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Abstract: Childhood obesity is a growing epidemic. Early identification of high-risk groups will
allow for the development of prevention strategies. Cord blood adipocytokines have been previously
examined as biomarkers predicting future obesity. We conducted a systematic review looking at
the association between cord blood leptin and adiponectin with adiposity up to 5 years of age.
A literature review was performed between January 1994 and August 2020 using two bibliographic
databases (Medline/Pubmed and EMBASE) and was registered on PROSPERO (CRD42017069024).
Studies using skinfold thickness and direct methods of assessing body composition in full term
neonates were considered. Partial correlation and multiple regression models were used to present
the results. Meta-analysis was performed, were possible, using a random effects model. Cochran’s Q
test was used to assess heterogeneity and I2 statistics to calculate the percentage of variation across
studies. The potential for publication bias was assessed using funnel plots. Data from 22 studies
were retrieved and reviewed by two independent reviewers. Cord blood leptin was positively
associated with adiposity at birth (r = 0.487; 95% CI: 0.444, 0.531) but was inversely related to
adiposity up to 3 years of age. The association was not sustained at 5 years. There was a weak
positive association between adiponectin in cord blood and adiposity at birth (r = 0.201; 95% CI: 0.125,
0.277). No correlation was found between cord blood adiponectin in young children, but data were
limited. This review supports that cord blood leptin and adiponectin are associated with adiposity
at birth. The results of this study provide insight into the role of adipocytokines at birth on future
metabolic health and their potential use as risk stratification tools.

Keywords: cord blood leptin; cord blood adiponectin; adiposity

1. Introduction

Childhood obesity has reached epidemic levels and constitutes one of the greatest
public health challenges of the 21st century. Globally, the number of infants and young
children up to the age 5 years affected by obesity are expected to increase to 70 million by
2025 [1]. This is associated with both short and long-term adverse outcomes. Children
with obesity are likely to become adults with increased risk of diabetes, cardiovascular
disease, osteoporosis, and cancer [2–5]. The origin of obesity is multifactorial, primarily
caused by an imbalance between energy intake and expenditure. Sedentary lifestyle,
poor diet, genetics, and epigenetics are central in the development of this [6]. There is
increasing evidence that events occurring in early life, even before birth, can cause obesity.
During fetal life the body goes through critical periods of development with lasting or
life-long effects and, therefore, the intrauterine environment may program long-term
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trajectories of adiposity and metabolic health [7]. Identification of high-risk groups can
help in developing preventative strategies for reducing childhood obesity and adverse
cardiometabolic disorders.

Adipose tissue in infancy is essential in ensuring adequate energy supply to the brain
in a period of nutritional disruption and acts as a thermo-insulator (white adipose tissue)
and thermo-regulator (brown adipose tissue) [8]. While it has a protective role against
infections, intensive care unit admissions, and mortality [9,10], the recent evidence shows
that the strongest predictors of adult obesity are large for gestational age (LGA) and obesity
in preschool children. However, the optimal range of adiposity in children that defines
“beneficial versus metabolically harmful” levels of fat mass is yet to be identified [11].
To address this, researchers proposed body composition growth charts as opposed to birth
weight charts to improve the predictive ability of future obesity [12]. Others tried to use
cord blood adipocytokines such as leptin and adiponectin as objective markers to predict
future obesity, in contrast to adiposity measurements, which are subjective and prone to
measurement errors.

Leptin is predominantly produced by adipocytes [13]. Placenta, muscle, bone marrow,
and stomach are other sites of leptin secretion [14–17]. Leptin regulates body weight
through negative feedback between fat mass and hypothalamic centers of satiety [18].
In addition, it also controls basal metabolic rate. When it is bound to leptin receptors,
expressed by many tissues, the energy expenditure at the cellular level increases [19]. Ma-
ternal leptin does not cross the placenta due to its high molecular weight [20]. In addition
to fetal adipose tissue, the placenta is a major producer of leptin during fetal life and a
significant contributor to cord blood leptin levels, despite 98% of its production being
secreted into maternal circulation.

Adiponectin is almost exclusively produced by adipose tissue in adults [21]. It plays
an important role in glucose and lipid metabolism, is inversely related to leptin, and low
levels are observed in obesity [22], type 2 diabetes, and metabolic syndrome in adults [23].
Cord blood adiponectin is not related to maternal concentrations [24] and is not shown to be
derived from placental or maternal tissue [25–27]. Apart from adipose tissue, adiponectin
mRNA is also found in other tissues (muscle, kidney, skin) during fetal life [28]. Whether
cord blood adiponectin simply mirrors fetal adiposity or also acts as a growth factor
remains to be established.

