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ABSTRACT

Driven by recent advances in object detection with deep neural networks, the tracking-by-detection
paradigm has gained increasing prevalence in the research community of multi-object tracking (MOT).
It has long been known that appearance information plays an essential role in the detection-to-track
association, which lies at the core of the tracking-by-detection paradigm. While most existing works
consider the appearance distances between the detections and the tracks, they ignore the statistical
information implied by the historical appearance distance records in the tracks, which can be particu-
larly useful when a detection has similar distances with two or more tracks. In this work, we propose
a hybrid track association (HTA) algorithm that models the historical appearance distances of a track
with an incremental Gaussian mixture model (IGMM) and incorporates the derived statistical infor-
mation into the calculation of the detection-to-track association cost. Experimental results on three
MOT benchmarks confirm that HTA effectively improves the target identification performance with
a small compromise to the tracking speed. Additionally, compared to many state-of-the-art trackers,
the DeepSORT tracker equipped with HTA achieves better or comparable performance in terms of the
balance of tracking quality and speed.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction offline (a.k.a batch) and online approaches. Offline approaches
[1, 2, 3] typically formulate the data association as a global op-
timization problem by considering the detections over a batch
of frames or all frames. They are effective in overcoming issues
like unreliable detections, similar appearance, and frequent oc-
clusions, but their high computational cost and non-causal fash-
ion of tracking make them unsuitable for time-critical applica-
tions. By contrast, the online approaches [4, 5] sequentially
link the detections with tracks on a frame-by-frame basis by
only considering the information up to the present frame, thus
compared to the offline approaches, they are usually much more
efficient but are more prone to association errors.

Multi-object tracking (MOT), which aims to track multiple
objects of interest in video sequences, is an essential building
block of a wide range of advanced applications such as video
surveillance and autonomous driving. Driven by the great suc-
cess of deep neural networks in object detection, the tracking-
by-detection paradigm has gained substantial attention in recent
years. Such a paradigm first detects targets of interest in single
video frames and then builds up tracks of targets by associating
the detections. Thus, lying at the heart of tracking-by-detection
based MOT is the detection-to-track association. To avoid any
confusion, a "target’ in this manuscript refers to an object of in-
terest that appears, moves and disappears in a camera’s field of
view, and a ’track’ refers to a target’s trajectory or path, which
records all the information, including ID, positions and appear-
ance features, associated with the target. The works proposed
to address the data association problem can be categorized into

Like in many other computer vision tasks, the accuracy-
efficiency trade-off for MOT is quite profound. Higher accu-
racy of detection and association usually comes with a higher
computational cost. Notably, many existing works tend to place
little emphasis on tracking efficiency. Complicated modules
and ad-hoc twists are usually devised to improve tracking ac-
curacy. This is most likely because the performance ranking on
*Corresponding author: the MOT benchmarking datasets is largely based on the track-
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natural disasters monitoring and video surveillance systems, the
tracking speed is essential for the success of the overall system.
Another important aspect of the tracking performance that is
sometimes overlooked is the accuracy and consistency of target
identification. In practice, reliable identity information about
the tracked targets is key for many high-level tasks such as ab-
normal behavior analysis and trajectory predictions.

Existing MOT methods typically perform detection-to-track
association by exploiting multiple cues, including the mo-
tion and appearance information. The appearance information,
which is usually represented as feature vectors produced by an
appearance model, is important for accurate long-term tracking
and identification. However, most existing association meth-
ods only consider the appearance feature distances calculated at
the current frame and ignore the historical appearance feature
distance records, which are also useful for track association.
In this paper, we focus on the online track association based
on appearance information and propose a hybrid track associ-
ation (HTA) algorithm that enables more accurate and robust
detection-to-track association with a small compromise to the
tracking speed. We model the historical appearance distance
records between the detections and tracks with an efficient in-
cremental Gaussian mixture model (IGMM) [6]. The statistical
information derived from the IGMM is then used as auxiliary
information for the association cost calculation based on ap-
pearance distance.

2. Related work

Given the vast variety of studies on MOT, we will only review
those that are most closely related to our work.

