean availability

of the system.

A thorough compilation of the standard terms and definitions pertinent to the general

field of Reliability Engineering is presented in Chapter 2.

Chapter 3 consists of an extensive literature review concerning repairable system fail-

ure models along with general models for the analysis of repair time data. Parameter

estimation for all the models, using the maximum likelihood method are also presen-

ted. Lastly, we explore the Akaike information criterion, which sets the model selection

framework that the implement tool works in.

Chapter 4 reviews general concepts for simulation models, along with the pertinent

properties and techniques that are exploited to calculate the more complex measures of

a repairable system.

Chapter 5 explores the proposed model, along with defining the different estimators

used for each metric and also give more deep description of the general algorithm that

runs on the background of the implemented tool.

Chapter 6 is dedicated to a practical application of all the methods described in

previous chapters as well as a guide for using the implemented general-purpose tool. The

data comes from an enrobing machine used in a food industry in the South region of
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Brazil. A general description of the data is presented, along with its analysis. The final

reliability and availability estimators efficiency are also discussed.





Chapter 2

Reliability Theory

2.1 General Concepts

Every engineered object is unreliable in the sense that it degrades and eventually fails

[1]. This degradation means that the reliability of an engineered object will naturally

decrease with time and is up to the maintenance crew to slow down this decrease. In a

broad perspective, reliability is associated with the successful operation of an item in the

absence of failures [2]. This is embedded in the more general definition of reliability given

by the International Eletrotechnical Comission (IEC) 60050-192:2015 [3], which states:

Definition 2.1 (Reliability - Qualitative)

The ability to perform as required, without failure, for a given time interval, under

given conditions [3].

Where the failure of an engineered object is defined as [3]:

Definition 2.2 (Failure)

The termination of the ability of an item to perform a required function [3].

The term item refers to the engineered object being considered and that can be seen

as an entity [3], [4]. Further, ‘the item may be an individual part, component, device,

7
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functional unit, equipment, subsystem, or system’ [3]. Whenever items are combined into

a system, this is called a system reliability analysis [4].

Any system may have one or more functions, which may be active or passive, and are

necessary to deliver a service [4]. When performing a reliability analysis, it is important

to specify the required functions of your object of study, as this will determine what is

considered to be a failure for that system.

Traditionally, there are two types of items: non-repairable and repairable. Their

definition, according to IEC 60050-192:2015, follows:

Definition 2.3 (Non-repairable items)

Item that cannot, under given conditions, after a failure, be returned to a state in

which it can perform as required [3].

Definition 2.4 (Repairable items)

Item that can, under given conditions, after a failure, be returned to a state in which

it can perform as required [3].

An important point is that ‘the “given conditions” may include technical, economic

and other considerations’ [3] which leads to the idea that ‘an item that is repairable under

some conditions may be non-repairable under other conditions’ [3].

Following [5], it is important to understand that successful reliability basically depends

on the operation of an engineered object under certain conditions arising from the design

phase. Now, when performing a failure study in a system, there are a few factors that

must be taken into account, which may influence on the good operation of the system

during its life cycle, be it during design or operation phases. Those are: errors, failures

and faults.

Definition 2.5 (Fault)

The inability to perform as required due to an internal state. Results from a failure,
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either of the item itself, or from a deficiency in an earlier stage of the life cycle [3].

Definition 2.6 (Error)

Discrepancy between a computed, observed or measured value or condition, and the

true, specified or theoretically correct value or condition. An error within a system

may be caused by failure of one or more of its components, or by the activation of a

systematic fault. [3].

Therefore, in short, an anomaly in an engineered object happens in a cycle, which

starts with an error, which may evolve to a failed state when nothing is done, and lastly

turn into a fault state - the last state of functional failure [5].

2.2 Maintenance

Environmental and operational conditions, along with the age and/or usage of an item,

influence how the object degrades [1]. These will also affect the performance of an item,

in addition with design and implemented maintenance. The latter one is of great concern

‘since proper functioning over an extended time requires effective maintenance’ [1]. The

definition of maintenance is presented as follows:

Definition 2.7 (Maintenance)

Combination of all technical and management actions intended to retain an item in,

or restore it to, a state in which it can perform as required [3].

To avoid misconceptions, some terminology is then in place. In [6], the authors pro-

pose definitions for three terms in the context of maintenance management, those are:

maintenance action, maintenance concept and maintenance policy. However, in [3], the

terms maintenance concept and policy are interchangeable. For consistency, the IEC

60050-192:2015 is used.
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Definition 2.8 (Maintenance Action)

Sequence of elementary maintenance activities [3].

Definition 2.9 (Maintenance Policy/Concept)

Definition of the maintenance objectives, line of maintenance, indenture levels, main-

tenance levels, maintenance support, and their interrelationships [3].

Further, maintenance policy ‘provides the basis for maintenance planning, determining

supportability requirements, and developing logistic support’ [3].

The improvement of system performance (reliability) may be achieved by adopting

appropriate maintenance policies [7]. According to [7], the three policies generally used

are: (1) repair of failed units; (2) provision of redundant units; and (3) maintenance of

units before failure. All three policies are described below:

(1) Repair of failed units: The first one is named Corrective Maintenance (CM) and

is ‘adopted when units can be repaired but their failures do not adversely affect the

whole system’ [7]. The IEC [3] defines it as the ‘maintenance carried out after fault

detection to effect restoration’.

(2) Provision of redundant units: The second policy is adopted when ‘system reli-

ability can be improved by providing redundant and spare units’ [7].

(3) Maintenance of units before failure: The last policy comes from the fact that

‘maintenance of unit after failure may be costly’ [7], therefore it is important to

‘determine when and how to maintain preventively [items] before failure’ [7]. This

is termed Preventive Maintenance (PM) defined as the ‘maintenance carried out to

mitigate degradation and reduce the probability of failure’ [3]. Additionally, it can

be further distinguished between: condition-based PM and planned PM [8]. The

first one defined as ‘preventive maintenance based on the assessment of physical

condition’ [3], and the latter as ‘maintenance carried out in accordance with a

specified time schedule’ [3].
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Given the above discussion, for the present thesis, the definition 2.4 for repairable

items is extended, adding that the item ‘may be restored [...] by any method, other

than the replacement of the entire item’ [9] and also ‘include the possibility of additional

maintenance actions which aim at servicing the system for better performance [referred]

to as Preventive Maintenance’ [8].

2.3 System Performance Measures

The performance of an engineered object is a complex entity characterised by a group

of measurable properties of the item [1]. Utilising the division proposed by [1], there

are two types of performance measures: (i) non-reliability performance measures and (ii)

reliability performance measures. The first one include metrics like the fuel efficiency of

an vehicle or emissions of an oil plant. The latter embraces, for example, the number of

failures and the availability of a system for a given time interval, under given conditions.

In [1], the authors note that “the performance of an item degrades due to the degrad-

ation the material and components of the item”. Following [3], the degradation of an item

is defined as

Definition 2.10 (Degradation)

Detrimental change in ability to meet requirements [3].

Also, note that degradation “may occur with storage or use, brought about by internal

processes or effects of the environment” [3], and when is beyond specified limits, it may

constitute a degraded state or failure [3].

In a system reliability analysis, one is interested in finding reliability performance

measures. To derive such measures, models that capture the behaviour of the system are

needed. This is the field of quantitative reliability analysis, which ‘uses real failure data

in conjunction with suitable mathematical models to produce quantitative estimates of

product or system reliability’ [1].

Under the general reliability performance measures, one could create and combine any
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of them to create new ones, which may be more indicative of the system performance.

Therefore, in general, theese are referred to as performance indicators (PI) [1].

Definition 2.11 (Performance Indicator)

Variable characterising the performance of a task or activity. It can be at the business,

engineered object or component level [1].

Nonetheless, it is common to refer to the important relevant measures as key perform-

ance measures (KPI), and an important part of any reliability study is to determine the

ones which actually capture the behaviour of the system.

Definition 2.12 (Key Performance Indicator)

Performance indicator that is deemed to be important and is used for assessing per-

formance [1].

2.3.1 Two-state Characterisation

Following [1], the performance of an item may be characterise by a variable, Y (t),

which indicates the state or condition of such item, as a function of age. A common

characterisation is the two-state characterisation.

In the two-state characterisation, the state Y (t) is binary valued such that:

• Y (t) = 1 when the item is in the working state.

• Y (t) = 0 when the item is in the failed state.

Under the IEC 60050-192:2015, the working and failure state are referred to as up

state and down state, respectively, as illustrated in Figure 2.1. Their definitions are as

follows:

Definition 2.13 (Up State)

State of being able to perform as required [3].
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Definition 2.14 (Down State)

State of being unable to perform as required, due to internal fault, or preventive main-

tenance [3].

However, care must be taken as ‘an item may be considered to be in an up state for

some functions and in a down state for others, concurrently’ [3].

1

0

Y(t)

Time	t

Up Up Up

Down Down

Figure 2.1: Two-state characterisation.

2.3.2 Reliability

The first idea is how long an item can operate without failure, i.e., reliability [7]. Pre-

viously, the qualitative definition of reliability was presented, now, for a more measurable

definition:

Definition 2.15 (Reliability - Quantitative)

The probability of performing as required for the time interval (t1, t2), under given

conditions [3].

The term ‘time’ is very general and represents any sort of scale that is able to capture

the characteristics of the item. This scale can be the mileage of a vehicle, the operating

time of a machine, the on-off cycles of a lamp, etc [3].

2.3.3 Repair Times and Downtime

Given that the interest revolves around the behaviour of system failure ‘it is of great

importance to know how long and how many times the system is down during a time
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interval’ [7]. The two reasons for such interest is because system down is sometimes

costly and/or dangerous [7].

Definition 2.16 (Downtime)

Time interval for which the item is in a down state. Also, downtime excludes disabled

time due to lack of external resources, but includes maintenance time [3].

Definition 2.17 (Repair Time)

Part of active corrective maintenance time taken to complete repair action. Excluding

technical, administrative and logistic delays [3].

Since ‘the downtime of an item can usually be regarded as a sum of elements like access

time, diagnosis time, active repair time, checkout time, etc.’ [4] downtime will usually be

longer than the actual repair time [1]. While repair times and downtimes are two different

concepts, in the context of this thesis the two terms will be used interchangeably.

2.3.4 Availability

When items are replaced upon failure or preventively maintained, one is interested with

the ratio at which units can operate, i.e., availability [7]. The definition of availability,

according to [3] is:

Definition 2.18 (Availability - Qualitative)

The ability to be in a state to perform as required [3].

The availability of an item may be quantified by a different number of measures,

namely [1]: (1) point availability, A(t); (2) mean availability, A(t1, t2), and; (3) steady

state availability, A.

Definition 2.19 (Point Availability)

Probability that an item is in a state to perform as required at a given instant [3].
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Definition 2.20 (Mean Availability)

Average value of the instantaneous availability over a given time interval (t1, t2) [3].

Related to the point availability as:

A(t1, t2) = 1
t1 − t2

∫ t2

t1
A(t)dt

Definition 2.21 (Steady State Availability)

Limit, if it exists, of the point availability when the time tends to infinity [3]. Related

to the point and mean availability as:

A = lim
t→∞

A(t) = A(0,∞)

An important note to the steady state availability is that ‘under certain conditions

the steady state availability may be expressed as the quotient of the mean up time to the

sum of the mean up time, to mean down time’ [3]. However, one should be careful, as in

general, for repairable systems, this is not true [9].





Chapter 3

Repairable Systems

3.1 General Concepts

In a repairable system reliability analysis, the interest is in finding reliability perform-

ance measures such as ‘the availability of the system, the mean number of failures during

a specified time interval, the mean time to the first system failure, and the mean time

between system failures’ [4]. The traditional tool is through the use of stochastic pro-

cesses. Following the definition of Ross [10], a stochastic process X = {X(t) : t ∈ T} is a

collection of random variable (r.v.). That is, for each t in the index set T , X(t) is random

variable. If T is a countable set, then X is a discrete-time stochastic process, and if T is

a continuum, it is named a continuous-time process.

The simplest and most common stochastic processes used in reliability analysis are the

point processes, which ‘is a mathematical model for a physical phenomenon characterised

by highly localised events distributed randomly in a continuum’ [9]. In order to simplify

the models, events are said to be failures. Consider a repairable system put into operation

at time t = 0. The ith failure will happen at time Ti. As per Definition 2.4, after failure

the system will be restored to a functioning state. The repair time is considered to be

negligible. That results in a sequence of failure times T1, T2, .... Also, a sequence of time

between failures X1, X2, ..., where Xi = Ti − Ti−1, i = 1, 2, 3, ..., and T0 ≡ 0, is present.

17
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In general, the sequence of inter-arrival times X1, X2, ... will not be i.i.d..

The key difference between Ti and Xi is illustrated in Figure 3.1. The random variable

Ti measures the total time from 0 - a convenient fixed origin - to the ith failure, while

Xi measures the time between failures, such that the time to the kth failure is Tk ≡

X1 + X2 + ... + Xk. As the Xi’s do not have their origin in t = 0 (except for X1), they

are said to be chronologically ordered [9].

X1 X2 X3 X4

t

T1

T2

T3

T4

Figure 3.1: Realisation of a stochastic point process [9].

The particular stochastic process N = {N(t) : t ≥ 0}, with

N(t) =
∞∑
i=1

1(Ti ≤ t) with 1(Ti ≤ t) =


1 if Ti ≤ t

0 otherwise

is called a counting process. It keeps track of the number of failures in (0, t] and the

instants Ti, i = 1, 2, 3, . . ., at which they occur. Following Ross [10], the formal definition

of a counting process is as follows:

Definition 3.1 (Counting Process)

A stochastic process N = {N(t) : t ≥ 0} is said to be a counting process if N(t)

satisfies:

i. N(t) ≥ 0.

ii. N(t) is integer valued.
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iii. If s ≤ t, then N(s) ≤ N(t).

iv. For s ≤ t, [N(t)−N(s)] represents the number of failures that have occurred in

the interval (s, t].

The counting process N can be completely characterised by its intensity function [11].

Let Ht− denote the history of the process up to, but not including, time t. This history

is also called a filtration and ‘contains information about the components, the number of

failures up to time t, covariate information and type of interventions performed’ [12]. The

intensity function of a process is then defined as [13]

γ(t | Ht−) = γ(t) ≡ lim
∆t→0

Pr{N(t+ ∆t)−N(t) = 1 | Ht−}
∆t (3.1)

In words, the above equation is stating that the intensity function ‘gives the instant-

aneous probability of an event occurring at t, conditional on the process history’ [13].

