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Abstract

Atomic-scale simulation of matter has become an important research tool in

physics, chemistry, material science and biology as it allows for insights which nei-

ther theoretical nor experimental investigation can provide. The most accurate of

these simulations are based on the laws of quantum mechanics, in which case the

main computational bottleneck becomes the evaluation of functions f(H) of a sparse

matrix H (the Hamiltonian).

One way to evaluate such matrix functions is through polynomial and rational

approximation, the theory of which is reviewed in Chapter 2 of this thesis. It is well

known that rational functions can approximate the relevant functions with much

lower degrees than polynomials, but they are more challenging to use in practice

since they require fast algorithms for evaluating rational functions r(H) of a matrix

argument H. Such an algorithm has recently been proposed in the form of the Pole

Expansion and Selected Inversion (PEXSI) scheme, which evaluates r(H) by writing

r(x) =
∑

k
ck

x−zk in partial-fraction-decomposed form and then employing advanced

sparse factorisation techniques to evaluate only a small subset of the entries of

the resolvents (H − z)−1. This scheme scales better than cubically in the matrix

dimension, but it is not a linear scaling algorithm in general. We overcome this

limitation in Chapter 3 by devising a modified, linear-scaling PEXSI algorithm which

exploits that most of the fill-in entries in the triangular factorisations computed by

the PEXSI algorithm are negligibly small.

Finally, Chapter 4 presents a novel algorithm for computing electric conductivities

which requires evaluating a bivariate matrix function f(H,H). We show that the

Chebyshev coefficients ck1k2 of the relevant function f(x1, x2) concentrate along the

diagonal k1 ∼ k2 and that this allows us to approximate f(x1, x2) much more effi-

ciently than one would expect based on a straightforward tensor-product extension

of the one-dimensional arguments.
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Chapter 1

Introduction

Much of modern technology relies on our ability to predict and influence the be-

haviour of matter at an atomistic scale, e.g. to understand and improve material

behaviour in mechanical and civil engineering applications, to develop more effec-

tive drugs, or to devise more powerful and efficient computers and batteries. In

recent decades, much progress in this direction has been achieved not only through

experimentation in the laboratory but also through theoretical investigation and

computer simulation. Already in 1966, Robert Mulliken remarked in his Nobel

Lecture [Mul66]:

I would like to emphasize my belief that the era of computing chemists,

when hundreds if not thousands of chemists will go to the computing ma-

chine instead of the laboratory, for increasingly many facets of chemical

information, is already at hand.

Five decades later, chemistry and material science have become some of the largest

consumers of computing power both at the Swiss National Supercomputing Cen-

tre (CSCS, see Figure 1.1) and on ARCHER, the national supercomputer of the

United Kingdom [ARC], and one would presumably find a similar situation in su-

percomputing centres worldwide. Running simulations on such a large scale requires

sophisticated hardware infrastructure and large amounts of energy; hence there is

significant interest in developing new algorithms which reduce the amount of com-

putation required to extract macroscopic predictions from the microscopic laws of

physics. It is the purpose of this thesis to contribute towards this endeavour. More

precisely, this thesis will propose improvements to the simulation techniques of a

particular class of electronic structure models introduced in Sections 1.1 and 1.2, as

laid out in Section 1.5 after a brief review of some existing simulation techniques in

Sections 1.3 and 1.4.
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Figure 1.1: Fraction of overall compute time allocated to each research field at the
Swiss National Supercomputing Centre in 2017. Figure copied from [CSC17].

1.1 Electronic Structure Models

It is believed that the laws of physics at the atomic level are in principle known but

the resulting models are too complicated to allow for computer simulations at the

relevant scales which may involve millions or even billions of atoms. In response to

this, a ladder of approximate models has been developed where rung by rung reduced

accuracy is exchanged for lower computational costs. In this thesis, we will focus

on models like Hartree-Fock, Density Functional Theory (DFT) and tight binding

which are approximate quantum-mechanical models based on a set of assumptions

discussed in the remainder of this section. More in-depth introductions to the topic

can be found e.g. in [Kax03, SCS10].

Atoms, electrons and the Born-Oppenheimer approximation. Matter consists of

positively charged atomic nuclei and negatively charged electrons. The nuclei are

heavy enough that they can be reasonably approximated as discrete point charges

which evolve according to classical Newtonian mechanics, while the electrons have

to be modeled as quantum-mechanical particles. We therefore represent a system

of N nuclei and n electrons through the atomic coordinates y ∈ R3N and charges

Z ∈ RN , and a 3n-dimensional wave function ψ(x1, . . . , xn) with xi ∈ R3 denoting

the electronic coordinates.

Independent-particle approximation. Due to the high-dimensionality, it is impos-

sible to work with a general wave function ψ(x1, . . . , xn) for all but the simplest

systems. Instead, we will assume the wave function takes the form of a Slater

determinant of single-particle orbitals ψi : R3 → C, i.e.
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ψ(x1, . . . , xn) =
1√
n!

∑

π

sign(π)
n∏

i=1

ψi(xπi) (1.1)

where the sum runs over all permutations π on {1, . . . , n}. This ansatz may be

interpreted either as an approximate solution to the exact model (Hartree-Fock),

as the exact solution to an approximate model (Kohn-Sham Density Functional

Theory (DFT)), or simply as an empirical model fitted to reproduce experimental

data (tight binding). The Slater determinant is fully specified once the orbitals ψi

are known; hence the information contained in (1.1) can be equivalently represented

in the single-particle density matrix

Γ(x, x′) :=

∫
. . .

∫
ψ(x, x2, . . . , xn)ψ(x′, x2, . . . , xn) dx2 . . . dxn

=
n∑

i=1

ψi(x)ψi(x′).
(1.2)

Note that to derive the expression on the second line, we must assume the orbitals ψi

to be orthogonal. This will always be the case since the orbitals ψi are eigenvectors

of a Hermitian operator as we shall see next.

Eigenvalue equations. In all three of the aforementioned independent-particle ap-

proximations, the orbitals ψi are determined as the eigenfunctions of some Hamil-

tonian operator H given by

(Hψ)(x) = −∆ψ(x) + V (y, Z, x)ψ(x),

where the potential V (y, Z, x) represents the interaction between the electrons and

the atoms, and the interactions among the electrons themselves. The eigenvalues εi

associated with the eigenfunction ψi are interpreted as the energy of the electron

occupying the orbital ψi. The density matrix Γ formed by the n orbitals ψi of lowest

energies εi is known as the ground state, while any other combination of orbitals is

referred to as an excited state.

Self-consistency. The electron-electron interaction part of the potential V (y, Z, x)

generally depends on the electronic density ρ(x) which in turn is a function of

the orbitals ψi(x); hence the eigenvalue equation Hψi = εi ψi is generally a non-

linear one. This non-linearity is usually tackled by means of the self-consistent field

iteration which solves the linearised eigenvalue problem repeatedly until a fixed point

is reached.

Fermi-Dirac distribution. A density matrix of the form (1.2) is known as a

3



E

fβ,EF (E)
1/β 1/β

EF

1

0

Figure 1.2: The Fermi-Dirac function fβ,EF .

pure quantum-mechanical state because it corresponds to a single wave function

ψ(x1, . . . , xn). Such pure states occur rarely in nature since the interaction with an

environment at finite temperature T quickly causes the density matrix to relax into

a superposition of pure states of the form

Γ(x, x′) =
∑

i

fβ,EF (εi)ψi(x)ψi(x′), (1.3)

where the Fermi-Dirac function

fβ,EF (E) :=
1

1 + exp
(
β (E − EF )

) (1.4)

is given by a step function centred at the Fermi energy EF and smeared according

to the inverse temperature β := 1
T , see Figure 1.2. In physical terms, the finite-

temperature density matrix (1.3) describes a system of electronic states ψi coupled

to an infinite pool of electrons at energy EF . At zero temperature or equivalently

β = ∞, the electrons flow from the pool into the system until every state below

the Fermi energy EF is fully occupied, and the electrons in states above the Fermi

energy get drained into the pool and hence remain empty. The Fermi-Dirac function

fβ,EF (E), which describes the occupancy of a state at energy E, hence takes the

form of a sharp step function and the density matrix (1.3) equals the pure density

matrix from (1.2) in this case. At finite temperatures β < ∞, on the other hand,

thermal fluctuations excite some electrons in states slightly below the Fermi energy

into states slightly above the Fermi energy, which causes the smearing shown in

Figure 1.2.

Metals and insulators. In the limit of large systems N → ∞, the eigenvalues εi
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of H converge to the the spectral measure

µ(E) := lim
N→∞

∑

i

δ(E − Ei),

and materials may be classified depending on whether there exists an interval

(ε−, ε+) ⊂ R containing the Fermi energy EF such that

µ
(
(ε−, ε+)

)
= 0. (1.5)

If (1.5) holds, the material is called an insulator with band gap δE := ε+−ε−, while

if not the material is called a metal. Insulators with a small band gap δE are also

known as semiconductors.

1.2 Quantities of Interest

The following is a selection of physical observables which can be computed using the

above electronic structure model. For all but the last observable, we provide an ex-

pression both in terms of a sum over electronic states ψi which allows for convenient

physical interpretation, and in terms of some function f(H) of the Hamiltonian H

which will be important for the algorithmic developments in this thesis. The equiv-

alence between the two expressions follows from the identity H =
∑

i εi |ψi〉〈ψi|.

• Number of electrons [Goe99, eq. (14)],

n =
∑

i

fβ,EF (εi) = Tr
(
fβ,EF (H)

)
, (1.6)

which allows us to determine the Fermi energy EF in applications where the

number of electrons n rather than the Fermi energy EF is prescribed.

• Electronic density [Goe99, eq. (17)],

ρ(x) :=
∑

i

fβ,EF (εi) |ψi(x)|2 = diag
(
fβ,EF (H)

)
, (1.7)

which provides insight into chemical bonding and is required in self-consistent

field iterations.

• Total electronic energy [Goe99, eq. (15)] and force on atom I ∈ {1, . . . , N}

5



[Goe99, eq. (56)],

Etot :=
∑

i

fβ,EF (εi) εi = Tr
(
H fβ,EF (H)

)
,

FI := −∂Etot

∂yI
=
∑

i

fβ,EF (yI) 〈ψi| ∂H∂yI |ψi〉,= Tr
(
fβ,EF (H) ∂H

∂yI

)
,

which allow us to find equilibrium configurations of the atoms and perform

molecular dynamics simulations.

• Conductivity tensor [Kax03, eq. (5.45)]

σa,b =
∑

i1,i2

Fζ(εi1 , εi2) 〈ψi1 |Ma|ψi2〉 〈ψi2 |Mb|ψi1〉, a, b ∈ {1, 2, 3}, (1.8)

which expresses the linear relationship between the electric field ~E and the

induced current ~J , i.e. ~J = σ ~E. The conductivity function Fζ(E1, E2) is

given by

Fζ(E1, E2) =
fβ,EF (E1)− fβ,EF (E2)

E1 − E2

1

E1 − E2 + ω + iη
(1.9)

and depends on β and EF discussed above, ω (the oscillation frequency of

the electric field) and η (the inverse relaxation time, which is an empirical

parameter measuring the mobility of electrons in a given material). For nota-

tional convenience, we collect these four parameters into a single variable ζ =

(β,EF , ω, η). The velocity operators Ma are given by Ma = i
(
XaH −HXa

)

with (Xaψ)(x) := xa ψ(x). In this thesis, the symbol i is used to denote both

an index i ∈ Z and the imaginary unit i =
√
−1. Context will clarify the

intended meaning.

1.3 Electronic Structure Algorithms

This thesis focuses on the algorithmic aspects of electronic structure models, and

hence we will always be working with discretised Hamiltonians given as finite ma-

trices H ∈ Rm×m with entries H(i, j) bounded independently of N . The spectra

E =
{
εi | i ∈ {1, . . . ,m}

}
of such matrices are discrete but the eigenvalues typically

cluster in a small number of finite intervals Ek ⊂ R such that we will assume E to be

the union of these intervals for most of this thesis. Without loss of generality, we will

further assume the Hamiltonian H to be shifted and scaled such that E ⊆ [−1, 1].

The only restriction imposed on the discretisation is that the resulting matrices are

6



required to be sparse, i.e. we assume the discretisation is performed using localised

basis functions like atomic orbitals or finite elements, and we exclude spatially ex-

tended basis sets like plane waves. Furthermore, we will restrict our attention to

the linearised eigenvalue problem which as we have indicated above serves as an im-

portant building block of the self-consistent field iteration for tackling the nonlinear

problem.

Under these circumstances, the quantities of interest from Section 1.2 are in prin-

ciple straightforward to evaluate: compute the eigenpairs ψi, εi of H using e.g.

the QR algorithm, and insert these quantities into the respective formulae. This ap-

proach is known as the diagonalisation algorithm due to its reliance on the eigenvalue

decomposition, and while conceptually simple it suffers from the major drawback

that diagonalising H scales cubically in the matrix size m which in turn typically

grows linearly with the number of atoms N . This cubic scaling effectively limits

the diagonalisation algorithm to systems of at most one or two thousand atoms

[Hin17, OTBM16, MRG+15].

Over the past four decades, several alternative algorithms have been proposed

which aim to extend the reach of electronic structure models beyond this “cubic

scaling wall” by reducing the simulation cost to O(N). All of these linear scaling

algorithms are based on the observations that (1) the quantities of interest from

Section 1.2 can be computed easily once the density matrix fβ,EF (H) is available,

and (2) for insulators and metals at finite temperature β < ∞, the density matrix

fβ,EF (H) is localised or near-sighted [Koh96, BBR13], i.e. we have that

|fβ,EF (H)(i, j)| ≤ C exp
(
−γ d(i, j)

)
(1.10)

for some constants C, γ and some notion of distance d(i, j) independent of the system

size N . The density matrix fβ,EF (H) has hence only O(m) significant entries, which

raises hope that an approximation Γ̃ ≈ fβ,EF (H) can be computed with only O(m)

runtime as well. This is indeed possible, and in the remainder of this section we

introduce three frequently used strategies for computing Γ̃ efficiently. We refer to the

review articles [Goe99, BM12] for more details regarding the algorithms presented

below and other linear scaling algorithms.

Domain decomposition. The same techniques which prove the localisation (1.10)

can also be used to show that the entries fβ,EF (H)(i, j) of the density matrix depend

exponentially weakly on the Hamiltonian entries H(i′, j′) “far away” from (i, j), i.e.

7



we have that

∣∣∣∣
∂fβ,EF (H)(i, j)

∂H(i′, j′)

∣∣∣∣ ≤ C exp
(
−γ
(
d(i, i′) + d(j′, j)

))
. (1.11)

This suggests that we evaluate a single entry fβ,EF (H)(i, j) of the density matrix by

truncating H to some buffer region B ⊂ {1, . . . ,m} around (i, j) and approximating

fβ,EF (H)(i, j) ≈ fβ,EF
(
H(B,B)

)
(i, j), (1.12)

where we note that the error in (1.12) decays exponentially in the buffer size B

and independently of the system size N as a consequence of (1.11). We can thus

evaluate all the O(m) significant entries of the density matrix in only O(m) runtime

even if the diagonalisation algorithm is used to perform (1.12) since the buffer size

B remains bounded for growing system sizes N .

The domain decomposition method as presented above is rather inefficient in prac-

tice due to the large overlap between buffer regions for different entries (i, j), which

causes closely related computations in the overlap regions to be performed repeat-

edly. However, this method becomes highly effective if the density matrix exhibits

some sort of regularity such that it can be reconstructed from only few sampled

entries fβ,EF (H)(i, j), see e.g. [MLO17] and Chapter 4. Furthermore, the domain

decomposition method has been used as a building block in multiscale methods

[CO16], and it served as a theoretical tool for thermodynamic limits arguments in

[MLO17].

Function approximation. We have seen in Section 1.2 that the quantities of inter-

est q can be equivalently defined either in terms of sums over eigenstates ψi or as

(weighted) traces of functions of the Hamiltonian H,

q =
∑

i

f(εi) 〈ψi|M |ψi〉 = Tr
(
M f(H)

)
, (1.13)

the only exceptions being the electronic density (1.7), to which very similar ar-

guments apply, and the conductivity (1.8) which will be discussed in Chapter 4.

Starting from the last expression in (1.13), we note that the diagonalisation algo-

rithm may be interpreted as just a particular method for evaluating the matrix

function f(H), and if we formulate the problem this way a possible solution to the

cubic scaling problem suggests itself: instead of evaluating f(H) exactly using the

eigendecomposition of H, we may evaluate f(H) approximately by first determin-

ing a polynomial approximation p(E) ≈ f(E) and then replacing f(H) by p(H) in

(1.13). The approximate quantity q̃ := Tr
(
M p(H)

)
computed in this way satisfies

8



the error bound
|q − q̃| =

∣∣∣Tr
(
M
(
f(H)− p(H)

))∣∣∣

≤ ‖vec(M)‖1 ‖f(H)− p(H)‖nz(M)

= O(m)
∥∥f − p

∥∥
E

(1.14)

where ‖vec(M)‖1 :=
∑m

i,j=1 |M(i, j)| = O(m) due to sparsity, nz(M) :=
{

(i, j) ∈
{1, . . . ,m}2 | M(i, j) 6= 0

}
, ‖A‖I := max(i,j)∈I |A(i, j)| and ‖f‖E := supE∈E |f(E)|.

The O(m)-factor in (1.14) suggests that keeping the approximation p fixed for grow-

ing system sizes N results in a constant error per atom which is usually acceptable in

applications. The only part which scales with the system size N is thus the matrix

size m, and since H is sparse it follows that p(H) can be evaluated in O(m) cost. No-

table examples of this class of linear-scaling algorithms include the Fermi operator

expansion [GC94, GT95] and the Kernel polynomial method [SRVK96, VKS96].

Minimisation methods. The ground state density matrix from (1.2) is the unique

local minimiser of

F(Γ) := Tr
((

3Γ2 − 2Γ3
)

(H − µI)
)

(1.15)

restricted to the set of Hermitian matrices; thus yet another way to achieve lin-

ear scaling is to minimise F(Γ) or related functionals over the space of band limited

matrices. Alternatively, the ground state orbitals ψi may be determined with linear-

scaling cost by solving a minimisation problem in terms of localised trial orbitals ψ̃i,

i.e. orbitals ψ̃i centred at points xi ∈ R3 such that ψ̃i(x−xi) = 0 if |x−xi| is larger

than some cut-off radius r. This thesis will not discuss minimisation methods, but

we nevertheless decided to mention them here since most electronic structure codes

in use today are based on some form of minimisation, e.g. CONQUEST [BM10] (den-

sity matrix minimisation), SIESTA [SAG+02] and QUICKSTEP [VKM+05] (orbital

minimisation), and ONETEP [SHMP05] and BigDFT [MRG+15] (combination of

density matrix and orbital minimisation).

1.4 Pole Expansion and Selected Inversion

A shared drawback of all the linear-scaling algorithms mentioned above is that

their performance rapidly degrades if the localisation rate γ from (1.10) decreases.

A new algorithm in the class of function approximation methods, called the pole

expansion and selected inversion (PEXSI) algorithm, has recently been introduced in

[LCYH13] which overcomes this limitation to a large extent. This method proceeds

by (1) approximating the Fermi-Dirac function by a rational function rñ(E) in pole-

9



expanded form,

rñ(E) :=
ñ∑

k=1

ck
E − zk

≈ fβ,EF (E), (1.16)

and (2) evaluating only the entries (H−z)−1(i, j) with (i, j) in the nonzero structure

nz(H) :=
{

(i, j) ∈ {1, . . . ,m}2 | H(i, j) 6= 0
}

(1.17)

of H. This is sufficient to evaluate the quantities of interest listed in Section 1.2

(other than the conductivity, which will be discussed in Chapter 4), since closer

inspection of the formulae in Section 1.2 reveals that in fact only the entries

fβ,EF (H)(i, j) ≈
ñ∑

k=1

ck (H − zk)−1(i, j)

with (i, j) ∈ nz(H) are needed to this end. The PEXSI algorithm thus decomposes

the problem of simulating electronic structure problems into the two subproblems

of (1) finding a rational approximation of the form (1.16) with as few poles ñ as

possible and (2) evaluating (H − z)−1(i, j) with (i, j) ∈ nz(H) as fast as possible.

The first subproblem has been addressed in [LLYE09], where an exponentially

convergent rational approximation scheme of the form (1.16) was constructed and

the rate of decay γ in the error bound

‖rñ − fβ,EF ‖E ≤ C exp
(
−γ ñ

)
.

was shown to be lower-bounded by1 γ & | log(δE)|−1+log(β)−1 where we recall from

Section 1.1 that β denotes the inverse temperature and δE denotes the band gap.

This logarithmic dependence of the convergence rate on the model parameters in the

case of rational approximation should be compared against the algebraic dependence

γ ∼ δE + β−1 in the polynomial case (see Theorem 2.3.12), which demonstrates

that rational functions perform much better than polynomials at approximating the

small-band-gap, low-temperature Fermi-Dirac function. An iterative scheme to find

optimal rational approximations has later been proposed in [Mou16] and was found

to produce approximations of about the same accuracy as the scheme from [LLYE09]

with four times fewer poles.

Regarding the second PEXSI subproblem, it has been noted in [LLY+09, LYM+11]

that the entries (H−z)−1(i, j) with (i, j) ∈ nz(H) can be evaluated efficiently using

the selected inversion algorithm from [ET75] which consists of two steps.

1The notation ∼, . and & is defined in Appendix A.2.
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Runtime Memory Example system

d = 1 O
(
m
)

O
(
m
)

Nanotubes

d = 2 O
(
m3/2

)
O
(
m log(m)

)
Monolayers

d = 3 O
(
m2
)

O
(
m4/3

)
Bulk solids

Table 1.1: Compute time and memory costs of the selected inversion algorithm
depending on the effective dimension d of the atomic system. Citations and a
discussion of this result can be found in Subsection 3.1.2.

• Compute the factorisation H−z = LDLT where L ∈ Cm×m is lower-triangular

with unit diagonal and D ∈ Cm×m is diagonal.

• Evaluate the entries (H − z)−1(i, j) with (i, j) in the set

fnz(H) :=
{

(i, j) ∈ {1, . . . ,m}2 | L(i, j) 6= 0 ∨ L(j, i) 6= 0
}
. (1.18)

This can be done using only the factors L,D and entries (H − z)−1(i, j) with

(i, j) ∈ fnz(H) computed recursively.

Both of these steps incur the same asymptotic costs listed in Table 1.1. We will use

the term selected inversion algorithm to refer to the combination of the above steps

and selected inversion step or subalgorithm to refer to just the second step.

We infer from the costs listed in Table 1.1 that the PEXSI algorithm is only a

reduced-order method but not a linear-scaling one, i.e. its scales better than the

diagonalisation algorithm but its cost is not O
(
N
)

in dimensions d > 1. Despite

this, the PEXSI method combines several features which make it a viable alternative

to the diagonalisation method and linear-scaling algorithms.

• Excellent parallel scaling up to 100,000 processors has been demonstrated in

[LGHY14, YCG+18].

• The method is virtually a black-box electronic structure solver since it involves

only a single approximation parameter (the number of poles n) whose impact

on the runtime and accuracy can be quantified before running any large-scale

simulations.

1.5 Contributions

The first part of this thesis will propose a modification to the PEXSI method which

reduces the runtime and memory complexities reported in Table 1.1 to O(m) for
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all dimensions. Like all linear-scaling methods, our modification is based on the

localisation phenomenon described in (1.10), and we will see in Chapter 3 that this

phenomenon may be understood as a consequence of the convergence of polynomial

approximation to the Fermi-Dirac function. Chapter 2 therefore reviews polynomial

approximation in one dimension, and it also discusses the extension of this theory

to rational approximation in order to provide some context for the PEXSI method.

Chapter 3 will then show that the triangular factorisation computed by the selected

inversion algorithm exhibits a form of localisation similar to that of the density

matrix described in (1.10), and it will present and analyse the aforementioned linear-

scaling modification to the PEXSI method.

In the second part of this thesis, we will present in Chapter 4 a novel algorithm

for evaluating the conductivity (1.8) which requires a bivariate polynomial or ratio-

nal approximation p(E1, E2) ≈ Fζ(E1, E2) to the conductivity function Fζ(E1, E2)

defined in (1.9). We will see that the Chebyshev coefficients of this function exhibit

a particular asymptotic decay which allows us to significantly reduce the costs of the

aforementioned algorithm in the regime of large inverse temperatures β and small

inverse relaxation times η.

12



Chapter 2

Approximation of the

Fermi-Dirac Function

We have seen in Section 1.4 that the PEXSI scheme requires a rational function r(x)

which approximates the Fermi-Dirac function fβ,EF from (1.4) on the spectrum E
of the Hamiltonian, and we will see in Chapter 3 that the analogous polynomial

approximation problem is related to the localisation phenomenon described in Sec-

tion 1.3. This chapter discusses both of these problems in a unified framework.

As a composition of analytic functions, the Fermi-Dirac function

fβ,EF (E) :=
1

1 + exp
(
β (E − EF )

)

is analytic everywhere except on the set

Sβ,EF :=
{
EF + πik

β | k odd
}

(2.1)

where the denominator becomes zero. This function is thus in particular analytic

on the domain of approximation E ⊂ R, and the above problems may be formulated

in abstract terms as follows.

Problem 2.0.1 Given a closed domain of approximation E ⊂ C, a closed set of

singularities S ⊂ C \ E, and an analytic and single-valued function f : C \ S → C,

find a rational function r(x) of numerator degree m and denominator degree n such

that the supremum norm ‖f−r‖E of the error on E is small. We will always assume

that E and S have nonzero logarithmic capacity as defined in Definition 2.1.5.

We deliberately formulated Problem 2.0.1 in terms of a vague “smallness” cri-

terion since in the following we will be concerned with constructing and analysing
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a concrete rational approximation scheme rather than finding the best possible ap-

proximation. Furthermore, we would like to emphasise that for consistency with the

literature on rational approximation (see e.g. [Tre13]), the variables m and n in this

chapter refer, respectively, to the numerator and denominator degrees of a rational

function r(x) rather than to the number of degrees of freedom and number of elec-

trons as in Chapter 1. Finally, we remark that Problem 2.0.1 includes polynomial

approximation as the special case n = 0, and the discussion in Sections 2.1 and 2.2

applies equally to both the polynomial as well as the truly rational case. Only from

Section 2.3 onward will we start to distinguish these two cases.

The theory associated with Problem 2.0.1 is closely related to the field of logarith-

mic potential theory, which studies the electrostatic potential induced by charged

conductors in the complex plane. Section 2.1 will give a brief introduction to loga-

rithmic potential theory and its connection with approximation theory, and we will

see in Theorem 2.1.10 that Problem 2.0.1 can be tackled by determining the equilib-

rium distribution of two sets of electric charges restricted to E and S, respectively.

Section 2.2 will then discuss a few technical tools required to determine this equilib-

rium distribution, and Sections 2.3 and 2.4 will demonstrate the application of these

tools to polynomial and rational approximation of the Fermi-Dirac function, respec-

tively. Finally, Sections 2.5 and 2.6 will compare the rational interpolation scheme

proposed in this chapter against rational approximation via contour quadrature and

Zolotarev’s best rational approximations to the sign function, respectively.