Bewley et al. [4] proposed a simple online and real-time
tracking (SORT) algorithm, which only uses the Intersection
over Union (IoU) distance between the predicted detections of
the tracks (with a Kalman filter) and the detections in the cur-
rent frame for the association. The appearance information and
the potential occlusions are ignored in this framework. There-
fore, it is fast and can easily reach a processing speed of 60~100
frames per second (FPS). However, due to the lack of appear-
ance information in the association process, SORT shows poor
identification performance in scenes with moderate occlusions.

Wojke et al. [5] proposed a DeepSORT framework, which
extends the SORT framework by introducing appearance in-
formation in the association process with a deep convolutional
neural network (CNN) trained offline on large-scale image
datasets. As the appearance information is typically repre-
sented by fixed-length feature vectors produced by an appear-
ance model, e.g. the CNN-based person re-identification model
in [5], we will use “appearance information” and “appearance
feature” interchangeably hereinafter. Another import contribu-
tion of DeepSORT is the cascade matching strategy (CMS) [5],
which gives higher priorities to tracks that have been seen more
recently. The authors argued that CMS is effective in reducing
the incorrect association due to temporary and long-term occlu-
sions. In fact, many earlier works [7, 8, 9, 10] have pointed out
the importance of appearance information in the detection-to-
track association. However, few studies have been dedicated to
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investigating the effects of different appearance-based associa-
tion methods on tracking performance.

Recently, Wang et al. [11] proposed to handle the detection-
to-track association based on the distances between the appear-
ance features of the detections and the ‘smoothed’ feature of
each track, which is an exponential moving average of the ap-
pearance features of temporally adjacent detections in the same
track. This strategy considers the temporal relationship of de-
tections and thus is expected to be more accurate than CMS.
More recently, Han et al. [12] proposed to exploit the comple-
mentary information of a pair of synchronized videos captured,
respectively, from a top view in a high altitude, e.g. by a drone-
mounted camera, and from a horizontal view, e.g. by a helmet-
mounted camera, to improve the accuracy of track association
for MOT. However, it requires that both the horizontal- and top-
view videos are available and synchronized prior to tracking,
which may not be applicable in some practical scenarios.

Unlike the aforementioned methods that only consider the
distance between appearance features at the current frame, in
this work we propose a hybrid track association algorithm that
also incorporates the statistical information of the historical ap-
pearance distance records. Our work bears some similarity to
the association method based on tracklet confidence [9]. In that,
the average of the pairwise historical appearance distances of a
track is used to measure the track quality (or confidence). Our
method is essentially different from [9] in twofold. Firstly, we
use an IGMM to efficiently estimate the distribution, rather than
the average score in [9], of the historical distances. Secondly,
the estimated IGMM is used to provide extra information for the
calculation of association cost, while in [9] the average score is
used to determine which tracks will be associated preferentially.

3. Hybrid track association

3.1. Motivation

We denote the ¢-dimensional appearance feature of a detec-
tion i appearing at frame ¢ as f' and the historical appearance
features of track j up to frame ¢ as T;i ={ f! }, where s denotes
the frame indices where the target corresponding to track j has
appeared. To associate the detections at frame ¢ with existing
tracks, the appearance feature of each detection is compared
with the appearance features of each track. This results in a cost
matrix with each element d,’=F (f!, T}) being the association
cost of assigning detection i to track j, where ¥ is a function
for measuring the appearance distance between a detection and
a track. For instance, if we use the minimum cosine distance,

then F(f7, T,j )=min, (1 - ﬁ) With the cost matrix, the
1112 sii2

detection-to-track association can be modeled as an assignment
problem and solved using the Hungarian algorithm. To reduce
the risk of assigning false detections or newly emerged objects
to existing tracks, a permissible maximum distance d,,,, is used
to ignore any association with a cost exceeding d,;-

The above distance-based association only considers the ap-
pearance distances at the current frame 7. However, the his-
torical appearance distance records may also provide useful in-
formation for reducing the ambiguities in the detection-to-track
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Fig. 1: Exploiting the statistical information of the historical appearance dis-
tance records of a track for the detection-to-track association. The two plots on
the left side, respectively, show the historical distance records for Track 1 and
Track 2. The corresponding histograms are shown on the right. The distance-
based assignment will wrongly assign detection i to Track 1 as d;’l < d;"z, while
looking at the two histograms, we can see that the likelihood of dﬁ’z belonging
to the distance distribution of Track 2 is higher than that of df’l belonging to

the distance distribution of Track 1, i.e. p(d"'[Trackl) < p(d**[Track2). Such
extra information provides a chance to correct the wrong assignment.