To keep consistency throughout, for the random variable N(t), denote its expected

value as µ(t), i.e., µ(t) ≡ E[N(t)]. This is called the mean function. Assume µ(t) is

absolutely continuous, and denote its derivative as ρ(t). This is the time rate of change

of an expected number of failures and will be termed the rate of occurrence of failures

(ROCOF), i.e.,

ρ(t) ≡ d

dt
E[N(t)] = ROCOF (3.2)

The ROCOF, ρ(t), can be interpreted as follows: ‘ρ(t)δt is the probability that a

failure, not necessarily the first, occurs in (t, t + δt]’ [9]. Although it may have many

different shapes [1], it is generally drawn as a bathtub curve [7], shown in Figure 3.2. The

lifetime of an item is then divided into three intervals [4]: the burn-in period (region A),

the useful life period (region B), also called the chance failure period, and the wear-out

period (region C).

In region A (decreasing rate), the failure is due to manufacturing and/or assembly

errors; in region B (constant rate), the failure is random and independent of age; in

region C (increasing rate), failure is due to ageing effects [1]. Also, ‘for the majority of
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mechanical items the [ROCOF] function will show a slightly increasing tendency in the

useful life period’ [4].

Time	t
Burn-in Useful	life Wear-out

A B C

R
O
C
O
F

Figure 3.2: Bathtub curve. Adapted from [1], [4].

As in general the inter-arrival times will not be i.i.d., the mean time between failures,

MTBFi = E[Xi], will be a function of i and X1, X2, ... [4], [9]. Following Ascher and

Feingold [9], the reciprocal of the ROCOF is the instantaneous mean time between failures.

For a point process, the probability of failure free operation over a time interval (t, t+s]

given the history Ht− is defined as [9]

R(t, t+ s | Ht−) ≡ Pr{N(t, t+ s) = 0 | Ht−} (3.3)

and is called the reliability function.

3.2 Failure Process Models

A lot of different models applicable to repairable systems have been proposed in the

literature. According to Lindqvist [8], ‘the most commonly used models for the failure

process of a repairable system are renewal processes (RP) [...] and non-homogeneous

Poisson processes (NHPP)’. The first one is used to model a repair situation where the

item is replaced or restored to a "as good as new" condition. This is termed a perfect
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repair. The latter is appropriate when the repair does not affect the reliability of the

system, that is, the system after repair is "as bad as old" and it is termed a minimal

repair.

Of course, the RP and NHPP are two extreme types of repair. A general repair

action should lay between this two extremes, this is termed imperfect repair. A lot of

imperfect repair models exist in the literature, here the focus is on the trend-renewal

process (TRP), proposed and studied by Lindqvist, Elvebakk and Heggland [14]. The

trend-renewal process have both the renewal processes and the non-homogeneous Poisson

processes as special cases and therefore is classified as an imperfect repair model.

Due to the dynamic nature in which recurrent events appear and the necessity of

incorporating the effects of performed interventions, the use of hazard functions are more

appropriate than that of density functions in modelling [12]. Therefore, let z(t) represent

the failure rate, also called the hazard rate function of a system in a reliability setting, such

that for a continuous random variable T ≥ 0 with density function f(t) and distribution

function F (t), thus [2]

z(t) = f(t)
1− F (t) and Z(t) = − log(1− F (t)) =

∫ t

0
z(u)du (3.4)

3.2.1 Homogeneous Poisson Process

The most simple way of defining the HPP is as a ‘nonterminating sequence of inde-

pendent and identically distributed exponentially distributed Xi’s’ [9]. Combining the

definitions given by Ross [10] and Ascher and Feingold [9]:

Definition 3.2 (Homogeneous Poisson Process)

A stochastic process N = {N(t) : t ≥ 0} is said to be a homogeneous Poisson process

if N(t) satisfies:

i. N(0) = 0.

ii. The process has independent increments.
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iii. The number of events in any interval of length t2− t1 is Poisson distributed with

mean λ(t2 − t1). That is, for all t2 > t1 ≥ 0,

Pr{N(t2)−N(t1) = n} = 1
n! [λ(t2 − t1)]n exp [−λ(t2 − t1)] (3.5)

And is denoted HPP(λ).

From the definition, one can see that

E[N(t2 − t1)] = λ(t2 − t1) (3.6)

where the constant λ is the rate of occurrence of failures (ROCOF), given µ′(t) = z(t) = λ.

Thus, for the HPP(λ), the ROCOF equals the intensity function. This is true for any

Poisson process [13]. As per Equation 3.3, one can see that the reliability function,

R(t1, t2) of a HPP is

R(t1, t2) = exp{−λ(t2 − t1)} (3.7)

3.2.2 Nonhomogeneous Poisson Process

The nonhomogeneous Poisson process (NHPP) is a generalisation of the HPP. Let the

rate of occurrence of failure vary with time rather than being a constant and denote it

NHPP(λ(·)).

Definition 3.3 (Nonhomogeneous Poisson Process)

A stochastic process {N(t), t ≥ 0} is said to be an NHPP(λ(·)) if N(t) satisfies:

i. N(0) = 0.

ii. The process has independent increments.

iii. The number of events in any interval (t1, t2) is Poisson distributed with mean
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∫ t2
t1
λ(t)dt. That is, for all t2 > t1 ≥ 0,

Pr{N(t2)−N(t1) = n} = 1
n!

[∫ t2

t1
λ(t)dt

]n
exp

[
−
∫ t2

t1
λ(t)dt

]
(3.8)

The same way as for the HPP,

E[N(t2)−N(t1)] =
∫ t2

t1
λ(t)dt (3.9)

The general form of the reliability function in the time interval [t1, t2] for a NHPP

with intensity function λ(t) is given by [9]

R(t1, t2) = exp
{
−
∫ t2

t1
λ(t)dt

}
(3.10)

The major difference between the HPP(λ) and NHPP(λ(·)) models is that, ‘under the

latter model the X ′is are neither independent nor identically distributed’ [9]. Therefore,

‘statistical techniques [...] based on the assumption that the data are independent and

identically distributed cannot be [...] applied to the NHPP’ [4], [9].

The NHPP is often used to model trends in the inter-arrival times, meaning, modelling

improvement or deterioration of a system [4], [9]. Thanks to the independent increments

property of the NHPP, system deterioration/improvement can be defined straightfor-

wardly. A system modelled by a NHPP is deteriorating (improving) in the interval (0, t0]

if [9] ∫ t1

0
λ(y)dy +

∫ t2

0
λ(y)dy ≤ (≥)

∫ t1+t2

0
λ(y)dy, 0 < t1 + t2 ≤ t0 (3.11)

This property is termed the semistrict supperadditive (subadditive) property.

An improving (deteriorating) system is also called a happy (sad) system. Therefore,

a happy (sad) system will have a decreasing (increasing) rate of occurrence of failures [4].

The two shapes for the intensity function that have been extensively used in the context

of repairable systems reliability are [1], [4], [9]:
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1. Power-law intensity function.

λ(t) = abtb−1, a > 0, b > 0, t ≥ 0 (3.12)

2. Log-linear intensity function.

λ(t) = exp (a+ bt) , a > −∞, b <∞, t ≥ 0 (3.13)

Some conclusions - which comes from property 3.11 - concerning these functional forms

are in order [1]:

• If b = 1 (b = 0), the power-law (log-linear) NHPP becomes the HPP.

• If b < 1 (b < 0), the power-law (log-linear) intensity is strictly decreasing with age.

Hence, it is characteristic of a happy/improving system.

• If b > 1 (b > 0), the power-law (log-linear) intensity is strictly increasing with age.

Hence, it is characteristic of a sad/deteriorating system.

In general, there are two situations where the NHPP may be an adequate model [4],

namely:

(a) The items put into service are identical to the old ones.

(b) The system consists of a large number of components and repair only replaces a

small fraction of the system.

When in situation (a) it means that the items should have aged outside the system

under identical conditions for the same period of time as the replaced ones. On the other

hand, in situation (b) a traditional assumption is that the reliability of the system does

not change. In this approach the system is treated as a black-box, ‘in that there is no

concern about how the system looks inside’ [4].
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3.2.3 Renewal Process

As established before, the HPP is a process where the times between failures are

independent and exponentially distributed. A natural generalisation is to allow the inter-

failure times to be independent and identically distributed with an arbitrary distribution

function [10]. This is called a Renewal Process (RP), denoted as RP(F ), where F is the

underlying distribution of the renewal process [4]. Formally [4],

Definition 3.4 (Renewal Process)

A counting process N = {N(t), t ≥ 0} is called a RP(F) when the inter-occurrence

times X1, X2, . . . are independent and identically distributed with distribution function

F (t) = Pr{Xi ≤ t} for t ≥ 0, i = 1, 2, . . .

And E[Xi] = µ and var[Xi] = σ2 <∞ for i = 1, 2, 3, . . ..

This is means that the process intensity is of the form [13]:

γ(t | Ht−) = z(t− TN(t−)) (3.14)

where z(·) is the hazard function associated with F , as per Equation 3.4.

The renewal process is the expected process for a ‘single-component system, where the

replacements are always new items from the same population as the items being replace’

[15]. Also, ‘a system containing a single repairable component is a simple but frequently

useful model. A system may have a weak part that accounts for practically all failure

during a specified period of use’ [15].

Although the basic concepts for a general counting process are applicable for a renewal

process, many of them have been given specific names. Using the same notation of before,

the expected value of N(t), denoted µ(t) = E[N(t)], is referred to as the renewal function

and its derivative, ρ(t) = d
dt
E[N(t)], is the renewal density.

The probability distribution and the expectation of N(t) are related to the distribution
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function F of the inter-failure times by an integral equation

µ(t) = F (t) +
∫ t

0
µ(t− x)f(x)dx (3.15)

This is what is referred to as the fundamental renewal equation and can sometimes be

solved for µ(t) [4]. To find the renewal density ρ(t) one needs to differentiate equation

3.15. Most of the times, however, the analytical solution is very difficult or even impossible

to obtain [1], [4]. Therefore, approximations and/or numerical methods should be used

[4].

Renewal Function Estimation One of such methods is the one presented in [16]

called the RS-Method, which is a discritization algorithm for the renewal equation (3.15)

[17]. The idea is as follows: for a given time t, let ti satisfy the condition 0 = t0 < t1 <

. . . < tn = t, then µ(ti) may be calculated recursively through [16],

µ(ti) =
F (ti)− Si − F (ti − ti− 1

2
)µ(ti−1)

1− F (ti − ti− 1
2
)

Si =
i−1∑
j=1

F (ti − tj− 1
2
)(µ(tj)− µ(tj−1))

where,

xi− 1
2

= xi + xi−1

2

In the same paper [16], the authors also develop the algorithm with the simplifying as-

sumption of equal lengths, i.e., when ti = it/n. Under this assumption and following the

formulation presented in [17], the time interval [0, t] is divided by n (> 0) line segments

with equal length d (> 0). Defining the values of the renewal function and the underlying

distribution function at each point i = 0, d, 2d, . . . , nd = t by µi = µ(id) and Ki = F (id),

respectively, where Fi = F ((i− 1/2)d). Then the method becomes,

µi =
Ki +∑i−1

j=1 Fi−j+1(µj − µj−1)− µi−1F1

1− F1
(3.16)
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where µ(0) = 0 and i = 1, . . . , n.

It is important to note that the accuracy of the method ‘depends heavily on the choice

of the grid size d’ [17]. That is, ‘the suitable grid size d is related to the shape of the

underlying distribution F and the time scale t’ [17]. Also, although the method results

in smaller errors for a sufficiently larger time scale t, for smaller time scale, the method

does not always performs well [17]. However, the main advantage of the method, which

is also its goal, is to find a accurate estimate that is also easy to program [16].

Renewal Density Estimation Now, one is also interested in an estimate for the re-

newal density ρ(t). This may be done by numerical differentiation, specifically with finite

differences [18]. Let µ(ti) be the values for the renewal function, µ(t), calculated using

the RS-method for uniformly distributed points in time ti = id, i = 0, 1, . . . , n. The

derivatives are approximated at the interior points, ρ(ti), i = 1, . . . , n−1, by the centered

finite difference [18]:

ρ(ti) = µ(ti+1)− µ(ti−1)
2d (3.17)

And at the end-points, one-sided differences are used [18]:

ρ(t0) = µ(t1)− µ(t0)
d

, ρ(tn) = µ(tn)− µ(tn−1)
d

(3.18)

Reliability Measures Since the inter-arrival times under a renewal process are inde-

pendent and identically distributed, some reliability measures may be analytically defined.

Then, let the counting process {N(t) : t ≥ 0} be a RP (F ). That is, X1, X2, . . . ∼ F . The

reliability function, expected value, variance and is then [1], [4], [19], [20]

R(t) = 1− F (t) (3.19)

E[X] =
∫ ∞
−∞

xf(x)dx (3.20)

Var[X] =
∫ ∞
−∞

x2f(x)dx− E[X]2 (3.21)
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where f(x) = dF (x)/dx. The use of equations 3.19, 3.20 and 3.21 requires the definition

of a parametric distribution function F . This way of estimating the reliability measures is

called the parametric approach. The second approach is to compute the so-called empirical

distribution function EDF and plug its values into the definition of the reliability function

(Equation 3.19) [4]. This is the non-parametric approach.

Following [4], let X1, X2, . . . , Xn be a complete data set of n independent observations.

Also, let X(1), X(2), . . . , X(n) be the data arranged in ascending order. The empirical

distribution function is defined as

Fn(x) = Number of observations ≤ x

n
(3.22)

Thus, the corresponding empirical reliability function ERF is

Rn(x) = 1− Fn(x) = Number of observations > x

n
(3.23)

The ERF may be written as

Rn(x) =



1 for x < x(1)

1− i

n
for x(i) ≤ x < x(i+1); i = 1, 2, . . . , (n− 1)

0 for x(n) ≤ x

(3.24)

Plotting the pairs (x(i), Rn(x(i))) gives a general idea of the behaviour of the reliability

functions. A powerful generalisation of the ERF is the so-called Kaplan-Meier estimator

[4]. Following [4], let X(1) < X(2) < . . . < X(n) denote the recorded inter-failure times

ordered according to size. Let Jx denote the set of all indices j where X(j) ≤ x. Let nj
denote the number of items functioning and in observation immediately before time x(j),

j = 1, 2, . . . , n. The Kaplan-Meier estimator of R(x) is defined as [4]:

R̂(x) =
∏
j∈Jx

nj − 1
nj

(3.25)
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According to [4], with a complete data set, the Kaplan-Meier estimator, given in

equation 3.25, is equal to the empirical reliability function, Rn(x). As generally the

interested is in some specific values of the reliability function, confidence intervals for

the Kaplan-Meier estimator are necessary [21]. Following [22] the exponential Greenwood

formula is presented, which gives an asymmetric confidence interval

exp(− exp(c+(x))) < R(x) < exp(− exp(c−(x))) (3.26a)

where

c±(x) = log(− log(R̂(x)))± zα/2
√
V̂ and (3.26b)

V̂ = 1
(log Ŝ(x))2

∑
xi≤x

1
ni(ni − 1) (3.26c)

In 3.26b, zα is the αth quantile of the normal distribution.