Our discussion of polynomial approximation is the result of applying the stan-

dard theory as presented e.g. in [Tre13, Saf10] in the context of electronic structure

theory. Rational approximations to the Fermi-Dirac function have been constructed

previously in [LLYE09, Mou16], and we will see in Sections 2.4 and 2.5 that our

rational approximation scheme outperforms the one from [LLYE09] by a factor of

two, but underperforms the optimal rational approximations determined in [Mou16]

by a factor of two. Hence, the mathematical results presented in this chapter are

either not new or of little practical relevance, but we believe that there is some

benefit in presenting the various results from the literature in a single and coherent

framework.

Definition 2.0.2 This chapter will use the following notation.

• ‖f‖S := supx∈S |f(x)| denotes the supremum norm of f(x) on a set S ⊂ C.

• Pn denotes the space of polynomials of degree ≤ n.

• Rmn denotes the space of rational functions of numerator degree ≤ m and

denominator degree ≤ n.
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• δ(x) denotes the Dirac delta measure defined by
∫
f(x) dδ(x) = f(0).

•
∫
∂Ω f(x) dx denotes the contour integral along ∂Ω taken in counterclockwise

direction relative to the interior of Ω.

• In the context of the previous item, ∂γ for a curve γ ⊂ C denotes the coun-

terclockwise contour around a domain of infinitesimal width. For example, we

set

∂[−1, 1] =
(
[−1, 1] + 0i

)
∪
(
[−1, 1]− 0i

)
,

where the signed zero in the imaginary part indicates which branch to evaluate

for a function with branch cut along [−1, 1].

2.1 Rational Interpolation and Logarithmic Potential

Theory

The connection between logarithmic potentials and approximation theory is most

easily seen at the example of rational interpolation, which we introduce through the

following theorem.

Theorem 2.1.1 ([Wal56, Theorem 8.1]) Given a function f : C → C, a set of

distinct interpolation points X = {x0, . . . , xm} ⊂ C and a set of distinct poles

Y = {y1, . . . , yn} ⊂ C such that X ∩ Y = ∅, there exists a unique rational function

r ∈ Rmn of the form

r(x) =
p(x)

`Y (x)
with p(x) ∈ Pn and `Y (x) :=

n∏

`=1

(x− yk)

such that r(xk) = f(xk) for k ∈ {0, . . . ,m}.

Given X, Y and f as in Theorem 2.1.1, the rational interpolant is easily evalu-

ated using the barycentric interpolation formula, see [Tre13, §5], and the following

theorem allows us to estimate the resulting error.

Theorem 2.1.2 (Hermite interpolation formula, [Wal56, Theorem 8.2]) Let E, S
and f(x) be as in Problem 2.0.1. Then, the rational interpolant r(x) to f(x) at

points X = {x0, . . . , xm} ⊂ E with poles Y = {y1, . . . , yn} ⊂ C \ E satisfies for all

x ∈ E
f(x)− r(x) =

1

2πi

∫

∂Ω

`X(x)

`Y (x)

`Y (t)

`X(t)

f(t)

t− x dt (2.2)

where `Z(x) :=
∏
zk∈Z(x − zk) for any discrete set Z ⊂ C and Ω ⊂ C denotes an

open set such that E ⊂ Ω and closure(Ω) ⊂ C \ S.
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Remark 2.1.3 The set Ω must be introduced in Theorem 2.1.2 since f(x) is typ-

ically unbounded on ∂S and thus the integral (2.2) would be undefined if we set

Ω := C\S. However, the conclusions which we will draw from Theorem 2.1.2 will be

the sharpest if we take the limit Ω→ C \ S, and in order to simplify the exposition

we already anticipate this limit by writing C \ S instead of Ω in the following. We

will return to this issue in Remark 2.1.11.

Replacing Ω → C \ S as discussed in Remark 2.1.3, Theorem 2.1.2 implies the

bound

‖f(x)− r(x)‖E ≤ C ‖`X/`Y ‖E ‖`Y /`X‖∂S (2.3)

where

C =
1

2π

∫

∂S

|f(t)|
|t− x| |dt|;

hence in order to make the approximation error |f(x)− p(x)| small on E , the inter-

polation points X and poles Y should be chosen such that the ratio `X/`Y becomes

uniformly small on E but large on ∂S. We note that

UX,Y (x) := log
|`X(x)|
|`Y (x)| =

m∑

k=0

log |x− xk| −
n∑

`=1

log |x− y`|

is the electrostatic potential of a system with charges −1 at each point xk ∈ X and

charges +1 at each point y` ∈ Y , and we will see in Theorem 2.1.8 below that in

the limit m,n→∞, the configurations X,Y which minimise the potential energy

IX,Y := −
m∑

k=0

UX\{xk},Y (xk) +
n∑

`=1

UX,Y \{y`}(y`)

simultaneously minimise the bound (2.3). We therefore discuss next a few key

results regarding the limiting distributions of the point setsX,Y and their associated

potentials. Textbooks and manuscripts on the material presented here can be found

e.g. in [Saf10, ST97, Ran95].

Theorem 2.1.4 Let E ,S and m,n be as in Problem 2.0.1, and let E be bounded

if m ≥ n and S be bounded if n ≥ m. Then, there exists a unique Borel measure

µE,S,n/m, called the equilibrium measure, which minimises the energy

I(µ) := −
∫∫

log |x− t| dµ(t) dµ(x) (2.4)
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over all Borel measures µ supported on E ∪ S such that µ is positive on E, negative

on S, and we have that

µ(E) = 1, µ(S) = − n
m .

This equilibrium measure is supported on the boundary ∂E ∪ ∂S.

Discussion. A proof regarding the existence and uniqueness of the equilibrium mea-

sure can be found in [ST97, Theorem VIII.1.4], while the statement supp(µ) =

∂E ∪ ∂S follows from the divergence law. As mentioned above, µ describes the

charge distribution of a capacitor with a negative unit charge on E and a charge n
m

on S. The assumption regarding the boundedness of E and S is required to prevent

the charges from “escaping” to infinity.

We recall from Problem 2.0.1 that E and S are assumed to have nonzero loga-

rithmic capacity, which is required in particular for Theorem 2.1.4 to hold. We now

clarify the meaning of this statement by defining the complementary class of sets of

capacity zero.

Definition 2.1.5 A set S ⊂ C is said to be of (logarithmic) capacity zero if every

unit Borel measure µ on S has infinite energy I(µ) as defined in (2.4). Sets of

capacity zero are also called polar.

We note that discrete sets S ⊂ C in particular have capacity zero since any unit

measure µ on S must assign a nonzero mass µ({x}) to at least one of the points

x ∈ S, and thus the energy I(µ) contains a term of the form − log |x− x| =∞. In

fact, discrete sets will be the only sets of capacity zero relevant for our purposes.

Theorem 2.1.6 In the notation of Theorem 2.1.4, the equilibrium potential

UE,S,n/m(x) := −
∫

log |x− t| dµE,S,n/m(t) (2.5)

associated with the equilibrium measure µE,S,n/m satisfies

sup
q.e. t∈E

UE,S,n/m(t) = UE,S,n/m(x) for all x ∈ supp(µE,S,n/m) ∩ E ,

inf
q.e. t∈S

UE,S,n/m(t) = UE,S,n/m(x) for all x ∈ supp(µE,S,n/m) ∩ S,
(2.6)

where infq.e. t∈S f(t) (the quasi-everywhere infimum of f : S → R on S ⊂ C) is

defined as the largest constant L ∈ R such that the set {x ∈ S | f(x) < L} has

capacity zero, and likewise for supq.e. t∈S f(t). Conversely, if the potential U(x) of
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Figure 2.1: Equilibrium measure (shaded) and equilibrium potential (black line) of
Example 2.1.7.

a measure µ as described in Theorem 2.1.4 satisfies (2.6), then µ is the equilibrium

measure µE,S,n/m.

Discussion. A proof of this statement is given in [ST97, Theorem VIII.2.2]. In

physical terms, (2.6) expresses the observation that a tentative charge distribution

µ is the equilibrium distribution if and only if there is no way to move charges to an

energetically more favourable location. For our purposes, the “quasi everywhere”

condition is required to cover the cases where E or S contain a set of isolated points

S since such a set is too small to hold any charge and hence the potential on S may

deviate from the potential on supp(µE,S,n/m).

In most applications, the conditions (2.6) amount to requiring that UE,S,n/m(x)

is constant on both E and S, but there are two important exceptions which are

illustrated in the following example.

Example 2.1.7 Figure 2.1 displays the equilibrium measure and potential for

E = [0.5, 2], S := [−2,−0.5] ∪ {−0.2}, n
m = 0.1.

We note that the equilibrium potential UE,S,n/m(x) is indeed constant on E , while

on S we have

UE,S,n/m(x)





> c for x ∈ [−2,−0.5] \ supp(µE,S,n/m),

= c for x ∈ [−2,−0.5] ∩ supp(µE,S,n/m),

< c for x = −0.2,

where c := infq.e. t∈S UE,S,n/m(t) is indicated by the dashed line in Figure 2.1. We
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conclude that even though UE,S,n/m(x) is not constant on S, the energy (2.4) cannot

be decreased since moving charge from supp(µE,S,n/m ∩S) to the left would increase

the energy and moving charge to {−0.2} is not permitted since singletons are too

small to hold a charge.

We now return to the problem of optimising the bound (2.3).

Theorem 2.1.8 In the notation of Theorems 2.1.2 and 2.1.4 and with

V (E ,S, n/m) := − sup
q.e. t∈E

UE,S,n/m(t) + inf
q.e. t∈S

UE,S,n/m(t) > 0,

we have for all α = n
m ∈ [0,∞) that

lim
m→∞

inf
X⊂E,

#X=m

inf
Y⊂S,

#Y=bαmc

(
‖`X/`Y ‖E ‖`Y /`X‖S

)1/m
= exp

(
−V (E ,S, α)

)
. (2.7)

Furthermore, this limit is attained for any sequence Xm, Yn such that

µXm,Yn(x) := − 1

m

m∑

k=0

δ(x− xk) +
1

m

n∑

`=1

δ(x− y`) → µE,S,n/m (2.8)

in the weak* sense.

Proof. The above statements are shown in [ST97, §VIII.3]. More precisely, equation

(2.7) is shown with ≥ instead of = in [ST97, Theorem VIII.3.1], and the sharpness

follows from the second part of the statement which is discussed in [ST97, §VIII.3].

Theorem 2.1.8 combined with the bound (2.3) imply that rational interpolation

with well-chosen interpolation points X and poles Y converges exponentially at

“essentially” the rate V (E ,S, n/m), where the precise meaning of “essentially” will

be clarified in Theorem 2.1.10 after introducing the appropriate notation in Defini-

tion 2.1.9.

Definition 2.1.9 A sequence a : N → [0,∞) is said to decay exponentially with

asymptotic rate α if for all α̃ < α there exists a constant C(α̃) such that ak ≤
C(α̃) exp(−α̃k) for all k ∈ N. Following the Oε notation of [Tre17], we write

ak ≤ε C(α) exp(−αk) or ak .ε exp(−αk)

for such sequences.
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We note that if C : [0, α)→ (0,∞) is such that limα̃→αC(α̃) exists and is bounded,

then ak ≤ε C(α) exp(−αk) is equivalent to ak ≤ C(α) exp
(
−αk

)
. A typical example

of a sequence ak ≤ε C(α) exp(−αk) is ak := k exp(−αk), in which case C(α̃) =

maxk k exp
(
−(α− α̃) k

)
and limα̃→αC(α̃) =∞.

Theorem 2.1.10 Let f(x), E and S be as in Problem 2.0.1, and denote by r(x) the

rational interpolant to f(x) at points X and with poles Y distributed asymptotically

according to the equilibrium measure µE,S, n
m

in the sense of (2.8). We then have

that

‖f − r‖E .ε exp
(
−V (E ,S, n/m)m

)
. (2.9)

Proof. The idea is to combine the bound from (2.3) with the estimate on ‖`X −
`Y ‖E ‖`Y /`X‖S from Theorem 2.1.8. Details can be found e.g. in [Saf10, §5].

Remark 2.1.11 Equation (2.9) holds with only .ε rather than the stronger . be-

cause as mentioned in Remark 2.1.3, the above discussion should have been written

in terms of Ω rather C\S and Theorem 2.1.10 follows after taking the limit Ω→ C\S.

As Ω approaches C \ S, the (m,n)-dependent factor ‖`X/`Y ‖E ‖`Y /`X‖∂Ω in (2.3)

decreases while the prefactor C ∼ ‖f‖∂Ω diverges, which is precisely the behaviour

expressed by .ε.

Let us conclude this section with a brief summary of the key ideas presented

here. We have seen in Theorem 2.1.2 how the interpolation points X and poles

Y of a rational interpolant r(x) correspond to negative and positive point charges,

respectively, and Theorem 2.1.8 asserted that the rate of convergence of rational

interpolation is optimised by choosing X ⊂ E and Y ⊂ C \ Ω such that the charges

are at equilibrium. The key challenge to finding good rational interpolants is thus

to determine the equilibrium distribution of X and Y , which is the topic of the next

section.

2.2 Determining Equilibrium Measures via Log-Maps

A Borel measure µ and its associated potential U(x) (defined analogously to (2.5))

can be conveniently represented in a single object defined as follows.

Definition 2.2.1 The log-map L(x) of a finite signed Borel measure µ on C is the

function L : C \ supp(µ)→ C given by

L(x) := −
∫

log(x− t)µ(t).

20



While the term “log-map” is our own invention, the function that it refers to has

appeared previously in exactly the same context in [ET99, SSW01]. Moreover, if µ =

µE,S,0 is the equilibrium measure for a simply connected set E ⊂ C in the polynomial

case n
m = 0, then the associated log-map L(x) satisfies L(x) = − log Φ(x) + const

where Φ(x) is the Riemann map from C \ E onto the unit disk {|z| < 0}. Further

connections between L(x) and functions from the literature have been pointed out

in [ET99, §1].

It follows from the properties of the logarithm that L(x) is locally analytic1 on its

domain of definition and that Re
(
L(x)

)
is the logarithmic potential U(x) associated

with µ, and we will next show that the measure µ itself can be derived from the

imaginary part of L(x) under some assumptions which will be satisfied by all the

measures µ and log-maps L(x) considered in this thesis.

Theorem 2.2.2 Let µ and L(x) be as in Definition 2.2.1, and assume supp(µ) has

no interior. We then have for all bounded Borel sets Ω ⊂ C with piecewise C1

boundary that

µ(Ω) = − 1

2πi

∫

∂Ω
L′(x) dx, (2.10)

where L′(x) for points x ∈ supp(µ) outside the domain of analyticity of L(x) is

unspecified if x is an isolated or endpoint of supp(µ) (these points have measure

zero and hence do not affect the integral), and otherwise defined as

L′(x) :=





lim
x̃→x, x̃∈Ω

L′(x̃) if x ∈ Ω,

lim
x̃→x, x̃/∈Ω

L′(x̃) if x /∈ Ω.

Conversely, a function L(x) is the log-map of a finite signed Borel measure µ if L(x)

is locally analytic on C \ supp(µ), (2.10) is satisfied, and we have that

lim
|x|→∞

L(x) + µ(C) log(x) = 0. (2.11)

Proof. We obtain using Cauchy’s integral formula and (2.11) that

µ(Ω) =

∫
χΩ(t) dµ(t) =

1

2πi

∫ ∫

∂Ω
(x− t)−1 dx dµ(t) = − 1

2πi

∫

∂Ω
L′(x) dx

which shows the first part of the theorem. To see the second part, let L̃(x) be the

1A function f : D → C with D ⊂ C is called locally analytic if for every x ∈ D there exists a
neighbourhood Ω such that f is analytic on Ω. Such functions are also known as multivalued.
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log-map of the measure µ(Ω). Using the first part of the theorem, it then follows

1

2πi

∫

∂Ω

(
L′(x)− L̃′(x)

)
dx = µ(Ω)− µ(Ω) = 0

which according to Morera’s theorem [AG18, Thm. 3.8.10] implies that L′(x)−L̃′(x)

is analytic and has an anti-derivative L(x) − L̃(x) on C. The claim follows after

noting that (2.11) combined with Liouville’s theorem [AG18, Thm. 3.9.2] asserts

that this anti-derivative vanishes.

The essence of Theorem 2.2.2 is implicit in the discussion in [ET99, §2-4]. The

above clarification has been worked out independently by the author.

To see the connection between (2.10) and the imaginary part of L(x), we note

that
∫
∂Ω L

′(x) dx can be written as

∫

∂Ω
L′(x) dx = L(xend)− L(xstart) (2.12)

where xstart denotes some arbitrary point on ∂Ω and L(xend) denotes the point

reached after tracing L(x) for one full revolution along ∂Ω. Equation (2.10) then

says that this difference must be equal to −2πi µ(Ω), i.e. L(∂Ω) must be a line

segment in the complex plane which rises by 2π |µ(Ω)| if µ(Ω) is negative, and

which descends by the same amount if µ(Ω) is positive. This is further illustrated

in the following example.

Example 2.2.3 Consider the weighted Dirac measure µ(x) = α δ(x) with α ∈ R
and its associated log-map L(x) = −α log(x). If we set Ω := {z | |z| ≤ 1}, then

L(∂Ω) is a straight line from πi α to −πi α which is consistent with Theorem 2.2.2.

Theorem 2.2.2 allows us to determine the equilibrium measure µE,S,n/m by guessing

its associated log-map LE,S,n/m(x) and then verifying that the measure and potential

resulting from LE,S,n/m(x) satisfy the conditions of Theorems 2.1.4 and 2.1.6. The

following theorem reformulates these conditions in terms of LE,S,n/m(x) under some

additional assumptions introduced solely to simplify the exposition. The extension

to a more general statement will be obvious.

Theorem 2.2.4 Assume E and S are connected and such that supp(µE,S,n/m) =

∂E ∪ ∂S. Then, a function LE,S,n/m(x) is the equilibrium log-map if and only if all

of the following conditions are satisfied:

1. LE,S,n/m(x) is locally analytic on C \
(
E ∪ S

)
.
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2. LE,S,n/m(x) maps ∂Ω with Ω ∈ {E ,S} to the interval

LE,S,n/m
(
∂Ω
)

= cΩ + i
[
sΩ, eΩ

]
,

where cΩ + isΩ = LE,S,n/m(xstart) for some starting point xstart ∈ ∂Ω and

cΩ + ieΩ = LE,S,n/m(xend) denotes the point reached after one full revolution

along ∂Ω (cf. (2.12)).

3. These intervals are traversed in ascending / descending direction and their

lengths are 2π and 2π n
m for Ω = E and Ω = S, respectively, i.e. eE − sE = 2π

and eS − sS = −2π n
m .

4. lim|x|→∞ LE,S,n/m(x) +
(
n
m − 1

)
log(x) = 0.

Proof. Condition 1 ensures that LE,S,n/m(x) has the analyticity properties required

by Theorem 2.2.2, and Condition 2 asserts that the logarithmic potential satis-

fies the optimality conditions from Theorem 2.1.6 which due to the assumption

supp(µE,S,n/m) = ∂E ∪ ∂S simplify to requiring that UE,S,n/m(x) = Re
(
LE,S,n/m(x)

)

is constant on E and S. Condition 3 fixes the charges on E and S according to

Theorem 2.2.2, and finally Condition 4 ensures that (2.11) is satisfied.

In the polyomial case n
m = 0, Theorem 2.2.4 essentially describes the defining

properties of the Green’s function with pole at infinity, see e.g. [Saf10, p. 184], [ST97,

p. 108] or [Ran95, Def. 4.4.1], and see Remark 2.2.5 below regarding Condition 3

which is not usually listed as a defining property. The extension to the rational case

has been derived independently by the author.

Remark 2.2.5 Condition 4 of Theorem 2.2.4 implies Condition 3 in the polynomial

case n
m = 0 since under these circumstances, the integral

∫
∂E L

′
E,S,0(x) dx can be

computed by moving the contour ∂E far enough into the complex plane such that

the difference between LE,S,0(x) and log(x) becomes negligible and hence

∫

∂E
L′E,S,0(x) dx = lim

r→∞

∫

|x|=r
L′E,S,0(x) dx

= lim
r→∞

LE,S,0
(
r eπi (1−0)

)
− LE,S,0

(
r eπi (1+0)

)

= log
(
eπi (1−0)

)
− log

(
eπi (1+0)

)

= 2πi.

However, both conditions are required for the rational case n
m > 0: without Condi-

tion 3, the asymptotic behaviour required by Condition 4 could be achieved simply
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by scaling the polynomial log-map LE,S,0(x), i.e.

L̃E,S,n/m(x) :=
(
1− n

m

)
LE,S,0(x)

satisfies Conditions 1, 2 and 4 but it is clearly not the correct log-map.

2.3 Polynomial Approximation of the Fermi-Dirac Func-

tion

This section demonstrates the application of the above theory by determining in

Theorem 2.3.12 the rate of convergence of polynomial approximation to the Fermi-

Dirac function fβ,EF (E) on the sets

E = [−1, 1] and E = [−1, ε−] ∪ [ε+, 1]

with −1 < ε− < ε+ < 1, which serve as prototypical examples for the spectra of,

respectively, metals and insulators, see Section 1.1. The main step towards this

goal is to determine the log-maps for the above sets and ratio n
m = 0 between

the denominator degree n and numerator degree m, which we will do following

the Schwarz-Christoffel mapping techniques of [ET99, SSW01] in Theorems 2.3.4

and 2.3.6.

Before we begin, we would like to point out that for n
m = 0, the set of singularities

S disappears from the definition of the equilibrium measure µE,S,0 in Theorem 2.1.4

and hence we drop the subscripts S and 0 in µE,S,0, UE,S,0(x) and LE,S,0(x) in this

case. It will further be convenient to have copies GE(x) and gE(x) := Re
(
GE(x)

)
of,

respectively, LE(x) and UE(x) at hand which are shifted such that gE(x) vanishes

on E . These are introduced in the following definition.

Definition 2.3.1 We introduce

GE(x) := LE(x)− sup
q.e. t∈E

UE(t), gE(x) := UE(x)− sup
q.e. t∈E

UE(t).

gE(x) is known as the Green’s function of E in the literature [Saf10, ST97, Ran95].

Given the above setup, the following observations were made in [ET99, SSW01].

Lemma 2.3.2 G[−1,1](x) maps the upper half-plane {z | Im(z) > 0} holomorphi-

cally onto the semi-infinite strip {z | Re(z) > 0, Im(z) ∈ [0, π)}, and we have that

G[−1,1](−1) = πi, G[−1,1](1) = 0. This map is illustrated in Figure 2.2.
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πι

0

(a) (b)

G[−1,1](x)

Figure 2.2: Shifted log-map G[−1,1](x) applied to the upper half-plane (see
Lemma 2.3.2 and Theorem 2.3.4).

Proof. Condition 1 of Theorem 2.2.4 asserts that G[−1,1](x) is analytic on C\ [−1, 1],

and it follows from Conditions 2 and 3 of the same theorem that G[−1,1](x) maps

∂[−1, 1]2 to [0, 2πi]. The symmetry of the problem with respect to reflection about

the real line further implies that the two segments G[−1,1]

(
[−1, 1] ± 0i

)
must be of

equal lengths and therefore

G[−1,1]

(
[−1, 1] + 0i

)
= [0, πi], G[−1,1]

(
[−1, 1]− 0i

)
= [πi, 2πi]

and G[−1,1](1) = 0, G[−1,1](−1) = πi, as stated. Another consequence of the afore-

mentioned symmetry is that U[−1,1](x) = U[−1,1](x̄) and hence

0 = ∂
∂ Im(x)U[−1,1](x) = ∂

∂ Im(x) Re
(
G[−1,1](x)

)
= − ∂

∂ Re(x) Im
(
G[−1,1](x)

)

for all x ∈ R \ [−1, 1], where the last equality follows from the Cauchy-Riemann

equations. This proves that G[−1,1]

(
(−∞,−1)

)
and G[−1,1]

(
(1,∞)

)
must be hor-

izontal lines (the black lines in Figure 2.2b), and it only remains to show that

g[−1,1](x) = Re
(
G[−1,1](x)

)
→ +∞ monotonically for x → ±∞. The limit follows

from Condition 4 of Theorem 2.2.4, and the monotonicity follows after observing

that the harmonic and conjugate symmetric function g[−1,1](x) = g[−1,1](x̄) cannot

have a local minimum on R \ [−1, 1].

Figure 2.2 shows that G[−1,1](x) maps the upper half-plane to a rectangular region

where the right edge of the rectangle has been moved to infinity. Functions mapping

the upper half-plane holomorphically to a polygon are known as Schwarz-Christoffel

maps and have a special structure described in the following theorem.

2 Recall our convention regarding the boundary contour of curves from Definition 2.0.2.
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Theorem 2.3.3 Let x1, . . . , xn ⊂ R and let F (x) be a conformal map from the

upper half-plane {z | Im(z) > 0} to the interior of a polygon P with vertices

F (x1), . . . , F (xn) and F (∞). Assume the interior angles at these points are given

by α1π, . . . , αnπ, respectively (the angle at F (∞) must be α∞ := π
(
n−2−∑n

k=1 αk
)

to ensure that the polygon is closed). We then have

F ′(x) = c
n∏

k=1

(x− xk)αk−1 (2.13)

for some constant c ∈ C, where here and throughout this chapter, xα is defined as

xα := |x|α exp
(
i α arg(x)

)
with arg(x) ∈ (−π, π]. (2.14)

Discussion. A proof of the above result and a detailed discussion of the theory

of Schwarz-Christoffel mappings can be found in [DT02]. Briefly, the idea behind

(2.13) is that the sign of F ′(x) must jump by a factor of exp
(
πi (αk − 1)

)
at xk to

generate a vertex of the correct angle, and this is achieved if F ′(x) is of the form

F ′(x) = f(x) (x−xk)αk−1 for some function f(x) which locally has a constant sign.

In the case of the shifted log-map G[−1,1](x), the prevertices are x1 = −1, x2 = 1

and the associated angles are α1 = α2 = 1
2 ; hence we have that

G′[−1,1](x) =
c√

x+ 1
√
x− 1

.

An anti-derivative of this function is given by

G[−1,1](x) = log
(
x+
√
x+ 1

√
x− 1

)
, (2.15)

where the additive constant has been chosen such that G[−1,1](1) = 0 and the mul-

tiplicative constant c has been fixed to satisfy G[−1,1](−1) = πi as required by

Lemma 2.3.2. This proves the following well-known result, see e.g. [Saf10, Example

1.11].

Theorem 2.3.4 The shifted log-map for the interval [−1, 1] is given by G[−1,1](x) =

log
(
x+
√
x+ 1

√
x− 1

)
.

Remark 2.3.5 In expressions like (2.15), it is tempting to replace
√
x+ 1

√
x− 1

with
√
x2 − 1, but this is not correct for Re(x) < 0 since there the two expressions

evaluate different branches of the same function, cf. (2.14).

Let us now extend the above construction to the case of two intervals E =
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GE(x)

Figure 2.3: Shifted log-map GE(x) with E := [−1, ε−] ∪ [ε+, 1] applied to the upper
half-plane (see Theorem 2.3.6).