association. An example is shown in Fig. 1, where the ground-
truth is that detection i belongs to Track 2 at frame 7. However,
due to the outliers appearing in the tracks or the limited dis-
criminative power of the appearance features, detection i has a
smaller distance to Track 1 than to Track 2, i.e. df’l < df’2. Con-
sequently, the above distance-based assignment will wrongly
associate detection i with Track 1 rather than Track 2. Mean-
while, if we look at the corresponding histograms of the histor-
ical distance records of the two tracks, it becomes evident that
the likelihood of df’z belonging to the distance distribution of
Track 2 is higher than that of df’l belonging to the distance dis-
tribution of Track 1, i.e. p(dﬁ’llTrackl) < p(df’ZITrackZ), which
implies that detection i is more likely to belong to Track 2. Such
statistical information can be exploited to correct the inaccurate
associations when multiple tracks with marginally different dis-
tances are competing for the same detection. This motivates us
to model the historical distance records and use the derived sta-
tistical information to aid the detection-to-track association for
MOT. To achieve this purpose, when a detection i is assigned to
a track j at a specific frame ¢, we store not only the appearance
feature f' but also the corresponding appearance feature dis-
tance dﬁ’j . As track j builds up, this will generate the historical
appearance distance records D/ = {d;’}, where t is the frame in-
dices where detection i is found to be matched with track j. For
brevity, we will drop the superscripts i and j in the following
analysis and denote the historical appearance distance records
of a track by D = {d,}, where n = 1,2, ... is the internal index
of the appearance distance records in D.

3.2. Incremental Gaussian mixture model

Before delving into the details of modeling the historical dis-
tance records of a track, let us turn our attention to its relation-
ship with foreground objects detection in video surveillance.
Detecting foreground objects is usually accomplished by estab-
lishing a statistical background model at each pixel location and
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the pixel values that do not fit the model are considered as ‘fore-
ground’. Similarly, if we consider the historical appearance dis-
tances of a track as pixel ‘values’ appearing at a ‘track location’
over time, modeling the historical distances of a track is equiva-
lent to modeling the background pixel values at a pixel location.
For this reason, we adopt the Gaussian mixture model, which
is widely used for background modeling, to model the histori-
cal appearance distances of a track. Considering the time-series
nature of the online association and the real-time requirement
of tracking systems, we develop our algorithm based on a fast
incremental Gaussian mixture model (IGMM) [6].

Following the work in [13], we model the cosine distance or
squared Euclidean distance' between two {-dimensional unit-
norm appearance features as a chi-square distribution with £
degrees of freedom (see the histograms in Fig. 1). However,
it is unsuitable to fit a non-norm chi-square distribution with
an IGMM, so we take the fourth root of the chi-square random
variable to approximately transform the chi-square distribution
to a normal distribution, as suggested in [14]. As we can see
in Fig. 2, transforming to a normal distribution allows for a
more accurate fitting with IGMM. Suppose that we have the
historical distance records D = {d,} for a track, where n is the
internal index of the data points in D and d,, is the fourth root
of the distance between the appearance features of a track and
a detection assigned to it. To model the distribution of the data
points in D, we use the following Gaussian mixture model with
K, components:

P (dn|®0) = S 7enp (dulpcns o7, (1)

where 7y, Z;ﬁl”k,n = 1 is the mixture weight for the k™ com-
ponent when the n" data point arrives and p (dn |pk,n, o n) is the
k™ component defined as a Gaussian distribution with mean g,

and variance o-f n:

2
1 exp (_ (dn - ,uk,n) ] ) (2)

P (s 02,) = ——e
(n| n kn) l—zﬂk’na—in zo_i’n

According to the Bayes’ rule, the posterior probability of d,
belonging to the k" component can be computed as

Thken P (dﬂ |luk,’1’ O—I%,n)

Pz =1ld,) = (3)

K, ’
Zm‘:l Tl P (dn |ﬂm,n’ 0’3,”1)

where z = (zi, ..., 2x,) 18 a vector of K, mutually exclusive bi-
nary variables with z; = 1 indicating the X component is re-
sponsible for generating the data point.

When a new data point d, arrives, i.e. a new detection is
assigned to a track, the incremental estimation process is carried
out by executing either Procedure 1: creating a new component
or Procedure 2: updating the existing component(s), followed
by an additional Procedure 3) removing spurious components.