3.2.4 Trend-Renewal Process

Both the renewal process and the nonhomogeneous Poisson process are useful in de-

scribing systems in the cases of perfect and minimal repair, respectively. The homogeneous

Poisson process is a special case of both models. Realistic systems, however, will be some-

where between these two extremes. Therefore, ‘some generalisations and extensions of the

basic models, with the aim to arrive at more realistic models which give better fit to data’

[23] are in place. Several models have been suggested and they are within the so-called

class of imperfect repair models [4], [8].

The trend-renewal process (TRP), introduced and studied by Lindqvist, Elvebakk

and Heggland [14], is a imperfect repair model which includes both the NHPP and RP as

special cases, where its ‘main new feature is to allow a trend in processes of non-Poisson

(renewal) type’ [23]. The main idea behind the TRP is to generalise the following property

of the NHPP [23].
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Property 3.1 (Relation of the NHPP to the HPP)

Let the cumulative intensity function of an intensity λ(·) be defined as Λ(t) =∫ t
0 λ(u)du. If T1, T2, ... is a NHPP(λ(t)), the time-transformed process Λ(T1),Λ(T2), ...

is HPP(1).

This generalisation comes by allowing the above HPP(1) to be any renewal process

RP(F ). Then, the TRP(F, λ(·)) is formally defined as follows [23]

Definition 3.5 (Trend-Renewal Process)

Let λ(t) be a nonnegative function defined for t ≥ 0, and let Λ(t) =
∫ t

0 λ(u)du. The

process T1, T2, ... is called TRP(F, λ(·)) if the transformed process Λ(T1),Λ(T2), ... is

RP(F ), that is if the Λ(Ti)− Λ(Ti−1); i = 1, 2, ... are i.i.d. with distribution function

F .

From definition 3.5, the function λ(·) is the trend function, and F is the renewal distri-

bution. For uniqueness of the model, it is assumed the F has expected value 1. Therefore,

one may simply state that the trend-renewal process is ‘a time-transformed renewal pro-

cess having both the ordinary renewal process and the nonhomogeneous process as special

cases’ [14].

Now, consider a system where failures correspond to replacement of a major part,

while the rest of the system is not maintained. As discussed before, the renewal process

would be a plausible model, given that the system is not subjected to wear. However,

when wearing is present, an increased replacement frequency is to be expected. In the

TRP context, this is achieved by accelerating the internal time of the renewal process

according to a time transformation which represents the cumulative wear [8].

It can be shown [14] that the intensity function for the TRP(F, λ(·)) is

γ(t) = z(Λ(t)− Λ(TN(t−)))λ(t) (3.27)

where z(t) is the hazard rate corresponding to F , as per 3.4, and t − TN(t−) is the time

since the last failure strictly before time t.
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3.3 Weibull-Power Law TRP

An important and very useful TRP is the so-called Weibull-Power Law trend-renewal

process (WPLP) [24]. The usefulness of this model comes from its special cases for different

values of its parameters. As one may guess from the name of the model, it involves the

power law function and the Weibull distribution. The former being the one presented

during the discussion about the NHPP, and given in Equation 3.12. The latter is a

common probability distribution used to model independent and identically distributed

inter-failure times [9].

Let X be a random variable distributed according to a Weibull distribution with

parameters θ1 and θ2, denoted X ∼ W(θ1, θ2). The probability density function, f(x), is

then [1]

f(x) = θ1

θ2

(
x

θ2

)θ1−1
exp

{
−
(
x

θ2

)θ1
}

for x ≥ 0, θ1 > 0, θ2 > 0 (3.28)

where the parameters θ1 and θ2 are the shape and scale parameters, respectively. The

cumulative density function, the hazard function, the expected value of X and its variance

are also given below:

F (x) = 1− exp
{
−
(
x

θ2

)θ1
}

for x ≥ 0, θ1 > 0, θ2 > 0 (3.29)

z(x) = θ1

θ2

(
x

θ2

)θ1−1
(3.30)

E[X] = θ2Γ
(

1 + 1
θ1

)
(3.31)

V ar[X] = θ2
2

[
Γ
(

1 + 2
θ1

)
− Γ2

(
1 + 1

θ1

)]
(3.32)

Consider the TRP(F, λ(·)) with

λW (t; a, b) = abtb−1, a > 0, b > 0, ΛW (t; a, b) = atb (3.33)
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and a renewal distribution F following the Weibull distribution in Equation 3.29. How-

ever, the renewal function needs to be parametrised into having an expectation equal 1.

Setting the expectation equal to 1 in Equation 3.31

E[X] = θ2Γ
(

1 + 1
θ1

)
= 1

θ2 = 1
Γ
(
1 + 1

θ1

) (3.34)

which simply means that in order to get the expectation to be equal to 1, one needs to

substitute the scale parameter according to Equation 3.3 into the cumulative distribution

function given in Equation 3.29. This results in the following renewal distribution, FW (·),

where α is the shape parameter.

FW (x) = FW (x;α) = 1− exp[−(Γ(1 + 1/α)x)α] (α > 0) (3.35)

The hazard function corresponding to FW is

zW (x) = zW (x;α) = [Γ(1 + 1/α)]ααxα−1 (3.36)

Then, following [25],

Definition 3.6 (Weibull-Power Law TRP)

The TRP(F, λ(·)) with λ(·) and F given by equations 3.33 and 3.35, respectively, is

called the Weibull-Power Law TRP, denoted WPLP(a, b, α).

The intensity function for the WPLP, γW (t), is derived using equation 3.27, as follows:

γW (t) = zW (Λ(t)− Λ(TN(t−)))λW (t) = zW (atb − aT bN(t−))abtb−1

= [atb − aT bN(t−)]α−1α[Γ(1 + 1/α)]αabtb−1

γW (t) = [aΓ(1 + 1/α)]ααbtb−1[tb − T bN(t−)]α−1 (3.37)
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Alternatively, the equation 3.37 may be re-written,

γW (t) = ϕαbtb−1[tb − T bN(t−)]α−1 (3.38)

where, ϕ = [aΓ(1 + 1/α)]α.

Equation 3.38 is preferred for the estimation of the parameters of the model. From

equation 3.37 three special cases are identified: (i) WPLP(a, b, 1) = NHPP(λ(t)), i.e. it

becomes the Powel-Law process; (ii) WPLP(a, 1, 1) = HPP(a); and (iii) WPLP(a, 1, α) =

RP(FW (ax;α)), i.e. a renewal process with inter-arrival times Weibull distributed. The

former two relations may be directly seen by substituting the parameter values into the

general intensity function, γW , given in equation 3.37. The latter relation, concerning the

pure renewal process model, may be derived as follows.

Finding the cumulative distribution function, F , for the resultant Weibull Renewal

Process (WRP) when the time trend parameter b in the WPLP is set to 1, is a important

matter. From the definition of a trend-renewal process, it is known that Λ(Ti)− Λ(Ti−1)

are independent and identically distributed random variables with distribution F . In this

specific case, the cumulative trend function is linear, Λ(t) = at, therefore a(Ti− Ti−1) are

i.i.d. random variables, denote them Si = a(Ti − Ti−1). The distribution function of S is

F (s) = 1− exp[−(Γ(1 + 1/α)s)α]

Now, look at the original random variables Xi = Ti − Ti−1, it is clear that they are

nothing but Xi = Si/a. Let, G(x) be the distribution function of the Xi’s, then

G(x) = Pr{X ≤ x} = Pr
{
S

a
≤ x

}
= Pr {S ≤ ax} = F (ax) �

As under the WRP the random variables are independent and identically distributed,

it makes sense to analytically define the expectation and variance of the inter-failure times.
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Using the basic properties of the expectation and variance operators [19], [20],

E[X] = E
[
S

a

]
= 1
a
E[S] = 1

a
(3.39)

Var[X] = Var
[
S

a

]
= 1
a2 Var[S] = 1

a2

[
Γ(1 + 2/α)
Γ2(1 + 1/α − 1

]
(3.40)

3.4 Downtime Models

As discussed before, the down time of an item is the time period where the item is not

able to perform one or more of its intended functions [4]. Following [4], downtimes may

be divided in unplanned and planned downtimes. The first one being when the down-

time is caused by random external events. And the latter caused by planned preventive

maintenance and events.

Following [1], for treating and modelling downtime data, assume the time to repair

D is a random variable characterised by its repair distribution function G(t), G(t) =

Pr{D ≤ t}, and repair density function g(t). The repair rate is is usually a decreasing

function of repair time and is defined as

ρD = g(t)
1−G(t) (3.41)

When modelling the repair times, it is usually assumed that the repair rate is increasing

in the first phase [4]. After a while it begins to decrease, ‘indicating that the probability

of a repair being completed in a short time increases with the duration that the service

has been going on’ [1].

The mean downtime, MDT, is the expected value of the random variable D,

MDT = E[D] =
∫ ∞

0
tg(t)dt (3.42)

Although the scheduled downtime may often be regarded as deterministic [4], care

must be taken as this should be true only when the variability in the repair time is small
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in relation to the mean time for repair [1]. The same is true for the unscheduled planned

downtime, even though it is subject to random variations, usually it should be rather

straightforward to estimate a mean value [4].

In the next sections, some commonly used distributions in modelling downtime data

are explored, assuming they are caused by item failures [4].

3.4.1 Exponential Distribution

Let T ≥ 0 be a continuous random variable with probability density function g(t) [26]

g(t) =


ν exp{−ν(t− τ)} for t ≥ τ, ν > 0

0 otherwise
(3.43)

This distribution is called the 2-parameter exponential distribution with location para-

meter τ and scale parameter 1/ν, denoted T ∼ exp(τ, ν). It is the simplest downtime dis-

tribution one can choose. The mean downtime is MDT = τ + 1/ν. Although not realistic,

the exponential distribution is often chosen for its tractability [4].

3.4.2 Normal Distribution

A random variable T ≥ 0 is said to be normally distributed with mean τ and standard

deviation ν, denoted T ∼ N (τ, ν2), when its probability density function is

g(t) = 1√
2πν

exp
{
−(t− τ)2

2ν2

}
for −∞ < t <∞ (3.44)

Here, τ is also the location parameter, while ν is the scale parameter. Estimation of

the MDT and the standard deviation is straightforward in the normal model [4].
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3.4.3 Lognormal Distribution

A random variable T ≥ 0 is said to be lognormally distributed with paramet-

ers ν and κ2, denoted T ∼ lognormal(ν, κ2), if Y = lnT is normally distributed, i.e.

Y ∼ N (ln ν, κ2). Thus, the probability distribution function is [27]

g(t) =


1√

2πκt
exp

{
−(ln t− ln ν)2

2κ2

}
for t > 0

0 otherwise
(3.45)

For the lognormal distribution, ν is the scale parameter, while κ is shape parameter.

The mean downtime is given by [27]

MDT = ν exp
{1

2κ
2
}

(3.46)

According to [1], [4], [28] the lognormal distribution is appropriate for modelling the

downtimes for many different products. That is because when using the lognormal distri-

bution, the repair rate increases up to a maximum, and thereafter decreases asymptotically

down to zero as a function of the elapsed downtime, which makes practical sense.

Following [27], a more general 3-parameter form of the lognormal includes the addi-

tional location parameter τ . To obtain it, simply replace t by (t− τ) in equation 3.45.

3.5 Statistical Inference

The approach to estimating model parameters is via the maximum likelihood principle

[12]. It revolves around constructing a likelihood function, L(θ;x), which describes how

likely the observed sample, x, is as a function of the possible parameter values, θ [19].

The maximum likelihood estimator (MLE) θ̂ of the parameters is the set of values that

maximises this function [1], [13]. The likelihood function based on available data vector,

x, is [13]

L(θ) ∝ Pr{θ;x} (3.47)
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The log-likelihood function is

`(θ) = logL(θ) (3.48)

and because the log function is monotonic, maximising `(θ) is equivalent to maximising

L(θ) [13].

The derivative of the log-likelihood function is the score function, s(θ;x) [13]:

s(θ;x) = ∂

∂θ
`(θ;x) (3.49)

where θ = {θ1, . . . , θp}T , x = {x1, . . . , xn}T and s(θ;x) = {s1(θ;x), . . . , sp(θ;x)}T , with

si(θ;x) = ∂

∂θi
`(θ;x), i = 1, 2, . . . , p (3.50)

Each si(θ;x) has expectation zero. The observed information matrix, I(θ), is the

negative of the p× p Hessian matrix of the log-likelihood so that [13]

Iij(θ) = − ∂2

∂θiθj
`(θ) = − ∂

∂θj
si(θ;x), i, j = 1, 2, . . . , p (3.51)

And the Fischer information matrix, I(θ), is both the expectation of the observed

information matrix, and the covariance matrix of the score vector, thus

Iij(θ) = E

[
− ∂

∂θj
si(θ;x)

]
= E[s(θ;x)sT (θ;x)] (3.52)

The maximisation process ‘is straightforward if the parameter space is unbounded

and the distribution is differentiable with respect to θ’ [1]. Also, as stated by [19], ‘most

statisticians recommend this method, at least when the sample size is large, since the

resulting estimators have certain desirable efficiency properties’.

Consider the estimated parameter set, θ̂. This will be asymptotically normal, with

[13]

E[θ̂i] = θi; Var[θ̂i] = I−1
ii (θ) (3.53)



38 CHAPTER 3. REPAIRABLE SYSTEMS

Similarly, Equation 3.53 may be rewritten with the observed information matrix, that

is easier to obtain. Thus, θ̂ will be approximately normal with

E[θ̂i] = θi; Var[θ̂i] = I−1
ii (θ) (3.54)

Therefore, the so-called Wald type confidence intervals that gives a 1 − α confidence

interval may be constructed [13],

θ̂i ± zα/2
√
I−1
ii (θ) or θ̂i ± zα/2

√
I−1
ii (θ) (3.55)

i = 1, 2, . . . , p, where zα is the standard normal upper α-quantile.

3.5.1 Failure Process Model Estimation

Considering a single repairable system observed from time 0 to time σ, resulting in

observations T1, T2, . . . , TN(σ) the likelihood function is [23]

L(σ) =


N(σ)∏
i=1

γ(Ti)

 exp
{
−
∫ σ

0
γ(u)du

}

The time σ is the stopping time which, in practice, may be of two censoring schemes:

time truncation or failure truncation. The first is when σ is a prespecified point in time,

while the latter the process is observed until a given number n of failures have occurred

[29].

For the general TRP(F, λ(·)) model observed in the time interval [0, σ], applying the

substitution v = Λ(Ti)− Λ(Ti−1), the likelihood function takes the form [24]

L(σ) =


N(σ)∏
i=1

z(Λ(Ti)− Λ(Ti−1))λ(Ti)× exp
(
−
∫ Λ(ti)−Λ(ti−1)

0
z(v)dv

)
× exp

{
−
∫ Λ(σ)−Λ(tN(σ))

0
z(v)dv

}
(3.56)
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and the log-likelihood function is defined by [24]

`(σ) = logL(σ)

=
N(σ)∑
i=1

{
log(z(Λ(Ti)− Λ(Ti−1))) + log(λ(Ti))−

∫ Λ(Ti)−Λ(Ti−1)

0
z(v)dv

}

−
∫ Λ(σ)−Λ(tN(σ))

0
z(v)dv (3.57)

The maximum-likelihood (ML) estimates of the parameters of the model are obtained

by direct maximisation of either the likelihood function [12] or the log-likelihood functions

defined in equations 3.56 and 3.57, respectively.