[−1, ε−] ∪ [ε+, 1]. Arguing similarly as in Lemma 2.3.2, one can show that the

image of GE(x) applied to the upper half-plane must be of the form shown in Fig-

ure 2.3b, where the main novelty is that the polygon on the right-hand side has one

vertex (indicated by the black dot) whose preimage xk is not an endpoint of E but

rather some point x? ∈ (ε−, ε+), and whose interior angle αk is 2 rather than 1
2 . This

additional vertex is required to ensure that the two segments of Im
(
GE(E)

)
(the red

and orange lines in Figure 2.3b) fall on a single vertical line, and the preimage x?

is determined so as to satisfy this condition. Using the Schwarz-Christoffel formula

from Theorem 2.3.3, this yields the following shifted log-map.

Theorem 2.3.6 ([SSW01]) The shifted log-map for E := [−1, ε−] ∪ [ε+, 1] with

−1 < ε− < ε+ < 1 is given by

GE(x) =

∫ x

1
f(t) (t− x?) dt (2.16)

where

f(x) :=
1√

x+ 1
√
x− ε−

√
x− ε+

√
x− 1

and x? :=

∫ ε+
ε−

t f(t) dt
∫ ε+
ε−

f(t) dt
.

Proof. The functional form of GE(x) follows immediately from Figure 2.3 and The-

orem 2.3.3 (Schwarz-Christoffel mapping), and we observe that

lim
|x|→∞

GE(x)− log(x) = lim
|x|→∞

∫ x

1

t−x?√
t+1
√
t−ε−

√
t−ε+

√
t−1
− 1

t dt = const;

hence GE(x) satisfies Condition 4 of Theorem 2.2.4 which in turn implies Condition 3

of the same theorem, see Remark 2.2.5. It remains to show that GE(E) falls on a
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Figure 2.4: Equipotential lines {x | gE(x) = const} of the Green’s function for
E = [−1,−0.5] ∪ [−0.3, 1]. The black dots indicate the singularities of the Fermi-
Dirac function for EF = 0.4 and β = π

10 .

single vertical line, which we conclude from Figure 2.3b to be equivalent to

∫ x?

ε−
f(t) (t− x?) dt = −

∫ ε+

x?
f(t) (t− x?) dt.

Upon rearranging, this identity becomes the defining formula for x? and hence this

condition is indeed satisfied.

Remark 2.3.7 The standard software package for evaluating integrals of the form

(2.16) is the Schwarz-Christoffel toolbox from [Dri96]. However, the numerical ex-

periments reported below are based on our own code which is available online at

github.com/ettersi/SchwarzChristoffel.jl and which employs techniques de-

scribed in [DT02].

We recall that our motivation for determining log-maps was Theorem 2.1.10,

which lower-bounds the rate of convergence of rational interpolation by the difference

in potential V (E ,S, n/m) between E and S. In the polynomial case n
m = 0, this

difference in potential is given by

V (E ,S, 0) = inf
x∈S

gE(x),

which is the value V determining the largest level set
{
x | gE(x) < V

}
contained

in the domain of analyticity of f(x), see Figure 2.4. Furthermore, this lower bound

V (E ,S, 0) is in fact the exact rate of convergence, and it is the exact rate of conver-

gence not only for interpolation but also for best approximation. This observation is

a consequence of the following result, which states that if a sequence of polynomials
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Figure 2.5: Convergence of polynomial interpolation to the Fermi-Dirac function
fβ,EF (E) with EF = −0.2 and E = [−1, 1] (metal, left) and E = [−1,−0.3]∪[−0.1, 1]
(insulator, right). The dashed lines indicate the rate of convergence gE

(
EF + πi

β

)

predicted by Theorem 2.3.9.

pn(x) ∈ Pn converges to a function f(x) with a rate faster than V (E ,S, 0), then

f(x) must be analytic on a domain strictly larger than {x | gE(x) < V (E ,S, 0)}.

Theorem 2.3.8 Let f(x) and E be as in Problem 2.0.1 and V > 0. The following

statements are equivalent.

• inf
p∈Pm

‖f − p‖E .ε exp
(
−V m

)

• f(x) is analytic on
{
x | gE(x) < V

}
.

Proof. See e.g. [Saf10, Theorem 4.1] or [Tre13, §8].

In the context of electronic structure algorithms, we are interested in the rate

of convergence of polynomial approximation to the Fermi-Dirac function fβ,EF (E)

from (1.4). Theorem 2.3.8 combined with the set of singularities S
(
fβ,EF

)
from

(2.1) yields the following result.

Theorem 2.3.9 The optimal rate of convergence of polynomial approximation to

the Fermi-Dirac function, i.e. the largest V such that

inf
p∈Pm

‖f − p‖E .ε exp
(
−V m

)
,

is given by

V (E ,Sβ,EF , 0) = gE
(
EF + πi

β

)
.
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In order to achieve the optimal rate of convergence from Theorem 2.3.9 through

interpolation, we must devise a procedure to compute interpolation points X dis-

tributed according to the equilibrium measure µE , cf. Theorem 2.1.10. Such a pro-

cedure is described in the following theorem.

Theorem 2.3.10 The points

X := G−1
E

(
2πi
n−1 {0, . . . , n− 1}

)

are asymptotically distributed according to the equilibrium measure µE in the sense

of (2.8).

Proof. It follows from Theorem 2.2.2 that

− 1

2π

(
Im
(
LE(E)

)
− sE

)

is the cumulative distribution function (CDF) of µE on ∂E . The above construction

is thus equivalent to the technique of simulating a random variable by inverting its

CDF, see e.g. [Dev06, §1.1].

Example 2.3.11 One may verify by straightforward computation that the inverse

to the log-map G[−1,1](x) from Theorem 2.3.4 is given by G−1
[−1,1](z) = cosh(z); hence

the points X constructed according to Theorem 2.3.10 are given by

X = cosh
(

2πi
n−1 {0, . . . , n− 1}

)
= cos

(
2π
n−1 {0, . . . , n− 1}

)
.

We observe that for odd n, each point in X appears twice, which is a consequence

of µE being supported on ∂E even if E is a curve (recall our convention regarding

the boundary of curves from Definition 2.0.2). Strictly speaking, half of the points

in the set X given above are thus located on [−1, 1] + 0i while the other half live

on [−1, 1] − 0i, but of course this technical subtlety does not make any difference

in actual computations. The double-sampling on sets E which are curves is often

undesirable since the resulting points X are less evenly distributed on E than they

could be, and the interpolation problem becomes ill-defined if two points x1, x2 ∈
X coincide. These issues may be avoided by sampling according to the averaged

equilibrium measure

dµ̄E(x) :=
dµE(x+ 0i) + dµE(x− 0i)

2
,

which was done in all the numerical experiments reported in this chapter. If we use
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this trick to determine interpolation points for the interval E = [−1, 1], we obtain

the well-known Chebyshev points

X = cos
(

π
n−1{0, . . . , n− 1}

)
,

see e.g. [Tre13, eq. (2.1)].

Figure 2.5 compares the rates of convergence for interpolation in points X gen-

erated as described above against the predictions of Theorem 2.3.9, and we observe

that theory and experiment match perfectly.

We conclude this section by establishing the asymptotic behaviour of the con-

vergence rate gE
(
EF + πi

β

)
in the limits of vanishing temperature β−1, vanishing

band gap δE = ε+ − ε− (equations (2.17) and (2.18), respectively), and p-doped

and n-doped semiconductors (equations (2.19) and (2.20), respectively) where the

Fermi-level approaches one of the ends of the band gap. These formulae are useful

e.g. for estimating the costs of electronic structure algorithms based on polynomial

approximation and are also connected with the localisation of the density matrix

discussed in Section 1.3 as we shall see in the next chapter. Formula (2.17) has

appeared previously in [BBR13], while the other formulae are new to the best of the

author’s knowledge.

Theorem 2.3.12 We have for −1 < ε− < EF < ε+ < 1 that

g[−1,1]

(
EF + πi

β

)
∼ β−1 for β →∞, (2.17)

g[−1,ε−]∪[ε+,1]

(
EF
)
∼ ε+ − ε− for ε−, ε+ → EF , (2.18)

g[−1,ε−]∪[ε+,1]

(
EF
)
∼
√
EF − ε− for EF → ε−, (2.19)

g[−1,ε−]∪[ε+,1]

(
EF
)
∼
√
ε+ − EF for EF → ε+. (2.20)

In (2.18), it is assumed that the limit is approached symmetrically, i.e. EF − ε− ∼
ε+ − EF . The notation f(x) ∼ g(x) is defined in Appendix A.2.

Proof. Equations (2.17), (2.19), and (2.20) follow immediately from Theorems 2.3.4

and 2.3.6 by integrating the known derivatives of GE(x) starting from the limit

points. Equation (2.18) follows after noting that the integral

∫ EF

ε−

dt√
t+ 1

√
t− ε−

√
t− ε+

√
t− 1

converges to a finite and nonzero limit for ε−, ε+ → EF due to the inverse-square-

root singularities at the points t ∈ {ε−, ε+}, and weighting this integral with t− x?
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reduces it to within a constant factor of ε+ − ε− since x? ∈ (ε−, ε+).

2.4 Rational Approximation of the Fermi-Dirac Func-

tion

Let us now turn our attention to the rational approximation of the Fermi-Dirac

function fβ,EF (E) from (1.4). The theory presented in Section 2.1 suggests that we

construct such approximations through interpolation, but the application of Theo-

rem 2.1.10 faces the challenge that the set of singularities Sβ,EF is discrete; hence it

is polar and the equilibrium measure problem associated with E , Sβ,EF and n
m > 0 is

ill-posed. In practical terms, this means that rational approximation to the Fermi-

Dirac function can achieve arbitrarily large convergence rates as we will demonstrate

next.

Theorem 2.4.1 Let m,n ∈ N with n even, and let E ⊂ R be a non-polar set. We

introduce

qn(E) := − 1

β

∑

y∈Yn

1

E − y

with Yn :=
{
EF + πi k

β

∣∣ k ∈ {−2n+ 1,−2n− 1, . . . , 2n− 1}
}
⊂ Sβ,EF and set

rmn(E) := pm(E) + qn(E)

where pm ∈ Pm denotes a polynomial interpolant to fβ,EF (E)− qn(E) with interpo-

lation points distributed according the equilibrium measure µE . We then have that

‖rmn − f‖E .ε exp

(
−gE

(
EF + πi (2n+1)

β

)
m

)
;

hence the convergence rate for m→∞ can be made arbitrarily large by choosing n

large enough.

Proof. For each z ∈ Sβ,EF , we compute using L’Hôpital’s rule that

lim
x→y

(x− y) fβ,EF (x) = lim
x→y

x−y
1+exp

(
β (E−EF )

) = lim
x→y

1

β exp
(
β (E−EF )

) = − 1

β
;

hence we conclude that the singularities in Sβ,EF are simple poles with residues − 1
β .

The poles of the two functions fβ,EF (E) and qn(E) at E ∈ Yn thus cancel in the

polynomial approximation problem pm(E) ≈ fβ,EF (E)− qn(E) such that the claim

follows from the polynomial version of Theorem 2.1.10.

32



The idea of subtracting poles from the Fermi-Dirac function to increase its domain

of analyticity originated in the master thesis of Matthew Coates [Coa18] who was

supervised by the author of the present thesis.

Remark 2.4.2 The above discussion might seem to suggest the implication

S is polar =⇒ rational approximation converges superexponentially,

but this is correct if and only if all the singularities in S are poles. For essential

singularities, the Laurent series has infinitely many negative powers and hence we

cannot subtract poles as in Theorem 2.4.1.

Theorem 2.4.1 makes a strong theoretical point by showing that rational approx-

imation to the Fermi-Dirac function may converge superexponentially, but its prac-

tical relevance is limited for the following reason. We have seen in Theorem 2.3.12

that g[−1,1](x) ∼ | Im(x)| for x approaching (−1, 1); hence in the regime n � β we

have the estimate

‖rmn − f‖[−1,1] .ε exp
(
−C mn

β

)

for some C > 0. This shows that at least one of m or n must scale algebraically in

β in order to achieve a constant error, which is much worse than it could be as we

shall see shortly.

The reason for the poor scaling of the approximation scheme from Theorem 2.4.1

is that in the limit β → ∞, the Fermi-Dirac function fβ,EF (E) degenerates into a

step function

f∞,EF (E) =





1 if Re(E) < EF ,

0 if Re(E) > EF

which has no isolated singularities and hence the pole-removal trick from Theo-

rem 2.4.1 no longer works. In this regime, more effective rational approximations

can be obtained by replacing the exact set of singularities Sβ,EF with the set

Sfilled
β,EF

= EF +
(
−∞i,−πi

β

]
∪
[
πi
β ,∞i

)

where all gaps between the poles of Sβ,EF have been filled in except around the

real axis. This set Sfilled
β,EF

is no longer polar and hence we can apply the rational

interpolation theory from Section 2.1 once we have determined the log-map

GE,β,EF (x) := GE,Sfilled
β,EF

,1(x).
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Figure 2.6: Shifted log-map GE,β,EF (E) with E = [−1, ε−] ∪ [ε+, 1] applied to the
upper half-plane (see Theorem 2.4.3).

As indicated, we will only consider the case n
m = 1 since this is the ratio relevant for

the pole-expanded ansatz (1.16) required by the PEXSI algorithm, and for simplicity

we only discuss the case E = [−1, 1] in Theorem 2.4.3 below. The modifications

required for insulator spectra E = [−1, ε−] ∪ [ε+, 1] are analogous to Theorem 2.3.6

and are illustrated in Figure 2.6.

Theorem 2.4.3 Let β ∈ (0,∞) and EF ∈ (−1, 1). We then have that

G[−1,1],β,EF
(E) = αH2

(
H1

(
E − EF

))
with α :=

π∣∣H2

(
H1(−1− EF )

)∣∣ ,

where

H1(E) :=
E2 + E

√
E2 + 4c

2
+ c =

−2cE

E −
√
E2 + 4c

+ c (2.21)

with c = π2

4β2 is the inverse of h(x) := x−c√
x

, and

H2(x) :=

∫ x

b

1√
t
√
t− a

√
t− b

dt (2.22)
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with a = H1(−1), b = H1(1). We provide two formulae for H1(E) since the first

formula in (2.21) suffers from cancellation in the limit E → −∞, while the second

is numerically unstable in the limit E → +∞.

Proof. As in Theorems 2.3.4 and 2.3.6, the proof amounts to showing that the given

function G[−1,1],β,EF
(E) maps the upper half-plane to the appropriate rectangular

region, which in this case is as shown in Figure 2.6c. We note that this rectangle is

bounded since according to Condition 4 of Theorem 2.2.4, we must have for n
m = 1

that

lim
|x|→∞

LE,S,1(x) = 0.

One may verify that h(x) is a holomorphic map from the upper half-plane H+ :=

{x | Im(x) > 0} to the slit half-plane H+ \
[
πi
β ,∞i

)
and maps the boundary R

according to

h
(
(0,∞)

)
= R, h

(
[−c, 0)

)
=
[
πi
β ,∞i

)
− 0, h

(
(−∞,−c ]

)
=
[
πi
β ,∞i

)
+ 0;

hence its inverse H1(E) is as shown in Figures 2.6a and 2.6b. This map was cho-

sen such that the mapping between Figures 2.6b and 2.6c is of Schwarz-Christoffel

form as described in Theorem 2.3.3, and the H2(x) given above immediately follows

from this observation. Finally, we remark that the scaling α is needed to ensure

GE,β,EF (−1) = πi as required by Theorem 2.2.4.

Please see Remark 2.3.7 for some comments regarding the practical evaluation of

the shifted log-map GE,β,EF (E) from Theorem 2.4.3.

Remark 2.4.4 A similar mapping from the slit upper half-plane to a rectangle has

been proposed in [LLYE09]. Like our construction, the map given there first maps

the boundary segments onto the real line and then uses a second map to “fold”

the real line into a rectangle. This second map from [LLYE09] has been derived

in [HHT08], and while the construction there may superficially look very different

from our formula for H2(x), the two functions are in fact equivalent since both map

the same intervals on the real line onto equivalent edges of the rectangle.

The first map from [LLYE09] is given by H̃1(E) := E2 + π2

β2 , and this function is

genuinely different from our choice in Theorem 2.4.3. We prefer our construction

since H̃1(E) maps the two points E ∈ R and −E to the same image which effectively

forces E to be symmetric with respect to the Fermi level EF . However, if this sym-

metry is already satisfied then our map GE,β,EF (E) becomes once again equivalent

to its counterpart from [LLYE09] since it performs an equivalent mapping of the

boundary.
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Figure 2.7: Convergence of rational interpolation (left) and contour quadrature
(right) for E = [−1, 1] and EF = −0.2. The dashed lines indicate the rates of
convergence V (E , β, EF ) and 1

2 V (E , β, EF ) predicted by Theorem 2.1.10 and (2.28),
respectively. Figure (b) will be discussed in Section 2.5.

Theorem 2.4.3 allows us to determine “good” interpolation points X and poles

Y in the sense of Theorem 2.1.10 as described in Theorem 2.3.10, and Figure 2.7a

demonstrates that the resulting rational interpolants indeed converge at the rate

V (E , β, EF ) := V
(
E ,Sfilled

β,EF
, 1
)

(2.23)

predicted by Theorem 2.1.10. For the computations in Figure 2.7a, we represented

these interpolants in the pole-expanded form from (1.16) with coefficients deter-

mined by inverting the Cauchy matrix associated with the interpolation points and

poles, and since this scheme achieves accuracies close to machine precision we con-

clude that it is robust against rounding errors. Numerical stability of high-order

polynomial and rational approximation algorithms is a well-known issue, see e.g.

the discussion in [Tre13, §14], and it is not obvious why the scheme described above

would not suffer from such instabilities. This will be further investigated in future

work.

Figure 2.8a shows that for growing β, the interpolation points resulting from

Theorem 2.4.3 increasingly concentrate around the Fermi level EF , and we see in

Figure 2.9a that this concentration allows rational interpolants to resolve the jump

in the Fermi-Dirac function much better than polynomial interpolants. Figure 2.9b

further demonstrates that rational interpolants to fβ,EF (E) on gapped spectra E
genuinely approximate only on E and may significantly deviate from fβ,EF (E) on

the gap. We conclude from these examples that rational interpolation samples the
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Figure 2.8: Density of interpolation points (left) and poles (right) according to
the equilibrium measure µE,β,EF derived from Theorem 2.4.3 with E = [−1, 1] and
EF = −0.2.
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Figure 2.9: Polynomial and rational interpolants of the Fermi-Dirac function
fβ,EF (E) with β = 20, EF = −0.2, and E = [−1, 1] (metal, left) and E =
[−1,−0.5] ∪ [0, 1] (insulator, right).
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Figure 2.10: Approximation error ‖fβ,0− rn‖[−1,1] as a function of β for the rational
interpolants rn based on log-map from Theorem 2.4.3. Labels denote the number
of interpolation points and poles.

approximand f(x) adaptively in the sense that f(x) is evaluated only in regions

where accuracy is required and f(x) lacks smoothness. Finally, Figure 2.8b shows

that the pole density prescribed by Theorem 2.4.3 has inverse-square-root singulari-

ties at the endpoints E = EF± πi
β of Sfilled

β,EF
and decays likeO

(
E−2

)
for E → EF±∞i.

Figure 2.10 displays the error in the rational interpolants constructed according to

the log-map from Theorem 2.4.3 as a function of β and the number of interpolation

points and poles n. Comparing this figure against the analogous plots in [Mou16,

Fig. 3], we conclude that our rational interpolation scheme performs about a factor of

two worse than the best rational approximations constructed there. This difference

of a factor two between the optimal convergence rate of rational approximation and

the one predicted by logarithmic potential theory has previously been observed in

the literature, see the discussion and references at the end of [Saf10, §5], and we plan

to further investigate this phenomenon in future work. We remark that Figure 2.10

extends only up to β = 103 while the plots in [Mou16] extend up to β = 106 since we

faced numerical challenges when evaluating the integral (2.22) in the limit β → ∞
where a = H1(−1) → 0 but b = H1(1) → 1. We would like to emphasise that this

issue is particular to our implementation and can be overcome either by using more

sophisticated Schwarz-Christoffel mapping techniques as discussed in [DT02], or by

solving the equilibrium measure problem using the tools from [Olv11].

As in Theorem 2.3.12, we would like to conclude this section by establishing

the asymptotic dependence of the convergence rate V (E , β, EF ) from (2.23) on the

inverse temperature β and band gap δE. However, unlike in Theorem 2.3.12, we

allow only EF = 0 in (2.25), and we do not discuss the case of doped semiconductors

since the log-map GE,β,EF (E) from Theorem 2.4.3 does not easily extend to the case
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β =∞ if E is not symmetric around the Fermi level EF (further details will be given

in the proof). We believe that this is a purely technical obstacle, and we expect

logarithmic dependence on the relevant parameters in all of the aforementioned

cases.

Equivalent statements regarding the asymptotic behaviour of the convergence rate

of rational approximation to the Fermi-Dirac function have appeared previously in

[LLYE09]. The novelty in the theorem below is that it establishes this known result

in a new and more general framework.

Theorem 2.4.5 We have for −1 < EF < 1 that

V
(
[−1, 1], β, EF

)
∼ log(β)−1 for β →∞, (2.24)

V
(
[−1,−ε] ∪ [ε, 1],∞, 0

)
∼ | log(ε)|−1 for ε→ 0. (2.25)

The notation f(x) ∼ g(x) is defined in Appendix A.2.

Proof. In both cases, the rate of convergence equals the width of the rectangle in

Figure 2.6c which is given by

V (E , β, EF ) = α
∣∣H2(a)−H2(0)

∣∣ =

∣∣∣
∫ a

0
1√

t
√
t−a
√
t−b dt

∣∣∣
∣∣∣
∫ b
a

1√
t
√
t−a
√
t−b dt

∣∣∣
. (2.26)

We analyse this ratio separately for the two cases.

(2.24): For β → ∞, the point a = H1(−1) in (2.21) approaches 0 while b → 1;

hence the numerator in (2.26) approaches a finite and nonzero limit due to the

inverse-square-root singularities at the endpoints of the integral. The denominator,

on the other hand, behaves asymptotically like

∣∣∣∣
∫ 1

a

1

t
√
t− 1

dt

∣∣∣∣ ∼ | log(a)|

and thus the claim follows after noting that a = H1(−1) ∼ β−4, cf. (2.21).

(2.25): For β → ∞ or equivalently c → 0, the formula for GE,β,EF (E) given in

Theorem 2.4.3 breaks down since H1(E) degenerates to mapping the entire left half-

plane {E | Re(E) < 0} to 0. In this limit, we therefore replace H1(E) with the map

H̃1(E) := E2 proposed in [LLYE09], which maps the imaginary axis onto (−∞, 0]

and both [−1,−ε], [ε, 1] to [ε2, 1]. The parameters of the map H2(x) are thus given

by a = ε2 and b = 1 in this case, from which the claim follows by repeating the

above argument.

39



2.5 Rational Interpolation vs. Contour Quadrature

Rational approximations are frequently constructed by discretising the contour in-

tegral in Cauchy’s formula, i.e. by determining quadrature nodes zk and weights λk

such that

f(x) =
1

2πi

∫

∂Ω

f(z)

z − x dz ≈
n∑

k=1

λk
f(zk)

zk − x
=: rn(x), (2.27)

where Ω ⊂ C denotes some suitable contour integral domain. In [HHT08], such

quadrature rules were constructed by mapping the above integral to an annulus

and applying the periodic trapezoidal rule, and this idea has been applied to the

Fermi-Dirac function fβ,EF in [LLYE09]. This section will show that the contour

quadrature ansatz described above is closely related to the rational interpolation

scheme presented in previous sections but performs worse by a factor of two com-

pared to our approach.

In the notation of Problem 2.0.1 and assuming for simplicity that both E and S
are intervals or rays, the scheme from [HHT08] consists of the following steps.

1. Find an analytic, bounded and invertible map

φ : {z | ρ−1 < |z| < ρ} → C \
(
E ∪ S

)

for some ρ ∈ (0,∞) determined by E and S.

2. Substitute x = φ(z) in the contour integral from (2.27) and apply the trape-

zoidal rule,

f(x) =
1

2πi

∫

|z|=1

f
(
φ(z)

)

φ(z)− x φ
′(z) dẑ ≈ 1

n

n∑

k=1

f
(
φ(zk)

)

φ(zk)− x
φ′(zk) zk =: rn(x)

where zk = e2πi k/n and the contour domain Ω in (2.27) is assumed to be given

by Ω = φ
(
{|z| = 1}

)
.

It follows from standard convergence estimates for the periodic trapezoidal rule that

the approximations rn(x) produced by this scheme satisfy the error bound

‖f − rn‖ .ε ρ
−n, (2.28)

see [TW14, Theorem 2.2].

To see the connection with rational interpolation, we note that if we compose the

map φ(z) with an exponential, we obtain a function φ
(
exp(z)

)
which instead of an
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annulus maps from the rectangle

log
(
{z | ρ−1 < |z| < ρ}

)
=
{
z | Re(z) ∈ [− log(ρ), log(ρ)], Im(z) ∈ (−π, π]

}
,

i.e. φ
(
exp(z)

)
performs exactly the opposite mapping of the log-map GE,β,EF (E)

illustrated in Figure 2.6. Comparing the side lengths of these rectangles, we conclude

log(ρ) = V (E , β, EF )/2 and hence the convergence rate of the scheme from [LLYE09]

is indeed half of ours as claimed above. This is illustrated in Figure 2.7, where we

note that the x-axis in Figure 2.7a spans half the range of that of Figure 2.7b.

2.6 Rational Interpolation and Zolotarev Functions

It is known that for every real, continuous function f(x) there exists a unique best

real rational approximation

r?(x) := arg min
r∈Rreal

mn

‖f − r‖[−1,1] where Rreal
mn :=

{
r ∈ Rmn | r

(
[−1, 1]

)
⊂ R

}
,

and this best approximation is characterised by a certain equioscillation property of

the error r?(x) − f(x), see [Tre13, Theorem 24.1]. Such best approximations must

generally be computed using some iterative scheme like the Remez algorithm (see

e.g. [Bra86, §V.6.B]) or the method proposed in [Mou16], but there is an important

special case where the best rational approximation problem can be solved explicitly,

namely the approximation of the sign function on domains of the form E = [−1,−ε]∪
[ε, 1] with ε ∈ (0, 1) as shown by Zolotarev in 1877, see [Zol77]. This section will

demonstrate that rational interpolation as discussed above essentially reproduces

Zolotarev’s solution if used appropriately.

Up to a linear transformation, the problem considered by Zolotarev is equivalent

to the approximation of the zero-temperature Fermi-Dirac function

f∞,0(E) = 1
2

(
1− sign(Re(x))

)

on the symmetric insulator-spectrum E = [−1,−ε] ∪ [ε, 1]. We have seen in the

proof of (2.25) that the log-map GE,β,EF (E) from Theorem 2.4.3 breaks down in the

zero-temperature limit but that our construction of GE,β,EF (E) can be adapted to

this case if we replace the map H1(E) given in Theorem 2.4.3 with H̃1(E) := E2 and

modify H2(E) accordingly. This gives us a new log-map G̃ε(E) ∝ H̃2

(
H̃1(E)

)
which

maps the upper-right quadrant
{
E | Re(E) > 0, Im(E) > 0

}
holomorphically onto

the rectangle
{
z | Re(z) ∈ [0, V ], Im(z) ∈ [0, π]} for some V > 0, and G̃ε

(
[ε, 1]

)
=
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Figure 2.11: Rational interpolant r(E) ∈ R4,4 to the zero-temperature Fermi-Dirac
function f∞,0(E) on E := [−1,−0.2] ∪ [0.2, 1] (left) and the error r(E) − f∞,0(E)
(right). See Section 2.6 for further details.