Procedure 1: creating a new component

't is easy to show that they are equivalent in the case of unit-norm vectors.



If there are no existing components (i.e. K, = 0 before the
first data point arrives) or the update criterion in Procedure 2 is
not met, a new component k = K,, + 1 is created and initialized:

Vignel = L, Nipet = 1, fliper = dh,
Kn+l (4)

2 2
K, « K, + 17o—k’n+1 = O i Thn+l = I/Zm:] mn+1s

where Ny, is the accumulated posterior probability of the k™
component when the n™ data point arrives, v, is a counter
used for determining whether the & component is spurious or
not (see Procedure 3 below), and o-izni is the user-specified initial
variance of a component depending on the nature of the appear-
ance feature.

Procedure 2: updating existing component(s)

When the squared Mahalanobis distance between a new data
point d, and any component k (1 < k < K,) is smaller than
)(%’171, i.e. the 1 — 7 percentile of a chi-square distribution with
1 degree of freedom, we update the existing components with
d, rather than creating a new component:

Vintl = Vin 1

Nini1 = Nint+p (Zk = 1|dn)

Hinst = P + Ekn (dn = Hicn)

Toner = Ot —&kn (01, = (= tenn)’) = @3, (Ao = picn)’
Tinst = Newst /SN0 Npppst,

&)

where & ,, is a coefficient accounting for the contribution of d,
to the update of the k™ component:

P (2= 1|dy)
Ekn ZW' (6)

The interfering outliers (e.g. due to occlusions and incorrect
detections as shown in Fig. 3) may also form additional com-
ponents with small mixture weights. If we increase the number
of components without limitation, these small components may
eventually overwhelm the importance of the components cor-
responding to the ground truth detections. Thus, similarly to
the work in [15], we set a maximum number of components
Kunax = 5 and discard the component with the smallest 7y,
when K, is reached.

Procedure 3: removing spurious components

A component k is considered spurious and removed when-
ever Vi, > Vyin and N, < Ny,. These two parameters sug-
gest that: if at least v,,;, data points have been recorded since
component k was created, i.e. v, > Vi, a sufficiently signifi-
cant change in component k in terms of the accumulated poste-
rior probability still cannot be observed, i.e. Ny, < Ny, then
component k is deemed to be spurious and should be removed.
As in [6], we set v,;;, = 5 and N,,;, = 3. Each of the above
three procedures is followed by renormalization to ensure that
Zﬁr’;l]n’m,lﬁl =L
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Fig. 2: Fitting a chi-square distribution (left) and the fourth root of a chi-square
distribution (right) with an IGMM. The dashed red and solid blue curves show
the fitting results for all data and data without outliers, respectively.

3.3. Track association

As some outliers are inevitably introduced to a track due to
occlusions or inaccurate detections (see the examples in Fig. 3),
we need to determine which components are most likely to be
generated by the ground truth detections in the track. Heuristi-
cally, a detection belonging to the track tends to have a smaller
appearance distance. Therefore, we sort the components of the
estimate mixture model by the mean p , in descending order
and choose the first M components that account for at least a
portion T of the model:

M = argmin,, (5L, > ). (7)

where T € [0, 1] is the minimum portion of the data that should
be accounted for the ground truth detections of a track. In other
words, at most 1 — T portion of the data is considered as ‘out-
liers’. A small Y usually results in a unimodal IGMM, while
a high T could results in a multi-modal IGMM, which allows
for modeling more dynamic distributions, e.g. caused by scenes
where tracked targets change pose constantly. We empirically
set T=0.8 in our experiments. An example is shown in Fig.
2, where the dashed red and solid blue curves show the fitting
results for all data and data without ‘outliers’, respectively.