In the case where the observation is finished at the n-th failure time point, that is, in

failure truncation, σ = TN(σ) and N(σ) = n [24]. On the other hand, for a time truncation

censoring at time t0, σ = t0 and N(σ) = n.

Consider the Weibull Power-Law trend-renewal process denoted WPLP(FW , λW (·)),

where FW is the Weibull distribution with expectation equal to 1 and λW (·) is the power

law intensity function. The log-likelihood function for the WPLP(FW , λW (·)) becomes

[24],

`(σ) = logL(σ;ϕ, b, α)

= N(σ)(lnϕ+ ln b+ lnα) + (b− 1)
N(σ)∑
i=1

ln ti + (α− 1)
N(σ)∑
i=1

ln(tbi − tbi−1)

− ϕ

N(σ)∑
i=1

(tbi − tbi−1)α + (σb − tbN(σ))α
 (3.58)

In [24], the authors developed the ML-estimators for the WPLP for any stopping

time σ, based on equation 3.58. They end-up with a non-linear system of equations that

may be solved for the ML estimators ϕ̂, b̂ and α̂ of the parameters ϕ, b and α, where

ϕ = [aΓ(1 + 1/α)]α.
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3.5.2 Downtime Model Estimation

A common assumption with downtimes is that they are independent from one another.

LetD1, D2, . . . , Dn be a random sample from a probability distribution g(t), the likelihood

then is simply a product of the individuals probability density functions [19]:

L(di; θ) =
n∏
i=1

g(di; θ) (3.59)

Exponential Distribution Suppose D1, D2, . . . , Dn is a random sample from a 2-

parameter exponential distribution. Then, by equation 3.59 along with equation 3.43,

it results in [19]:

L(di; θ) = L(di; τ, ν) = νn exp
(
−ν

n∑
i=1

(di − τ)
)

(3.60)

The log-likelihood function then becomes:

`(di; τ, ν) = n ln(ν)− ν
n∑
i=1

(di − τ) (3.61)

The direct maximisation of equation 3.61 with respect to parameters ν and τ yields

the MLE of the parameters, ν̂ and τ̂ . The SciPy package [30] allows the user to easily

obtain this parameters for the 2-parameter exponential distribution. In Listing 3.1, a

skeleton for fitting an exponential distribution to a set of data D1, D2, ..., Dn with SciPy

is presented.

1 from scipy.stats import expon

2 import numpy as np

3

4 x = np.array ([D_1 , D_2 , ..., D_n ]) #data

5 loc , scale = expon.fit(x) #tau and nu parameters , respectively

Listing 3.1: Pseudo-code for the MLE of the 2-parameter exponential distribution
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Normal Distribution Suppose D1, D2, . . . , Dn is a random sample from a normal dis-

tribution. The likelihood function, based on equations 3.59 and 3.44 is [19]

L(di; ν, τ 2) =
( 1

2πτ 2

)n/2
exp

{
−

n∑
i=0

(di − ν)
2τ 2

}
(3.62)

Thus,

`(di; ν, τ 2) = −n2 ln(2πτ 2)− 1
2τ 2

n∑
i=1

(di − ν)2 (3.63)

Therefore, maximising equation 3.63 results in

ν̂ = 1
n

n∑
i=1

Di and τ̂ 2 = 1
n

(Di − ν)2 (3.64)

In Listing 3.2 a skeleton for fitting an lognormal distribution to a set of data D1, D2, ..., Dn

with SciPy is presented.

1 from scipy.stats import norm

2 import numpy as np

3

4 x = np.array ([D_1 , D_2 , ..., D_n ]) #data

5 loc , scale = norm.fit(x) #tau and nu parameters , respectively

Listing 3.2: Pseudo-code for the MLE of the normal distribution

Lognormal Distribution Let D1, D2, . . . , Dn be a random sample from a lognormal

distribution. The likelihood function, based on equations 3.59 and 3.45 takes the form of

[31]

L(di; κ, τ, ν) = (2πκ2)(−n/2)
n∏
i=1

(di − τ)−1 exp
{
−(ln(di − τ)− ln ν)2

2κ2

}
(3.65)

Therefore,
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`(di; κ, τ, ν) = −n2 ln(2πκ2)−
n∑
i=1

ln(di − τ)

− 1
2κ2

[
n∑
i=1

ln(di − τ)2 + 2
n∑
i=1

ln ν ln(di − τ)− n ln2 ν

]
(3.66)

The direct maximisation of equation 3.66 with respect to parameters κ, τ and ν yields

the MLE of the parameters, κ̂, τ̂ and ν̂. The SciPy package [30] allows the user to

easily obtain this parameters for the 3-parameter lognormal distribution. In Listing 3.3

a skeleton for fitting an lognormal distribution to a set of data D1, D2, ..., Dn with SciPy

is presented.

1 from scipy.stats import lognorm

2 import numpy as np

3

4 x = np.array ([D_1 , D_2 , ..., D_n ]) #data

5 shape , loc , scale = lognorm .fit(x) #kappa , tau and nu parameters ,

respectively

Listing 3.3: Pseudo-code for the MLE of the 3-parameter lognormal distribution

3.6 Model Selection

Selecting a suitable model from a set of candidates that is able to characterise the

underlying data is a challenge [32]. In this context, assume that there are data, an

appropriate selection of models and that statistical inference is to be model based [33].

By appropriate selection of models it is meant the ones where ‘careful development and

formulation of the candidate collection’ [32] has been taken. Also, ‘classical inference

often involves a data-based search, over the model set, for [...] that single correct model

[...] with estimated parameters’ [33].

Model selection should be based on a well-justified criterion [33] that assesses whether a

fitted model offers an optimal balance between goodness-of-fit and parsimony [32]. Such
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criterion must also be ‘estimable from the data and must fit into a general statistical

inference framework’ [33]. The criterion must be ‘generalisable, in that it should effectively

describe or predict new data arising from the same phenomenon’ [32].

One of the most used approaches is the ‘information-theoretic selection based on

Kullback-Leibler (K-L) information loss’ [33]. Such approach is represented by the so-

called Akaike information criterion (AIC) [34] which, according to [32], ‘was the first

model selection criterion to gain widespread attention in the statistical community, and

continues to be one of the most widely known and used [...] in statistical practice’.

3.6.1 Akaike information criterion

Akaike [34] proposed a generalisation of the maximum likelihood principle. Such

generalisation ‘allowed model selection to be firmly based on a fundamental theory’ [33].

The classical maximum likelihood framework allows the estimation of model parameters,

given that it has specified dimension and structure [32]. What Akaike did was to ‘find

a formal relationship between K-L information [...] and likelihood theory’ [33] which

allowed ‘both model estimation and selection [to] be simultaneously achieved’ [32]. That

is, ‘combine estimation [...] and model selection under a unified optimisation framework’

[33].

The following discussion is based on [32]. Let f denote the truth, conceptually. Then,

let g represent an approximating model, a probability distribution. Kullback-Leibler (K-

L) information I(f, g) is the information lost when model g is used to approximate f .

I(f, g) =
∫
f(x) log

(
f(x)
g(x | θ)

)
dx (3.67)

Therefore, the best model is the one with the least information loss relative to other

models in the collection. The criterion I(f, g) cannot be used directly in model selection

because one would need knowledge of the full truth and the parameters θ in the approx-

imating models, gi. An approach to go around such problem is that of minimising the
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expected estimated K-L information rather than minimising known K-L information.

I(f, g) = Ef [log(f(x))]− Ef [log(g(x | θ))] (3.68)

However, the above equation may be rewritten as,

I(f, g) = C − Ef [log(g(x | θ))] (3.69)

where,

C =
∫
f(x) log(f(x))dx (3.70)

since the term Ef [log(f(x))] does not depend on the approximating models in the set.

This means that only the term Ef [log(g(x | θ))] needs to be estimated for each model in

the set.

Akaike found that the maximised log-likelihood value was a biased estimate of the

relative expected K-L information, and that this bias was approximately equal to K, an

asymptotic bias correction term. He then multiplied this result by −2, and proposed it as

a model selection criterion, known as the Akaike information criterion (AIC). The AIC is

given by [1]:

AIC = −2(maximum loglikelihood) + 2(number of model parameters)

Formally written as [33]:

AIC = −2 log(L(θ̂ | data)) + 2K (3.71)

The best model is identified by the minimum value of AIC [32]. Acording to [32], in

AIC context, the term based on the empirical log-likelihood −2 log(L(θ̂ | data)) is called

the goodness-of-fit term while the bias correction factor 2K is called the penalty term.

Even though the AIC is one of the most known and utilised model selection criterion

[32] there is also a small-sample (second-order bias correction) version called AICC , that
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is recommended when K is large relative to sample size n [33],

AICC = −2 log(L(θ̂)) + 2K + 2K(K + 1)
n−K − 1 (3.72)

The rule of thumb states that this should be used unless n/K ' 40 for the model with

the largest value of K. According to [33], the AIC values can not be interpreted, given

that they contain arbitrary constants and are very much affected by sample size. Thus,

lets rescale AIC as

∆i = AICi − AICmin (3.73)

where AICmin is the minimum of the R different AICi values which means that the best

model will have ∆i = 0. For statistical inference on the other R − 1 possible models,

some rules of thumb are in place [33]: Models having ∆i ≤ 2 have substantial evidence;

models in which 4 ≤ ∆i ≤ 7 have considerable less support; and models with ∆i > 10

have essentially no support.

Following [33], a convenient way to visualise the ∆i’s is to normalise them into the

Akaike weights, wi, which, under a heuristic interpretation, are interpreted as the prob-

ability that model i is the K-L best model for the data.

wi = exp(−∆i/2)∑R
r=1 exp(−∆r/2)

(3.74)





Chapter 4

Simulation

4.1 General Concepts

Most real-world systems are too complex to allow realistic models to be evaluated

analytically [35] since analysing the interplay of the many different factors affecting the

behaviour of repairable systems becomes too complicated [36]. Therefore, such complex

models must be studied by means of simulation [35].

Intuitively, a ‘simulation model is a computer representation of a system that mimics

the time history of changes taking place in the system’ [1] and is ‘one of the most widely

used operations-research and management-science techniques’ [35]. These time history

data describes a sample path which is ‘a record of the time-dependent behaviour of a

system’ [37]. As general repairable systems are highly stochastic, with each simulation

run (replication) what is seen is just one sample outcome of the underlying process [1].

When it comes to maintenance, the time history are events such as failures and main-

tenance actions, and one is interested in evaluating their impact on the system perform-

ance measures [1]. Simulation then allows us to generate new sample paths without

building new systems [37] given that the outcome changes when the simulation is re-

peated [1]. Lastly, sample-path analysis extracts the desired performance measures from

sample paths [37].

47
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4.2 Discrete-event Simulation

Following [35], a discrete-event simulation concerns the modelling of a system as it

evolves over time by a representation in which the state variables change instantaneously

at separate points in time. Those models are discrete, dynamic, and stochastic, meaning

their states may change based on highly localised events distributed across time [9], the

system evolves over time and at least some random input are in place [35]. In this

models, the objective is to simulate lifetime scenarios for a system on a computer, and

deduct estimates of the performance measures of interest [4].

Consider a simulation model, the standard way of keeping track of the current value

of simulated time is the next-event approach [35], which advances the simulation clock

by, according to [1], generating the next event (using random number generators) and

updating the clock and the other counts in a cyclic fashion. The simulation is continued

until the simulation clock reaches a predefined time or some event happens [4].

Following [37], a generic stochastic-process model will consist of:

• {Sn : n = 0, 1, 2, . . .}. The state-change process, which represents all relevant

information about the state of the system.

• {Tn : n = 0, 1, 2, . . .}. The event-epoch process, where Tn is the time of the nth

system event.

• {Y (t) : t ≥ 0}. The output process, defined by Y (t) ← Sn when Tn ≤ t < Tn+1,

which contains information about the state of the system and how long it visited a

particular state.

The following discussion comes from [35] where the author presents a more general

framework to understand the next-event approach. The simulation clock is initialised to

zero and the times of occurrence of future events are determined. Then, the simulation

clock is advanced to the time of occurrence of the most imminent of these future events,

at which point the state of the system is updated along with the times of occurrence of

future events. The simulation clock is advanced to the time of the (new) most imminent



4.3. RANDOM-VARIATE GENERATION 49

event, the state of the system is updated, and future event times are determined, etc.

Since all state changes occur only at event times for a discrete event simulation model,

periods of inactivity are skipped over by jumping the clock from event time to event time.

Then, according to [4], the computer creates a chronological log file where all event

and the time for each event is recorded. From this, performance measures are calculated.

To obtain estimates of satisfactory accuracy, a rather high number of life histories of the

system are simulated. For complex systems, several thousands of replications may be

needed.

4.3 Random-Variate Generation

Often uncertainty is a significant factor [1], therefore it is necessary to generate random

observations in order to determine future event times [35]. Such generated observations

are referred to as random variate. According to [37], any random variable can be defined as

a function of another random variable U that has the uniform distribution on [0, 1]. This

allows us to generate random variables T1, T2, . . . with a specified distribution function

FT (t) on a computer [4].

A random variable U is said to have a uniform distribution, denoted U ∼ U(a, b), if

Pr{a ≤ U ≤ b} depends only on the width b − a of the interval [19]. Its probability

distribution function, fU(u) on the interval [a, b] will be [19]

fU(u) =


1

b− a
a ≤ u ≤ b

0 otherwise
(4.1)

Following [4], [37], let T denote a random variable with with a continuous, increasing

cumulative distribution function (cdf), FT (t). The solution of FT (T ) = U in terms of

T is denoted by T = F−1
T (U), the inverse cdf. Variables U1, U2, . . . which are uniformly

distributed over [0, 1], may be generated by a pseudo-random number generator. The

variables Ti = F−1
T (Uj) for i = 1, 2, . . ., will then have distribution function FU(t). This
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is called the inverse-transform method [35]. And although it is not necessarily the best

one for all cdfs, it is sufficient to develop intuition [37].

4.3.1 Weibull-Power Law Process

As per definition 3.6, the Weibull-Power Law Process (WPLP) is a trend-renewal

process with a power-law trend function (equation 3.33), λW (·), and a Weibull renewal

function (equation 3.35), FW . According to [24], the WPLP(a, b, α) process may be gen-

erated through the following formula for the jump times:

Ti =

T bi−1 + 1
aΓ(1 + 1/α)

[
ln
( 1

1− Ui

)] 1
α


1
b

(4.2)

Where T0 = 0 and Ui are random numbers from the uniform distribution U(0, 1).