[0, πi], G̃ε
(
[0,∞i)

)
= [V, V + πi]. Let us now introduce the interpolation points

X := X ′ ∪
(
−X ′

)
with X ′ :=

{
G̃−1
ε

(
πik
n

)
| k = 0, . . . , n

}
⊂ [ε, 1]

and poles

Y := Y ′ ∪
(
−Y ′

)
with Y ′ :=

{
G̃−1
ε

(
V + πi (k−1/2)

n

)
| k = 1, . . . , n

}
⊂ (0,∞i),

and define r as the rational interpolant to f∞,0(E) in the sense of Theorem 2.1.1.

We numerically observe that the resulting interpolant is in R2n,2n even though our

construction only guarantees r ∈ R2n+1,2n, and Figure 2.11b further demonstrates

that the error function r(E) − f∞,0(E) equioscillates on each of the two intervals

[−1,−ε] and [ε, 1], i.e. it assumes the extrema 0 and ±‖r(E)−f∞,0(E)‖[ε,1] in 2n+1

points in each interval. These observations combined with the equioscillation theo-

rem from [Tre13, Theorem 24.1] imply that r(E) is the best rational approximation

to f∞,0(E) up to a linear transformation, or more precisely

1
1+e

(
r(E)− 1

2

)
+ 1

2 = arg min
r∈Rreal

2n,2n

‖f∞,0 − r‖[−1,1]

where e := ‖r(E)− f∞,0(E)‖[ε,1].

A very similar connection between holomorphic maps and Zolotarev’s functions

has previously been observed in [HHT08] in the context of contour quadrature.

Furthermore, it has been shown in [NF16] that Zolotarev functions of dense matrices

42



can be evaluated very efficiently by composing Zolotarev functions of lower degrees.

However, we believe that this evaluation-by-composition scheme loses its efficiency if

the argument is a sparse rather than a dense matrix, and hence it is unclear whether

the observations from [NF16] can be applied in electronic structure algorithms.

2.7 Conclusion

This chapter has highlighted the connections between logarithmic potential the-

ory, polynomial and rational approximation, and electronic structure theory, which

culminated in explicit formulae for the rate of convergence of polynomial approxima-

tion to the Fermi-Dirac function in Theorem 2.3.9 and a novel rational interpolation

scheme in Section 2.4. The formulae from Theorem 2.3.9 and in particular the

asymptotics from Theorem 2.3.12 are useful for estimating the costs of electronic

structure algorithms based on polynomial approximation (cf. Section 1.3) and for

estimating the localisation of the density matrix as we will demonstrate in Theo-

rem 3.2.2 in the next chapter. The rational interpolation scheme from Section 2.4

has been shown to converge faster than the one from [LLYE09] by a factor of two,

but it loses out to the scheme from [Mou16] by a factor of two. The main con-

tribution of our scheme is hence not superior approximation power, but rather the

fact that it provides a generic framework for thinking about rational approximations

which may be valuable in a number of future extensions.

To illustrate the last point, we would like to mention that it is occasionally of

interest to evaluate the density matrix fβ,EF (H) not just for single values of β and

EF but rather for ranges of these parameters, e.g. for determining the Fermi level

EF by applying a root-finding algorithm to (1.6). The theory presented in this

chapter demonstrates that we can achieve uniform accuracy for a range of β by

choosing the set of poles Y according to the largest β since we have Sfilled
β,EF

⊂ Sfilled
β′,EF

for β < β′, but the same does not hold if we sweep across a range of Fermi levels

EF ∈ [Emin
F , Emax

F ]: to achieve uniform accuracy in the latter case, we should replace

Sfilled
β,EF

with the rectangular region

S ′ :=
{
z
∣∣ Re(z) ∈ [Emin

F , Emax
F ], | Im(z)| > π

β

}

and interpolate with poles distributed along the boundary of S ′ with density given

by µE,S′,1.

Of course, the practical implementation of our rational interpolation scheme re-

quires that we are able to solve the equilibrium measure problem, and the Schwarz-
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Christoffel framework employed in this chapter occasionally requires manual fine-

tuning or may even fail as we have seen in Theorem 2.4.5. A numerical method

which allows us to solve equilibrium measure problems in a more black-box manner

has been proposed in [Olv11], and we intend to investigate its application to rational

approximation in future work.
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Chapter 3

Incomplete Selected Inversion

This chapter tackles the second of the PEXSI subproblems introduced in Section 1.4,

which is the fast evaluation of selected entries of the inverse. We have seen in

Table 1.1 that the selected inversion algorithm from [ET75] allows us to compute

these entries at reduced costs compared to evaluating the full inverse, but the costs

scale worse than O(m) in dimensions d > 1. Aiming to overcome this limitation,

we will show in Theorem 3.2.5 that the triangular factorisation computed as part

of the selected inversion algorithm exhibits a localisation property similar to that of

the density matrix discussed in Section 1.3, and we will propose in Section 3.3 an

incomplete selected inversion algorithm which exploits this property to reduce costs

to O(m) in all dimensions. In order to prepare for these developments, we begin this

chapter with a brief review of the exact selected inversion algorithm in Section 3.1.

The triangular factorisation part of the incomplete selected inversion algorithm

presented in Section 3.3 is exactly the symmetric version of the incomplete LU

factorisation commonly used as a preconditioner in iterative methods for linear sys-

tems, see e.g. [Saa03, §10.3], and in addition to establishing a linear-scaling rational

electronic structure algorithm, our analysis sheds a new light on this well-known

algorithm.

3.1 Review of the Exact Selected Inversion Algorithm

We recall from Section 1.4 that the selected inversion algorithm applied to a matrix

A consists in first computing a triangular factorisation of A and then inferring the

values A−1(i, j) from this factorisation. This section will introduce the appropriate

triangular factorisation in Subsection 3.1.1, discuss the cost of computing it for

sparse matrices A in Subsection 3.1.2, and finally describe how to compute selected
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entries of the inverse in Subsection 3.1.3.

3.1.1 LDLT Factorisation

As discussed in Section 1.3, the Hamiltonian matrices H considered in this thesis

are real and symmetric, but due to the shifts zk introduced in (1.16), the matrices

A = H−zk to factorise are complex symmetric, i.e. A ∈ Cm×m and AT = A but not

AH = A. The appropriate triangular factorisation for such matrices is the LDLT

factorisation introduced in the following theorem.

Theorem 3.1.1 ([GV96, Theorem 3.2.1]) Let A ∈ Cm×m be a symmetric matrix

(A = AT ) such that all the leading submatrices A(`, `) with ` = {1, . . . , i} and i

ranging from 1 to m are invertible. Then, there exist matrices L,D ∈ Cm×m such

that L is lower-triangular with unit diagonal, D is diagonal and A = LDLT .

Definition 3.1.2 For the remainder of this section, we let A ∈ Cm×m be a sym-

metric matrix satisfying the conditions of Theorem 3.1.1, and we denote its LDLT

factors by L,D ∈ Cm×m. The indices i, j ∈ {1, . . . ,m} refer to an entry in the lower

triangle, i.e. i ≥ j, and we set ` := {1, . . . , j−1}, ¯̀ := {1, . . . , j}, r := {j+1, . . . ,m}
and r̄ := {j, . . .m}.

The LDLT factorisation of a given matrix A may be computed using the well-

known Gaussian elimination algorithm [GV96, §3.2] which we will derive from the

following result.1

Theorem 3.1.3 In the notation of Definition 3.1.2, we have that

L(i, j)D(j, j) = A(i, j)− L(i, `)D(`, `)LT (`, j). (3.1)

We observe that the right-hand side of (3.1) depends only on entries L(i, k),

D(k, k) with k < j, hence the two factors can be computed by starting with

D(1, 1) = A(1, 1), L(i, 1) = A(i, 1)/D(i, 1) and proceeding iteratively in left-to-right

order as follows.

Algorithm 3.1 LDLT factorisation

1: for j = 1, . . . ,m do

2: D(j, j) = A(j, j)− L(j, `)D(`, `)LT (`, j)

3: L(r, j) =
(
A(r, j)− L(r, `)D(`, `)LT (r, j)

)
/D(j, j)

4: end for

1 Both Theorem 3.1.3 and Lemma 3.1.4 were derived independently by the author, but given the
importance of triangular factorisations and the simplicity of our formulae, we assume that similar
statements have appeared previously in the literature.
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We will show Theorem 3.1.3 and several other results in this chapter using the

following auxiliary result.

Lemma 3.1.4 In the notation of Definition 3.1.2, we have that

L(i, j)D(j, j) = A(i, j)−A(i, `)A(`, `)−1A(`, j). (3.2)

Proof. The matrices

L̂ :=

(
I

A(r̄, `)A(`, `)−1 I

)
, D̂ :=

(
A(`, `)

S

)
(3.3)

with

S := A(r̄, r̄)−A(r̄, `)A(`, `)−1A(`, r̄)

provide a block LDLT factorisation of A from which the full factorisation follows

by further factorising

L`D`L
T
` := A(`, `), Lr̄Dr̄L

T
r̄ := S

and setting

L = L̂

(
L`

Lr̄

)
, D =

(
D`

Dr̄

)
.

We thus compute

L(i, j)D(j, j) = Lr̄(i, j)Dr̄(j, j) = Lr̄(i, j)Dr̄(j, j)L
T
r̄ (j, j)

= S(i, j) = A(i, j)−A(i, `)A(`, `)−1A(`, j),

where we enumerated the rows and columns of Lr̄, Dr̄ starting from j rather than 1

for consistency with the indexing in the full matrices.

Proof of Theorem 3.1.3. It follows from the special structure of L and D that

A(i, `) = L(i, `)D(`, `)LT (`, `),

A(`, `)−1 = L(`, `)−T D(`, `)L(`, `)−1,

A(`, j) = L(`, `)D(`, `)LT (`, j).

The claim follows by inserting these expressions into (3.2).
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(a) Matrix

1 2 3 4 5 6

(b) Graph

Figure 3.1: Illustration of fill-in and level-of-fill for a one-dimensional periodic chain.
The black numbers on the diagonal enumerate the vertices, the black dots indicate
nonzero off-diagonal elements of the matrix, and the red numbers show the level-of-
fill.

3.1.2 Sparse Factorisation and Nested Dissection

If A is sparse, its L-factor will generally have more nonzero entries than A, i.e.

#fnz(A) ≥ #nz(A) in the notation from (1.18) and (1.17), respectively. The fill-in

entries (i, j) ∈ fnz(A) \ fn(A) significantly increase both the memory footprint of

the factorisation and the cost of computing with it, hence it is important to reduce

their number as much as possible. We recall the following theory from the literature

(see e.g. [Dav06]) regarding the fill-in in sparse factorisations.

Definition 3.1.5 The graph G(A) :=
(
V (A), E(A)

)
of a sparse matrix A ∈ Cm×m

is given by V (A) := {1, . . . ,m} and E(A) := {(j, i) | A(i, j) 6= 0}.

Definition 3.1.6 A fill path between two vertices i, j ∈ V (A) is a path i, k1, . . . , kp, j

in G(A) such that k1, . . . , kp < min{i, j}.

Theorem 3.1.7 ([RT78, Theorem 1]) In the notation of Definition 3.1.2 and bar-

ring cancellation, we have that (i, j) ∈ fnz(A) if and only if there is a fill path

between i and j in G(A).

Proof. The inverse A(`, `)−1 from Lemma 3.1.4 can be written as a polynomial in

A(`, `), which shows
(
A(`, `)−1

)
(k1, kp) 6= 0 if and only if k1, kp ∈ ` are connected

in G
(
A(`, `)

)
. The term A(i, `)A(`, `)−1A(`, 1) hence yields L(i, j) 6= 0 if and only

if i, j are connected by a fill path of length greater than 1, while the term A(i, j)

adds the entries corresponding to fill paths of length 1.

Example 3.1.8 Consider a matrix with sparsity structure as shown in Figure 3.1.

By Theorem 3.1.7, we get fill-in between vertices 4 and 6 because we can connect

these two vertices via 3, 2 and 1 which are all numbered less than 4 and 6. We do
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not get fill-in between vertices 3 and 5, however, because all paths between these

vertices have to go through either 4 or 6 which are larger than 3.

It follows from Theorem 3.1.7 that the number of fill-in entries depends not only

on the sparsity pattern of A but also on the ordering. While finding an optimal fill-

reducing ordering is an NP -hard problem [Yan81], the following nested dissection

algorithm was shown to be asymptotically optimal up to at most a logarithmic factor

in [Gil88].

Algorithm 3.2 Nested dissection

1: Partition the vertices into three sets V1, V2, Vsep such that every path from V1

to V2 visits at least one vertex in Vsep .

2: Arrange the vertices in the order V1, V2, Vsep , where V1 and V2 are ordered re-

cursively according to the nested dissection algorithm and the ordering in Vsep

is arbitrary.

The rationale for sorting the separator Vsep last on line 2 is that this eliminates

all fill paths between V1 and V2 and thus L(V2, V1) = 0. The submatrix L(Vsep , Vsep)

associated with the separator is typically dense, however, hence the nested dissection

ordering is most effective if Vsep is small and V1, V2 are of roughly equal size.

The application of the nested dissection algorithm to a structured 2D mesh is

illustrated in Figure 3.2. We note that the largest separator Vsep returned by this

algorithm (the blue vertex set in the centre of Figure 3.2) contains O
(√
m
)

ver-

tices; thus computing the associated dense part L(Vsep , Vsep) alone requires O
(
m3/2

)

floating-point operations and the full factorisation must be at least as expensive to

compute. It was shown in [Geo73] that this lower bound is indeed achieved, which

justifies the (d = 2, Runtime) entry in Table 1.1 for the factorisation part of the se-

lected inversion algorithm. The other entries can be derived along similar lines, see

e.g. [Dav06], and the cost of the inversion part will be analysed in Theorem 3.1.12.

3.1.3 Selected Inversion

Given the LDLT factorisation of a matrix A, its inverse can be computed using the

following result.

Theorem 3.1.9 ([TFC73]) In the notation of Definition 3.1.2, we have that

A−1(i, j) = D(i, j)−1 −A−1(i, r)L(r, j). (3.4)
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Figure 3.2: Nested dissection ordering of a structured 2D mesh. The vertices marked
in blue and green denote alternating separators Vsep .

Proof. The claim follows from A−1 = L−T D−1 +A−1 (I− L) which can be verified

by substituting A−1 with L−TD−1L−1.

Equation (3.4) has the reverse property of (3.2): the right-hand side of (3.4)

depends only on L,D and entries A−1(i, k) with k > j. The full inverse can thus

be computed by starting with A−1(m,m) = D(m,m)−1 and iteratively growing

the set of known entries in right-to-left order, but since the inverse of a sparse

matrix is generally dense this would require at leastO
(
m2
)

floating-point operations.

As noted in Section 1.4, we only need the entries A−1(i, j) with (i, j) ∈ nz(A) in

electronic structure calculations, hence the question arises whether we can reduce

the cost by computing only a subsets of the entries of A−1. It was shown in [ET75]

that this is indeed possible, and the following algorithm with

r◦ = r◦(j) :=
{
i ∈ {j + 1, . . . ,m} | L(i, j) 6= 0

}
(3.5)

was proposed to achieve this.

Algorithm 3.3 Selected inversion

1: for j = m, . . . , 1 do

2: A−1(r◦, j) = −A−1(r◦, r◦)L(r◦, j)

3: A−1(j, r◦) = A−1(r◦, j)T

4: A−1(j, j) = D(j, j)−1 −A−1(j, r◦)L(r◦, j)

5: end for

Theorem 3.1.10 ([ET75]) Algorithm 3.3 is correct, i.e. the computed entries
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A−1(i, j) agree with those of the exact inverse, and it is closed in the sense that

all entries of A−1 required at iteration j have been computed in previous iterations

j′ > j.

Proof. (Correctness.) The formulae in Algorithm 3.3 agree with those of Theo-

rem 3.1.9 except that r◦ is used instead of r in the products A−1(i, r◦)L(r◦, j). This

does not change the result of the computations since L(r\r◦, j) = 0 by the definition

of r◦, hence the computed entries are correct.

(Closedness.) The entries of A−1 required on lines 3 and 4 are computed on line 2;

thus it remains to show that the entries A−1(i, k) with i, k ∈ r◦(j) required on line 2

have been computed in iterations j′ > j. Due to the symmetry of A, we can assume

i ≤ k without loss of generality, and since the diagonal entry A−1(k, k) is explicitly

computed on line 4 in iteration j = k, we may further restrict our attention to

indices i < k. Such an entry A−1(i, k) is computed in iteration j = k if and only if

i ∈ r◦(k), hence the claim follows from the following lemma.

Lemma 3.1.11 ([ET75]) In the notation of Definition 3.1.2 and with r◦(j) as in

(3.5), we have that

i, k ∈ r◦(j) and i > k =⇒ i ∈ r◦(k).

Proof. According to Theorem 3.1.7, i, k ∈ r◦(j) holds if and only if there exist fill

paths from i and k to j, i.e. the graph structure is given by

j k i

where the two black edges indicate the aforementioned fill paths. Concatenating

these two paths yields the red fill path from i to k and the claim follows.

We note that Algorithm 3.3 computes exactly the entries A−1(i, j) with indices

(i, j) ∈ fnz(A), hence its memory footprint is the same as that of the sparse factori-

sation. The following result establishes that the operation counts are also asymp-

totically the same.

Theorem 3.1.12 The numbers of floating-point operations required by Algorithm 3.1

(sparse factorisation) and Algorithm 3.3 (selected inversion) are within a constant

factor of each other.

Proof. Algorithm 3.1 consists of the two operations
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• c(i, j) − L(i, k)D(k, k)LT (k, j), performed if and only if k < j ≤ i and there

are fill paths from j to k and k to i, and

• c(i, j)/D(j, j), performed if and only if j < i and there exists a fill path from

j to i,

where in both cases c(i, j) denotes an unspecified temporary variable. Similarly,

Algorithm 3.3 consists of the two steps

• c(i, k) − A−1(i, j)L(j, k) and c(i, k) − A−1(j, i)L(i, k), performed if and only

if k < j ≤ i and there are fill paths from k to j and k to i (only one of the two

operations is performed if i = j), and

• c(j, j) − A−1(j, i)L(i, j), performed if and only if j < i and there exists a fill

path from j to i.

The claim follows by noting that both algorithms perform O(1) operations for each

triplet (k, i, j) and pair (i, j) satisfying the same conditions.

3.2 Exponential Localisation

This section will establish in Theorem 3.2.5 below that the LDLT factorisation

required by the selected inversion algorithm exhibits a localisation property similar

to that of the density matrix fβ,EF (H) described in (1.10). To prepare for this result,

we first recall in Theorem 3.2.2 a precise formulation regarding the localisation of

the inverses (H − z)−1 from [DMS84].

Definition 3.2.1 We use the following notation throughout this section.

• H ∈ Cm×m denotes a sparse, symmetric matrix, and i, j ∈ {1, . . . ,m} are

indices for an entry in the lower triangle, i.e. i ≥ j.
• E ⊂ R denotes a non-polar set (cf. Definition 2.1.5) such that the spectra of all

leading submatrices H(`, `) with ` = {1, . . . , i} and i ranging from 1 to m are

contained in E. We will further comment on this assumption in Remark 3.2.6.

• z ∈ C \ E denotes a point oustide E.

• gE(z) denotes the Green’s function associated with E (see Definition 2.3.1).

• L,D denote the LDLT factors of H − z.

• d(i, j) denotes the graph distance in G(H), which is defined as the minimal

number of edges on any path between i and j, or ∞ if there are no such paths.

Theorem 3.2.2 ([DMS84]) In the notation of Definition 3.2.1, we have that

∣∣(H − z)−1(i, j)
∣∣ .ε exp

(
−gE(z) d(i, j)

)
.
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(The notation .ε was introduced in Definition 2.1.9.)

The proof of Theorem 3.2.2 follows immediately from Theorem 2.3.8 (convergence

of polynomial approximation) and the following lemma.

Lemma 3.2.3 ([DMS84]) In the notation of Definition 3.2.1, we have for all

bounded f : E → C that

∣∣f(H)(i, j)
∣∣ ≤ inf

p∈Pd(i,j)−1

‖f − p‖E

where Pk denotes the space of polynomials of degree ≤ k.

Proof. Since p ∈ Pd(i,j)−1, we have that p(H)(i, j) = 0 and thus

|f(H)(i, j)| ≤ |p(H)(i, j)|+ |f(H)(i, j)− p(H)(i, j)|
≤ 0 + ‖f(H)− p(H)‖2
≤ ‖f − p‖E .

We next derive a localisation result for the LDLT factorisation of H − z by

applying Theorem 3.2.2 to the inverse A(`, `)−1 from Lemma 3.1.4. In order to

formulate this result, we need a new notion of distance defined as follows.

Definition 3.2.4 ([Saa03, §10.3.3]) In the notation of Definition 3.2.1, the level-

of-fill level(i, j) are given by

level(i, j) := max{0, dfill(i, j)− 1}

where dfill(i, j) denotes the minimal number of edges on any fill path between i and

j, or ∞ if no such path exists.

An example for the level-of-fill is provided in Figure 3.1.

Theorem 3.2.5 In the notation of Definition 3.2.1, we have that

|L(i, j)| .ε exp
(
−gE(z) level(i, j)

)
.

Proof. The claim is trivially true if level(i, j) = 0, hence we restrict ourselves to i, j

such that level(i, j) > 0 and H(i, j) = 0 in the following. According to Lemma 3.1.4,

we then have that

L(i, j) = −A
(
i, `◦(i)

)
A−1
`

(
`◦(i), `◦(j)

)
A
(
`◦(j), j

)
/D(j, j)
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where A = H − z, A` := A(`, `) with ` = {1, . . . , j − 1}, and `◦(t) :=
{
k ∈ ` |

A(t, k) = A(k, t) 6= 0
}

. By the definition of level-of-fill, we have that d`(i
◦, j◦) ≥

level(i◦, j◦) − 1 for all i◦ ∈ `◦(i), j◦ ∈ `◦(j) with d`(i, j) the graph distance in

G(A`), and thus A`(i
◦, j◦) .ε exp

(
−gE(z) level(i, j)

)
according to Theorem 3.2.2.

The claim follows after noting that #`◦(i), #`◦(j) are bounded independently of m

due to the sparsity of H, and that |D(j, j)| ≥ min |z−E| since D(j, j)−1 = A−1
¯̀ (j, j)

with ¯̀ = {1, . . . , j} and the spectrum of A¯̀ is contained in E according to the

assumptions in Definition 3.2.1.

Remark 3.2.6 The assumption that the spectra of all leading submatrices H(`, `)

are contained in E in Definition 3.2.1 was introduced specifically to allow for Theo-

rem 3.2.5. We would like to point out that this assumption can always be satisfied

by choosing E as the convex hull of the spectrum of H and that the rational approxi-

mation scheme constructed in Chapter 2 places the poles away from the real axis and

hence outside of this convex hull. Furthermore, we expect that the spectra of the

submatrices are usually contained in the spectrum of H since in physical terms this

corresponds to the assumption that the electronic properties of subsystems agree

with those of the overall system. If true, the extra condition in Definition 3.2.1 is

redundant and we may choose E simply as the spectrum of H as in Definition 3.1.2.

We will return to this point in Example 3.4.1.

We conclude from Theorems 3.2.2 and 3.2.5 that the entries of both the inverse

(H − z)−1(i, j) and the L-factor L(i, j) decay exponentially with the same rate

gE(z) but with different notions of distance d(i, j) and level(i, j), respectively. This

qualitative difference is illustrated in the following example.

Example 3.2.7 Consider the m×m matrix

A(i, j) :=





3 if i = j

−1 if i = j ± 1 mod m,

0 otherwise

whose graph structure for m = 6 is illustrated in Figure 3.1. We observe that

level(m, j) = j − 1 increases monotonically from j = 1 to j = m − 2 and thus

L(m, j) decreases monotonically over the same range, see Figure 3.3b. Conversely,

d(m, j) = min{j,m − j} has a maximum at j = m
2 and thus |A−1(m, j)| has a

minimum at this value of j, see Figure 3.3a.
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Figure 3.3: Decay in the inverse and L-factor of the matrix from Example 3.2.7.

3.3 Incomplete Selected Inversion

Theorem 3.2.5 asserts that entries L(i, j) with a large level-of-fill level(i, j) are small,

which raises the question whether compute time and memory can be saved in the

sparse factorisation step of the selected inversion algorithm by only computing en-

tries L(i, j) with indices in the restricted set

ifnz(H) =
{

(i, j) ∈ fnz(H) | level(i, j) ≤ c
}

(3.6)

for some cut-off level-of-fill c ≥ 0. Of course, ignoring entries which are small but

nonzero introduces errors and the incomplete factorisation suggested above is only

worth considering if the errors are small and the savings substantial.

We will see in Theorem 3.3.3 that restricting the sparse factorisation to (3.6)

reduces the compute time and memory requirements to O(m) independently of the

dimension, which is significantly lower than the costs of the exact algorithm listed

in Table 1.1. Regarding the error, we will see in Theorem 3.3.4 that dropping

entries in the LDLT factorisation of a matrix A corresponds to computing the exact

factorisation Ã = L̃D̃L̃T of a perturbed matrix Ã ≈ A, and this will allows us to

bound the error in the inverse ‖A−1 − Ã−1‖nz(A) as a function of the cut-off level-

of-fill c in Corollary 3.3.10 assuming a certain conjecture regarding the magnitudes

of the dropped entries holds true. Finally, the following result translates the errors

in the inverses into an error bound for the quantities of interest.

Theorem 3.3.1 Consider a quantity of interest q and an approximation q̃ given,
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respectively, by

q :=

n∑

k=1

ck Tr
(
M A−1

k

)
and q̃ :=

n∑

k=1

ck Tr
(
M Ã−1

k

)
,

where ck, zk ∈ C and M,Ak, Ãk ∈ Cm×m with #nz(M) = O(m). We then have that

|q − q̃| ≤ O(m)

n∑

k=1

|ck| ‖A−1
k − Ã−1

k ‖nz(M), (3.7)

where ‖A‖I denotes the maximum norm on I ⊂ {1, . . . ,m}2,

‖A‖I := max
(i,j)∈I

|A(i, j)|.

Proof. We compute

|q − q̃| =
∣∣∣∣∣
n∑

k=1

ck Tr
(
M (A−1

k − Ã−1
k

)
∣∣∣∣∣ ≤

n∑

k=1

|ck|
m∑

i,j=1

|M(i, j)| ‖A−1
k − Ã−1

k ‖nz(M)

and note that
∑m

i,j=1 |M(i, j)| = O
(
nz(M)

)
= O(m).

We remark that the O(m)-factor in the bound (3.7) is acceptable in applications

since accuracy is usually required on a per-atom basis. In conclusion, we have thus

seen that restricting the factorisation to only the entries (3.6) leads to substantial

computational savings and the error can be controlled by choosing the cut-off level-

of-fill c large enough.