With the above IGMM incrementally estimated for each
track, the remaining questions are when and how to integrate
such ‘statistical’ information with the distance-only based track
association method. Like many statistical models, the IGMM
model will only be statistically reliable when sufficient data has
been observed. For this reason, we set a minimum track length
L=15 to ensure that an IGMM will be estimated only for the
tracks with a length no less than £. For the tracks with a length
less than £, we only use the appearance distance as the associ-
ation cost. Otherwise, we use the following hybrid association
cost, hence the name Hybrid Track Association (HTA):

4
Sibima [Lp (x|ﬂk,n, 0’,%,,1) dx

M
Zk:l Then

Cr=Ad;+(1-2) . (8)

where d, is the distance-based term representing the appearance
distance between a detection and a track at the current frame ¢.
The probability-based term in the box is the cumulative proba-
bility of the outlier-free IGMM estimated with the appearance
distance records observed for the track. A acts as a weighting
factor to balance the importance of the distance-based and the
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Fig. 3: Examples of outliers appearing in Track 43 of sequence MOT16-09 in
the MOT16 benchmark. These outliers are typically caused by occlusions or
inaccurate detections, which result in relatively higher values of dj,.

probability-based terms. As can be expected, the probability-
based term is not as discriminative as the distance-based term
because the IGMM is only the statistical summary of the his-
torical distances. We thus use a large weighting factor 4 = 0.9.

4. Experiments

4.1. Implementation details

Our implementation is based on the DeepSORT tracker [5],
which is mainly composed of a pedestrian detector and a track
association module relying on the information provided by an
appearance model and a motion estimation model based on
Kalman filtering. Our proposed HTA algorithm resides in the
track association module and exploits the statistical information
of historical appearance distances of a track. We use YOLOv4
[16] for pedestrian detection. To make the detector more gen-
eralizable, we train it on a large-scale dataset (109,471 images
in total) consisting of 4 public pedestrian datasets: the Caltech
dataset [17], CUHK-SYSU dataset [18], PRW dataset [19] and
CrowdHuman dataset [20]. For the appearance model, we adopt
the CNN architecture proposed in [5] and train it on the MARS
person re-identification dataset [21], which contains 1,067,516
bounding boxes of 1,261 pedestrians. The appearance model
outputs a 512-dimensional feature for each detected bounding
box. All the experiments were conducted on a PC with an
NVIDIA GeForce RTX2080 Ti GPU (11 GB VRAM), Intel
Core i7-8086K CPU (6 cores, 4.0 GHz), and 32 GB RAM.

4.2. Evaluation metrics

To evaluate the performance of MOT, we adopt the following
metrics as proposed in [22] and [23]:

e Identification F1 score (IDF17): The harmonic mean of iden-
tification precision (the ratio of the computed detections that
are correctly identified) and recall (the ratio of ground truth
detections that are correctly identified).

e Multiple Object Tracking Accuracy (MOTAT): Overall
tracking accuracy computed by combining three sources of
errors: the number of false positive detections (FP|), the
number of false negative (i.e. missed) detections (FN|), and
the number of identity switches (IDS]).

e Multiple Object Tracking Precision (MOTPT): Average in-
tersection over union between the true positive detections and
their corresponding ground truth targets.
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e Mostly Tracked (MTT): Percentage of the ground-truth tar-
gets correctly tracked for at least 80% of their life span.

e Mostly Lost (ML|): Percentage of the ground-truth targets
correctly tracked for at most 20% of their life span.

e Fragmentations (Fragl): Number of times a ground truth
track changes its status from ‘tracked’ to ‘untracked’.

Here, ‘7" and ‘|’ respectively represent that higher and lower
values are preferred. IDF1 and MOTA have been widely ac-
cepted as the two most important gauges of tracking perfor-
mance. They measure different aspects of a tracker: IDF1 em-
phasizes the accuracy and consistency of target identification,
while MOTA is closely related to the detection performance.

68 68
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Fig. 4: Tracking performance for various values of (a) the minimum track

length £ for reliably estimating an IGMM and (b) the weighting factor A (right)
in Eq. (8).
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Fig. 5: Qualitative evaluation on the sequence MOT16-09. This example shows
how the ID of a pedestrian changes from frame 244 to frame 432 for two track-
ers, EMA (1st row) and HTA (2nd row). The number on each frame is the
enlarged ID assigned to the pedestrian and a color change of the number indi-
cates an ID switch. Note that for the same video sequence, different trackers
may assign different IDs to the same person.