Published studies reporting the association between cord blood adipocytokines and
adiposity at birth show inconclusive results. Most were cross-sectional and in small
cohorts [29–42]. Thus far, there have only been three moderately sized longitudinal [43–45]
studies examining the link between cord blood levels and adiposity in early childhood.
It is difficult to draw firm conclusions from these studies due to the different ethnic groups
sampled and different methods in assessing the body composition. The purpose of this
systematic review was to summarize these studies to improve the power and to shed light
on the role of cord blood leptin and adiponectin on adiposity at birth and in early childhood.

2. Materials and Methods
2.1. Search Strategy and Study Selection

Observational, cross-sectional, and longitudinal studies were examined. Studies of the
offspring of healthy pregnant women and those with obesity were included. For studies
involving participants with diabetes (type 1 or 2, gestational diabetes), data obtained only
from control groups were used, as offspring of mothers with diabetes have higher leptin
concentrations for a given fat mass [46,47]. Studies of full term neonates of different growth
patterns—appropriate for gestational age (AGA), small for gestational age (SGA), LGA—
and ethnic origin were considered eligible. Studies examining neonates born preterm
and/or with congenital abnormalities (chromosomal disease, respiratory distress syndrome,
heart disease, and renal disease) were excluded. Randomized control trails were not
included in the current systematic review. Due to the different criteria used to define SGA,
LGA, and obesity across various populations, we accepted the authors’ definition.



Int. J. Environ. Res. Public Health 2021, 18, 1897 3 of 16

Cord blood samples, measuring leptin and adiponectin, analyzed by enzyme-linked
immunosorbent assay (ELISA) or radioimmunoassay (RIA) qualified for the meta-analysis.
Leptin results were reported in ng/ml and adiponectin in µg/ml. We included studies
that assessed neonatal and childhood adiposity by air displacement plethysmography
(ADP), dual energy X-ray absorptiometry (DXA), magnetic resonance imaging (MRI),
and anthropometric measurements (skinfold thickness). Studies using only ponderal index
as a measure of adiposity were excluded.

The review was registered on PROSPERO (CRD42017069024). Meta-analysis of obser-
vational studies in epidemiology (MOOSE) guidelines were followed for the study [48].
Since the review involved synthesis of published data, National Health Service (NHS)
Research Ethics Committee approval was not required.

A literature search was performed between January 1994 (discovery of leptin gene)
and August 2020. Two bibliographic databases were used to conduct the searches: Med-
line/Pubmed (National Library of Medicine and National Institute of Health) and EMBASE
(The Excerpta Medica Database). The following keywords and medical subject headings
(MeSH) were used: “leptin”, “adiponectin”, “fetal blood”, “umbilical cord blood”, “adipos-
ity”, “obesity”, “body composition”, “fetal growth”, and “anthropometry”. Search words
were combined using Boolean operators (AND, OR). The search was limited further to
those studies published in English and performed in humans from birth to 5 years of age.
Reference lists from included studies were reviewed for further potentially eligible articles.
If full-text online access was not available original journals were retrieved from the library
services. Unpublished studies were not considered.

2.2. Data Extraction

Level one screening of search results (title and abstracts) was performed by two inde-
pendent reviewers (CB and NS), using the inclusion and exclusion criteria provided. Level
two screening of the full manuscripts was conducted by them independently (CB and NS)
and any discrepancy was resolved by consulting a third reviewer (PS/OO). The PICO
(Population, Intervention, Comparison, Outcome) framework was used to formulate the
search strategy. For studies fulfilling the inclusion criteria, the independent reviewers
extracted details onto standard data extraction templates. This included information about
the type of study, location, and time of data collection, population, sample size, type of lep-
tin and adiponectin assays, statistical methods, and technique to assess body composition.
Any disagreement was resolved by discussion or by consulting a third reviewer.

2.3. Statistical Analysis

Partial correlation and multiple regression models were used to present the results.
Studies were reported narratively, when correlation coefficient (r) was unable to be ex-
tracted. Meta-analysis of correlations was performed using a random effects model because
of the varying population characteristics and sample sizes. Cochran’s Q test was used
to assess heterogeneity and I2 statistics to calculate the percentage of variation across
studies that was due to heterogeneity rather than chance. As different methods of assessing
adiposity were used (DXA, ADP, skinfold thickness), the test of moderators was applied.
We included “method” in the random effects model to examine the effect on heterogeneity.
The results showed that there was no evidence for heterogeneity between the type of
adiposity measures (QM test for moderators, p = 0.50). Hence in the final random effects
model fitted we did not include the covariate “method”.