Dropping entries only in the factorisation step does not reduce the asymptotic

costs of the selected inversion algorithm, however, since the selected inversion step

must still compute all the entries Ã−1(i, j) with (i, j) ∈ fnz(A) even when applied

to an incomplete factorisation A ≈ L̃D̃L̃T in order to preserve the closedness prop-

erty from Theorem 3.1.10. We address this issue in Subsection 3.3.2 by propos-

ing an incomplete selected inversion algorithm which computes approximate entries

B(i, j) ≈ Ã−1(i, j) only for (i, j) ∈ ifnz(A). We will see in Theorem 3.3.11 that the

computational complexity of this algorithm is O(m), and we will bound the error

‖Ã−1 − B‖nz(A) as a function of c in Corollary 3.3.15 again assuming a conjecture

regarding the magnitudes of the dropped entries holds true. Using the triangle

inequality, this then yields the total error bound

‖A−1 −B‖nz(A) ≤ ‖A−1 − Ã−1‖nz(A) + ‖Ã−1 −B‖nz(A), (3.8)
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which can be made arbitrarily small by choosing c large enough.

Definition 3.3.2 This section follows the notation of Definitions 3.1.2 and 3.2.1

with A = H − z as well as the following additions.

• r̃ := {k ∈ r | (k, j) ∈ ifnz(H)} with j and r as in Definition 3.1.2.

• c denotes the cut-off level-of-fill from (3.6).

• L̃, D̃ denote the incomplete LDLT factors and E denotes the dropped entries

computed in Algorithm 3.4. Furthermore, we set Ã := L̃D̃L̃T .

• B(i, j) ≈ A−1(i, j) denotes the approximate entries of the inverse and F de-

notes the dropped entries computed in Algorithm 3.5.

• In both Algorithms 3.4 and 3.5, we assume that matrix entries which are not

specified are set to zero.

3.3.1 Incomplete LDLT Factorisation

We propose the following incomplete algorithm for the sparse factorisation step.

Algorithm 3.4 Incomplete LDLT factorisation

1: for j = 1, . . . ,m do

2: D̃(j, j) = A(j, j)− L̃(j, `) D̃(`, `) L̃T (`, j)

3: L̃(r̃, j) =
(
A(r̃, j)− L̃(r̃, `) D̃(`, `) L̃T (`, j)

)
/D̃(j, j)

4: E(r \ r̃, j) = L̃(r \ r̃, `) D̃(`, `) L̃T (`, j)

5: E(j, r \ r̃) = E(r \ r̃, j)T
6: end for

We note that this is exactly the symmetric version of the well-known incomplete

LU factorisation commonly used as a preconditioner in iterative methods for linear

systems, see e.g. [Saa03, §10.3].

Theorem 3.3.3 Algorithm 3.4 requires O(m) runtime and memory.

Proof. For every fixed j ∈ {1, . . . ,m}, there are at most O
(
cd
)

vertices within a

distance c from j, where d denotes the dimension of the system under consideration.

Every column L̃(·, j) thus has at most O
(
cd
)

nonzero entries, which shows that

every iteration of the loop in Algorithm 3.4 requires at most O
(
c2d
)

floating-point

operations.

Keeping track of the dropped entries E in lines 4 and 5 is not required in an actual

implementation, but doing so in Algorithm 3.4 allows us to conveniently formulate

the following results.
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Theorem 3.3.4 ([Saa03, Proposition 10.4]) In the notation of Definition 3.3.2, we

have that L̃D̃L̃T = A+ E.

Proof. We note that level(i, j) > 0 for all i ∈ r \ r̃ and hence A(r \ r̃, j) = 0, which

yields

A(r \ r̃, j) + E(r \ r̃, j)− L̃(r \ r̃, `) D̃(`, `) L̃T (`, j) = 0.

Since E(r̃, j) = 0, we can rewrite line 3 of Algorithm 3.4 as

L̃(r, j) =
(
A(r, j) + E(r, j)− L̃(r, `) D̃(`, `) L̃T (r, j)

)
/D̃(j, j),

and similarly we can rewrite line 2 as

D̃(j, j) = A(j, j) + E(j, j)− L̃(j, `) D̃(`, `) L̃T (`, j)

since E(j, j) = 0. These are precisely the recursion formulae of the exact LDLT

factorisation in Algorithm 3.1 applied to the matrix A+E. The claim follows after

noting that A+ E is symmetric because we explicitly symmetrise E on line 5.

Theorem 3.3.5 In the notation of Definition 3.3.2 and assuming ‖E‖2 < δ :=

min |z − E|, we have that

∣∣((H − z)−1 − (H + E − z)−1
)
(i, j)

∣∣ .ε . . .

.ε

m∑

ı̃,̃=1

exp
(
−gE(z)

(
d(i, ı̃) + d(̃, j)

)) ∣∣E(̃ı, ̃)
∣∣+

δ−2 ‖E‖22
δ − ‖E‖2

.
(3.9)

This bound is illustrated in Figure 3.4a.

Proof. Expanding (H + E − z)−1 in a Neumann series around H − z, we obtain

(H − z)−1 − (H + E − z)−1 = . . .

= (H − z)−1E (H − z)−1 −
∞∑

k=2

(
− (H − z)−1E

)k
(H − z)−1.

The claim follows by estimating the entries of (H − z)−1 in the first term using

Theorem 3.2.2 and bounding the entries of the second term through its operator

norm.

Theorem 3.3.5 provides an a-posteriori error estimate for the inverse (H+E−z)−1

in terms of the dropped entries E, which could be used in an adaptive truncation
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Figure 3.4: Error introduced by the incomplete selected factorisation step (left) and
incomplete selected inversion step (right) applied to the matrix from Example 3.2.7
with a cut-off level-of-fill c = 9. The red dots mark the nonzero entries in E and F ,
respectively.

scheme where ifnz(H) is of the form

ifnz(H) =
{

(i, j) ∈ fnz(H) | |L̃(i, j)| ≥ τ
}

for some tolerance τ ≥ 0, see [Saa03, §10.4]. Conversely to the level-of-fill-based

scheme from (3.6), such a tolerance-based scheme would control the error but not

the amount of fill-in since the perturbed entries |L̃(i, j)| may fail to be small even

when the corresponding entries L(i, j) are small. Both schemes thus require further

information about the perturbed L-factor L̃(i, j) or equivalently about the dropped

entries E(i, j) in order to simultaneously control the accuracy and the computa-

tional effort. More precisely, in the case of the level-of-fill scheme (3.6) we need to

understand

• the sparsity pattern of E since this impacts the number of terms and the size

of the exponential factor in (3.9), and

• the magnitudes of the nonzero entries E(̃ı, ̃).

The first of these points is easily addressed.

Theorem 3.3.6 In the notation of Definition 3.3.2, we have that

E(i, j) 6= 0 =⇒ c < level(i, j) ≤ 2c+ 1.

In particular, the number of nonzero entries per row or column of E is bounded
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independently of m.

The proof of this result will make use of the following lemma.

Lemma 3.3.7 In the notation of Definition 3.3.2 and barring cancellation, we have

that E(i, j) 6= 0 if and only if (i, j) ∈ fnz(H) \ ifnz(H) and there exists a k ∈ ` such

that (i, k), (j, k) ∈ ifnz(H).

Proof. The claim follows by noting that line 4 in Algorithm 3.4 performs a nonzero

update on E(i, j) if and only if

i ∈ r \ r̃ ⇐⇒ (i, j) ∈ fnz(H) \ ifnz(H)

and there exists a k ∈ ` such that

L̃(i, k), L̃(j, k) 6= 0 ⇐⇒ (i, k), (j, k) ∈ ifnz(H).

Proof of Theorem 3.3.6. According to Lemma 3.3.7, we have that

E(i, j) 6= 0 =⇒ (i, j) ∈ fnz(H) \ ifnz(H) =⇒ level(i, j) > c.

To derive the upper bound, let us assume that E(i, j) 6= 0. Then, Lemma 3.3.7

guarantees that there exists a vertex k ∈ ` such that i, k and j, k are connected by

fill paths of lengths at most c + 1 (recall from Definition 3.2.4 that the level-of-fill

is the length of the shortest path minus 1). Concatenating these two paths yields a

fill path between i and j of length at most 2c+ 2, hence level(i, j) ≤ 2c+ 1. Finally,

the claim regarding the sparsity of E follows by noting that there are at most O
(
cd
)

vertices i within a distance 2c + 2 from j, where d denotes the dimension of the

system under consideration.

Estimating the magnitudes |E(̃ı, ̃)| of the dropped entries proved to be challeng-

ing, and we have not managed to resolve this point conclusively. Our numerical

experiments, to be presented in Section 3.4, suggest that a bound of the following

form holds, and the subsequent discussion establishes the main obstacle which needs

to be overcome in order to prove our claim.

Conjecture 3.3.8 In the notation of Definition 3.3.2, we have that

|E(i, j)| .ε exp
(
−gE(z) level(i, j)

)
.
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Discussion. Reversing the substitutions in the proof of Theorem 3.1.3, we obtain

E(i, j) = L̃(i, `) D̃(`, `) L̃T (`, j) = Ã(i, `) Ã(`, `)−1 Ã(`, j),

and expanding the latter formula to first order in ‖E‖2 as in Theorem 3.3.5 yields

E(i, j) = A(i, `)A(`, `)−1A(`, j) . . .

+ E(i, `)A(`, `)−1A(`, j) . . .

−A(i, `)A(`, `)−1E(`, `)A(`, `)−1A(`, j) . . .

+A(i, `)A(`, `)−1E(`, j) +O
(
‖E‖22

)
.

(3.10)

Theorem 3.2.5 guarantees that the first term

A(i, `)A(`, `)−1A(`, j) = L(i, j)D(j, j)

on the right-hand side of (3.10) satisfies
∣∣L(i, j)D(j, j)

∣∣ .ε exp
(
−gE(z) c

)
, but

bounding the remaining terms is challenging because the magnitudes of these terms

recursively depend on the errors committed earlier.

To illustrate this point, let us assume we have a bound |E(̃ı, ̃)| ≤ C0 with C0 ∼
exp
(
−gE(z) c

)
for all entries of E on the right-hand side of (3.10) such that we can

bound e.g. the second term by

∣∣E(i, `)A(`, `)−1A(`, j)
∣∣ ≤ C0

∑

k∈`

∣∣A−1
` (k, `)A(`, j)

∣∣ (3.11)

where A` := A(`, `). From the sparsity of A(`, j) and the localisation of A−1
` , it then

follows that the sum on the right-hand side of (3.11) decays exponentially for an

appropriate ordering of the terms and can therefore be bounded by some constant

C independent of m. In general, this constant C will be larger than one, however,

since some k ∈ ` may well be close to j in terms of the graph distance on G(A`)

such that the corresponding terms are not small. Bounding the other terms in (3.10)

similarly, we thus obtain |E(i, j)| ≤ C C0 for some constant C > 1.

For the next entry E(i′, j′) to be estimated using (3.10), the entry E(i, j) that we

just estimated may now appear on the right-hand side such that we have to assume

the bound |E(̃ı′, ̃′)| ≤ C C0 for these entries. Proceeding analogously as above, we

then obtain the bound |E(i′, j′)| ≤ C2C0 which is worse by a factor of C > 1 than

the bound in the preceding step and worse by a factor of C2 > 1 than the bound two

steps ago. We therefore conclude that any estimate on the dropped entries E(i, j)

deteriorates exponentially with every recursive application of (3.10).
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The key issue in the above analysis is that without further knowledge about the

entries E(i, j), we have to assume that all the error terms in the recursion formula

(3.10) accumulate rather than cancel. We conjecture that such an accumulation of

errors cannot occur, at least for matrices which are “well-behaved” in a suitable

sense, but a rigorous proof of this claim requires deeper insight into the structure of

the incomplete LDLT factorisation and is left for future work.

Conjecture 3.3.8 suggests that the incomplete factorisation exhibits the same lo-

calisation as the exact factorisation, and this is in principle enough to derive an

a-priori bound from the a-posteriori bound (3.9). However, we introduce one more

assumption in order to simplify the final result.

Assumption 3.3.9 Either level(i, j) =∞ or level(i, j) ∼ d(i, j).

Discussion. We have seen in Example 3.2.7 that this assumption is not satisfied in

the case of one-dimensional periodic chains, but we expect that this counterexample

is the “exception which proves the rule”. In particular, we conjecture that Assump-

tion 3.3.9 is always satisfied in dimensions d > 1 and if the nested dissection ordering

is used, since in this case every pair of vertices is connected by many paths and it

seems unlikely that the nested dissection ordering would place a high-numbered

vertex on all the short paths. This hypothesis is supported by our numerical experi-

ments presented in Example 3.4.2 below. Furthermore, we will see in Example 3.4.3

that even if Assumption 3.3.9 is violated, the conclusions that we draw from it still

hold up to some minor modifications.

Corollary 3.3.10 In the notation of Definition 3.3.2, and assuming Conjecture 3.3.8

and Assumption 3.3.9, we have that

∥∥(H − z)−1 − (H + E − z)−1
∥∥

nz(H)
.ε exp

(
−2 gE(z) c

)
.

Proof. It follows from Theorem 3.3.6 (sparsity of E) and Conjecture 3.3.8 (locali-

sation of E) that for all ı̃, ̃ ∈ {1, . . . ,m} we have that |E(̃ı, ̃)| .ε exp
(
−gE(z) c

)
,

and inserting this estimate into the bound from Theorem 3.3.5 (a-posteriori error

bound) yields

∣∣((H − z)−1 − (H + E − z)−1
)
(i, j)

∣∣ .ε . . .

.ε

∑

(ı̃,̃)∈nz(E)

exp
(
−gE(z)

(
d(i, ı̃) + d(̃, j) + c

))
+
δ−2 ‖E‖22
δ − ‖E‖2

.
(3.12)
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We are only interested in entries (i, j) ∈ nz(H) for which d(i, j) ≤ 1; thus we

conclude from the triangle inequality and Assumption 3.3.9 (d(i, j) ∼ level(i, j))

that for all (̃ı, ̃) ∈ nz(E) we have that

d(i, ı̃) + d(̃, j) + 1 ≥ d(̃ı, ̃) ∼ level(̃ı, ̃) ≥ c+ 1.

In particular, we note that if d(i, ı̃) . c
2 , then d(̃, j) & c

2 and vice versa, which

allows us to bound the first term in (3.12) by

∑

(ı̃,̃)∈nz(E)

exp
(
−gE(z)

(
d(i, ı̃) + d(̃, j) + c

))
. . . .

. 2
∑

ı̃ such that
d(i,̃ı). c

2

∑

̃ such that
d(̃,j)&c−d(i,̃ı)

exp
(
−gE(z)

(
d(i, ı̃) + d(̃, j) + c

))
+ . . .

+
∑

ı̃ such that
d(i,̃ı)& c

2

∑

̃ such that
d(̃,j)& c

2

exp
(
−gE(z)

(
d(i, ı̃) + d(̃, j) + c

))

.ε exp
(
−2 gE(z) c

)

where on the last line we estimated the infinite sums using the boundedness of the

geometric series and the finite sum over ı̃ was estimated as the largest term in the

sum times the bounded number of terms.

The second term in (3.12) can be bounded using Gershgorin’s circle theorem and

the facts that E is sparse and all of its entries are .ε exp
(
− gE(z) c

)
, which yields

‖E‖2 .ε exp
(
− gE(z) c

)
. Combining the bound on the first term of (3.12) from the

previous paragraph with the above estimate on the second term, we obtain

∣∣((H − z)−1 − (H + E − z)−1
)
(i, j)

∣∣ .ε exp
(
−2 gE(z) c

)
+ exp

(
−2 gE(z) c

)

= exp
(
−2 gE(z) c

)

as claimed.

3.3.2 Incomplete Selected Inversion

We propose the following incomplete algorithm for the selected inversion step.
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Algorithm 3.5 Incomplete selected inversion

1: for j = m, . . . , 1 do

2: B(r̃, j) = −B(r̃, r̃) L̃(r̃, j)

3: B(j, r̃) = B(r̃, j)T

4: B(j, j) = D̃(j, j)−1 −B(j, r̃) L̃(r̃, j)

5: F (r \ r̃, j) = B(r \ r̃, r̃) L̃(r̃, j)

6: F (j, r \ r̃) = F (r \ r̃, j)T
7: F (j, j) = F (j, r̃) L̃(r̃, j)

8: end for

As in Algorithm 3.4, keeping track of the dropped F is not required in an actual

implementation but doing so facilitates our discussion of the errors committed by

this algorithm.

Theorem 3.3.11 Algorithm 3.5 requires O(m) runtime and memory.

Proof. Analogous to Theorem 3.3.3.

The analysis of this algorithm proceeds along the same lines as in Subsection 3.3.1:

we first establish an a-posteriori bound in terms of the dropped entries F in The-

orem 3.3.13, then we argue that |F (i, j)| should decay like |A−1(i, j)| in Conjec-

ture 3.3.14, and finally we derive an a-priori bound based on this conjecture in

Corollary 3.3.15. For all of these steps, we will need the following result which

establishes that Ã−1 = (A+ E)−1 exhibits the same localisation as A−1.

Lemma 3.3.12 In the notation of Definition 3.3.2 and assuming Conjecture 3.3.8,

we have that

|Ã−1(i, j)| .ε exp
(
−gE(z) d(i, j)

)
.

Proof. According to Theorem 3.3.5 (a-posteriori error bound for Ã−1), Theorem 3.3.6

(sparsity of E) and Conjecture 3.3.8 (localisation of E), we have that

|Ã−1(i, j)| .ε |A−1(i, j)|+
∑

(ı̃,̃)∈nz(E)

exp
(
−gE(z)

(
d(i, ı̃) + c+ d(̃, j)

))
.

The claim follows by estimating the first term on the right hand side using The-

orem 3.2.2 (localisation of A−1) and the second term using the boundedness of

geometric series.
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Theorem 3.3.13 In the notation of Definition 3.3.2 and assuming Conjecture 3.3.8,

we have that

∣∣∣
(
Ã−1 −B

)
(i, j)

∣∣∣ .ε

m∑

̃=j+1

exp
(
−gE(z) level(̃, j)

)
|F (i, ̃)|+ . . .

+
m∑

ı̃,̃=j+1

exp
(
−gE(z)

(
level(i, ı̃) + level(̃, j)

))
|F (̃ı, ̃)|.

This bound is illustrated in Figure 3.4b.

Proof. Let us first consider the application of Algorithm 3.3 (exact selected inver-

sion) to the matrix Ã = A + E = L̃D̃L̃T . We note that the entries Ã−1(i′, j′)

computed by this algorithm after iteration j depend only on L̃(·, `), D̃(`, `) and

Ã−1(r̄, r̄), hence iterations j′ = j − 1, . . . , 1 may be interpreted as a map φ :(
L̃(·, `), D̃(`, `), Ã−1(r̄, r̄)

)
7→ Ã−1 which must be unique since the map from Ã−1 to(

L̃(·, `), D̃(`, `), Ã−1(r̄, r̄)
)

is injective. This uniqueness allows us to determine φ by

applying the selected inversion subalgorithm to the block-LDLT factorisation from

(3.3), which yields

Ã−1 =

(
Ã(`,`)−1+Ã(`,`)−1Ã(`,r̄) Ã−1(r̄,r̄) Ã(r̄,`) Ã(`,`)−1 −Ã(`,`)−1Ã(`,r̄) Ã−1(r̄,r̄)

−Ã−1(r̄,r̄) Ã(r̄,`) Ã(`,`)−1 Ã−1(r̄,r̄)

)
. (3.13)

Note that this is indeed a map in terms of L̃(·, `), D̃(`, `) since all of the submatrices

in (3.13) other than Ã(r̄, r̄)−1 can be computed from L̃(·, `), D̃(`, `).

Let us now assume for the moment that Algorithm 3.5 (incomplete selected in-

version) only drops entries in B
(
r̄, j
)

and B
(
j, r̄
)

such that2

B(r̄, r̄) = Ã−1(r̄, r̄) + F (r̄, r̄).

Since by assumption the incomplete inversion does not perform any additional mis-

takes after iteration j, we have that B = φ
(
B(r̄, r̄)

)
where for brevity we dropped

the arguments of φ other than Ã−1(r̄, r̄), and since φ is affine in Ã−1(r̄, r̄) it further

follows that

B = φ
(
B(r̄, r̄)

)
= φ

(
Ã−1(r̄, r̄)

)
+ φ

(
F (r̄, r̄)

)
− φ(0)

= Ã−1 + φ
(
F (r̄, r̄)

)
− φ(0).

(3.14)

In the simplified case where errors occur only in B
(
r̄, j
)

and B
(
j, r̄
)
, the claim

2 We would like to emphasise that this simple formula only holds for the first iteration j where
entries are dropped, since in later iterations j′ < j the error introduced by the dropped entries may
propagate into other entries of B.
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then follows by estimating the entries of φ
(
F (r̄, r̄)

)
− φ(0) using the localisation of

Ã(`, `)−1 described in Lemma 3.3.12, and the general estimate follows by applying

(3.14) recursively for each j.

Conjecture 3.3.14 In the notation of Definition 3.3.2, we have that

|F (i, j)| .ε exp
(
−gE(z) d(i, j)

)
.

Discussion. From the proof of Theorem 3.3.13, it follows that F can be computed

recursively according to

F (i, j) = Ã−1(i, j)−F
(
i, r(i)

)
MT

(
r(i), j

)
+M

(
i, r(j)

)
F
(
r(j), r(j)

)
MT

(
r(j), j

)

where

M(i, ı̃) =




A−1
`(ı̃)

(
i, `(̃ı)

)
A
(
`(̃ı), ı̃

)
i < ı̃

0 otherwise

and A` := A(`, `). Proving Conjecture 3.3.14 thus faces the same obstacle as Con-

jecture 3.3.8, namely that the errors committed at iteration j depend on errors

committed at previous iterations j′ > j such that any bound deteriorates exponen-

tially in the recursion depth.

Corollary 3.3.15 In the notation of Definition 3.3.2, and assuming Conjecture 3.3.8,

Assumption 3.3.9 and Conjecture 3.3.14, we have that

∥∥(H + E − z)−1 −B−1
∥∥

nz(H)
.ε exp

(
−2 gE(z) c

)
.

Proof. Analogous to Corollary 3.3.10.

As noted in (3.8), the total error of the incomplete selected inversion algorithm

is upper-bounded by the sum of the errors of the two substeps. Combining The-

orems 3.3.3 and 3.3.11 and Corollaries 3.3.10 and 3.3.15 thus yields the following

theorem which summarises the main result of this section.

Theorem 3.3.16 In the notation of Definition 3.3.2, and assuming Conjecture 3.3.8,

Assumption 3.3.9 and Conjecture 3.3.14, we have that

∥∥(H − z)−1 −B
∥∥

nz(H)
.ε exp

(
−2 gE(z) c

)
.

Furthermore, B can be computed in O(m) runtime and memory.
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(a) Factorisation (b) Inverse

Figure 3.5: Localisation of the L-factor (left) and inverse of the matrix H − 0.98
with H as in (3.15) and d = 2. The black lines indicate the rate of decay gE(z)
predicted by Theorems 3.2.2 and 3.2.5.

3.4 Numerical Experiments

This section illustrates the theory presented above at the example of a toy Hamil-

tonian H ∈ Rm×m with entries H(i, j) given by

H(i, j) :=





(−1)d(i,1) if i = j,

− 1
2d if i ∼ j,

0 otherwise,

(3.15)

where d ∈ {1, 2, 3} denotes the dimension and i ∼ j if i and j are nearest neighbours

in a d-dimensional Cartesian mesh with periodic boundary conditions. We note

that the off-diagonal entries H(i, j) = − 1
2d correspond to a shifted and scaled finite-

difference discretisation of the d-dimensional Laplace operator, and the diagonal

entriesH(i, i) = (−1)d(i,1) take the form of a chequerboard pattern where each vertex

has the opposite sign compared to its neighbours. In two and three dimensions, we

use an approximate minimum degree (AMD) ordering [ADD96, ADD04] to improve

the sparsity of the LDLT factorisation, while in one dimension we use a simple

left-to-right ordering as shown in Figure 3.1. Details regarding the hardware and

software used for these experiments are provided in Appendix A.1.

Example 3.4.1 (localisation) The chequerboard pattern along the diagonal causes

the spectrum E of H to split into two intervals, E := [−
√

2,−1] ∪ [1,
√

2], such that

one may think of H as the Hamiltonian matrix of an insulator with band gap
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(−1, 1). Figure 3.5 compares the entries of the LDLT factorisation and inverse of

H − z against the predictions of Theorems 3.2.2 and 3.2.5 for a shift z in the band

gap, and we observe that the theory is matched perfectly. In particular, the entries

of the L-factor decay with the same rate gE(z) as the inverse, which indicates that

the spectra of all leading submatrices of H are indeed contained in E as conjectured

in Remark 3.2.6.

The excellent agreement between the theoretical and empirical convergence rates

is a consequence of the simple sparsity pattern in (3.15), and the agreement may be

worse for a more realistic Hamiltonian.

Example 3.4.2 (convergence) We recall from Theorem 3.3.16 that the incomplete

selected inversion algorithm is predicted to scale linearly in m and converge expo-

nentially in the cut-off level-of-fill c with a rate of convergence equal to twice the

localisation rate gE(z). These theoretical findings are confirmed numerically in Fig-

ures 3.6 and 3.7, respectively. The staircase pattern in Figure 3.7b is a consequence

of the AMD ordering arranging the vertices such that all level(i, j) are either 0, ∞
or odd which yields ifnzc=2k(H) = ifnzc=2k+1(H) for all k ∈ N>0.

Example 3.4.3 Finally, we continue the discussion of Assumption 3.3.9 (d(i, j) ∼
level(i, j)) which was used to derive Theorem 3.3.16 but which we have seen to be

violated in the case of one-dimensional periodic chains. Figure 3.8 shows that even

in this case, the incomplete algorithms converge with rate 2 gE(z) as predicted by

Theorem 3.3.16, but the convergence breaks down at a cut-off level-of-fill c of about
m
2 after which the error stagnates.

In the framework of Section 3.3, this observation may be explained as follows.

Due to the simple graph structure of H, the matrix of dropped entries E from

Algorithm 3.4 contains precisely two nonzero entries at locations i = m, j = c + 2

and the transpose thereof, and by Conjecture 3.3.8 these entries satisfy

|E(m, c+ 2)| .ε exp
(
−gE(z) level(m, c+ 2)

)
= exp

(
−gE(z) (c+ 1)

)
.

(In this case, Conjecture 3.3.8 can easily be proven since the incomplete factorisation

algorithm only drops a single entry.) According to Theorem 3.3.5, the error due to
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Figure 3.6: Scaling of the incomplete selected inversion algorithm applied to the
matrix H from (3.15) with respect to the matrix size m (left) and cut-off level-of-fill
c (right). The black line in (a) indicates O(m) scaling. The reported runtimes are
the minimum out of three runs for each pair m, c.
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Figure 3.7: Error vs. cut-off level-of-fill c of incomplete factorisation and selected
inversion algorithm applied to A = H − z with H as in (3.15). The solid black lines
indicate exponential decay with rate gE(z), and the dashed lines indicate twice this
rate.
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(a) Localisation (b) Error

Figure 3.8: Localisation (left) and convergence of incomplete factorisation and se-
lected inversion (right) of the matrix H − z with H as in (3.15), d = 1 m = 100 and
z = 0.98. The solid black lines indicate exponential decay with rate gE(z), and the
dashed line indicates twice this rate.

the incomplete factorisation is thus upper-bounded by

‖A−1 − Ã−1‖nz(A) .ε max
(i,j)∈nz(A)

exp
(
−gE(z)

(
d(i,m) + c+ 1 + d(c+ 2, j)

))

.ε exp
(
−gE(z)

(
c+ 1 + min{d(c+ 2, 1), d(c+ 2,m− 1)}

))

=





exp
(
−2 gE(z) (c+ 1)

)
if c ≤ m−4

2 ,

exp
(
−gE(z) (m− 2)

)
otherwise,

(3.16)

and a similar bound can be derived for the error ‖Ã−1 − B‖nz(A) introduced by

the incomplete selected inversion step. We note that (3.16) describes precisely the

behaviour observed in Figure 3.8b.