Equation 4.2 is derived as follows. From the definition of a TRP, the process Λ(T1),

Λ(T2), . . . is a renewal process on a time axis different than t, let it be s > 0. Then

applying the inverse-cdf method, such that

FW (s) = 1− exp{−[sΓ(1 + 1/α)]α} = U

exp{−[sΓ(1 + 1/α)]α} = 1− U

[sΓ(1 + 1/α)]α = ln
( 1

1− U

)

sΓ(1 + 1/α) =
[
ln
( 1

1− U

)] 1
α

∴ s = 1
Γ(1 + 1/α)

[
ln
( 1

1− U

)] 1
α (4.3)

Now, the s-scale is related to the t-scale, for the WPLP(a, b, α) as

si = a[T bi − T bi−1] (4.4)
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Thus, substituting equation 4.4 into equation 4.3.1, results

a[T bi − T bi−1] = 1
Γ(1 + 1/α)

[
ln
( 1

1− Ui

)] 1
α

T bi − T bi−1 = 1
aΓ(1 + 1/α)

[
ln
( 1

1− Ui

)] 1
α

T bi = T bi−1 + 1
aΓ(1 + 1/α)

[
ln
( 1

1− Ui

)] 1
α

∴ Ti =

T bi−1 + 1
aΓ(1 + 1/α)

[
ln
( 1

1− Ui

)] 1
α


1
b

�

4.3.2 Exponential Distribution

Let X be exponentially distributed, that is X ∼ exp(ν), with location parameter equal

to zero, that is τ = 0. From equation 3.43 one may see that the cumulative distribution

function, G(t), takes the form [19]

G(x) =


1− exp(−νx) for x ≥ 0, ν ≥ 0

0 otherwise
(4.5)

Thus, applying the inverse-cdf method u = G(x) and solving for x [35]

F−1(u) = −1
ν

ln(1− u)

According to [35], 1−u may be substituted by u given that both terms have the same

U(0, 1) distribution. Therefore, the generating equation becomes

Xi = −1
ν

ln(Ui) (4.6)
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where Ui are uniformly distributed random variables, Ui ∼ U(0, 1). Now, to get 2-

parameter exponentially distributed random variables, Di, simply add the location para-

meter, τ , for each generated value, that is

Di = Xi + τ (4.7)

4.3.3 Normal Distribution

Unfortunately, sometimes the inverse cdf F−1 is not available in a closed form and this

is, indeed, the case for the normal distribution [35]. Other methods have been proposed

in order to get around this issue. One of such is the Marsaglia’s Polar Method [38], which

consists in generating a pair of independent standard normal random variables using a

pair of uniform random numbers. The algorithm for the Marsaglia’s Polar Method is:

Step 1. Generate U1, U2 ∼ U(0, 1).

Step 2. Accept if W 2
1 +W 2

2 < 1, where Wi = 2Ui − 1 for i = 1, 2.

Step 3. Return two independent normal random variables Z1, Z2 where

Z1 = W1

√√√√−2 ln(W 2
1 +W 2

2 )
W 2

1 +W 2
2

and Z2 = W2

√√√√−2 ln(W 2
1 +W 2

2 )
W 2

1 +W 2
2

Both Z1 and Z2 are normal random variables coming from a standard normal distribu-

tion also called z-scores, that is Z1, Z2 ∼ N (0, 1). In order to get the desired distribution

with parameters X ∼ N (ν, τ 2) use the formula for the z-scores [19]

Z = X − ν
τ
→ X = Zτ + ν (4.8)
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4.3.4 Lognormal Distribution

As discussed before, if a random variable X ∼ lognormal(ν, κ2), then Y = lnX and

Y ∼ N (µY , σ2
Y ). Therefore, use random normal variables to generate lognormally dis-

tributed ones. In order to do so, use the following formulas to calculate the parameters

µY , σ
2
Y of the associated normal distributed, given the original lognormal distribution

parameters ν, κ2

µY = ln
(

ν2
√
κ2 + ν2

)
and σ2

Y =

√√√√ln
(

1 + κ2

ν2

)
(4.9)

Using the parameters from the associated normal distribution, simulate the data using

the Marsaglia’s Polar Method and then apply an exponential transformation to get the

lognormal data, that is:

Step 1. Calculate the parameters µY , σ2
Y from the associated normal distribution.

Step 2. Use the methods to generate normally distributed data.

Step 3. Since Y = lnX, to get the lognormal data, simply apply X = exp(Y ).

Now, to get 3-parameter lognormally distributed random variables, Di, add the loca-

tion parameter, τ , for each generated value, that is

Di = Xi + τ (4.10)

4.4 Output Data Analysis

Output analysis is the examination of data generated by a simulation [39]. On ac-

count of simulation being a computer-based statistical sampling experiment, appropriate

statistical techniques must be used to analyse its output [35]. As uncertainty is usually a

important factor, the simulation output data will be random [1] and one must be careful

when drawing conclusions about the model’s true characteristics [35].
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Generally, one needs to perform several simulation runs to obtain proper estimates and

confidence intervals [1]. In view of [39], let the performance of the system is measured by

a parameter θ. The resulting output of a simulation experiment will be an estimator θ̂ of

θ. The estimator θ̂ precision can then be measured by its standard error or by the width

of a confidence interval for θ. Estimating this standard error/confidence interval along

with the number of observations required to achieve a specific standard error/confidence

interval is the purpose of output data analysis [39].

Following [35], let {Ti : i = 1, 2, . . .} be the output of a general stochastic process from

a single simulation run. In general, the T ′is will be neither independent nor identically

distributed. Thus, general statistical techniques are not directly applicable. Now, suppose

M independent replications with stopping time σ are performed. Since the inputs are

random, the outputs will also be. Resulting in M different realisations (sample paths) of

the T ′is random variables.

Denote the complete simulation output as {Tim : i = 1, 2, . . . ;m = 1, 2, . . . ,M}, that

is Tim is the ith event of the mth replication. According to [35], ‘this independence across

runs is the key to the relatively simple output-data-analysis methods’ [35]. Furthermore,

regarding output analysis, simulations may be divided into two groups: terminating and

nonterminating simulations [35].

As per [35], a terminating simulation is one for which there is a clear event E that

specifies the length of each replication. While a nonterminating simulation is one for which

there is no clear event E to specify the length of a run. However, it is important to notice

that ‘a simulation for a particular system might be either terminating or nonterminating,

depending on the objectives of the simulation study’ [35]. In this thesis the techniques

applicable to terminating simulations will be explored.

4.4.1 Terminating Simulations

Consider a terminating simulation over [0, TE] resulting in observations {Ti : i =

1, 2, . . . , N ; }, with Ti being the time for the ith event. Let the number of observations
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be a random variable N . According to [39], a common goal is to get a point estimate of

the mean µ = E[T ] for some random variable T , as well as the confidence interval for

such estimate. As per [35], make M independent replications of the simulation and let

T1, T2, . . . , TM be the resulting i.i.d. random variables. Thus,

T (M) = 1
M

M∑
i=1

Ti (4.11)

is an unbiased estimator for the mean. An approximate 100(1 − ε) percent (0 < ε < 1)

confidence interval for µ is

T (M)± tM−1,1−ε/2

√
S2(M)
M

(4.12)

where S2(M) is the sample-variance given by

S2(M) = 1
M − 1

M∑
i=1

[Ti − T (M)]2 (4.13)

and tM−1,1−ε/2 is the upper 1− ε/2 critical point for the t distribution with M −1 degrees

of freedom [35].

For the case of the output process {Y (t), 0 ≤ t ≤ TE} since it is a function of t, one

might be interested in calculating its sample time average [37]

Y = 1
TE

∫ TN

0
Y (t)dt (4.14)

Since Y (t) will always be piecewise constant, the area under it will be composed of

rectangles of height SN−1 and width Ti − Ti−1, thus [37]

∫ TN

0
Y (t)dt =

N∑
j=1

(Tj − Tj−1)Sj−1 (4.15)

All previous estimator depend on the parameterM , the number of replications. Thus,

to increase accuracy of the estimates sufficient replications need to be performed. So far,
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the discussion focused on the so-called fixed-sample-size procedure [35], where the number

of replications is fixed based on previous experience and analyst judgement. There are

other types of dynamic procedures, where algorithms are used to determine the number

of replications (see [35], [39], [40]). However, this is beyond the scope of this thesis.

4.4.2 Savitzky–Golay filter

Consider a set of observations resulting from M simulation runs of a particular per-

formance measure calculated into equally spaced time points, f(t). Resulting in the

output process {f(ti) : 0 = t0 < t1 < . . . < tn}. Now, following [41], say that this measure

variable of interest is both slowly varying and also corrupted by random noise. One would

then be interested in getting point measures with a reduced level of noise and without

biasing the value obtained. This is the premise of data smoothing [41].

A common method of data smoothing based on local least-squares polynomial approx-

imation is the Savitzky-Golay filters which are able reduce noise while maintaining the

shape and height of waveform peaks [42]. They are particularly interesting as ‘they derive

directly from a particular formulation of the data smoothing problem in the time domain’

[41], which is the one most repairable systems simulations are run.

The following is based on [41]. Recall the output process fi ≡ f(ti), with i = 0, 1, 2, . . ..

Write ti ≡ t0 + i∆ for some constant sample spacing ∆. Replace each data value fi by a

linear combination gi of itself and some number of nearby neighbours,

gi =
nR∑

n=−nL
cnfi+n (4.16)

where nL is the number of points used “to the left" of a data point i and nR is the number

used to the right.

The idea of Savitzky-Golay filtering is to find filter coefficients cn that approximate

the underlying function within the moving window by a polynomial of higher order. That

is, for each point fi, a polynomial is fitted to all nL+nR+1 points in the moving window,

by the method of least-squares, and then set gi to be the value of that polynomial at
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position i.

The Scipy [30] package, available in Python [43], has a function for applying the

Savitzky-Golay filter to a data set. The method has three main parameters: x, the

data to be filtered; window_length, the length of the filter window, i.e., the number of

coefficients; and polyorder, the order of the polynomial used to fit the samples. The

following is a simple example of the use of the package, for some random data derived

from a sin(x) wave.

1 from scipy. signal import savgol_filter

2 import numpy as np

3 np. random .seed (666)

4

5 x = np. linspace (0, 2*np.pi , 100)

6 y = np.sin(x) + np. random . uniform (-.1, .1, 100)

7 sgf_y = savgol_filter (y, 51, 3) # window size 51, polynomial order 3

Listing 4.1: Code for the Savitzky-Golay filter example

0 1 2 3 4 5 6

−1.0

−0.5

0.0

0.5

1.0 Noisy data

Savitzky-Golay Filter

Exact functional form

Figure 4.1: Savitzky-Golay filter example
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4.5 Additional Comments

As previously discussed, statistical inference ‘is concerned with making decisions about

a population based on the information contained in a random sample from that population’

[20]. Following [20], the definition of a random sample is:

Definition 4.1 (Random Sample)

The random variables X1, X2, . . . , Xn are a random sample of size n if (a) the Xi‘s are

independent random variables and (b) every Xi has the sample probability distribution.

Now, consider a random sample X1, X2, . . . , Xn of size n. The sample mean X, the

sample variance S2, and the sample standard deviation S,

X = 1
n

n∑
i=1

Xi (4.17)

S2 = 1
n− 1

n∑
i=1

(Xi −X)2 (4.18)

S =
√
S2 (4.19)

are random variables. Therefore, it has a probability distribution [20]. Such distribution

the is called sampling distribution, and in the case of the statistic X it is the sampling

distribution of the mean [20]. The interest in such distribution is that, given n large

enough, a suitable normal curve will approximate the actual distribution of X [19]. The

formal statement of the theorem is as follows, as per [19]:

Definition 4.2 (Central Limit Theorem (CLT))

Let X1, X2, . . . , Xn be a random sample from a distribution with mean µ and variance

σ2. Then if n is sufficiently large, X has approximately a normal distribution with

µX = µ and σ2
X

= σ2/n. The larger the value of n, the better the approximation.

This result is one of the most important and useful theorem in probability and statistics

[19], [20] and is the reason why many random variables in engineering and science are
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normally distributed [20]. When it comes to knowing what is a sample size large enough

to apply the CLT, it depends on the underlying distribution of the data. According to

[19], [20], a general guideline is n > 30.





Chapter 5

Proposed Model and Implementation

5.1 General Concepts

Let repairable system be characterised by a binary state variable, Y (t), which indicates

the state or condition of such item, as a function of the age, t. This is the two-state

characterisation, discussed in Section 2.3.1 and depicted in Figure 2.1. Therefore, at time

t the system may be in one of two states: up or down state. The transition between

the states are governed by appropriate models. The proposed model assumes that, when

an item is in an up state, an imperfect repair process is the underlying degradation

model which eventually takes the system to a down state. When in a down state, the

system gradually returns to a functioning state. Such gradual return is governed by an

appropriate probability distribution.

The imperfect repair process of choice is the Weibull-Power Law Process (WPLP),

discussed in Section 3.3, since it is a generalisation of very common reliability models.

The repair probability distribution, G(t), responsible for the return to the up state is

one of 3 possible choices, namely the exponential, normal and lognormal distributions,

as per Section 3.4. A diagram representing the proposed model is presented in Figure

5.1, where WPLP(α̂, â, b̂) is the WPLP model with parameter estimates α̂, â and b̂, and

ρ(t | θ̂) is the repair rate function with estimated parameters θ̂, as per Equation 3.41. The

61
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1 0

WPLP( )

Figure 5.1: Proposed model diagram.

parameter estimates are all based on the Maximum-Likelihood (ML) Principle and the

data is assumed to be collected under the failure truncation censoring scheme, while the

selection method is using the Akaike information criterion (AIC). The proposed model

shall be known as the Failure-Repair Process (FRP).

Note that this model is than composed of two "sub-models", a mathematical model

and a simulation model. Thus, the performance measures of the FRP may be of two types:

analytical and non-analytical measures. The analytical measures are the measures that

are possible to derive purely from the mathematical model. While the the non-analytical

measures are only possible through the use of a simulation model. A general way of

referring to both types of measure is as Key Performance Indicators (KPI), as discussed

in Section 2.3.

The implemented tool works based on the proposed FRP model. A flowchart rep-

resenting the default algorithm along with different modules of the program is presented

in Figure 5.2. The program is divided into 6 big phases: (1) input; (2) model fitting;

(3) model selection; (4) simulation; (5) KPI’s calculation; and (6) output. Each of those

phases perform different tasks, and are mainly existent for better organisation and inde-

pendence between the modules. The programming language that was used for the entirety

of the project is Python 3 [43] with 3 main important packages: NumPy [44], SciPy [30]

and statsmodels [45].

The flowchart in Figure 5.2 summarises the straightforward but complex flow of the

implemented tool. On account of clarity, following the functions and assumptions in each

module are condensed, keeping in mind that the following sections will explore the whole

range of the model in depth. Also, Table 5.1 summarises the symbols used throughout
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the chapter.

(1) Input. The tool is able to handle only CSV files, with a comma separator. The

failure data must be chronologically ordered inter-failure times under failure trun-

cation. The downtime data may be in any order, since the model is based on its

order statistics.