Forest plots were created for each outcome. The potential for publication bias was
assessed using funnel plots when the requirement of ten or more studies per meta-analysis
was met. Egger’s test to assess the funnel plots’ asymmetry was applied. All analyses were
conducted using STATA version 14.
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2.4. Assessment of Risk Bias

The assessment of methodological quality of the studies was done using check-
list criteria. This systematic review included observational cohorts and cross-sectional
studies, therefore, the quality assessment tool adopted from the National Institutes of
Health/National Heart, Lung and Blood Institute was used (Figure S1). After answering
a series of 14 questions, the quality of each study was reported as poor, fair, or good
(Table S1).

3. Results

After applying our search criteria, 169 studies were identified, which were reduced to
152 after removing duplicates. After title-abstract screening and full manuscript review,
22 studies [29–45,49–54] met all the inclusion and exclusion criteria. Figure 1 presents the
selection of the studies included in the literature review.
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3.1. Characteristics

Table 1 provides baseline characteristics of the studies included. Most of the studies
examined White European neonates, while one study [49] examined an African American
population. Three studies [32,33,37] included neonates of more than one ethnicity. In terms
of maternal characteristics and risk factors, most of the studies included mothers without
diabetes or other metabolic disorders. Two studies [30,34] reported the association between
adipocytokines and neonatal adiposity based on intrauterine growth (SGA vs. AGA,
AGA vs. LGA).
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Table 1. Characteristics of the studies included.

Study Country (Sample
Size)

Year of Data
Collection

Follow-Up
Duration

Assay Method Adiposity
Method

Limitations Author’s Conclusion
Leptin Adiponectin

Meyer, 2018 [50] Germany (n = 89) NR 5 years ELISA - Skinfold, MRI Drop out, maternal
BMI

L does not predict
adiposity

Meyer, 2017 [51] Germany (n = 90) NR 5 years - ELISA Skinfold, MRI Drop out, maternal
BMI

Ad does not predict
adiposity

Schneider, 2017
[49] USA (n = 36) NR 3 months RIA RIA ADP Sample size Ad but not L predicts

adiposity

Kadakia, 2016 [37] USA (n = 105) 2011–2014 At birth RIA - ADP Sample size Early life L resistance

Karakosta, 2016
[43] Greece (n = 578) NR 4 years ELISA - Skinfold NR L does not predict

adiposity

Chaoimh, 2016
[36] Ireland (n = 221) 2008–2011 2 months ELISA - ADP

Sample size, maternal
BMI, infant feeding

not quantified

L predicts adiposity,
longitudinal data

required

Donnelly, 2015
[29] Ireland (n = 147) 2007–2011 At birth RIA - Skinfold Selection bias L predicts adiposity

Teague, 2015 [32] USA (n = 124) 2010–2013 1 month ELISA ELISA Skinfold, DXA Drop out L and Ad predict
adiposity

Josefson, 2014 [33] USA (n = 61) NR At birth RIA RIA ADP Sample size L and Ad correlate
with FM

Brunner, 2014 [39] Germany (n = 188) NR 2 years ELISA - Skinfold Sample size L predicts adiposity

Boeke, 2013 [45] USA (n = 508) 1999–2002 7 years ELISA - Skinfold Circadian L variation L predicts adiposity

Simon-Muela,
2013 [40] Spain (n = 96) NR At birth ELISA ELISA Skinfold NR Ad action shows sex

dimorphism

Basu, 2009 [41] USA (n = 121) NR At birth - ELISA Skinfold Ad assay Ad correlates with
FM, sex dimorphism

Mantzoros, 2009
[44] USA (n = 588) 1999–2002 3 years RIA RIA Skinfold Socioeconomic status Ad but not L predicts

adiposity



Int. J. Environ. Res. Public Health 2021, 18, 1897 6 of 16

Table 1. Cont.