As discussed after Assumption 3.3.9, we expect that d(i, j) ∼ level(i, j) is rarely

violated in dimensions d > 2 and if a reasonable (e.g. AMD or nested dissection)

vertex ordering is used. This example further demonstrates that even if Assump-

tion 3.3.9 is violated, the incomplete selected inversion algorithm still converges at

the rate 2gE(z) until the cut-off level-of-fill c becomes O(m), at which point the

speedup of the incomplete selected inversion compared to the exact algorithm van-

ishes anyway.
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3.5 Conclusion

We have shown that the LDLT factorisation of a sparse, well-conditioned3 matrix

A exhibits a localisation property similar to that of A−1, and we have developed

algorithms which exploit this property to compute selected entries of A−1 in O(m)

runtime and memory. This opens up a new class of linear-scaling electronic structure

algorithms based on rational approximation which we expect to be highly competi-

tive compared to polynomial algorithms and optimisation algorithms based on the

conjugate gradient method due to the following reasons.

• Like polynomial algorithms, the conjugate gradient iteration applied to the

functional (1.15) uses only matrix products and sums and its convergence

rate depends algebraically on the inverse temperature β and the band gap

δE [Goe99]. We therefore expect that the following remarks comparing the

polynomial and rational algorithms also apply to the comparison between

rational and optimisation algorithms.

• We have seen in Chapter 2 that the rational degree required to approximate the

Fermi-Dirac function to a fixed accuracy scales better than logarithmically in

the temperature and band gap, compared to a linear dependence in the case

of polynomial approximation. For low temperatures and small band gaps,

the rational degree will therefore be orders of magnitude smaller than the

polynomial degree.

• The cost of evaluating a rational approximation scales linearly in the number of

poles, while the cost of evaluating a matrix polynomial scales quadratically in

the degree due to the reduced sparsity in higher powers of H. Combined with

the fast inversion algorithm developed in this chapter, this implies that rational

functions may well be cheaper to evaluate than polynomials of a comparable

degree. As a case in point, we mention that the selected inversion algorithm

applied to the matrix (3.15) with d = 2,
√
m = 300 and c = 20 takes 0.4

seconds while evaluating the 20th power of the same matrix H takes 9 seconds

(see Appendix A.1 for details regarding hardware and software). Evaluating

a power of H with similar localisation properties as H−1 is thus over 20 times

slower for these particular parameters, and this ratio will tip even further in

favour of the selected inversion algorithm as we increase the localisation length

c.

3 We call a matrix A well-conditioned if its “smoothed” spectrum E (cf. Section 1.3) does not
contain the origin.
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What is needed next in order to realise the promised advantages of rational elec-

tronic structure algorithms is a massively parallel high-performance implementation

of the incomplete selected inversion algorithm comparable to that presented for the

exact algorithm in [JLY16]. Developing such a code will be the topic of future work,

but we would like to point out that the parallelisation strategies from [JLY16] also

apply to the incomplete factorisation and selected inversion algorithms and hence

we expect similar parallel scaling.

Closely related work regarding the parallel implementation of the incomplete LU

factorisation with arbitrary level-of-fills (as opposed to the more wide-spread ILU(0)

and ILU(1) factorisations) can be found in [KK97, HP01, SZW03, DC11]. Further-

more, an alternative ILU algorithm based on iterative refinement of a trial factorisa-

tion and designed specifically to improve parallel scaling has recently been proposed

in [CP15]. While this algorithm was found to be highly effective at finding factorisa-

tions suitable for preconditioning, it is unclear whether it is applicable in the context

of the selected inversion algorithm where the accuracy requirements are much more

stringent. Additionally, the algorithm from [CP15] will only lead to an asymptotic

speedup for the selected inversion algorithm if a similar highly parallelisable algo-

rithm for the selected inversion step can be developed, and it is not obvious whether

such an algorithm exists since the algorithm from [CP15] is based on Theorem 3.3.4

which has no analogue in the selected inversion step.
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Chapter 4

Approximation of the

Conductivity Function

We recall from Section 1.2 that the conductivity tensor

σ = σa,b =
∑

i1,i2

Fζ(εi1 , εi2) 〈ψi1 |Ma|ψi2〉 〈ψi2 |Mb|ψi1〉, a, b ∈ {1, 2, 3}, (4.1)

with

Fζ(E1, E2) =
fβ,EF (E1)− fβ,EF (E2)

E1 − E2

1

E1 − E2 + ω + iη
(4.2)

expresses the linear relationship ~J = σ ~E between the electric field ~E and the induced

current ~J . This quantity depends on the four parameters ζ = (β,EF , ω, η) with

β > 0, EF ∈ (−1, 1), ω, η > 0 and the matrices H,Ma ∈ Cm×m whose physical

interpretations are described in Chapter 1. The variables εi, ψi in (4.1) denote the

eigenvalues and -vectors, respectively, of the Hamiltonian matrix H ∈ Rm×m which

is assumed to be shifted and scaled such that its spectrum {εi} is contained in

E = [−1, 1], cf. Section 1.3.

Conductivity is most commonly studied for crystalline materials where the atoms

are arranged according to the blueprint of a unit cell which repeats itself infinitely

often in all directions, see Figure 4.1a. We model such a system through two infinite

vectors yI,α, ZI,α with lattice index I ∈ Z3 and local index α ∈ {1, . . . , N (0)}, where

as in Section 1.1 yI,α represents the atomic coordinates and ZI,α represents the

atomic charges. These vectors are of the special form

yI,α = AI + y0,α and ZI,α = Z0,α,

with A ∈ R3×3 an invertible matrix specifying the shifts between adjacent unit cells
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(a) Monolayer (b) Twisted bilayer

Figure 4.1: Arrangement of atoms (coloured dots) in (a) a graphene monolayer and
(b) a graphene bilayer where the two sheets are rotated by three degrees relative to
each other. The black parallelograms in (a) indicate the unit cells.

and y0,α ∈ A [0, 1]3, Z0,α ∈ R defining the arrangement of the atoms within a unit

cell. As before, we assume the Hamiltonian of such a system to be given as a sparse

matrix, but due to the infinite number of atoms, this matrix has now an infinite

number of entries HI,α;J,β with I, J ∈ Z3 and α, β ∈ {1, . . . ,m(0)} and sums over the

eigenpairs of H have to be interpreted as integrals over the spectral measure of H.

Under these circumstances, the diagonalisation algorithm from Section 1.3 becomes

highly competitive since Bloch’s theorem (an extension of the theory of Fourier

series) allows us to sample from the spectral measure of the infinite Hamiltonian

H by only solving an eigenproblem in terms of a finite unit-cell Hamiltonian H
(0)
α,β.

However, Bloch’s theorem breaks down as soon as the periodicity is lost, and new

algorithms must be developed to fill the gap.

This chapter presents such an algorithm for computing the conductivity of in-

commensurate bilayers, which are stackings of two atomically thin sheets such that

their combination is aperiodic even though each individual sheet is periodic. The

aperiodicity arises, for example, due to mismatching lattice constants (e.g. two one-

dimensional lattices with unit cells of length 1 and π, respectively), or because one

of the layers is rotated with respect to the other as illustrated in Figure 4.1b. Mul-

tilayer systems in general and incommensurate bilayers in particular have received

much attention in the physics literature in recent years since they promise to pro-

vide a Lego-like toolbox for designing new materials with highly unusual properties

[GG13]. Most notably, it has been observed in [CFF+18] that twisted graphene

bilayers as shown in Figure 4.1b exhibit superconductivity for certain “magic” twist
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angles. We hope that the mathematical tools presented here and in the closely re-

lated publication [MLO17] can help to explain such phenomena and guide further

exploration in this field.

It has been observed in [MLO17] that the mismatch between the two sheets in-

troduces a form of ergodicity which allows us to reduce computations on the infinite

bilayer system to equivalent computations on just the two unit cells in a way similar

to Bloch’s theorem, and our algorithm will be based on the application of this result

to the conductivity which we will discuss in Section 4.1. Unlike Bloch’s theorem,

however, the unit-cell computations in the case of incommensurate bilayers require

padding with a buffer region, which often leads to system sizes far beyond the reach

of the diagonalisation algorithm. In Section 4.2, we will propose an alternative,

linear-scaling algorithm for the unit-cell problem based on the function approxima-

tion idea from Section 1.3. This algorithm will require tensor-product polynomial or

rational approximations to the conductivity function Fζ(E1, E2) from (4.2), which

introduces a new challenge to the theory presented in Chapter 2 since Fζ(E1, E2) is

a two-dimensional function. Our main contribution in this chapter is the detailed

analysis of this approximation problem, which will be carried out in Section 4.4 for

the polynomial case and in Section 4.5 for the rational case. Finally, we will remark

on the practical implementation of the proposed scheme in Section 4.6.

Disclaimer. The content of this chapter is the result of a collaboration between

Mitchell Luskin at the University of Minnesota, Daniel Massatt at the University of

Chicago, Christoph Ortner and myself. The decomposition into local conductivities

presented in Section 4.1 has been developed by my collaborators and is presented

here solely for the purpose of motivating the approximation problem discussed in

the remaining sections. The material presented in Sections 4.2, 4.4 and 4.5 is my

own work but received useful inputs from the aforementioned collaborators. This

write-up has been authored by myself, and parts of it will appear in our forthcoming

publication [EMLO19].

4.1 Incommensurate Bilayers and Local Conductivity

Ignoring the component in the third direction, the vectors of atomic coordinates

and charges in a bilayer system are given by

y`,I,α` := A` I + y
(0)
`,α`

and Z`,I,α` := Z
(0)
`,α`

,
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respectively, where ` ∈ {1, 2} enumerates the sheets and I ∈ Z2, α` ∈ {1, . . . , N (0)
` },

A` ∈ R2×2, y
(0)
`,α`
∈ A` [0, 1]2, Z

(0)
`,α`
∈ R as above. We call such a system incommen-

surate if the following condition is satisfied.

Definition 4.1.1 Two matrices A1, A2 ∈ R2 are called incommensurate if

A−T1 Z2 ∩A−T2 Z2 = {0}.

Remark 4.1.2 A1, A2 being incommensurate according to Definition 4.1.1 does not

imply A1 Z2 ∩A2 Z2 = {0}. To see this, let us consider the counterexample

A1 = I, A2 =

(
1 +
√

2
√

2√
3

√
3

)

for which we have that

A1 Z2 ∩A2 Z2 =

{(
k

0

)
= A2

(
k

−k

) ∣∣∣∣∣ k ∈ Z

}

but

A−T1 Z2 ∩A−T2 Z2 = A−T2

(
AT2 Z2 ∩ Z2

)
= {0}

since the second entry of AT2 k equals
√

2 k1 +
√

3 k2 /∈ Z for all k ∈ Z2 \ {0}. We

conclude that strictly speaking, aperiodicity does not imply incommensurability or

vice versa, but we expect that the difference is of little relevance in practice.

This example has been taken from [TRM].

Incommensurability will be important for our purposes due to the following result.

Theorem 4.1.3 ([MLO17, Theorem 2.1]) Let A1, A2 be incommensurate and let

g ∈ Cper

(
A2 [0, 1]2

)
. We then have that

∑

I∈Z2

g
(
A1 I

)
=

1

det(A2)

∫

[0,1]2
g
(
A2 u

)
du, (4.3)

where ∑

I∈Z2

qI := lim
n→∞

1

(2n+ 1)2

∑

I∈{−n,...,n}2
qI .

Theorem 4.1.3 suggests that we evaluate a single entry σ = σa,b (we drop the

subscripts a, b in the following for brevity) of the conductivity tensor from (4.1)

according to the following outline, which mirrors the propositions in [MLO17] for

the density of states of incommensurate bilayers and is made rigorous in [EMLO19].
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1. Introduce a local conductivity

σ`,I,α` :=
∑

i1,i2

Fζ(εi1 , εi2) 〈ψi1 |Ma|ψi2〉 〈ψi2 |Mb|e`,I,α`〉〈e`,I,α` |ψi1〉 (4.4)

such that

σ =

2∑

`=1

∑

I∈Z2

m
(0)

∑̀

α`=1

σ`,I,α` . (4.5)

Equation (4.5) follows from the identity I =
∑

`,I,α |e`,I,α〉〈e`,I,α|.

2. Note that due to translation invariance, any physical quantity q1,I associated

with unit cell I of sheet 1 can only depend on the shift A2 u = modA2

(
A1 I

)

of said unit cell with respect to the unit cell of sheet 2 and vice versa, where

modA(x) := x−AI with I ∈ Z2 such that modA(x) ∈ A [0, 1]2. In particular,

there must exist a function σ1,α1(A2 u) periodic on A2 [0, 1]2 such that the

local conductivity σ1,I,α1 can be written as

σ1,I,α1 = σ1,α1

(
modA2(A1 I)

)
,

and likewise for σ2,I,α2 .

3. Use Theorem 4.1.3 to rewrite the sum (4.5) as

σ =
2∑

`=1

1

det
(
AT (`)

)
∫

u∈[0,1]2

m
(0)

∑̀

α`=1

σ`,α`
(
AT (`) u

)
du

where T (`) denotes the transposition T (1) = 2 and T (2) = 1.

4. Approximate the integrals in (4.5) using some quadrature rule (ui, wi)
q
i=1 such

that
q∑

i=1

wi σ`,α`
(
AT (`) ui

)
≈
∫

u∈[0,1]2
σ`,α`

(
AT (`) u

)

A detailed analysis of this approximation will be the topic of future work, but

we expect that exponential convergence is achievable and we will assume this

convergence in the following for ease of exposition.

The last step reduces the problem of computing the overall conductivity σ to

that of sampling local conductivities σ`,α`(AT (`) u) at some finite number of quadra-

ture points u. Following the domain decomposition approach from Section 1.3, we

propose to compute these samples σ1,α1(A2 u) according to the following outline.
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1. Assemble a local configuration

yr1,I1,α1
:= y1,I1,α1 , yr2,I2,α2

:= y2,I2,α2 −A2 u, Zr`,I`,α` := Z`,I`,α`

with I` ∈ Z such that |A`I`| ≤ r for some truncation radius r > 0, and

α` ∈ {1, . . . , N (0)
` }. This local configuration yr`,I`,α` corresponds to a circular

cut-out of radius r around the origin, with the second lattice shifted by −A2 u

such that the origin of lattice 1 sees the same environment as the unit cell of

sheet 1 with index I in the unshifted bilayer, where I and u are related by

A2 u = modA2(A1 I).

2. Assemble a local HamiltonianHr
1(A2 u) and velocity matricesM r

1,a(A2 u) based

on the above local configuration, and evaluate an approximate local conduc-

tivity σr1,α1

(
A2u

)
= σr1,0,α1

by inserting these matrices into the formula (4.4).

3. Proceed likewise for σr2,α2

(
A1u

)
.

The approximate local conductivities computed in this way converge exponentially

in the buffer radius r.

Theorem 4.1.4 There exist C, γ > 0 depending only on ζ such that

∣∣σr`,α`
(
AT (`) u

)
− σ`,α`

(
AT (`) u

)∣∣ ≤ C exp(−γ r).

Proof. See Subsection 4.8.3.

We have thus constructed an approximate conductivity

σr,q :=
∑

`∈{1,2}

1

det(AT (`))

q∑

i=1

wi

m
(0)

∑̀

α=1

σr`,α`
(
AT (`) ui

)
≈ σ

which is computable in finite time and converges exponentially in both the trun-

cation radius r and the number of quadrature points q. However, the convergence

rate with respect to the radius r deteriorates quickly for growing inverse tempera-

tures β and shrinking inverse relaxation times η, such that in many applications the

truncated configurations yr`,I`,α` must include tens of thousands of atoms in order to

achieve acceptable accuracy and the diagonalisation algorithm becomes prohibitively

expensive. In the next section, we will construct an alternative algorithm based on

the function approximation idea from Section 1.3 which scales only linearly in the

system size and is therefore a promising candidate for overcoming the scaling prob-

lem of the diagonalisation algorithm. To facilitate its presentation, we simplify the
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notation by writing σloc, Hloc and M loc
a instead of σr`,α`

(
AT (`) ui

)
, Hr

`

(
AT (`) ui

)
and

M r
`,a

(
AT (`) ui

)
, respectively.

4.2 Local Conductivities via Chebyshev Approximation

Let us denote by F̃ζ an approximate conductivity function obtained by truncating

the Chebyshev series of the exact function Fζ from (4.2), i.e.

F̃ζ(E1, E2) :=
∑

(k1,k2)∈K
ck1k2 Tk1(E1)Tk2(E2)

≈
∞∑

k1,k2=0

ck1k2 Tk1(E1)Tk2(E2) = Fζ(E1, E2)

(4.6)

where K ⊂ N2 is a finite set of indices and Tk(E) denotes the kth Chebyshev

polynomial defined through the three-term recurrence relation

T0(x) = 1, T1(x) = x, Tk+1(x) = 2xTk(x)− Tk−1(x). (4.7)

Replacing Fζ with F̃ζ in the local conductivity formula (4.4), we obtain an approx-

imate local conductivity

σ̃loc :=
∑

i1,i2

F̃ζ(εi1 , εi2) 〈ψi1 |M loc
a |ψi2〉 〈ψi2 |M loc

b |e`,0,α`〉〈e`,0,α` |ψi1〉

=
∑

i1,i2

∑

(k1,k2)∈K
ck1k2 〈e`,I,α` |ψi1〉Tk1(εi1) 〈ψi1 |M loc

a |ψi2〉Tk2(εi2) 〈ψi2 |M loc
b |e`,I,α`〉

=
∑

(k1,k2)∈K
ck1k2

(
Tk1(Hloc)M

loc
a Tk2(Hloc)M

loc
b

)
0,α`;0,α`

(4.8)

which can be evaluated without computing the eigendecomposition as follows.

Algorithm 4.1 Local conductivity via Chebyshev approximation

1: |vk1〉 := M loc
a Tk1(Hloc) |e`,0,α`〉 for all k1 ∈ K1 := {k1 | ∃k2 : (k1, k2) ∈ K}.

2: |wk2〉 := Tk2(Hloc)M
loc
b |e`,0,α`〉 for all k2 ∈ K2 := {k2 | ∃k1 : (k1, k2) ∈ K}.

3: σ̃loc :=
∑

(k1,k2)∈K
ck1k2 〈vk1 |wk2〉.

Lines 1 and 2 of Algorithm 4.1 require |K1| and |K2|, respectively, matrix-vector

products when evaluated using the recurrence relation (4.7), while line 3 requires |K|
inner products. Due to the sparsity of Hloc ∈ Rm×m, both types of products require
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O
(
m
)

floating-point operations; thus we conclude that Algorithm 4.1 scales linearly

in the matrix size m. Furthermore, the error in the computed local conductivity σ̃loc

can be estimated in terms of the dropped Chebyshev coefficients ck1k2 as follows.

Lemma 4.2.1 We have that

∣∣σ̃loc − σloc

∣∣ .
∑

(k1,k2)∈N2\K
|ck1k2 |.

Proof. The bound follows immediately from (4.8) after noting thatM loc
a and Tk(Hloc)

are bounded for all a ∈ {1, 2} and k ∈ N.

A more careful analysis of Algorithm 4.1 reveals that since |K1|, |K2| ≤ |K| and

both matrix-vector and inner products require O(m) floating-point operations, the

computational cost of this algorithm is dominated by the cost of line 3 which is

O(|K|) inner products. The runtime of Algorithm 4.1 is thus minimized by choosing

|K| as small as possible subject to the constraint that
∑

(k1,k2)∈N2\K |ck1k2 | must be

less than some error tolerance. The optimal choice for K is then to truncate the

infinite Chebyshev series using some tolerance τ > 0,

K(τ) :=
{

(k1, k2) ∈ N2 | |ck1k2 | ≥ τ
}

;

thus the size of K is linked to the decay of the Chebyshev coefficients ck1k2 which in

turn depends on the regularity properties of Fζ . To analyze these, it is convenient to

split the conductivity function Fζ(E1, E2) = ftemp(E1, E2) frelax(E1, E2) from (4.2)

into the two factors

ftemp(E1, E2) :=
fβ,EF (E1)− fβ,EF (E2)

E1 − E2
(4.9)

and

frelax(E1, E2) :=
1

E1 − E2 + ω + iη
(4.10)

where the subscripts reflect the fact that ftemp mainly depends on the inverse tem-

perature β while frelax mainly depends on the inverse relaxation time η (the Fermi

energy EF and frequency ω play only a minor role in the developments to come).

These functions are easily seen to be analytic everywhere except, respectively, on

the sets

Stemp :=
(
Sβ,EF × C

)
∪
(
C× Sβ,EF

)
with Sβ,EF :=

{
EF + iπk

β | k odd
}

(4.11)
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Constraint Parameter range # significant terms

Relaxation β . η−1/2 O
(
η−3/2

)

Mixed η−1/2 . β . η−1 O
(
βη−1

)

Temperature η−1 . β O
(
β2
)

Table 4.1: Classification of conductivity parameters ζ and number of significant
terms in the Chebyshev series of Fζ .

(cf. (2.1)) and

Srelax :=
{

(E2, E2) ∈ C2 | E1 − E2 + ω + iη = 0
}

;

hence the conductivity function Fζ is analytic except on the union of these two sets.

In one dimension, it is well known that the Chebyshev coefficients ck of a function

f(x) analytic on a neighbourhood of [−1, 1] decay exponentially, |ck| .ε exp(−αk),

and the asymptotic decay rate α (cf. Definition 2.1.9) is equal to the parameter α

of the largest Bernstein ellipse

E(α) :=
{

cosh(α̃) cos(θ) + i sinh(α̃) sin(θ)
)
| α̃ ∈ [0, α), θ ∈ [0, 2π)

}
(4.12)

which can be inscribed into the domain of analyticity of f . In two dimensions, we

have two decay rates α1, α2, and in the case of the conductivity function Fζ we have

two sets of singularities Stemp, Srelax limiting the possible values of α1 and α2. This

suggests that we partition the space of parameters ζ into relaxation-constrained,

mixed-constrained, and temperature-constrained regimes depending on whether two,

one, or zero of the decay rates are constrained by the singularities Srelax rather than

Stemp. In Section 4.4, we will characterize these parameter regimes more precisely

and present asymptotic estimates regarding the number of significant Chebyshev

coefficients in each case, a summary of which is provided in Table 4.1. We see

that for fixed η, the cost of Algorithm 4.1 gradually increases from O
(
η−3/2

)
to

O
(
β2
)

for increasing inverse temperature β which renders conductivity calculations

at low temperatures (i.e., large β) particularly expensive. In Section 4.5, we present

an alternative algorithm based on a pole expansion of Fζ which provably reduces

the cost of evaluating the local conductivity to O
(
β1/2 η−5/4

)
inner products for

all β & η−1/2 and whose actual scaling was empirically found to be O
(
β1/2 η−1.05

)

inner products.
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4.3 Aside: Why Tensor-Product Chebyshev Approxi-

mation?

Given the discussion in Chapter 2, the reader might be surprised to find that the

focus in this chapter is mostly on polynomial rather than rational approximation.

This section will provide some motivation for why we expect rational approximation

of the conductivity to be ineffective, but before doing so we would like to point out

an example where the expectations from Chapter 2 are satisfied.

Example 4.3.1 The singularities of the factor ftemp(E1, E2) from (4.9) are decou-

pled in the sense that the locations Sβ,EF of the singularities in E1 do not depend

on the value of E2 and vice versa. This special structure allows us to approximate

ftemp(E1, E2) by applying the one-dimensional theory from Chapter 2 to each of

the variables separately, and since the one-dimensional singularities Sβ,EF are ex-

actly those of the Fermi-Dirac function fβ,EF (E), we conclude from the comparison

of Theorems 2.3.12 and 2.4.5 that rational approximation indeed performs much

better at approximating ftemp(E1, E2) than polynomial approximation.

The effectiveness of rational approximation to fβ,EF (E) and ftemp(E1, E2) may

heuristically be explained by the observation that rational functions allow us to con-

centrate computational effort in regions where the approximand lacks smoothness,

cf. Figure 2.9a, and for both of the aforementioned functions this region is very small.

Unfortunately, this property fails to hold for the factor frelax(E1, E2) from (4.10):

assuming ω is sufficiently small, the region E2−ω+[−η, η] in E1 where frelax(E1, E2)

lacks smoothness moves through the entire domain [−1, 1] of E1 as E2 varies over

its domain [−1, 1], and similarly with the roles of E1 and E2 interchanged. The

ability of rational functions to direct computational effort to particular regions is

thus worthless in the case of frelax(E1, E2) since the entire domain of approximation

requires high resolution, and this property carries over to the conductivity function

Fζ(E1, E2).

The above heuristic motivates why we expect rational functions to offer no sub-

stantial benefit for approximating the conductivity function Fζ(E1, E2) compared

to polynomials, but it also raises the question of why we insist on approximating

in the variables E1, E2 rather than, e.g., x = E1 − E2 and y = E1 + E2 such that

frelax(E1, E2) = 1
x+ω+ιη is a one-dimensional rational function in R01 in terms of

x. To answer this question, let us reconsider the derivation of equation (4.8). In

order to replace the eigenvalues of H with functions of H, it was crucial that we

approximated the conductivity function Fζ(E1, E2) in a tensor-product basis in E1
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and E2. Had we approximated Fζ(E1, E2) in terms of the variables x, y suggested

above instead, the substitutions in (4.8) would not have worked out and hence it

would have been unclear how to evaluate Fζ(E1, E2) with a matrix argument H

without computing the eigendecomposition of H.

We would like to conclude this aside by emphasising that the above discussion

does not preclude the existence of more efficient local conductivity algorithms based

on polynomial and rational approximations. Indeed, the pole expansion proposed in

Section 4.5 is exactly the two-dimensional analogue of the rational approximation

scheme presented in Theorem 2.4.1, and this scheme was found to be suboptimal

in the one-dimensional case; hence it is likely that its two-dimensional extension

is suboptimal as well. It remains an open problem whether there exists a rational

approximation to the conductivity function which allows us to simultaneously exploit

both the sparsity of the Chebyshev coefficients of the factor frelax(E1, E2) discussed

in Section 4.4 and the effectiveness of rational approximation for dealing with the

Fermi-Dirac poles Sβ,EF as discussed in Section 2.4.

4.4 Chebyshev Coefficients of the Conductivity Func-

tion

Let us denote by αrelax the parameter of the ellipse penetrating the line ω+iη+[−1, 1]

up to the endpoints, and by yζ half the width of this ellipse E(αrelax) along the line

{z | Re(z) = EF }; see Figure 4.2. The partition into temperature-, mixed-, and

relaxation-constrained conductivity parameters depends on whether and to what

extent the Fermi-Dirac poles Sβ,EF =
{
EF + iπk

β | k odd
}

penetrate this ellipse

E(αrelax).

• Relaxation-constrained: β ∈
(
0, πyζ

]
. The Fermi-Dirac poles do not penetrate

E(αrelax).