(2) Model Fitting. The fitting process is based solely based on the ML Principle

under the failure truncation censoring scheme. The model parameters Wald type

confidence intervals are also calculated. And the resultant log-likelihood function

values allows for the calculation of the AIC/AICC values.

(3) Model Selection. The model selection process is based on the Akaike information

criterion (AIC), since ‘information-based criterions can be used to automate model

selection’ [27].

(4) Simulation. The tool generates M simulation runs, with the use of the inverse-cdf

method for random-variate generation. Each replication is a terminating simulation

with end-trigger events, E, such that each simulation runs, out of theM replications,

stops when the simulation clock exceeds a maximum value, T (G)
E , and the number

of events of type j reaches a certain threshold, NE,j, where j = 0, 1 for failure

and downtime events, respectively. All of these sample paths are stored into an

appropriate file for posterior treatment.

(5) Performance Measures. Using the resultant FRP model and the generated

sample-paths, the key performance indicators of the system may be calculated, both

analytical and non-analytical, in a time mesh ranging from [0, T (G)
E ] divided into Nt

points. In general, this means the calculation of the: (i) point availability, A(t);

(ii) mean availability in [0, t], A(t); (iii) reliability function for the ith inter-failure

time, R(Xi > t); (iv) expected number of failures at time t, E[N(t)]; (v) rate of

occurrence of failures of the system, ρ(t); and (vi) next failure time predictors. The

KPI’s estimates are then stored into an appropriate file for posterior analysis.
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(6) Output. The output simply puts together the KPI’s into an appropriate graphical

interface which is meant to display the data clearly for the user with the help of

graphical plots.

5.2 Mathematical Model

Consider a repairable system starting at time t = 0 for which its failure times T1, T2, . . .

are observed, where T0 ≡ 0. The failure process is denoted as {Ti : i = 0, 1, 2, . . .}. Define

the time between failures as Xi = Ti − Ti−1, that is, the elapsed time between failures i

and i − 1. Alternatively, the failure process may be characterised by the Xi‘s, denoted

{Xi : i = 0, 1, 2, . . .}. Lastly, let N(t) be the number of failures up until time t, which

results is the process {N(t) : t > 0} with N(t = 0) = 0.

As before, define the mean function as the expected value of N(t), µ(t) = E[N(t)].

Assume its derivative exists and denote it ρ(t). This is the time rate of change of the

expected number of failures and is called the rate of occurrence of failures (ROCOF).

Also, assume that when a failure occurs, the repair begins immediately and the times

to repair D1, D2, . . . follow a repair probability distribution G(t) = Pr{D ≤ t}, probability

density function g(t) = dG(t)/dt and repair rate function ρD as per Equation 3.41.

5.2.1 Failure Process

Remember the Weibull-Power Law Process and its special cases, presented in Section

3.3. Given those special cases the models are said to be nested. Those results are import-

ant as it shows that the WPLP is a generalised version of very common repairable system

models, which makes it a good candidate for a general purpose modelling tool.

Therefore, the proposed model assumes that the failure process is governed by a

Weibull-Power Law process, WPLP(α, a, b), as per definition 3.6, where α, a and b

are the renewal, shape and time-trend parameters, respectively. Given observations

{Xi : i = 1, 2, . . . , N} (failure truncation scheme), the parameters may be estimated
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Symbol Description
Failure Model

Ti The ith failure time in the failure time scale
Xi The ith inter-failure time
NF Number of failure events
TNF The last failure time
N(t) Number of failures at time t

E[N(t)] Expected number of failures at time t
ρ(t) Rate of occurrence of failures (ROCOF)
λ(t) Trend function
F Renewal function

Downtime Model
Di The ith downtime

GD(t) Repair probability distribution function
gD(t) Repair probability density function
ρD(t) Repair rate function

Simulation Model
t(G) Global time scale
T

(G)
i The ith event time in the global time scale
T

(G)
E Minimum simulation clock total time
NE,j Total number of events of type j where j = 0, 1 for failure

and downtime events, respectively
Nt Number of divisions in the time mesh
M Number of replications
K Number of random samples
NS Random sample size
Y (t) Binary state characterisation variable

Ri(t) = Pr{Xi > t} Reliability function for the ith inter-failure time
A(t) Point availability at time t
A(t) Mean availability in the time interval [0, t]

Table 5.1: Summary of the relevant variables and parameters.
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using the maximum-likelihood method. The general log-likelihood equation is given in

Equation 3.58, under failure truncation the equation simplifies to

˜̀= n(lnϕ+ ln b+ lnα) +
n∑
i=1

[(b− 1) lnTi+

+ (α− 1) ln(T bi − T bi−1)− ϕ[T bi − T bi−1]α] (5.1)

Thus, the parameter estimates for the WPLP model are calculate by the direct max-

imisation of Equation 5.1.

5.2.2 Expected Number of Failures

From definition 3.5 and from the discussion in [14] the expected number of failures

at time t for a general trend-renewal process can be defined. From the definition of a

TRP(F, λ(·)), Λ(T1), Λ(T2), . . . is a renewal process on a time axis different than t, let it

be s > 0. Let N∗(s) be the counting process on that time scale. Therefore,

N(t) = N∗(Λ(t)) (5.2)

and N∗(s) is a renewal process. Let µ∗(s) = E[N∗(s)] be the renewal function for the

renewal process N∗(s) on the s-scale. Thus, from equation 5.2,

E[N(t)] = E[N∗(Λ(t))] = µ∗(Λ(t)) (5.3)

Therefore, in order to find the renewal function for the TRP, calculate µ∗(s) on the

s-scale, using 3.15, and then use equation 5.3 to go back to the t-scale. Any suitable

numerical method may be used, in this specific situation the RS-Method was used. The

method was described in Section 3.2.3.
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5.2.3 Rate of Occurrence of Failures

Since usually one is interested in the ROCOF, defined in equation 3.2, for the case of

a trend-renewal process its definition may be applied to equation 5.3 to then get,

d

dt
E[N(t)] = d

dt
µ∗(Λ(t))

= d

ds
µ∗(s) d

dt
Λ(t)

ρ(t) = λ(t)ρ∗(Λ(t)) (5.4)

To calculate the necessary ρ∗(·) the standard finite difference method is used, as de-

scribed in Section 3.2.3. For the other models, namely the HPP and NHPP, the ROCOF

is analytically defined and was described in Section 3.2.1 and 3.2.2, respectively.

5.2.4 Failure Prediction

In [46], the authors explore general problems in the point and interval prediction in

a trend-renewal process (TRP). In general, they consider ‘possible ideas and methods

for constructing the predicted next failure time and the prediction interval for the next

failure time’ [46]. Although they develop methods for a general TRP, for the purpose of

this thesis the interest is in the predictor for the Weibull-Power Law Process (WPLP).

The point predictor for the next time to failure in a general WPLP, TNF+1, given the

maximum-likelihood estimates α̂, â, b̂ in the failure truncation scheme, is [46]

T̂NF+1 =
(1
â

+ T b̂NF

)1/̂b
(5.5)

Now, a interval predictor is also in order. Such predictor is not the confidence interval

for the point predictor T̂NF+1 and should not be interpreted as such. Following [46], the

estimated lower and upper bounds T̂L and T̂U , respectively, of the prediction interval for
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the next failure time TNF+1 in the WPLP(α, a, b) are given by

T̂L =
T b̂NF +

(
1
ϕ̂

ln 1
1− ε1

)1/α̂
1/̂b

(5.6)

T̂U =
T b̂NF +

(
1
ϕ̂

ln 1
ε2

)1/α̂
1/̂b

(5.7)

where ϕ̂ = [aΓ(1 + 1/α̂)]α̂, as per Equation 3.37, and ε1 and ε2 determine the percentage

of the confidence interval. For a 95% confidence interval, ε1 = ε2 = 0.025.

5.2.5 Repair Process

As already mentioned, three of the most common model for downtimes are the ex-

ponential, normal and log-normal distribution presented in Section 3.4. The estimation

process for the model parameters is done by the maximum-likelihood method as described

in Section 3.5.

5.3 Model Selection

Consider a complete data set of inter-failure and repair times, that is {Xi : i =

1, 2, . . . , NF ; } and {Dj : j = 1, 2, . . . , ND}, respectively. For the failure process, consider

the model selection square for the general WPLP(α, a, b) [14], shown in Figure 5.3. In

the case of the downtime model, consider the model selection triangle, in Figure 5.4.

Both model selection diagrams represent all the possible fitted models for the data set,

and illustrate the parameters of each along with the value of the estimated log-likelihood

function, `(·).

From the estimated values of the log-likelihood functions along with the knowledge

of the amount of estimated parameters involved, the Akaike information criterion (AIC),

explored in Section 3.6, may be applied to select the best fitted model among the model

set.
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5.4 Simulation Model

Let {T (G)
i,m : i = 1, 2, . . . , NE;m = 1, 2, . . . ,M} represent the output of a simulation

run in the time interval [0, TE], such that T (G)
i,m is the ith event time in the mth replication

of the process. Thus, each replication is a terminating simulating with stopping criterion

such that the minimum simulation clock equals TE and the minimum number of events is

NE. However, as making predictions about the next inter-failure times XNF+1 is the real

interest, the minimum number of failure events is such that NE,1 = NF + 1, and NE =

(NF + 1) +NE,0, where NE,j is the number of events of type j, with j = 0, 1 representing

failure and downtime events, respectively, given the two-state characterisation. Therefore

every even i is a failure event, while the odds are end-of-repair events. Across replications,

all systems start in a up-state, such that Ym(t = 0) = 1 ∀ m.

Using simulation, deriving performance measures of the system which are not available

by analytical means is the goal. The common framework is to design the simulation model

with the Central Limit Theorem (CLT), presented in Definition 4.2, in mind.

Consider the calculation of a general performance measure, f(t | data), at some point

t in time given the available data. A general scheme is to fix the time t, at some interest

value t∗, and calculate it across M replications, such that {f (m)(t∗) : m = 1, 2, . . . ,M}.

Now, split the simulated data into K smaller samples of size NS = M/K and calculate the
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mean for each sample. According to the CLT, this value resulting sample should converge

to a normal distribution, with a mean equal to the average of the resulting sample that

will converge to the expected value of the original sample of f (m)(t∗)’s, regardless of its

underlying distribution. The same holds true for the sample standard deviation when

divided it by the factor
√
K.

5.4.1 Reliability

For a general stochastic point process, the inter-arrival times are neither independent

nor identically distributed. Therefore, finding a well defined formula for the reliability

of a system is a difficult task. In the case of the trend-renewal process, combining the

definitions of reliability and the TRP, given in Definitions 2.15 and 3.5, respectively, one

may write the reliability function as

Pr{Λ(Ti)− Λ(Ti−1) > t} = R(t) = 1− F (t) (5.8)

If the cumulative trend function, Λ(·), is linear, an analytical solution for the equation

may be found. In general, however, this is not the case, and defining the reliability function

becomes complicated. To come around this issue, an estimator for the reliability of the

system is used, based on simulation. A classical non-parametric approach to estimating

the reliability function is using the Kaplan-Meier estimator.

Remember that, according to [35], for terminating simulations, it is assumed that

the random variables across replications are comparable. That is, the X(m)
i , for m =

1, 2, . . . ,M , are i.i.d. random variables. Therefore, one may use the Kaplan-Meier estim-

ator to give an idea of the behaviour of the reliability function for each of the Xi in the

original process. The Kaplan-Meier estimator was discussed in Section 3.2.3.

In this specific case, the Kaplan-Meier estimator is used only to illustrate the reliability

of a system modelled by a Weibull-Power Law Process (WPLP), since all the other three

possible models, namely the HPP, the NHPP and the RP, have their reliability functions

well defined. Table 5.2 summarises the definition of the different reliability functions for
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each of the models. In the case of the HPP, NHPP and RP, their reliability function have

been derived in Sections 3.2.1, 3.2.2, and 3.2.3, respectively.

Models Reliability Function
Homogeneous Poisson Process RHPP (t) = exp{−at}

Power Law Process RNHPP (t) = exp{−atb}
Weibull Renewal Process RRP (t) = exp{−[aΓ(1 + 1/α)]αtα}

Weibull-Power Law Process Kaplan-Meier Estimator

Table 5.2: Summary of the reliability functions

Thus, with the simulated data resulting from a WPLP model withM replications and

NF + 1 failures and as X(m)
i , for a fixed i and m = 1, 2, . . . ,M , are i.i.d. random variables

the Kaplan-Meier estimators for each i inter-failure time may be calculated. Plotting

several of them in the same figure, gives an idea of the reliability as a function of the

failure index i.

5.4.2 Mean Availability

An important reliability measure is the mean availability, given in Definition 2.20.

When under the two-state characterisation, the state variable Y (t) may be used to cal-

culate the mean availability in the time interval [t, t + ∆t]. This is done by using the

formula for the calculation of the time average of the sample path, as per Equation 4.14,

combined with the general formula for piecewise output processes, given in Equation 4.15.

Here, the general formula for the calculation of the average availability between time 0

and t for a single run of a simulation is derived.

First, consider the case where one is interested in the average availability in the time

interval [0, t1], and t1 is located such that Y (t1) = 1, as illustrated by Figure 5.5.

For this first case the area of the process up until time t1 may be written as

Area1(0, t1) = (T1 − T0)Y (T0) + (T2 − T1)Y (T1) + (T3 − T2)Y (T2)+

+ (T4 − T3)Y (T3) + (t1 − T4)Y (T4) (5.9)
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Figure 5.5: Mean Availability from [0, t1] with Y (t1) = 1.

Dividing Equation 5.9 by the time interval of interest, the mean availability between

0 and t1 is calculated:

A(0, t1) = 1
t1 − 0Area1(0, t1) = 1

t1

4∑
i=1

(Ti − Ti−1)Y (Ti−1) + (t1 − T4)Y (T4) (5.10)

For the second case, let the time of interest be t2 such that Y (t2) = 0, as shown in

Figure 5.6. Thus, the area is:

Area2(0, t2) = (T1 − T0)Y (T0) + (T2 − T1)Y (T1)+

+ (T3 − T2)Y (T2) + (t2 − T3)Y (T3) (5.11)

Y(t)

Time	t

1

0

X1 X2 X3 X4

D1 D2 D3
t2T1 T2 T3 T4 T5 T6

Figure 5.6: Mean Availability from [0, t2] with Y (t2) = 0.