4.3. Benchmarking datasets

For the evaluation of tracking performance, we use three
MOT benchmark datasets: 2D MOT15 [31], MOT16 [22], and
MOT17 [22]. These three benchmarks, respectively, contain 22
(11 training, 11 test), 14 (7 training, 7 test), and 14 (7 training,
7 test) videos sequences in unconstrained environments filmed
with both static and moving cameras. The ground truth annota-
tions of the training sequences are released but those of the test
sequences are unpublished to avoid over-fitting to the specific
sequences [22]. However, because the sequences in the train-
ing and test sets of these three benchmarks were captured in
the same or similar environments, training on the training sets
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Table 1: Performance comparison of four different track association methods on the t raining sequences of 2D MOT15, MOT 16, and MOT17. The best results for
each metric are highlighted in bold. The frames per second (FPS) in the last column measures the speed of the entire algorithm including detection and association.

Tracker IDF1T MOTAT MOTPT MTT ML| FP| FNJ IDS| Frag| FPST
v | CMS [5] 59.7% 653% 189% 54.6% 16.8% 5282 9482 211 643 ~23
& | ANN (k=5) 63.0% 653% 79.0% 551% 17.5% 5359 9413 209 641 ~23
% EMA [11,24] | 64.1% 654% 79.0% 551% 17.0% 5283 9418 215 642 ~24
HTA 67.7% 651% 79.0% 53.5% 17.2% 5192 9580 278 647 ~24
o | CMS [5] 573% 54.6% 76.8% 332% 20.5% 9964 39529 633 1513 ~22
& | ANN (k=5) 60.4% 54.4% 769% 350% 20.1% 10299 39379 657 1528 ~21
% EMA [11,24] | 60.6% 54.5% 76.8% 34.6% 209% 10235 39420 633 1545 ~21
HTA 62.7% 543% 76.8% 333% 203% 9991 39735 647 1526 ~19
~ | CMS [5] 57.0% 54.6% 76.8% 31.9% 233% 9329 41068 641 1529 ~19
= | kANN (k=5) 602% 544% 769% 32.8% 229% 9658 40912 659 1546 ~18
% EMA [11,24] | 60.4% 54.4% 769% 32.4% 23.4% 9585 40946 637 1560 ~19
HTA 62.5% 543% 769% 331% 24.0% 9358 41275 660 1539 ~18

Table 2: Performance comparison with state-of-the-art online trackers on the test sequences of MOT16 and a subset of MOT15. The symbol ‘x’ represents that
the tracker uses the faster-RCNN [25] based person detector provided by POI [10], the symbol ‘§’ means that the tracker is trained on the t raining sequences
of MOT16, and the symbol ‘&’ means that the results are obtained on 4 sequences of MOT15, namely PETS09-S2L1, PETS09-S2L2, ETH-Bahnhof and ETH-
Sunnyday. In each column (excluding the last two rows), the bold and underlined values represent the best result of the four association methods and the best
result of other methods, respectively. Except for TCODAL [9], the frames per second (FPS) in the last column measures the speed of the entire algorithm including

detection and association.

Tracker IDF1T MOTAT MOTPT MT? ML] FP| FNJ IDS] Frag| FPST
POI* [10] 66.1% 65.1% 79.5% 340% 20.8% 5061 55914 805 3093 <5
TAP* [26] 73.5% 64.8% 78.7% 385% 21.6% 12980 50635 571 1048 <8
SORT™ [4] 538% 59.8% 19.6% 254% 22.77% 8698 63245 1423 1835 <12
VMaxx* [27] 492% 62.6% 183% 327% 21.1% 10604 56182 1389 1534 ~7
DeepSORT™* [5] | 622% 61.4% 791% 32.8% 182% 12852 56668 781 2008 <8
LM-CNN%* [28] | 61.2% 67.4% 79.1% 382% 192% 10109 48435 931 1034 ~2
EAMTT?® [29] 533% 525% 78.8% 19.0% 349% 4407 81223 910 1321 ~12
CNNMTT® [30] | 62.2% 652% 78.4% 324% 21.3% 6578 55896 946 2283 <6
JDE-1088% [11] 55.8%  64.4% -- 354%  20.0% -- -- 1544 -- ~19
FairMOT?® [24] 70.4% 68.7% 80.3% 39.5% 19.0% 11695 44411 953 2424 ~26
CMS [5] 587% 625% 792% 393% 11.5% 19284 47570 1456 2510 ~16
kNN (k=5) 613% 623% 623% 394% 11.3% 19897 47116 1692 2591 ~15
EMA [11, 24] 61.7% 623% 192% 393% 11.5% 19876 47182 1757 2635 ~17
HTA 642% 624% 793% 37.5% 12.1% 19071 47839 1619 2529 ~15
TCODAL* [9] -- 743% 62.9%  79.8% 1.5% -- -- 85 132 <0.5
HTA* 69.2% 784% 785% 76.8%  59% 2607 2747 219 455 ~30