• Mixed-constrained: β ∈
[
π
yζ
, πη
]
. The Fermi-Dirac poles penetrate E(αrelax)

but do not extend beyond the line ω + iη + [−1, 1].

• Temperature-constrained: β ∈
[
π
η ,∞

)
. The Fermi-Dirac poles penetrate

E(αrelax) beyond the line ω + iη + [−1, 1].

This partition (illustrated in Figure 4.2) allows us to formulate the following result.

Theorem 4.4.1 There exist αdiag(ζ) and αanti(ζ) > 0 such that the Chebyshev

coefficients ck1k2 of Fζ are bounded by

|ck1,k2 | ≤ C(ζ) exp
[
−αdiag(ζ) (k1 + k2)− αanti(ζ) |k1 − k2|

]
(4.13)
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[−1, 1]

ω + ιη + [−1, 1]

E(αrelax )

Figure 4.2: Partitioning of the conductivity parameters ζ depending on the location
of the Fermi-Dirac poles (see Section 4.4).

for some C(ζ) < ∞ independent of k1, k2. In the limit β → ∞, ω, η → 0 with

|ω| . η and assuming EF ∈ (−1, 1), we have that yζ ∼
√
η,

αdiag(ζ) ∼




η if ζ is relaxation- or mixed-constrained,

β−1 if ζ is temperature-constrained, and

αanti(ζ) ∼





√
η if ζ is relaxation-constrained,

β−1 if ζ is mixed- or temperature-constrained.

The notation f(x) ∼ g(x) is defined in Appendix A.2.

A proof of Theorem 4.4.1 and exact formulae for αrelax, αdiag and αanti are pro-

vided in Section 4.7. Figures 4.3b to 4.3d show Chebyshev coefficients matching

the predictions of Theorem 4.4.1 perfectly, and we note that Table 4.1 follows easily

from Theorem 4.4.1.

We numerically observed the bound (4.13) to describe the correct decay behav-

ior and the decay rates of αdiag(ζ) and αanti(ζ) to be quantitatively accurate for

temperature- and mixed-constrained parameters as well for relaxation-constrained

parameters with β close to the critical value π
yζ

. For relaxation-constrained param-

eters far away from this critical value, however, the level lines of ck1k2 are piece-

wise concave rather than piecewise straight as predicted by Theorem 4.4.1, see Fig-

ure 4.3a, and this extra concentration reduces the number of significant Chebyshev

coefficients from O
(
η−3/2

)
to O

(
η−6/5

)
, see Figure 4.4. Since we do not have an

explanation for this phenomenon, we will continue with the theoretically asserted

scaling of O
(
η−3/2

)
for clarity of exposition.

Theorem 4.4.1 suggests that we truncate the Chebyshev series in (4.6) using

K(τ) :=
{

(k1, k2) ∈ N2 | exp
(
−αdiag |k1 + k2| − αanti |k1 − k2|

)
≥ τ

}
,
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Figure 4.3: Normalized Chebyshev coefficients ĉk1k2 := |ck1k2 |/|c00| of the conduc-
tivity function Fζ with EF = ω = 0, η = 0.06, and β as indicated.
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Figure 4.4: Number of normalized Chebyshev coefficients ĉk1k2 := |ck1k2 |/|c00| larger
than 10−3 for Fζ with EF = ω = 0 and fη(E1, E2) := 1

E1−E2+iη . The “rational”
line refers to the total number of Chebyshev coefficients in the pole expansion from
Theorem 4.5.1 as described in Figure 4.5.

where here and in the following we no longer explicitly mention the dependence of

αdiag(ζ), αanti(ζ) on ζ. The following theorem analyzes the error incurred by this

approximation.

Theorem 4.4.2 We have that

‖Fζ − F̃ζ,τ‖[−1,1]2 . α−1
diag α

−1
anti τ | log(τ)|. (4.14)

Proof. See Subsection 4.8.1.

The | log(τ)|-factor in (4.14) varies very little over a large range of τ such that one

may approximate it by a constant without losing much in accuracy. Doing so yields

that we need to choose the truncation tolerance τε := αdiag αanti ε to guarantee an

error ‖Fζ − Fζ,τ‖[−1,1]2 . ε, and thus

|K(τε)| = O
( | log(αdiag αanti ε)|2

αdiag αanti

)
.

4.5 Pole Expansion for Low-Temperature Calculations

We have seen in the previous subsection that for increasing β, the sparsity in the

Chebyshev coefficients of Fζ induced by the factor 1
E1−E2+ω+iη decreases and the

number of coefficients eventually scales as O
(
β2
)
; hence Algorithm 4.1 becomes

expensive at low temperatures. To avoid this poor low-temperature scaling, we pro-

pose to expand Fζ into a sum over the poles in Stemp as described in Theorem 4.5.1
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below and apply Algorithm 4.1 to each term separately.

Theorem 4.5.1 Let k ∈ N and denote by αk,β,EF the parameter of the ellipse

through the poles EF ± (2k+1)πi
β of the Fermi-Dirac function. There exists a function

Rk,β,EF (E1, E2) analytic on the biellipse E
(
αk,β,EF

)2 ⊃ E
(
α0,β,EF

)2
such that

Fζ(E1, E2) = 1
E1−E2+ω+iη


∑

z∈Zk

1
β

1
(E1−z) (E2−z) +Rk,β,EF (E1, E2)


, (4.15)

where

Zk :=
{
EF + `πi

β | ` ∈ {−2k + 1,−2k + 3, . . . , 2k − 3, 2k − 1}
}
⊂ Sβ,EF .

Proof. See Subsection 4.8.2.

For k large enough, the remainder term (the last term in (4.15)) becomes re-

laxation constrained such that applying Algorithm 4.1 to this term becomes fairly

efficient. For the pole terms, on the other hand, we propose to employ Algorithm 4.1

using the weighted Chebyshev approximation

1

(E1 − z) (E2 − z) (E1 − E2 + ω + iη)
≈

∑

k1k2∈Kz
c(z)k1k2

Tk1(E1)

E1 − z
Tk2(E2)

E2 − z
,

where the weight (E − z)−1 is chosen such that the two factors (E1 − z)−1 and

(E2 − z)−1 on the left- and right-hand side cancel. The coefficients c(z)k1k1 are

therefore again the Chebyshev coefficients of a relaxation-constrained function

1

E1 − E2 + ω + iη
≈

∑

k1k2∈Kz
c(z)k1k2 Tk1(E1)Tk2(E2)

and exhibit the concentration described in Theorem 4.4.1. This leads us to the

following algorithm where

wi1i2 := 〈ψi1 |M loc
a |ψi2〉 〈ψi2 |M loc

b |e`,0,α`〉〈e`,0,α` |ψi1〉,

see (4.4).

87



Algorithm 4.2 Local conductivity via pole expansion

1: σ̃`(u) :=
∑

i1,i2

Rk,β,EF (εi1 ,εi2 )

εi1−εi2+ω+iη wi1,i2 , evaluated using Algorithm 4.1.

2: for z ∈ Zk do

3: σ̃`(u) := σ̃`(u) + 1
β

∑
i1,i2

wi1i2
(εi1−z) (εi2−z) (εi1−εi2+ω+iη) , evaluated using

Algorithm 4.1 with the weighted Chebyshev polynomials (E − z)−1 Tk(E).

4: end for

Theorem 4.5.2 The dominant computational cost of Algorithm 4.2 is

#IP = O
(
k η−3/2

)
+





O
(
η−3/2

)
if β η1/2 . k,

O
(βη−1

k

)
if βη . k . β η1/2,

O
(β2

k2

)
if k . βη,

(4.16)

inner products if we assume that solving a single linear system of the form (Hloc −
z)−1 v is less expensive than O(η−3/2

)
inner products (see Remark 4.5.4). This cost

is minimized if we choose

k ∼





1 if β . η−1/2,

β1/2 η1/4 if η−1/2 . β . η−3/2,

β2/3 η1/2 if η−3/2 . β,

(4.17)

which yields

#IP =





O
(
η−3/2

)
if β . η−1/2,

O
(
β1/2 η−5/4

)
if η−1/2 . β . η−3/2,

O
(
β2/3 η−1

)
if η−3/2 . β.

Proof. It follows from Theorem 4.4.1 that the first term in (4.16) describes the cost

of the for-loop in Algorithm 4.2 while the second term describes the cost of line 1.

Since the first term is strictly increasing while the second is decreasing, the sum

of the two terms is minimized by the unique k such that the first term equals the

second term which one can readily verify to be given by (4.17)

We note that Algorithm 4.2 reduces to Algorithm 4.1 if β . η−1/2, but scales

better than Algorithm 4.1 for larger values of β, e.g., for β ∼ η−1 ∼ χ we have

#IP = O
(
χ7/4

)
in the case of Algorithm 4.2 while #IP = O

(
χ2
)

for Algorithm 4.1.

The first term in (4.15) further reduces to O
(
k η−1.1

)
if we assume the improved

O
(
η−1.1

)
-scaling for the number of significant Chebyshev coefficients of f(E1, E2) =
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Figure 4.5: (a) Number of normalized Chebyshev coefficients ĉk1k2 := |ck1k2 |/|c00|
larger than 10−3 for Fζ with η = 0.06 and EF = ω = 0. The “polynomial” line counts
the number of significant coefficients in the Chebyshev expansion from (4.6), while
the “rational” line counts the sum of the Chebyshev coefficients of all the terms
in the pole expansion from (4.15). The dashed lines denote O

(
β
)

and O
(
β1/2

)
,

respectively, and the dash-dotted lines denote O
(
β2
)

and O
(
β2/3

)
, respectively, cf.

(4.18). (b) Index k for the set of poles Zk from Theorem 4.5.1. This number was
determined by increasing k starting from 0 until the number of coefficients reported
in (a) stopped decreasing.
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1
E1−E2+ω+iη suggested by Figure 4.4. In this case, the optimal choice of k and the

corresponding costs are

k ∼





1

β1/2 η0.05

β2/3 η0.37

and #IP =





O
(
η−1.1

)
if β . η−1/2,

O
(
β1/2 η−1.05

)
if η−1/2 . β . η−3/2,

O
(
β2/3 η−0.73

)
if η−3/2 . β.

(4.18)

These predictions are compared against numerical results in Figure 4.5 where we

observe good qualitative agreement between the theory and the experiment. For

β ∼ η−1 ∼ χ, equation (4.18) yields #IP = O
(
χ1.55

)
which is only marginally

more expensive than the O
(
χ1.5

)
cost of Algorithm 4.1 in the case of relaxation-

constrained parameters β2 ∼ η−1 ∼ χ. This is empirically demonstrated by the

“rational” line in Figure 4.4.

Remark 4.5.3 Instead of running Algorithm 4.1 for each pole z ∈ Zk separately,

we can apply Algorithm 4.1 to a group of poles Z̃ ⊂ Zk if we weight the Chebyshev

polynomials Tk(E) with q(E) :=
∏
z∈Z̃(E−z)−1, and the same idea can also be used

to improve the concentration of the Chebyshev coefficients of Rk,β,EF . Grouping the

poles in this manner reduces the computational cost of Algorithm 4.2, but amplifies

the round-off errors by a factor r := maxE∈[−1,1] |q(E)|/minE∈[−1,1] |q(E)| such that

the result is fully dominated by round-off errors if this ratio exceeds 1016. Since

|q(EF )| ∼ β#Z̃ while |q(±1)| ∼ 1, this means that we have to keep the group

size rather small (e.g. #Z̃ ≤ 4 for β = 104) to maintain numerical stability. We

therefore conclude that grouping poles reduces the prefactor, but does not change

the asymptotics of the computational cost of Algorithm 4.2.

Remark 4.5.4 We will see in Subsection 4.8.3 that the radius r of the local configu-

rations yr`,α`(AT (`) u) must grow linearly with the maximal degree kmax := max
{
k1 +

k2 | (k1, k2) ∈ K(τ)
}

of the polynomial approximation from (4.6) to achieve a con-

stant error for all kmax, and according to Theorem 4.4.1 the asymptotic scaling of

kmax is given by

kmax =




O
(
η−1
)

if ζ is relaxation- or mixed-constrained,

O
(
β
)

if ζ is temperature-constrained.

From Table 1.1, it follows that solving a linear system (Hloc − z)−1 v with Hloc ∈
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Rm×m using a direct solver requires

O
(
m3/2

)
= O

(
r3
)

= O
(
k3

max

)

=




O
(
η−3
)

if ζ is relaxation- or mixed-constrained,

O
(
β3
)

if ζ is temperature-constrained,

floating-point operations, while approximating p(E) ≈ 1/(E − z) and evaluating

p(Hloc) ≈ (Hloc−z)−1 (or equivalently, using an iterative linear solver like conjugate

gradients) requires

O
(
degree(p)m

)
=




O
(
β η−2

)
if ζ is relaxation- or mixed-constrained,

O
(
β3
)

if ζ is temperature-constrained

floating-point operations where we used that degree(p) = O
(
| Im(z)|−1

)
= O

(
β
)

according to Theorem 2.3.8. We conclude that iterative solvers scale slightly better

than direct ones in the relaxation- and mixed-constrained cases and scale as well as

direct ones in the temperature-constrained case.

Similarly, we find that the cost of computing O
(
η−3/2

)
inner products is

O
(
η−3/2m

)
=




O
(
η−7/2

)
if ζ is relaxation- or mixed-constrained,

O
(
η−3/2 β2

)
if ζ is temperature-constrained,

floating-point operations; hence the assumption in Theorem 4.5.2 is satisfied if β .

η−3/2.

4.6 Remarks Regarding Implementation

This section remarks on a few practical aspects of the above algorithms.

4.6.1 Memory Requirements

Algorithm 4.1 as formulated above suggests that we precompute and store both

the vectors |vk1〉 for all k1 ∈ K1 and |wk2〉 for all k2 ∈ K2, but this requires more

memory than needed since we can rewrite the algorithm as follows.
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Algorithm 4.3 Memory-optimised version of Algorithm 4.1

1: Precompute |vk1〉 for all k1 ∈ K1 as in Algorithm 4.1.

2: for k2 ∈ K2 in ascending order do

3: Evaluate |wk2〉 using the recurrence relation (4.7).

4: Discard |wk2−2〉 as it will no longer be needed.

5: Compute the inner products 〈vk1 |wk2〉 for all k1 such that (k1, k2) ∈ K, and

accumulate the results as in Algorithm 4.1.

6: end for

Furthermore, even caching all the vectors |vk1〉 is not needed if the function to

be evaluated is relaxation-constrained: it follows from the wedge-like shape of the

Chebyshev coefficients of such functions shown in Figure 4.3b that in every iteration

of the loop in Algorithm 4.3, we only need vectors |vk1〉 with index k1 within some

fixed distance from k2. The vectors |vk1〉 can hence be computed and discarded on

the fly just like |wk2〉, albeit with a larger lag between computing and discarding.

Quantitatively, this reduces the memory requirements from O
(
η−1m

)
for both Al-

gorithms 4.1 and 4.3 to O
(
η−1/2m

)
for the final version described above, assuming

the function to be evaluated is relaxation-constrained.

4.6.2 Choosing the Approximation Scheme

Algorithms 4.1 and 4.2 involve three basic operations, namely matrix-vector prod-

ucts, inner products and linear system solves, and a fundamental assumption in their

derivation was that matrix-vector and inner products are approximately equally ex-

pensive and linear system solves are not significantly more expensive than that (see

Theorem 4.5.2 for the precise condition). The former assumption is true in the

sense that both matrix-vector and inner products scale linearly in the matrix size

m, but their prefactors are very different: the inner product 〈w | v〉 reqiures 2m− 1

floating-point operations, while the cost of the matrix-vector product H |v〉 is ap-

proximately equal to twice the number of nonzeros in H. Even in the simplest

case of a single triangular lattice and a tight-binding Hamiltonian H involving only

nearest-neighbour terms and s and p orbitals, the number of nonzeros per column

of H is about 6 (number of neighbours) times 4 (number of orbitals); hence the cost

of evaluating H |v〉 is approximately 48m which is 24 times more expensive than the

inner product. Similarly, the assumption regarding the costs of linear system solves

holds true in the asymptotic sense as discussed in Remark 4.5.4, but the situation

may look very different once we include the prefactors. This observation has two

practical implications.
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• Rather than choosing the number of removed poles k in Theorem 4.5.1 solely

to minimise the number of coefficients, one should benchmark the runtimes of

inner products, matrix-vector products and linear system solves and choose

the k which yields the smallest overall runtime.

• Fairly small values of η are required before the wedge shown in Figure 4.3b be-

comes thin enough that the savings due to a smaller number of inner products

make a significant difference compared to the cost of the matrix vector prod-

ucts, and even smaller η are required to compensate for the additional costs of

solving the linear systems introduced by the pole expansion in Theorem 4.5.1.

We have seen in Remark 4.5.4 that the matrix size m must scale with η−2 in order

to achieve a constant error in the local conductivities σloc; hence the latter point

implies that demonstrating the savings brought about by the sparsity of the Cheby-

shev coefficients in a physically meaningful setting requires large-scale computations

which are beyond the scope of this thesis and will be the topic of future work.

4.7 Proof of Theorem 4.4.1

4.7.1 Approximation theory background

This subsection briefly recalls some concepts from approximation theory and intro-

duces the notation used in the remainder of this section. A textbook introduction

to the topics discussed here can be found, e.g., in [Tre13].

Joukowsky map φ(z). The three-term recurrence relation (4.7) for the Chebyshev

polynomials Tk(x) implies the identity

Tk
(
φ(z)

)
:=

zk + z−k

2
where φ(z) :=

z + z−1

2

as one can easily verify by induction, and the Bernstein ellipses (4.12) can be ex-

pressed in terms of the Joukowsky map φ(z) as

E(α) = {φ(z) | z ∈ C, 0 ≤ log |z| < α}.

Parameter function αb(x). It will be convenient in the following to express E(α)

in terms of the variable x := φ(z), which requires us to study the inverse Joukowsky

map φ−1
± (x) = x ±

√
x2 − 1. Since φ(z) = φ

(
z−1
)
, this inverse has two branches

related by φ−1
± (x) =

(
φ−1
∓ (x)

)−1
, and given any curve b ⊂ C connecting the two
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branch points x = ±1, we define

φ−1
b (x) := x+

b
√
x2 − 1

where b
√
x2 − 1 denotes the branch of

√
x2 − 1 with branch cut along b and sign such

that φ−1
b (∞) =∞. The Bernstein ellipses E(α) then become the level sets

E(α) = {x ∈ C | α[−1,1](x) < α}

of the parameter function

αb(x) := log |φ−1
b (x)|.

The following properties of αb(x) follow immediately from the above discussion.

Lemma 4.7.1 We have that

• αb(x) = 0 for all x ∈ [−1, 1] and all branch cuts b,

• α[−1,1](x) ≥ 0 for all x ∈ C,

• αb(x+0n) = −αb(x−0n) for all x ∈ b and all branch cuts b, where the notation

x± 0n indicates that we evaluate αb(x) on different sides of the branch cut.

We remark that α[−1,1](x) is in fact the Green’s function g[−1,1](x) = Re
(
G[−1,1](x)

)

of the log-map G[−1,1](x) from Theorem 2.3.4, and much of the discussion above is

closely related to the material presented in Chapter 2.

Zero-width contours. As in Definition 2.0.2, we define ∂γ for curves γ ⊂ C as the

counterclockwise contour around a domain of infinitesimal width, e.g.,

∂[−1, 1] =
(
[−1, 1] + 0i

)
∪
(
[−1, 1]− 0i

)
,

where the signed zero in the imaginary part indicates which branch to evaluate for

a function with branch cut along [−1, 1].

Example 4.7.2 Using the definition of ∂[−1, 1] and [−1,1]
√·, we compute

∫

∂[−1,1]

[−1,1]
√
x2 − 1 dx =

∫ −1+0i

1+0i
i
√

1− x2 dx+

∫ 1−0i

−1−0i
(−i)

√
1− x2 dx

= −2 i

∫ 1

−1

√
1− x2 dx = −π i.

The signs of [−1,1]
√
x2 − 1 given on the first line follow from the requirement that

[−1,1]
√
x2 − 1→∞ for x→∞.
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Exponential decay with asymptotic rate α. We recall the notations

ak ≤ε C(α) exp
(
−αk

)
and ak .ε exp

(
−αk

)

from Definition 2.1.9.

Analyticity in two dimensions. We extend the notion of analyticity to two-

dimensional functions f(z1, z2) as follows.

Definition 4.7.3 A function f : Ω→ C with Ω ⊂ C2 is called analytic if f(z1, z2)

is analytic in the one-dimensional sense in each variable z1, z2 separately for every

(z1, z2) ∈ Ω.

By a famous result due to Hartogs (see e.g. [Kra01, Theorem 1.2.5]), a function

f(z1, z2) analytic in the above one-dimensional sense is continuous and differentiable

in the two-dimensional sense. Furthermore, it is known that if f(z1, z2) is analytic

on the biannulus A(r1)×A(r2) with A(r) := {z | r−1 < |z| < r}, it can be expanded

into a Laurent series

f(z1, z2) =
∞∑

k1,k2=−∞
ak1k2 z

k1
1 zk2

2

with coefficients given by

ak1k2 = − 1

4π2

∫

γ2

∫

γ1

f(z1, z2) z−k1−1
1 z−k2−1

2 dz1 dz2

for any bicontour γ1 × γ2 where γ` ⊂ A(r`) are two closed contours winding once

around the origin, see [Sch05, Theorem 1.5.26].

4.7.2 Auxiliary results

We next establish a contour-integral formula for the Chebyshev coefficients of ana-

lytic functions in Theorem 4.7.4 and demonstrate in Theorem 4.7.5 how this formula

translates into a bound on the Chebyshev coefficients. Both results are straightfor-

ward generalizations of the one-dimensional results (see e.g., [Tre13]) except that

we allow for a general branch cut in Theorem 4.7.5 which will be important in

Subsection 4.7.3.

Theorem 4.7.4 A function f(x1, x2) analytic on [−1, 1]2 can be expanded into a

Chebyshev series

f(x1, x2) =

∞∑

k1,k2=0

ck1k2 Tk1(x1)Tk2(x2) on [−1, 1]2 (4.19)

95



with coefficients ck1k2 given by

ck1k2 = − (2−δk10)(2−δk20)

4π2

∫

∂[−1,1]

∫

∂[−1,1]
f(x1, x2)

Tk1(x1)
[−1,1]
√
x2

1 − 1

Tk2(x2)
[−1,1]
√
x2

2 − 1
dx1 dx2.

Proof. f(x1, x2) is analytic on [−1, 1]2 and φ(z) maps the unit circle {|z| = 1}
holomorphically onto [−1, 1]; thus f

(
φ(z1), φ(z2)

)
is analytic on {|z| = 1}2 and can

be expanded into a Laurent series

f
(
φ(z1), φ(z2)

)
=

∞∑

k1,k2=−∞
ak1,k2 z

k1
1 zk2

2 (4.20)

with coefficients ak1k2 given by

ak1k2 = − 1

4π2

∫

|z2|=1

∫

|z1|=1
f
(
φ(z1), φ(z2)

)
z−k1−1

1 z−k2−1
2 dz1 dz2. (4.21)

Since φ(z) = φ
(
z−1
)
, we conclude that ak1k2 is symmetric about the origin in both k1

and k2, i.e., ak1,k2 = a−k1,k2 and ak1,k2 = ak1,−k2 . The terms in (4.20) can therefore

be rearranged as a Chebyshev series in φ(z1) and φ(z2),

f
(
φ(z1), φ(z2)

)
=

∞∑

k1,k2=0

(2− δk10)(2− δk20) ak1k2

zk1
1 + z−k1

1

2

zk2
2 + z−k2

2

2

=
∞∑

k=0

ck1k2 Tk1

(
φ(z1)

)
Tk2

(
φ(z2)

)
,

which is (4.19) with ck1k2 := (2−δk10)(2−δk20) ak1k2 . The formula for the coefficients

follows by substituting

z` → φ−1
[−1,1](x`), dz` →

φ(x`)
[−1,1]
√
x2 − 1

dx` and {|z`| = 1} → ∂[−1, 1]

for both ` = 1 and ` = 2 in the integrals in (4.21).

Theorem 4.7.5 Let Ω1,Ω2 ⊆ C be two simply connected sets such that both sets

contain −1 and 1. We then have that

∣∣∣∣∣
(2− δk10)(2− δk20)

4π2

∫

∂Ω2

∫

∂Ω1

f(x1, x2)
Tk1(x1)
b1
√
x2

1 − 1

Tk2(x2)
b2
√
x2

2 − 1
dx1 dx2

∣∣∣∣∣ ≤ . . .

≤ C(∂Ω1)C(∂Ω2) ‖f‖∂Ω1×∂Ω2 exp
(
−α1k1 − α2k2

)
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for all k1, k2 ∈ N and all branch cuts
(
b` ⊂ Ω`

)
`∈{1,2} connecting −1, 1, where

(
α` := minαb`(∂Ω`)

)
`∈{1,2}

and C(∂Ω) :=
1

π

∫

φ−1
b (∂Ω)

|dz|
|z| .

Proof. Reversing the substitutions in the proof of Theorem 4.7.4 transforms the

expression on the left-hand side to (4.21) up to a factor of (2− δk10)(2− δk20) and

the integrals running over φ−1
b (∂Ω`) instead of {|z`| = 1} for ` ∈ {1, 2}. The claim

follows by bounding these integrals using Hölder’s inequality.

We illustrate the application of Theorems 4.7.4 and 4.7.5 by proving the following

corollary which can be found e.g., in [BM48, Theorem 11], [Tre17, Lemma 5.1] and

[Boy09, Theorem 11].

Corollary 4.7.6 The Chebyshev coefficients of a function f(x1, x2) analytic on

E(α1)× E(α2) are bounded by

|ck1k2 | ≤ε 4 ‖f‖∂E(α1)×∂E(α2) exp
(
−α1k1 − α2k2

)
for all k1, k2 ∈ N. (4.22)

Proof. f(x1, x2) is analytic on [−1, 1]2 ⊂ E(α1) × E(α2); thus Theorem 4.7.4 says

that we can expand f(x1, x2) into a Chebyshev series with coefficients given by

ck1k2 = − (2−δk10)(2−δk20)

4π2

∫

∂Ω2

∫

∂Ω1

f(x1, x2)
Tk1(x1)

[−1,1]
√
x2

1 − 1

Tk2(x2)
[−1,1]
√
x2

2 − 1
dx1 dx2

where Ω1 = Ω2 = [−1, 1]. Using Cauchy’s integral theorem and the analyticity

of f(x1, x2), we can replace the two contour domains Ω1 = Ω2 = [−1, 1] with

Ω` = E(α̃`) for any α̃` < α`, which by Theorem 4.7.5 implies

|ck1,k2 | ≤ 4 ‖f‖∂E(α̃1)×∂E(α̃2) exp
(
−α̃1k1 − α̃2k2

)

where we used C
(
∂E(α)

)
= 1

π

∫
|z|=exp(α)

|dz|
|z| = 2 and α[−1,1]

(
∂E(α)

)
= α. This is

precisely the bound (4.22).