And the mean availability in the interval [0, t2] becomes:

A(0, t2) = 1
t2 − 0Area2(0, t2) = 1

t2

3∑
i=1

(Ti − Ti−1)Y (Ti−1) + (t2 − T3)Y (T3) (5.12)
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Comparing Equations 5.10 and 5.12, they look a lot like Equation 4.15, as one would

expect. However, as the goal is a formula that works for any interval [0, t], some care

must be taken, since Equation 4.15 only works when in a time interval [0, Ti], i = 1, 2 . . .,

where Ti is some event. The natural way of writing a general equation, combining what

Equations 5.10 and 5.12, then is

A(0, t) = A(t) = 1
t

r∑
i=1

(Ti − Ti−1)Y (Ti) + (t− Tr)Y (Tr) where (5.13)

r = argminj{Tj ≤ t < Tj−1 : j = 1, 2, . . . , n}

With Equation 5.13, the mean availability up to some time t for a single sample-

path/simulation run ma be calculated. This is, of course, not useful given the stochastic

nature of the process, which means that high variability in the mean availability between

replications is to be expected. As before, making use the scheme of dividing the M

replications into K random samples of size NS. Calculate the mean for each of the K

random samples with a fixed time t, such as:

A
(K)
t = 1

NS

NS∑
n=1

A(t) (5.14)

This results in the random variables A(1)
t , A

(2)
t , . . . , A

(K)
t which are, according to the

CLT, normally distributed. Therefore, the expected value of the random variable will

simply be the average across K, that is

A
(M)
t = 1

K

K∑
k=1

A
(k)
t (5.15)

With variance calculated using the sample variance formula as per Equation 4.18.

S2 = 1
K − 1

K∑
k=1

(A(k)
t − A

(M)
t )2 (5.16)

Lastly, the standard deviation may be calculated by taking the square root of the
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variance. Then, Equation 4.12 may be used to calculate an approximate 100(1 − ε)

percent (0 < ε < 1) confidence interval for the mean at each time t, that is

A
(M)
t ± tK−1,1−ε/2

√
S2

K
(5.17)

and tK−1,1−ε/2 is the upper 1− ε/2 critical point for the t distribution with K − 1 degrees

of freedom [35].

5.4.3 Point Availability

Another measure of performance of the system is the point availability, formalised

as per Definition 2.19. With this measure one is able to see how the availability of the

system is changing with time, adding another indicator to characterise whether the system

is stable, improving or degrading with time.

Using the idea that a probability may be regarded as a proportion, point availability

may be seen as the proportion of systems that are functioning at time t across the M

replications. Now, using the general framework for applying the CLT, one has M replic-

ations divided into K random samples of size N . Thus, the point availability estimator,

for a fixed time t, may be written as

Â(t) = 1
K

K∑
k=1

Â(k)(t) = 1
K

K∑
k=1

1
NS

NS∑
n=1

Y (k)
n (t) = 1

KNS

K∑
k=1

NS∑
n=1

Y (k)
n (t) (5.18)

∴ Â(t) = 1
M

K∑
k=1

NS∑
n=1

Y (k)
n (t) (5.19)

where Y (k)
n (t) is the value of the state variable at time t for the nth samples of the k

random sample. As for the mean availability estimator, the variance will be given by,

S2 = 1
K − 1

K∑
k=1

(Â(k)(t)− Ât)2 (5.20)
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and the standard deviation is given by the square root of the variance. Then, an approx-

imate 100(1− ε) percent (0 < ε < 1) confidence interval for the mean at each time t may

be written,

Â(t)± tK−1,1−ε/2

√
S2

K
(5.21)

and tK−1,1−ε/2 is the upper 1− ε/2 critical point for the t distribution with K − 1 degrees

of freedom [35].

5.5 Numerical Model Validation

Consider the special case of the FRP, when the inter-failure times are independent

and identically distributed exponential random variables, that is a WPLP(1, a, 1), and the

downtimes are exponentially distributed with mean c. For this case, the point availability

of the system is given as [4]:

A(t) = c

a+ c
+ a

a+ c
exp{−(a+ c)t} (5.22)

and the mean availability in [0, t] is

A(0, t) = A(t) = 1
t

∫ t

0
A(u)du = 1

t

∫ t

0

c

a+ c
+ a

a+ c
exp{−(a+ c)u}

= 1
t

{
c

a+ c
t+ a

(a+ c)2 [1− exp(−(a+ c)t)]
}

∴ A(t) = c

a+ c
+ 1
t

a

(a+ c)2 (1− exp{−(a+ c)t}) (5.23)

Now, let both remaining parameters a and c be equal to 1, for the sake of simplicity.

As before, let M be the total replications divided into K random samples of size NS.

The goal is to compare the approximations of the point and mean availability, given in

Equations 4.11 and 5.19, respectively, against its analytical counterparts, presented above.

Additionally, it is necessary to verify the approximations accuracy with respect to the

number of replications. This is done by varying the values of K, such that K = 100, 1000,
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Figure 5.7: Point availability for different numbers of total replications

2000,5000 with a fixed NS = 50. Thus, the total number of replications will beM = 5000,

50000, 100000, 250000. The total time of the simulations is given by the formula

tsim = − 1
a+ c

ln ε (5.24)

where ε is any small number, such as ε = 1e−6. For replicability, set the random number

generator seed available in Numpy [44] to 0.

For comparison, the results are shown in Figures 5.7 and 5.8. In this context E.C. is the

empirical coverage, which measures the proportion of the exact values of the point/mean

availability that fall within the confidence intervals, and T.C. is the theoretical coverage,

which is simply the confidence level, in this case being 90%.
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Figure 5.8: Mean availability for different numbers of total replications
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Maximum Relative Error
K Point Availability Mean Availability
100 0.032220 0.006970
1000 0.011843 0.003567
2000 0.006294 0.001451
5000 0.006602 0.000883

Table 5.3: Maximum relative error for the point and mean availability estimators

The point availability estimator seems to perform slightly worse that the mean avail-

ability one. This is likely to be cause by the binomial nature of the point availability

estimator, while the mean availability is more normally characterised. However, both

estimators appear to be reasonable. This is clear from Table 5.3, where the maximum

relative errors for the point and mean availability estimators are 3.2% and 0.7% respect-

ively.





Chapter 6

Application to real data

6.1 General Concepts

In this chapter some numerical results are presented illustrating the proposed model

taking into account some real time between failures and downtimes data, namely the data

set available in [47], given in Tables 6.1 and 6.2, respectively. These data contain 123 time

between failure and 124 downtimes from an enrobing machine in a food industry located

in the South region of Brazil [48].

For clarity, first it is explored, step-by-step, the process the implemented tool goes

through. After each chunk of the model logic, some code snippets are presented to help

visualise the background calculations that occur. Lastly, the implemented tool interface

is shown, along with the software flow a general user would have to go through.

6.2 Modelling failure times

The algorithm has 4 different failure models to choose from, namely: the Weibull-

Power Law TRP (WPLP); the Nonhomogeneous Poisson Process (NHPP) with power-

law trend function; the Homogeneous Poisson Process (HPP); and the Weibull Renewal

Process (WRP). These models are said to be nested, since the WPLP is a general model

that encapsulates all the others. The general WPLP has 3 parameters α, a and b, named

81
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126.0 100.5 60.85 144.85 119.2 165.5 201.0 81.5 245.0 142.0
187.0 56.0 122.5 11.0 122.2 228.5 731.0 123.0 104.0 209.3
165.25 247.7 146.8 251.8 82.0 62.3 103.85 206.65 166.0 288.5
81.5 5.0 136.5 125.0 141.0 311.75 102.5 82.85 7.5 36.5
12.5 208.5 104.5 61.0 354.75 396.75 671.25 166.0 61.5 205.5
333.5 565.25 124.0 144.5 964.5 291.25 56.74 209.2 375.5 293.5
40.5 138.5 754.75 58.0 82.0 78.5 6.5 100.0 482.0 239.0
40.2 8.5 226.75 313.0 480.0 59.0 40.0 121.0 414.0 206.5
123.0 103.5 271.0 102.5 290.25 334.0 333.25 61.0 310.5 102.5
543.25 8.75 374.0 483.0 206.0 187.25 418.0 499.25 58.25 248.15
351.0 356.25 145.5 1026.5 523.5 59.0 313.0 185.25 124.5 101.5
604.75 460.0 267.5

Table 6.1: Chronologically ordered (left to right) inter-failure times [47]

4.5 3.33 2.93 3.9 3.62 4.52 4.23 4.2 4.29 4.06 4.33 4.26 4.07
3.92 3.83 3.84 3.79 3.63 3.48 3.44 3.48 3.63 3.48 3.42 3.31 3.23
3.23 3.19 3.27 3.24 3.23 3.41 3.35 3.43 3.42 3.4 3.34 3.31 3.31
3.3 3.26 3.22 3.16 3.13 3.17 3.15 3.1 3.08 3.05 3.08 3.06 3.04
3.02 3.01 2.98 2.98 3.04 3.0 2.99 2.95 2.92 3.01 2.99 3.02 3.0
3.04 3.01 3.02 2.99 3.14 3.12 3.11 3.07 3.05 3.05 3.06 3.05 3.08
3.11 3.12 3.12 3.11 3.17 3.15 3.14 3.14 3.12 3.14 3.12 3.13 3.12
3.11 3.09 3.09 3.1 3.08 3.08 3.07 3.08 3.07 3.06 3.06 3.05 3.04
3.05 3.03 3.03 3.02 3.03 3.04 3.07 3.05 3.03 3.03 3.02 3.03 3.02
3.02 3.01 3.01 3.02 3.02 3.04 3.03

Table 6.2: Chronologically ordered (left to right) downtimes [47]
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renewal, shape and time trend parameters, respectively.

For fitting the four models, the statsmodels [45] module is used, which ‘provides

classes and functions for the estimation of many different statistical models, as well as

for conducting statistical tests, and statistical data exploration’ [45]. The main interest

is with the GenericLikelihoodModel, which allows the fitting of any likelihood function

via maximum likelihood given that at least the loglikelihood function be specified. Con-

sider one wants to fit a general WPLP under failure truncation. To do so, simply write the

loglikelihood function of the process (equation 3.58) and then write a sub-class inheriting

the methods from GenericLikelihoodModel. That way, all the previously implemented

routines are accessible, like loglikelihood optimisation for parameter estimation, calcula-

tion of the covariance matrix, which allows for the construction of Wald-type confidence

intervals and the AIC values for the model selection phase. In listing 6.1, the code for

fitting the WPLP is shown.

1 import numpy as np

2 from statsmodels .base.model import GenericLikelihoodModel

3

4 def loglike_WPLP (T, b, alpha , phi):

5 n = len(T) - 1

6 ret = n * (np.log(phi) + np.log(b) + np.log(alpha)) + (b - 1) * np.

log(T[1]) + (alpha - 1) * np.log( T[1] ** b) - phi * T[1] ** (b *

alpha) + sum ([(b - 1) * np.log(T[i]) + (alpha - 1) * np.log(T[i] ** b

- T[i -1] ** b) - phi * (T[i] ** b - T[i -1] ** b) ** alpha for i in

range (2, n+1) ])

7 return ret

8

9 class WPLP_Model ( GenericLikelihoodModel ):

10 def __init__ (self , endog , exog=None , ** kwds):

11 if exog is None:

12 exog = np. zeros_like (endog)

13

14 super(WPLP_Model , self). __init__ (endog , exog , ** kwds)

15



84 CHAPTER 6. APPLICATION TO REAL DATA

16 def nloglikeobs (self , params ):

17 b, alpha , phi = np.exp( params [0]) , np.exp( params [1]) , np.exp(

params [2])

18 return -loglike_WPLP (self.endog , b=b, alpha=alpha , phi=phi)

19

20 def fit(self , start_params =None , maxiter =10000 , maxfun =5000 , ** kwds)

:

21 if start_params is None:

22 start_params = np.array ([-.5, -.5, -.5])

23 else:

24 start_params = start_params

25

26 return super(WPLP_Model , self).fit( start_params = start_params ,

maxiter =maxiter , maxfun =maxfun , ** kwds)

Listing 6.1: Code snippet for statistical inference under the WPLP

Writing all the classes inheriting from GenericLikelihoodModel for each of the mod-

els: WPLP, NHPP, HPP and WRP, and fitting them to the failure data in Table 6.1,

results in Table 6.3. Looking at the WPLP, there is evidence of a renewal-type behaviour

in the failure process, given that α̂ 6= 1, along with some time dependence, indicated

by b̂ 6= 1. However, one must be careful in drawing conclusions purely from the point

estimates of the parameters. A closer look in the confidence intervals reveals a behaviour

that could be explained by a NHPP, since the lower CI is 1.081, or a HPP, since the upper

CI is 0.978. This is where model selection is important, to give a statistical reason for

choosing a particular model.

α̂ [95% CI] â [95% CI] b̂ [95% CI]
WPLP 1.240 [1.081, 1.423] 0.021 [0.002, 0.118] 0.848 [0.735, 0.978]
NHPP 1.000 [1.000, 1.000] 0.019 [0.004, 0.091] 0.859 [0.719, 1.026]
HPP 1.000 [1.000, 1.000] 0.005 [0.004, 0.005] 1.000 [1.000, 1.000]
WRP 1.201 [1.048, 1.377] 0.005 [0.001, 0.019] 1.000 [1.000, 1.000]

Table 6.3: Fitted failure models parameters

In Table 6.4, the AIC values are calculated for each model along with the other AIC
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statistics, ∆i and wi. The results points towards the WPLP as the best model with a

91.1% probability. There is also some evidence that the WRP could be a potential model,

by the rule of thumb 4 ≤ ∆i ≤ 7. However, plotting the times to failure of the system,

against the observed number of failures, that is (Ti, i), there is a slight curvature in the

data, which points towards a time trend of some sort, as seen in Figure 6.1. Therefore,

the final model by the Akaike information criterion is the Weibull-Power Law process,

WPLP(1.240, 0.021, 0.848).

WPLP NHPP HPP WRP
AIC 1549.39 1557.78 1560.74 1554.46

∆i 0 8.396 11.354 5.078
wi 0.911 0.014 0.003 0.072

Table 6.4: Fitted failure models selection

As means of a final visual inspection, in Figure 6.1, the comparison between the fitted

model and the failure data are shown. The dashed line represents the expected number

of failures under the WPLP, calculated as explored in Section 5.2.1, with a number of

subdivisions in the time mesh of the RS-Method equal to n = 2000, and total solution

time equal to 10.9 seconds. The fitting seems pretty reasonable, with a clear time trend

behaviour of the data.

The time derivative of the expected number of failure is the ROCOF, by definition.

This is a very important performance measure, and is plotted in Figure 6.2. The system

is clearly in a decreasing ROCOF region, which means that the system is improving with

time. Now, the resulting WPLP have a Weibull renewal distribution with shape parameter

1.240 which implies a increasing failure rate. This means that the conditional intensity

function will jump downwards at each failure, which may be an indicative of efficient

maintenance, since the interventions will happen at high values of renewal failure rate, on

average. Further, the general aging of the system, governed by an estimated time trend

of the form λ̂(t) = 0.021 · 0.848 · t0.848−1 = 0.018 · t−.152 which decreases with t, introduces

a decreased failure frequency.

The final metrics extracted from the failure model are the next time to failure. There
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Figure 6.1: Expected number of failures for the WPLP(1.240, 0.021, 0.848)
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Figure 6.2: Rate of Occurrence of Failures for the WPLP(1.240, 0.021, 0.848)
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are two estimators, analytically derived: a point predictor and a interval predictor, given

in Equations 5.5 and 5.6, respectively. For the fitted WPLP(1.240, 0.021, 0.848) model:

T̂NF+1 = 27176.70 hours

X̂NF+1 = 260.21 hours

and, with 90% confidence:

[T̂L, T̂U ] = [26941.89, 27592.81] hours

[X̂L, X̂U ] = [25.40, 676.32] hours

The implementation is very straightforward and is presented in Listing 6.2.