is beneficial for improving the tracking performance on the test
sets. For this reason, many top-ranked trackers on the MOT
benchmarks [31, 22] are trained on the training sets. It is note-
worthy that we do not train on the training sets of the MOT
benchmarks nor train on any dataset, e.g. the ETH dataset [32]
and PETS dataset [33], that partially overlaps with the MOT
benchmarks. This prevents the detector from being biased to the
MOT benchmarks and allows us to conduct fair performance
analysis on the training sets.

4.4. Performance analysis

In this section, we will investigate the effect of the param-
eters of the proposed HTA algorithm and compare different
track association methods. Experiments are conducted on the
training sets of MOT15, MOT16, and MOT17. For MOT16
and MOT17, the detection score threshold for the detector is set

to 0.3, while for MOT15, the threshold is set to 0.7 due to the
higher number of false positives. As in [5], we use the cosine
distance to measure the distance between appearance features
and set the permissible maximum distance d,,,,=0.2. We set
o-izni:0.00S in Eq. (4) for the appearance feature used in [5].

We create four different trackers by replacing the appearance-
based association module in the DeepSORT tracker [S] with
four different track association strategies. The details of these
trackers are as below:

e Cascade Matching Strategy (CMS) [5]: This association
strategy first matches the detections with the tracks that are
most recently updated, and then the tracks that are second-
most recently updated and so on, until all the tracks or de-
tections are examined. The cost of associating a detection
with a track is calculated as the appearance distance between
the detection and the nearest detection (i.e. with the smallest



distance) stored in the track.

e k Nearest Neighbors (kNN): This strategy associates the de-
tections with all existing tracks at once without giving prior-
ities to any tracks. For each detection, the association cost
is the average appearance distance between the detection and
its top k nearest detections in each of the tracks. If the length
of a track is smaller than k, all the detections in the track
are considered. We set k=5 to strike a balance between the
robustness to outliers and the accuracy of association.

o Exponential Moving Average (EMA) [11, 24]: This strategy
performs association based on the distance between the ap-
pearance features of the detections and the ‘smoothed’ fea-
ture of each track, which is an exponential moving average
of the temporally adjacent appearance features in the same
track. Unlike CMS and kNN, this strategy takes into consid-
eration the temporal information and thus is expected to be
more accurate than CMS and kNN. As in [11, 24], we set the
weighting-decrease coefficient 7 = 0.9.

e Hybrid Track Association (HTA): This strategy differs from
EMA in that it considers not only the feature distance at the
current frame but also the statistical information provided by
the historical appearance distance records of a track.

We first investigate the effect of the parameters of the pro-
posed HTA algorithm on the tracking performance. There are
two important parameters for the HTA algorithm: the mini-
mum track length £ for reliably estimating an IGMM and the
weighting factor A in Eq. (8). We investigate the effect of these
two parameters on the IDFI tracking performance using the
training sets of MOT15. Fig. 4a and Fig. 4b show the
results for fixed 4 = 0.9 and varying L € [5, 100] and for fixed
L = 15 and varying A € [0, 1], respectively. As shown in Fig.
4a, the performance improves until the minimum track length
L reaches 15 and trends downward as L continues to increase.
This is not surprising because integrating the ‘statistical’ infor-
mation derived from the IGMM is more beneficial in the earlier
period of a track, when the appearance cues have not been suffi-
ciently collected. In Fig. 4b, A = 0 and A = 1, respectively, cor-
respond to the probability-only and distance-only associations.
We can see that the peak performance is achieved at 4 = 0.9.
We will use £ = 15 and 2 = 0.9 for the HTA algorithm in the
following experiments.