4.7.3 Chebyshev coefficients of the conductivity function

This subsection establishes the bound (4.13) with explicit formulae for αdiag(ζ) and

αanti(ζ), which will be done in two steps. First, we will establish in Theorem 4.7.7

below a bound on the Chebyshev coefficients of the factor f(x1, x2) = 1
x1−x2+s from

(4.10), where for notational convenience we set s := ω + iη. The extension to the

conductivity function Fζ will then be an easy modification of Theorem 4.7.7.
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s

Ω1 = [−1, 1]

Ω2 = [−1, 1]

(a) Initial contour domains

Ω1 = E
(
α̂max (s)

)

Ω2 = b̂?(s)

(b) Final contour domains

E
(
α̂max (s)

)

D̂(s) x̂?(s)E
(
−α̂min(s)

)

(c) Definitions

E
(
αmax (ζ)

)
E
(
αmax (ζ)

)
E
(
αmax (ζ)

)
ιπ
β
ιπ
β
ιπ
β

(d) E
(
αmax(ζ)

)
for three β

Figure 4.6: Illustration of the various definitions in Subsection 4.7.3.

We note that x1 7→ 1
x1−x2+s is analytic at all x1 ∈ C except x1 = x2 − s, and

likewise x2 7→ 1
x1−x2+s is analytic at all x2 ∈ C except x2 = x1 + s. The condition

that 1
x1−x2+s is analytic on a domain Ω1×Ω2 is thus equivalent to

(
Ω1 +s

)
∩Ω2 = {}

which is clearly the case for Ω1 = Ω2 = [−1, 1] and Im(s) 6= 0, see Figure 4.6a. By

Theorem 4.7.4, we can thus expand 1
x1−x2+s into a Chebyshev series with coefficients

given by

ck1k2 = −(2− δk10)(2− δk20)

4π2

∫

∂Ω2

∫

∂Ω1

1

x1 − x2 + s

Tk1(x1)
b1
√
x2

1 − 1

Tk2(x2)
b2
√
x2

2 − 1
dx1 dx2

where for now Ω1 = Ω2 = b1 = b2 = [−1, 1].

As in the proof of Corollary 4.7.6, we will next use Cauchy’s integral theorem

repeatedly to move the contour domains Ω1,2 to appropriate shapes and then employ

Theorem 4.7.5 to bound the Chebyshev coefficients. To this end, let us introduce

α̂max(s) := min{α[−1,1](±1− s)} = α[−1,1]

(
1− |Re(s)| − i Im(s)

)
,

which is the parameter of the ellipse E
(
α̂max(s)

)
penetrating the line [−1, 1]− s up

98



to the endpoints ±1 + s, and let us denote by

D̂(s) :=
(
E
(
α̂max(s)

)
+ s
)
∩
{
x | Im(x) < 0

}

the portion of E
(
α̂max(s)

)
+s penetrating [−1, 1] (see Figure 4.6c). Arguing similarly

as above, we see that 1
x1−x2+s is analytic on [−1, 1]×

(
[−1, 1] ∪ D̂(s)

)
; thus we can

replace Ω2 = [−1, 1] with Ω2 = [−1, 1] ∪ D̂(s) without changing the value of the

integral. We next move the branch cut b2 = [−1, 1] to the lower boundary of Ω2,

b2 = b̂?(s) :=
(
[−1, 1] \ D̂(s)

)
∪ {x ∈ ∂D̂(s) | Im(s) < 0},

which allows us to replace Ω2 = [−1, 1] ∪ D̂(s) with Ω2 = b̂?(s) and finally re-

place Ω1 = [−1, 1] with Ω1 = E(α̃1) for any α̃1 < α̂max(s), see Figure 4.6b. By

Theorem 4.7.5, these final contours imply the bound

|ck1k2 | .ε exp
(
−α̂max(s) k1 − α̂min(s) k2

)
(4.23)

with

α̂min(s) := minαb̂?(s)

(
∂b̂?(s)

)
= −maxα[−1,1]

(
b̂?(s)

)
, (4.24)

where for the second equality we used Lemma 4.7.1. We note that the last expression

in (4.24) may be interpreted as minus the parameter of the smallest ellipse containing

D̂(s), see Figure 4.6c.

By the symmetry of 1
x1−x2+s , the bound (4.23) also holds with the roles of k1, k2

interchanged, and since α̂max(s) > 0 but α̂min(s) < 0, we may summarize the two

bounds with

|ck1k2 | .ε





exp
(
−α̂max(s)k1 − α̂min(s) k2

)
if k1 ≥ k2,

exp
(
−α̂min(s) k1 − α̂max(s)k2

)
if k1 ≤ k2.

(4.25)

Rewriting (4.25) in the form (4.26), we arrive at the following theorem.

Theorem 4.7.7 The Chebyshev coefficients ck1k2 of f(x1, x2) := 1
x1−x2+s with Re(s) ∈

[−1, 1] are bounded by

|ck1,k2 | .ε exp
(
−α̂diag(s) (k1 + k2)− α̂anti(s) |k1 − k2|

)
(4.26)

where

α̂diag(s) :=
1

2

(
α̂max(s) + α̂min(s)

)
and α̂anti(s) :=

1

2

(
α̂max(s)− α̂min(s)

)
.
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A closer inspection of the above argument reveals that the bound (4.26) applies

to any function f(x1, x2) = g(x1,x2)
x1−x2+s as long as g(x1, x2) is analytic on E

(
α̂max(s)

)2
,

and in particular it applies to the conductivity function Fζ(E1, E2) =
ftemp(E1,E2)
E1−E2+ω+iη

if the singularities Stemp of ftemp from (4.11) satisfy

E
(
αrelax

)2 ∩ Stemp = {} ⇐⇒ E
(
αrelax

)
∩ Sβ,EF = {} ⇐⇒ β ≤ π

yζ
,

i.e., if ζ is relaxation-constrained (note that αrelax = α̂max(ω + iη)). Furthermore,

the argument and hence the bound (4.26) can be extended to the non-relaxation-

constrained case β ≥ π
yζ

if we replace α̂max(ζ) with

αmax(ζ) = min
{
α̂max(ω + iη), α[−1,1]

(
EF + πi

β

)}
,

see Figure 4.6d, and α̂min(s) with αmin(ζ) defined analogously to α̂min but starting

from αmax(ζ) instead of α̂max(s).

4.7.4 Asymptotics

To complete the proof of Theorem 4.4.1, it remains to show the asymptotic scaling

of yζ , αdiag(ζ) and αanti(ζ), which we will do using the following auxiliary result.

Lemma 4.7.8 We have that

α[−1,1](x) ∼ | Im(x)| for x→ x? with x? ∈ (−1, 1), (4.27)

α[−1,1](x) ∼
√
|x∓ 1| for x→ ±1 with ± Re(x)− 1 ≥ C| Im(x)|. (4.28)

Proof. As noted after Lemma 4.7.1, we have that α[−1,1](x) = g[−1,1](x); hence (4.27)

follows immediately from (2.17), and the derivation of (4.28) is analogous to that of

(2.19) and (2.20) in Theorem 2.3.12.

Lemma 4.7.8 immediately yields αrelax = α[−1,1]

(
1− |ω|+ iη

)
∼ √η which in turn

implies yζ ∼
√
η as one can verify by Taylor-expanding the formula

yζ = sinh(αrelax)

√
1− E2

F
cosh(αrelax)2

which follows from the geometric definition of yζ given in Figure 4.2.

For temperature-constrained parameters β ≥ π
η corresponding to the innermost

ellipse in Figure 4.6d, we have that D(ζ) = ∅, b?(ζ) = [−1, 1], αmin(ζ) = 0 and thus

αdiag(ζ) = αanti(ζ) = αmax(ζ) ∼ β−1
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where in the last step we again employed Lemma 4.7.8. It hence remains to analyze

the asymptotics of αdiag(ζ) and αanti(ζ), to which end we introduce

x?(ζ) := arg min
x∈∂b?(ζ)

αb?(ζ)(x) = arg max
x∈b?(ζ)

α[−1,1](x), (4.29)

which is the point where D(ζ) and E
(
−αmin(ζ)

)
touch, see Figure 4.6c for an illus-

tration of the analogous variable x̂?(s). We observe the following.

Lemma 4.7.9 x?(ζ) is unique for |ω| small enough, and limω→0 Re
(
x?(ζ)

)
= 0.

Proof. One verifies from the geometric interpretation of x?(ζ) in Figure 4.6c that

x?(ζ) is unique and satisfies Re
(
x?(ζ)

)
= 0 if ω = 0. The uniqueness and limit then

follow from the continuity of α[−1,1](x) and b?(ζ).

Lemma 4.7.10 αmin(ζ) = −α[−1,1]

(
x?(ζ)

)
and αmax(ζ) = α[−1,1]

(
x?(ζ)− ω − iη

)
.

Proof. The claim follows directly from (4.29).

Lemma 4.7.11 In the limit considered in Theorem 4.4.1 (β → ∞ and ω, η → 0

with |ω| . η), we have that

∣∣Im
(
x?(ζ)

)∣∣ ∼




η1/2 if β ≤ π

yζ
,

β−1 if β ≥ π
yζ
.

and thus η = O
(
|x?(ζ)|2

)

Proof. We conclude from Lemma 4.7.9 that for small ω, x?(ζ) is near the imaginary

axis where b?(ζ) 3 x?(ζ) satisfies

Im
(
b?(ζ)

)
=
{

sinh
(
αmax(ζ)

)
sin(θ)− η | θ ≈ 3π

2

}
.

The claim then follows from the asymptotics for αmax(ζ) which may be derived from

Lemma 4.7.8.

Using the above results and the shorthand notation s = ω + iη, we get for the
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diagonal decay rate

αdiag(ζ) = 1
2

(
αmax(ζ) + αmin(ζ)

)

= 1
2

(
α[−1,1]

(
x?(ζ)− s

)
−α[−1,1]

(
x?(ζ)

))

=
∂α[−1,1]

∂ Im(x)
(0) Im

(
x?(ζ)− s− x?(ζ)

)
+ . . .

Re

(
∂2

∂x2
log φ−1

[−1,1](x)
∣∣∣
x=0

((
x?(ζ)− s

)2 − x?(ζ)2
))

+O
(
|x?(ζ)|3/2

)

=
∂α[−1,1]

∂ Im(x)
(0) η +O

(
|x?(ζ)|3/2

)

∼ η.

For the anti-diagonal decay rate αanti(ζ), on the other hand, we repeat the above

calculations with a negative sign for αmin(ζ), which means that the x?(ζ) in the

linear term and the x?(ζ)2 in the quadratic term on the third line add up rather

than cancel and thus

αanti(ζ) =
∂α[−1,1]

∂ Im(x)
(0) Im

(
x?(ζ)

)
+O

(
|x?(ζ)|2

)
∼




η1/2 if β ≤ π

yζ
,

β−1 if β ≥ π
yζ
.

This completes the proof of Theorem 4.4.1.

4.8 Other Proofs

4.8.1 Proof of Theorem 4.4.2

Let us introduce

bk1k2 := exp
(
−αmax(ζ) k1 − αmin(ζ) k2

)

with

αmax(ζ) := αdiag(ζ) + αanti(ζ), αmin(ζ) := αdiag(ζ)− αanti(ζ).
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Using the triangle equality and ‖Tk‖[−1,1] = 1 and the bound (4.13), we obtain

‖f − fτ‖[−1,1]2 ≤
∑

(k1,k2)∈N2\K(τ)

|ck1k2 |

≤ 2C(ζ)
∑

(k1,k2)∈N2\K(r)∧k1≥k2

bk1k2

= 2C(ζ)

(
K2(τ)−1∑

k2=0

∞∑

k1=K1(τ,k2)

bk1k2

︸ ︷︷ ︸
A

+
∞∑

k2=K2(τ)

∞∑

k1=k2

bk1k2

︸ ︷︷ ︸
B

)

where

K2(τ) :=

⌈ − log(τ)

2αdiag(ζ)

⌉
, K1(τ, k2) :=

⌈
− log(τ) + αmin(ζ) k2

αmax(ζ)

⌉
.

For the two terms A and B, we obtain using αdiag(ζ) = O
(
αanti(ζ)

)
and hence

αmax(ζ) = Θ
(
αanti(ζ)

)
,

A =

K2(τ)−1∑

k2=0

exp
(
−αmin(ζ) k2

) ∞∑

k1=K1(τ,k2)

exp
(
−αmax(ζ) k1

)

≤
K2(τ)−1∑

k2=0

exp
(
−αmin(ζ) k2

) τ exp
(
αmin(ζ) k2

)

1− exp
(
−αmax(ζ)

)

=
K2(τ)

1− exp
(
−αmax(ζ)

) τ

. αdiag(ζ)−1 αanti(ζ)−1 τ log(τ)

and

B =
∞∑

k2=K2(τ)

exp
(
−αmin(ζ) k2

) ∞∑

k1=k2

exp
(
−αmax(ζ) k1

)

=
∞∑

k2=K2(τ)

exp
(
−αdiag(ζ) k2

) 1

1− exp
(
−αmax(ζ)

)

≤ τ

1− exp
(
−αdiag(ζ)

) 1

1− exp
(
−αmax(ζ)

)

. αdiag(ζ)−1 αanti(ζ)−1 τ.

This completes the proof of Theorem 4.4.2.
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4.8.2 Proof of Theorem 4.5.1

According to Riemann’s removable singularity theorem in higher dimensions (see

e.g. [Sch05, Thm. 4.2.1]), the function

R(E1, E2) =
(
E1 − E2 + ω + iη

)
Fζ(E1, E2)− 1

β

1

(E1 − z) (E2 − z)
(4.30)

with z := πi
β can be analytically continued to

Sz :=
(
{z} ×

(
C \ Sβ,EF

))
∪
((

C \ Sβ,EF
)
× {z}

)

if R(E1, E2) is bounded on this set, or equivalently if

lim
E1→z

(E1 − z)R(E1, E2) = 0 (4.31)

for some arbitrary E2 ∈ C \ Sβ,EF and likewise with the roles of E1 and E2 inter-

changed. In order to verify (4.31), we compute

lim
E1→z

(E1 − z) ftemp(E1, E2) = lim
E1→z

(E1 − z)
fβ,EF (E1)− fβ,EF (E2)

E1 − E2

=
1

z − E2
lim
E1→z

E1 − z
1 + exp

(
β (E1 − EF )

)

=
1

β

1

E2 − z
(4.32)

where on the last line we used L’Hôpital’s rule to determine the limit. It follows from

(4.32) that for E1 → z, the first and second term in (4.30) cancel and hence (4.31)

holds. The transposed version of (4.31) follows from the symmetry of (4.30); thus we

conclude that R(E1, E2) can indeed be analytically continued to Sz. Theorem 4.5.1

then follows by rewriting (4.15) in the form (4.30) and applying the above argument

to each of the terms in the sum over Zk.

4.8.3 Proof of Theorem 4.1.4

It follows from (4.8) that the local conductivity σloc can be written in the form

σloc =

∞∑

k1,k2=0

ck1k2

(
Tk1(Hloc)M

loc
a Tk2(Hloc)M

loc
b

)
0,α`;0,α`

,
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and we conclude from an argument analogous to the one given in Lemma 3.2.3 that

the weights

wk1k2 :=
(
Tk1(Hloc)M

loc
a Tk2(Hloc)M

loc
b

)
0,α`;0,α`

become independent of the buffer radius r for r ≥ C (k1 + k2) with a constant C

depending on the sparsity structure of M loc
a and Hloc. We have already observed

in Lemma 4.2.1 that wk1k2 is bounded for all r and k1, k2; hence the difference in

Theorem 4.1.4 may be estimated by

∣∣σr`,α`
(
AT (`) u

)
− σ`,α`

(
AT (`) u

)∣∣ .
∑

k1+k2≥ r
C

|ck1k2 | .ε exp
(
− 1
C αdiag(ζ) r

)

as claimed.

4.9 Conclusion

We developed an algorithm for conductivity calculations on incommensurate bilayers

based on the ergodicity property (4.3) and a combination of ideas from the domain

decomposition and function approximation approaches. The proposed method re-

quires a polynomial or rational approximation p to the conductivity function (4.2)

and its cost is minimised if we choose p to have as few terms as possible while

meeting the accuracy requirement. Our main contribution in this chapter has been

the analysis of this approximation problem, which showed that the proposed local

conductivity algorithm scales with only O
(
(η−3/2 + β1/2 η−5/4 + β2/3 η−1)m

)
(cf.

Theorem 4.5.2) rather than O
(
(η−2 + β2)m

)
as one might have expected based on

one-dimensional arguments (m denotes the matrix size of the local Hamiltonian).

Furthermore, our analysis illustrates several surprising and (to the best of the au-

thor’s knowledge) little known features of two-dimensional approximation theory

which we would like to emphasise in the following.

Degree vs. number of terms. The performance of a polynomial approximation

scheme pn(x) ≈ f(x) is usually measured in terms of how the error en = ‖pn −
f‖[−1,1] decays as a function of the polynomial degree n. This is well justified in one

dimension since the cost of evaluating the powers xk (the degree) is proportional

to the cost of summing them (the number of terms) except in the rare case when

the approximand is of the form pn(x) =
∑n

k=0 ck x
k with a sparse coefficient vector

ck. In two dimensions, one might expect that the relationship between the degree n

and the number of terms nterms would consistently be nterms = O
(
n2
)
, but we have

seen with the example of the relaxation-constrained conductivity function that this
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may be far from the truth and in fact the relationship could be anywhere between

nterms = O
(
n
)

and nterms = O
(
n2
)
. This suggests that in dimensions d > 1, the

performance of a polynomial approximation scheme is more reasonably measured in

terms of error as a function of the number of terms, though even this metric has its

limitations as pointed out in Subsection 4.6.2.

Representation. An immediate corollary of the previous point is the observation

that in dimensions d > 1, the representation of a polynomial impacts the efficiency

with which it can be evaluated in a non-trivial way. More precisely, while in one

dimension all commonly used representations of a polynomial of degree n allow for

evaluation in O
(
n
)

floating-point operations, we have seen that if we approximate

the conductivity function in the Chebyshev basis, the resulting coefficients exhibit

a form of sparsity which greatly reduces the cost of evaluation but which would

have been absent if we had represented our approximation e.g. in barycentric form,

because then the expansion coefficients are given by point values of Fζ which exhibit

no sparsity.

Stability vs. efficiency. The most efficient way to exploit the rational approx-

imation ideas presented in Section 4.5 would be to merge all of the troublesome

low-temperature poles Z := Sβ,EF ∩E
(
αrelax

)
into a single factor q(E) =

∏
z∈Z(E−

z)−1 and approximate p(E1, E2) ≈ Fζ(E1, E2) q(E1)−1 q(E2)−1 using the truncated

Chebyshev series from Section 4.4. However, such a scheme would be highly un-

stable as pointed out in Remark 4.5.3, and this forced us to compromise between

evaluation efficiency and stability in Algorithm 4.2. It remains unclear whether such

compromises are an inherent difficulty in high-dimensional rational approximation

or whether they can be avoided by some other approximation scheme.

Radius of analyticity and rate of decay. Our theory regarding the decay of the

Chebyshev coefficients in two dimensions in Section 4.7 closely mirrors the corre-

sponding one-dimensional theory which is known to predict the exact asymptotic

decay rates. We were therefore surprised to find that this theory failed to predict

the non-convex shape of the Chebyshev coefficients of the far-relaxation-constrained

conductivity function in Figure 4.3a, but it turns out that this is an inherent feature

of higher-dimensional Chebyshev series: unlike in one dimension, the asymptotic

behaviour of the Chebyshev coefficients is not fully determined by the domain of

analyticity of the represented function as demonstrated in the following example.

Example 4.9.1 The two functions f+(x1, x2) := g1(x1) + g2(x2) and f×(x1, x2) :=

g1(x2) g2(x2) have the same domain of analyticity, but the Chebyshev coefficients

c[f+]k1k2 = c[g1]k1 δk20 +δk10 c[g2]k2 of f+ are zero if k1, k2 > 0, while the coefficients

c[f×]k1k2 = c[g1]k1 c[g2]k2 of f× are generally nonzero for any k1, k2 ∈ N.
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We would like to conclude this chapter by discussing two more pairs of functions

f(x1, x2) and their associated Chebyshev coefficients ck1k2 . This serves on the one

hand to demonstrate that the theory developed in Section 4.7 for the conductivity

function easily extends to other functions, and on the other hand to highlight the

subtlety and richness of polynomial approximation in higher dimensions. In both

examples, we will follow the notation from Section 4.7 and in particular Subsec-

tion 4.7.3.

Example 4.9.2 Consider the function

f1(x1, x2) :=
1

(x1 − x2)2 − s2

for some s on the positive imaginary axis. The singularities in x1 for a given x2 are

x1 = x2±s which suggests that there should be no concentration along the diagonal

since if we try to replace Ω2 = [−1, 1] with Ω2 = b̂?(s) to make space for a larger

ellipse Ω1 = E
(
α̂max(s)

)
as in Figure 4.6b, then the singularities b̂?(s)+s in the upper

half-plane will penetrate this ellipse Ω1 = E
(
α̂max(s)

)
, see Figure 4.7b. However,

we do observe concentration along the diagonal in Figure 4.7a, and the modification

required to reconcile this observation with the above argument is to note that we may

choose the contour integral domain Ω2 in x2 depending on our position x1 ∈ ∂Ω1 in

the contour integral of x1. This allows us to choose Ω2(x1) = b̂?(s) if x1 is in the

lower half-plane and Ω2(x1) = −b̂?(s) if x1 is in the upper half-plane, which in turn

enables us to choose Ω1 = E
(
α̂max(s)

)
.

Example 4.9.3 Our second example is the function

f2(x1, x2) :=
1

(x1 + s)2 − x2
2

where s is again some arbitrary point on the positive imaginary axis. As shown in

Figure 4.7c, the Chebyshev coefficients of this function do not concentrate along the

diagonal in the region k1 > k2 which may be explained as follows. For a fixed x2, the

singularities in x1 are given by x1 = ±x2−s; hence if we try to move the point x2 = 0

in the direction of the negative imaginary axis to make space for a larger ellipse in

x1, then the other singularity will move in the direction of the positive imaginary

axis which decreases the ellipse of analyticity in x1. It follows that Ω2 = [−1, 1] is

in fact the best possible choice for maximising Ω1, which explains Figure 4.7c.
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Figure 4.7: (a,c) Normalized Chebyshev coefficients ĉk1k2 := |ck1k2 |/|c00| of the
functions f1, f2 from Examples 4.9.2 and 4.9.3, respectively, with s = 0.06i. Only the
coefficients with even indices k1, k2 are shown to hide the zero coefficients introduced
by the symmetries of the function. (b,d) Some of the contour domains mentioned
in Examples 4.9.2 and 4.9.3.
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Appendix

A.1 Hardware and Software for Numerical Experiments

All numerical experiments in this thesis have been performed on a single core of an

Intel Core i7-8550 CPU (1.8 GHz base frequency, 4 GHz turbo boost) using the Julia

programming language [BEKS17]. Plots were created using Matplotlib [Hun07] and

TikZ [Tik]. Several Julia packages developed as part of this thesis are available

online at github.com/ettersi.

A.2 Asymptotic Relations

Given two functions f, g : R → R and a limit point x0 ∈ R, we write “f(x) . g(x)

for x→ x0” if there exists neighbourhood N of x0 and a constant C > 0 such that

f(x) ≤ C g(x) for all x ∈ N . Furthermore, we write f(x) & g(x) if g(x) . f(x), and

we write f(x) ∼ g(x) if both f(x) . g(x) and f(x) & g(x).
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Birkhäuser, Basel, 2005.

[SCS10] Y. Saad, J. R. Chelikowsky, and S. M. Shontz, Numerical methods for

electronic structure calculations of materials, SIAM Review, 52 (2010), pp. 3–54,

doi:10.1137/060651653.

[SHMP05] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, In-

troducing ONETEP: Linear-scaling density functional simulations on parallel

computers, The Journal of Chemical Physics, 122 (2005), doi:10.1063/1.1839852.

[SRVK96] R. N. Silver, H. Roeder, A. F. Voter, and J. D. Kress, Kernel poly-

nomial approximations for densities of states and spectral functions, Journal of

Computational Physics, 124 (1996), pp. 115–130, doi:10.1006/jcph.1996.0048.

[SSW01] J. Shen, G. Strang, and A. J. Wathen, The potential theory of several in-

tervals and its applications, Applied Mathematics and Optimization, 44 (2001),

pp. 67–85, doi:10.1007/s00245-001-0011-0.

114

http://dx.doi.org/10.1137/140990334
http://dx.doi.org/10.1016/j.jat.2011.03.010
http://dx.doi.org/10.7567/JJAP.55.1102B1
http://dx.doi.org/10.1137/0134014
http://dx.doi.org/10.1137/1.9780898718003
https://www.emis.de/journals/SAT/papers/14/
https://www.emis.de/journals/SAT/papers/14/
http://dx.doi.org/10.1088/0953-8984/14/11/302
http://dx.doi.org/10.1137/060651653
http://dx.doi.org/10.1063/1.1839852
http://dx.doi.org/10.1006/jcph.1996.0048
http://dx.doi.org/10.1007/s00245-001-0011-0


[ST97] E. B. Saff and V. Totik, Logarithmic Potentials with External Fields,

vol. 316 of Grundlehren der mathematischen Wissenschaften, Springer, Berlin,

Heidelberg, 1997, doi:10.1007/978-3-662-03329-6.

[SZW03] C. Shen, J. Zhan, and K. Wang, Parallel multilevel block ILU

preconditioning techniques for large sparse linear systems, in Proceed-

ings International Parallel and Distributed Processing Symposium, 2003,

doi:10.1109/IPDPS.2003.1213182.

[TFC73] K. Takahashi, J. Fagan, and M.-S. Chin, Formation of a sparse bus impe-

dence matrix and its application to short circuit study, in 8th PICA Conference

Proceedings, 1973.

[Tik] TikZ, https://github.com/pgf-tikz/pgf.

[Tre13] L. N. Trefethen, Approximation Theory and Approximation Practice, Society

for Industrial and Applied Mathematics, 2013.

[Tre17] L. N. Trefethen, Multivariate polynomial approximation in the hypercube,

Proceedings of the American Mathematical Society, 145 (2017), pp. 4837–4844,

doi:10.1090/proc/13623.

[TRM] Transpose of rational matrix is also rational, https://math.stackexchange.

com/q/3192042. (18 April 2019).

[TW14] L. N. Trefethen and J. A. C. Weideman, The exponentially convergent

trapezoidal rule, SIAM Review, 56 (2014), pp. 385–458, doi:10.1137/130932132.

[VKM+05] J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello,

T. Chassaing, and J. Hutter, QUICKSTEP: Fast and accurate den-

sity functional calculations using a mixed Gaussian and plane waves ap-

proach, Computer Physics Communications, 167 (2005), pp. 103–128,

doi:10.1016/j.cpc.2004.12.014.

[VKS96] A. F. Voter, J. D. Kress, and R. N. Silver, Linear-scaling tight binding

from a truncated-moment approach, Physical Review B, 53 (1996), pp. 12733–

12741, doi:10.1103/PhysRevB.53.12733.

[Wal56] J. L. Walsh, Interpolation and Approximation by Rational Functions in the

Complex Domain, American Mathematical Society, second ed., 1956.

[Yan81] M. Yannakakis, Computing the minimum fill-in is NP-complete, SIAM Jour-

nal on Algebraic Discrete Methods, 2 (1981), pp. 77–79, doi:10.1137/0602010.

[YCG+18] V. W.-z. Yu, F. Corsetti, A. Garćıa, W. P. Huhn, M. Jacquelin,
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