1 import math

2 import numpy as np

3

4 def point_predictor ( last_failure , failure_model ):

5 alpha , a, b = failure_model [1]

6 ret = (1 / a + last_failure ** b) ** (1/b)

7 ret2 = ret - last_failure

8 return ret , ret2

9

10 def interval_predictor ( last_failure , failure_model , epsilon_1 =.05 ,

epsilon_2 =.05):

11 alpha , a, b = failure_model [1]

12 phi = (a * math.gamma (1+1/ alpha)) ** alpha

13 T_L = ( last_failure ** b + (1/ phi * np.log (1 / (1- epsilon_1 ))) **

(1/ alpha)) ** (1/b)

14 T_U = ( last_failure ** b + (1/ phi * np.log (1 / ( epsilon_2 ))) **

(1/ alpha)) ** (1/b)

15 return [T_L , T_U], [T_L - last_failure , T_U - last_failure ]

Listing 6.2: Code snippet for the prediction module
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6.3 Modelling of downtimes

The implemented tool works with 3 different possible downtime models, namely the: 2-

parameter exponential distribution; the normal distribution; and the 3-parameter lognor-

mal distribution. Those are commonly used models under the assumption of independent

and identically distributed data. For statistical inference, the SciPy module [30] is used

and, specifically, its scipy.stats sub-module, which contains a large number of prob-

ability distributions and statistical functions. Say a variable data stores some sample

observations. Given the scipy.stats module, a general Python function may be written

to get both the parameter estimates for each model and the AIC values, as displayed in

Listing 6.3.

1 import scipy.stats as stats

2

3 def downtime_models (data):

4 params_expon = stats.expon.fit(data)

5 params_lognorm = stats. lognorm .fit(data)

6 params_norm = stats.norm.fit(data)

7 expon_aic = 2* len( params_expon ) - 2*( stats.expon. logpdf (data ,*

params_expon ).sum ())

8 lognorm_aic = 2* len( params_lognorm ) - 2*( stats. lognorm . logpdf (data ,*

params_lognorm ).sum ())

9 norm_aic = 2* len( params_norm ) - 2*( stats.norm. logpdf (data ,*

params_norm ).sum ())

10 model = list ()

11 model. append (["expon", params_expon , expon_aic ])

12 model. append ([" lognorm ", params_lognorm , lognorm_aic ])

13 model. append (["norm", params_norm , norm_aic ])

14 return model

Listing 6.3: Code snippet for fitting downtime models

In the present case, data stores the downtime data in Table 6.2. The estimated

parameters for each model are given in Table 6.5. The data is clearly skewed to right,

since the location parameters are positive across all models, justifying the necessity of the
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location parameter in a general purpose tool. The same conclusion may be drawn from

the histogram plot of the data, which is imply a frequency plot, presented in Figure 6.3.

Exponential Lognormal Normal
Shape − 0.851 −

Location 2.920 2.905 3.247
Scale 0.327 0.232 0.354

Table 6.5: Fitted downtime models parameters

As before, the resulting AIC values and its related statistics for model selection are

used, as displayed in Tabel 6.6. In this case, there is no doubt that the lognormal model

is the best one, with probability tending to 1. Thus, the final downtime model is the

3-parameter lognormal.

Exponential Lognormal Normal
AIC −25.262 −44.894 98.430

∆i 19.632 0 143.324
wi 5e− 05 0.999 8e− 32

Table 6.6: Fitted downtime models selection

A comparison between the fitted model and the observed downtime data is shown in

Figure 6.3. The lognormal model seems to capture the skewed behaviour of the data, as

well as its general frequency distribution shape.

6.4 Simulation model

Consider the proposed Failure-Repair Process (FRP), which is a simple next event

simulation model for a single repairable system with a single failure mode. The sample

size NS is fixed in 50, while the random samples K vary as 100, 500, 1000, 2000. By doing

so, it is expected to verify how the non-analytical performance measures vary as a function

of the total replications M = NSK.

In order to simulate the resultant FRP, both the final failure and downtime models

parameters are needed. With those the random variates may be generated, which allows
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Figure 6.3: Distribution of the D ∼ lognorm(0.851, 2.905, 0.232)

for the creation of different simulation runs for the system. Generation of the failure

times is done by using the formula presented in Equation 4.2, while the downtimes are

generated using the numpy and scipy modules. The code for the model simulation is

presented in Listing 6.4.

1 import scipy.stats as stats

2 import numpy as np

3 import math

4

5 def next_ttf ( previous_ttf , failure_model ):

6 alpha , a, b = final_failure_model [1]

7 U = np. random . uniform ()

8 tmpA = previous_ttf ** b

9 tmpB = 1 / (a * math.gamma (1+1/ alpha))

10 tmpC = np.log (1/(1 -U)) ** (1/ alpha)

11 tmpD = (tmpA + tmpB * tmpC) ** (1/b)

12 return tmpD
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13

14

15 def next_ttr ( downtime_model , CRN=None):

16 dist = final_downtime_model [0]

17 params = final_downtime_model [1]

18 if dist == "expon":

19 return stats.expon.rvs (* params , random_state =CRN)

20 elif dist == " lognorm ":

21 return stats. lognorm .rvs (* params , random_state =CRN)

22 elif dist == "norm":

23 return stats.norm.rvs (* params , random_state =CRN)

24

25 def model_sim ( failure_model , downtime_model , time_horizon , n_f):

26 t, d, t_G , s, x = list (), list (), list (), list (), list ()

27 t. append (0)

28 d. append (0)

29 s. append (1)

30 t_G. append (0)

31 x. append (0)

32 i = 1

33 while (max(t_G) < time_horizon ) or (len(t) <= n_f +1):

34 if s[-1] == 1:

35 t. append ( next_ttf (t[-1], failure_model ))

36 tmp_x = t[-1] - t[-2]

37 x. append (tmp_x)

38 t_G. append (tmp_x + t_G [ -1])

39 s. append (0)

40 elif s[-1] == 0:

41 d. append ( next_ttr ( downtime_model ))

42 t_G. append (d[-1] + t_G [ -1])

43 s. append (1)

44 i = i + 1

45 return t_G , s, x, d, t

Listing 6.4: Code snippet for model simulation
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Now, some other parameters are needed in order to run the simulation, namely: min-

imum number of failures, n_f, and maximum simulation time, time_horizon. Those are

taken from the original sample path, which is the converted failure and downtime data,

taking place in a global time scale. Such process is done by the code presented in Listing

6.5.

1 def failure_repair_process (X=list (), D=list ()):

2 """

3 Description : This function converts the time -between - failures (TBF)

and the repair times to a single global time scale.

4 Input | X: list containing the TBF of the system .

5 | D: list containing the downtime times between failures of

the system .

6 Output | T: failure and repair times in global time

7 | S: state of the system at each event epoch

8 """

9 S, T = list (), list ()

10 N = max ([ len(X), len(D)])

11 if X[0] == 0:

12 X = X[1:]

13 else:

14 pass

15 n = 0

16 T. append (0)

17 S. append (1)

18 while n < N:

19 for i in range (0, 2):

20 if S[-1] == 1:

21 S. append (S[-1] - 1)

22 try:

23 T. append (T[-1] + X[n])

24 except IndexError :

25 pass

26 else:

27 S. append (S[-1] + 1)
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28 try:

29 T. append (T[-1] + D[n])

30 except IndexError :

31 pass

32 n = n + 1

33 return T, S

Listing 6.5: Code snippet for converting the original data to a single time scale

With the original sample path is very simple to simulated the M simulation runs of

interest. In Listing 6.6, the code for that is presented.

1 import numpy as np

2

3 complete_sample = np.array ([ model_sim ( final_failure_model ,

4 final_downtime_model , t_sim , n_f) for i in range (0, M)])

5 random_sample = np.split( complete_sample , K)

Listing 6.6: Code snippet for random samples simulation of the FRP

With the FRP sample paths, the first metric shown is the proposed approximate

reliability using the Kaplan-Meier estimate. The main assumption for the calculation of

this metric is that each time between failures (TBF), Xi, in the system is independent

and identically distributed across replications. The Kaplan-Meier estimates are easily

calculated with the help of the lifelines module [49]. Listing 6.7 display the code for

the calculation of the KM estimates for the nth TBF, based on the TBF data. The alpha

parameter dictates the confidence interval for the estimate.

1 from lifelines import KaplanMeierFitter

2

3 def reliability (n, TBF , alpha =.1):

4 kmf = KaplanMeierFitter ()

5 if str(n)[-1] == ’1’:

6 label = f’{n}st TBF ’

7 elif str(n)[-1] == ’2’:

8 label = f’{n}nd TBF ’

9 elif str(n)[-1] == ’3’:
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10 label = f’{n}rd TBF ’

11 elif n == len(TBF) - 1:

12 label = r’$N_F +1$’ + ’ TBF ’

13 else:

14 label = f’{n}th TBF ’

15 kmf.fit(TBF[n], label=label , alpha=alpha)

16 return kmf

Listing 6.7: Code snippet for the Kaplan-Meier estimates of the Xn TBF

The resultant reliability plot for the data is shown in Figure 6.4. It agrees with past

conclusions, as it shows that the system is improving with time, as the reliability had a

big increase from X1 to X42. However, the reliability improvement is slowing down, as

seen when comparing the next time between failure of system NF + 1 and 83rd, showing

that the reliability functions does not differ greatly.
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Figure 6.4: Kaplan-Meier Estimates for the Xn’s of the WPLP(1.240, 0.021, 0.848)

A more specific measure of reliability of repairable system is the availability [4]. Both

the point and mean availability estimators were described in Sections 5.4.3 and 5.4.2. For
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the considered data of the enrobing machine, the plots of both estimators are presented

in Figures 6.5 and 6.6. For visualisation, the Savitzky-Golay Filter is applied, which

smooths the data and gives the user a sense of direction among the data noisiness. As

their accuracy is dependent in the number of random samples considered, the previously

discussed values for K = 100, 500, 1000, 2000 are considered, with fixed NS = 50.

The point availability behaves somewhat poorly for K = 100, but seems to stabilise

fairly soon atK = 500, where a clear idea of the behaviour of the availability of the system

is present, with a minimum value of 0.976, and a last value of 0.987. By increasing the

number of K to 1000 and 2000, there is no significant gain, but a lot of drawbacks when

it comes to elapsed solution times, as shown in Table 6.7. For K = 2000, the minimum

value continues 0.976 while the maximum one becomes 0.988, a negligible difference.

For the mean availability estimator, there is a very well behaved curve since K = 100,

with a minimum value of 0.973 and maximum of 0.986. While forK = 2000, the minimum

and maximum values continue the same. For completeness sake, one could argue that the

Savitzky-Golay Filter does not serve any good here. However, as a guarantee measure

that the data is interpretable in any circumstance, it is always plotted.

K Time elapsed [s]
100 152.48
500 769.05
1000 1590.56
2000 3135.43

Table 6.7: Solution times for each value of K

All the previously discussed performance indicators are shown in Figure 6.7.

6.5 General-purpose tool

In this section, the flow of the tool is discussed, as experienced by a general user.

The tool consists of 3 windows, namely: main, configurations and results. The main



96 CHAPTER 6. APPLICATION TO REAL DATA

0.98

0.99

K = 100

Savitzky-Golay Filter Point Estimators

0.98

0.99

K = 500

0.98

0.99

K = 1000

0 5000 10000 15000 20000 25000

0.98

0.99

K = 2000

0.0 0.2 0.4 0.6 0.8 1.0
Time

0.0

0.2

0.4

0.6

0.8

1.0

P
oi

n
t

A
va

il
ab

il
it

y

Figure 6.5: Point availability for the WPLP(1.240, 0.021, 0.848) with varying random
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Figure 6.6: Mean availability for the WPLP(1.240, 0.021, 0.848) with varying random
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Figure 6.7: Results for the WPLP(1.240, 0.021, 0.848)

window allocates the access to all others, besides also importing the failure and down-

time data. The configurations one is responsible for setting some global parameters

pertinent for the model. Lastly, the final output is displayed in results.

The main window, shown in Figure 6.8, consists of 3 buttons, where the first one,

from left to right, gives the user access to the configurations environment, displayed

in Figure 6.9, and, very importantly, allows the user to import the data. After setting

up the software parameters in configurations and importing the data, the user then

may begin the analysis with the Run Analysis button. After the calculations are done,

the Show Results button will become enabled and the user is able to display results

environment.

In the configurations window, presented in Figure 6.9, the user may choose between

a few states of model selection, that is, the user may continue to use the Default method,

that utilises the Akaike information criterion for model selection, or have a predetermined

failure and/or downtime model. Lastly, a few parameters are available for controlling the
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Figure 6.8: Main window

Figure 6.9: Configurations window

accuracy of both the RS-Method and the simulation model.

Lastly, results window, shown in Figure 6.10, displays all the Key Performance

Indicators that are available in the tool: failure model parameters, failure prediction,

point and mean availability, expected number of failures, rate of occurrence of failures

and the Kaplan-Meier estimates for the reliability. The user is also able to save the

plotted performance indicator, in the left hand side corner, by clicking the floppy disk

symbol.
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Figure 6.10: Results window



Chapter 7

Conclusions and Future Work

The purpose of this thesis was to implement a general-purpose tool for modelling re-

pairable systems, that works under a automated model selection framework and describes

the system in terms of several performance indicators.

First, a thorough research into failure and downtime models was conducted. Along

with methods for estimating model parameters and confidence intervals.

Then, the main techniques used in simulation of general stochastic processes were

described. This allowed us to calculate the availability of the system, which is not possible

under the purely failure modelling, commonly used.

With the mathematical models for the failure and repair processes together with a

model selection framework, we proposed the final algorithm. The use of the Akaike

information criterion (AIC) is what allows the tool to be completely automated, and

glues the whole algorithm together. Although the software also works without automated

selection, we believe that its main appeal is for users that do not know a lot about

repairable system modelling.

Finally, we analysed a real application case using the proposed algorithm. All the

different failure models were fitted, and the most suitable model was selected based on

the AIC. The same is true for the downtime models. In the end, the models was a

Weibull-Power Law TRP with a 3-parameter lognormal distribution. The analysed system

showed a general improving behaviour and its parameters could be a indicative of efficient
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maintenance. Also, the availability estimators were compared for different values of total

replications, and 25000 seemed to be a good enough number. In general, the system

presented a very high availability, with some upward trend, which could be an indicative

of posterior improvement.

Since this is a general tool, two main points may be improved upon: adding new

imperfect repair processes, other than the WPLP; and using different model selection

criterion. When it comes to efficiency, one could improve both the point availability and

the reliability estimators proposed here, by more robust and general ones.
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