We then compare the tracking performance of different track
association methods. The results on MOT15, MOT16, and
MOT17 are reported in Table 1. As we can see, there is no sub-
stantial difference in MOTA for the four trackers as the MOTA
is highly dependent on the detection performance. While in
terms of IDF1, the proposed HTA outperforms the other three
algorithms consistently, followed by EMA and kNN. CMS
proposed in [5] is the worst-performing tracker, with about
6%~8% lower IDF1 than HTA and 3%~4% lower IDF1 than
EMA and kNN. Based on these results, we can gain some in-
sights for track association: 1) CMS is not as effective as ex-
pected in improving MOTA and tends to have a negative im-
pact on IDF1. 2) The performance gap between HTA & EMA
and CMS & kNN implies that temporal information is impor-
tant for accurate track association. 3) Integrating the historical
information of a track is beneficial for enhancing the perfor-
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mance of target identification. We also note that HTA may give
rise to more frequent ID switching. A qualitative analysis is
shown in Fig. 5, where HTA makes 2 ID switches and EMA
makes only 1 ID switch. Despite EMA’s lower occurrences of
ID switching, the wrong ID assignment at frame 432 persists
until the end of the track due to the lack of an effective error
correction mechanism. While for HTA, the integration of the
statistical information of historical records gives a chance to
quickly correct the wrong ID assignment at frame 285. As for
the tracking speed, HTA and kNN are slightly slower than CMS
and EMA, with about 1~3 FPS slower, because extra computa-
tion is needed for estimating the IGMM or searching for the top
k nearest appearance features of a track.

4.5. Comparisons with state-of-the-art trackers

We compare the aforementioned four trackers with sev-
eral state-of-the-art online trackers on the test sequences of
MOT16 benchmark. All the algorithms are run under the pri-
vate protocol, i.e. using private detectors. The comparison re-
sults are presented in Table 2. For CMS, kNN, EMA, and HTA,
we use the same parameter settings as on the training se-
quences. The best results for these four trackers are highlighted
in bold, while the best results for other trackers are underlined.
We also show in the last two rows of Table 2 the comparison re-
sults between HTA and the association method based on track-
let confidence and online discriminative appearance learning
(TCODAL) [9] on 4 sequences of MOT15, namely PETS09-
S2L.1, PETS09-S2L2, ETH-Bahnhof and ETH-Sunnyday. Note
that the tracking speed of TCODAL shown in Table 2 does not
include the time used for detection.

Compared to other state-of-the-art trackers, the proposed
HTA achieves better or comparable performance in terms of the
balance of tracking quality and speed. We can see that many
top-performing trackers (e.g. those indicated with superscript
%) use the person detector provided in [10], which is based on
the faster-RCNN [25] and trained on both public and private
datasets. The faster-RCNN detector delivers high-quality de-
tections, as reflected by the high MOTA and relatively low FP
and FN of POI in the second row of Table 2, but it also substan-
tially compromises the speed of tracking. For instance, most
of them can only process less than 8 frames per second, which
makes them unsuitable for time-critical applications.

The two algorithms that are faster than our proposed HTA
are JDE-1088 [11] and FairMOT [24]. Both trackers use a joint
framework that shares the feature maps for the tasks of object
detection and appearance feature learning, thus boosting the
tracking speed. They mainly differ in the backbone network and
object detection mechanism (i.e. anchor-based or anchor-free).
It is noteworthy that both of JDE-1088 and FairMOT are trained
on the t raining sets of MOT benchmarks. While this is ben-
eficial for improving the performance on the test sets of MOT
benchmarks, it may lead to overfitting to the MOT benchmarks
for both detection and target identification. For instance, we
have observed a large performance gap (in terms of miss detec-
tions and ID switches) for FairMOT when evaluated on videos
that are quite different from the sequences in MOT benchmarks
(e.g. the videos downloaded from YouTube), but the lack of



tracking annotations on these datasets prevents us from provid-
ing quantitative results here. This is an issue that should not
be overlooked because training on self-collected datasets may
be infeasible for many practical scenarios. This is the reason
why we train our pedestrian detector and appearance model on
datasets that do not overlap with the MOT benchmark datasets.
This enables our trackers to deliver relatively consistent perfor-
mance in a plug-and-play way for unseen datasets.

5. Conclusions

In this paper, we have presented a hybrid track associa-
tion method that enables a more accurate and robust online
detection-to-track association. Our proposed method efficiently
models the historical appearance distance records of a track
with an incremental Gaussian mixture model and integrates the
derived statistical information into the calculation of track asso-
ciation cost. Evaluations on public multi-object tracking bench-
marks demonstrate that, with detections provided by a real-time
object detector, our proposed hybrid track association strategy
achieves better or comparable performance than many other
state-of-the-art online trackers in terms of the balance between
tracking speed and quality.
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