Study Country (Sample
Size)

Year of Data
Collection

Follow-Up
Duration

Assay Method Adiposity
Method

Limitations Author’s Conclusion
Leptin Adiponectin

Inami, 2007 [42] Japan (n = 52) 2004–2005 1 month - ELISA Skinfold NR Ad correlates with FM

Valuniene, 2007
[35] Lithuania (n = 367) 1998–2000 At birth RIA - Skinfold NR L correlates with FM

Martinez, 2005
[30] Mexico (n = 100) NR At birth RIA RIA Skinfold Sample size L but not Ad

correlates with FM

Javaid, 2005 [31] England (n = 117) NR At birth RIA - DXA Sample size L correlates with bone
and FM

Tsai, 2004 [34] Taiwan (n = 226) 2001–2002 At birth RIA RIA Skinfold NR L and Ad correlate
with FM

Lindsay, 2003 [52] Scotland (n = 73) 1999–2001 At birth - RIA Skinfold NR Ad not associated
with skinfold

Geary, 1999 [53] England (n = 39) 1996–1997 At birth RIA - Skinfold NR L correlates with FM

Clapp, 1998 [38] USA (n = 42) NR At birth RIA - Skinfold NR L correlates with FM

Ad: adiponectin, ADP: air displacement plethysmography, BMI: body mass index, DXA: dual energy absorptiometry, ELISA: enzyme-linked immunosorbent assay, FM: fat mass, L: leptin, MRI: magnetic
resonance imaging, NR: not reported, RIA: radioimmunoassay.
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3.2. Studies Reporting Leptin

The correlation between leptin and adiposity was investigated in 17 studies
[29–39,43–45,49,50,53]. Eleven [29–39] examined the relationship at birth using either
Pearson correlation or multiple regression analysis. Eight [32,36,39,43–45,49,50] assessed
the relationship between cord blood leptin and adiposity at different time points (3 weeks,
2 months, 2–5 years of age) using partial correlation or multiple regression models. Eleven
studies [29–31,33–35,37,38,44,49,53] used radioimmunoassay (RIA) as the method of mea-
suring cord blood leptin, whereas six [32,36,39,43,45,50] used enzyme-linked immunosor-
bent assay (ELISA). Body composition was assessed using DXA (n = 1) [31], ADP (n = 4)
[33,36,37,49], MRI (n = 1) [50], or skinfold thickness (n = 12) [29,30,32,34,35,38,39,43–45,50,53].
Total body fat mass was derived by measuring skinfold thickness at two (triceps (TR) and
subscapular (SS) [29,38,43–45]), three (TR + SS + quadriceps (QD) [35]), four (TR + SS + QD
+ suprailiac (SI) [30,32,39]), or six (TR + SS + QD + SI + biceps + gastrocnemius [34,50]) sites.

3.3. Studies Reporting Adiponectin

The correlation coefficient between adiponectin and adiposity at birth was examined
in eight studies [30,32–34,40–42,51]. Martinez-Cordero et al. [30] described no association
between cord blood adiponectin and adiposity. For the purpose of statistical analysis,
this was considered as r = 0. Basu et al. [41] reported different correlation coefficients
between male and female participants. Four studies [32,44,49,50] looked at the association
between cord adiponectin and body composition at different age groups (1–3 months,
3–5 years of age). Adiponectin was measured using either RIA (n = 6) [30,33,34,44,49,52] or
ELISA (n = 5) [32,40–42,51]. To calculate body composition, two studies used ADP [33,49],
one MRI [51], and the remaining used skinfold thickness at different sites: 2 sites (n = 2) [44,51],
4 sites (n = 5) [30,32,40,42], or 6 sites (n = 1) [34].

Two studies [52,53] reporting the association between cord plasma adipocytokines
and isolated skinfold measurements (not derived total adiposity) were excluded from
further analysis.

3.4. Leptin and Neonatal Adiposity at Birth

All 11 studies [29–39] assessing 1653 pregnancies, revealed a moderate, positive corre-
lation between cord blood leptin and neonatal adiposity (random effect model; r = 0.487;
95% CI: 0.444, 0.531; Figure 2). Eight studies reported mean levels of cord blood lep-
tin [32–34,37,43–45,50]. Applying the continuous random effects model revealed a pooled
mean value of 9.1 ng/ml (95% CI: 8.27, 9.95; p < 0.001). However, a high level of hetero-
geneity was present (I2 = 85.76%, p < 0.001).
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3.5. Leptin and Adiposity in Early Childhood

Eight studies reported the correlation between cord blood leptin and adiposity in early
childhood at varying times [32,36,39,43–45,49,50]. Meta-analysis was not possible due to
the varying times of follow-up, nature of reporting of adiposity (absolute vs. change in
skinfold/fat mass), and the adjustments for differing maternal characteristics in the studies.
The study results are summarized in Table 2.

Table 2. Cord blood leptin and adiposity in early childhood.

Study (Sample size) Adiposity Measure
Studied Adjustments Results p-Value

Schneider, 2017 [49]
(n = 36)

FM (g) at 2 weeks and
conditional change

from 2 weeks to
3 months

2 weeks: gestational age, age at
measurement, FFM

3 months: above + 2 weeks
measurement and time between

measurements

2 weeks:
r = 0.27

3 months:
r = −0.19

p > 0.05

Chaoimh, 2016 [36]
(n = 221)

Conditional change to
FMI (kg/m2) from
birth to 2 months

Maternal
age-education-smoking,

maternal BMI at 15 weeks
gestation, family income, sex,
gestational age, breast feeding

B-Coef (95% CI):
−0.021

(−0.034, −0.007)
p = 0.003

Brunner, 2014 [39]
(n = 90) a FM (g) at 2 years

Maternal BMI, gestational
weight gain, pregnancy duration,

sex, breast feeding

B-Coef (95% CI):
−14.86 (−29.49, −0.23) p = 0.04

Boeke, 2013 [45]
(n = 508) b

SSF (mm) at 3 years
SSF (mm) and DXA
derived FM (kg) at

7 years

Maternal age, weight gain,
income, education, smoking, sex,

ethnicity, breast feeding

3 years B-Coef (95%
CI0:

−1.4 (−2.7, −0.1)
7 years B-Coef (95% CI):
1.1 (−1.5, 2.1) for SSF

0.3 (−0.7, 1.3) for DXA

p < 0.05
p > 0.05

Mantzoros, 2009 [44] (n
= 588) b

SS + TR (mm) and
SS/TR (mm) at 3 years

of age
(regression per

10 ng/mL of leptin)

Maternal education,
pre-pregnancy BMI, weight gain,

gestational age, paternal BMI,
sex, ethnicity, breast feeding

B-Coef (95% CI):
−0.24 (−0.88, 0.41) for

SS + TR
−0.22 (−2.61, 2.17) for

SS/TR

p = 0.48
p = 0.86

Meyer, 2018 [50]
(n = 89) a

% FM at 3 and 5 years
VAT (cm3) and SAT

(cm3) at 5 years

Maternal BMI, gestational
weight gain, pregnancy duration,

sex, breast feeding

B-Coef (95% CI)
% FM at 3: −0.06

(−0.13, 0.01)
% FM at 5: −0.09

(0.17, 0.00)
VAT: 0.26 (−1.71, 2.23)

SAT: −0.13
(−9.20, 8.94)

p = 0.07
p = 0.04
p = 0.78
p = 0.97

Karakosta, 2016 [43]
(n = 578)

SSF (mm) at 4 years
of age

Sex, birthweight, maternal age
and education, parity,

pre-pregnancy BMI, breast
feeding duration

B-Coef (95% CI): 0.2
(−1.4, 1.7) p > 0.05

Teague, 2015 [32]
(n = 52) % FM at 1month Diabetic status, sex, age in days r = 0.19 p = 0.19

BMI: body mass index, DXA: dual energy absorptiometry, FM: fat mass, FFM: fat free mass, FMI: fat mass index, SSF: sum of skinfolds, SS:
subscapular, TR: triceps, VAT: visceral adipose tissue, SAT: subcutaneous adipose tissue. a/b indicates that these two studies are possibly
from the same cohort with different durations of follow-up.

In a small study of African American babies (n = 36), no correlation between cord
leptin and fat mass at 2 weeks and 3 months of life was observed [49]. However, in 221
babies studied by Chaoimh et al., cord blood leptin was inversely associated with fat mass
index at 2 months of age (β: −0.021, 95% CI: −0.034, −0.007, p = 0.003) [36]. Similarly,
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two other studies (n = 188 and 508) [39,45] demonstrated an inverse correlation between
cord leptin and fat mass at 2 years and sum of skinfolds (SSF) thickness at 3 years of
age after adjusting for maternal and offspring characteristics. In concordance, Mantzoros
et al. [44] (n = 588) reported an inverse relationship with fat mass at 3 years of age, although
not statistically significant (β: −0.24, 95% CI: −0.88, 0.41; p = 0.48). However, it is likely
that this study and the one by Boeke et al. [45] are from the same cohort (Project Viva) and
had opposite findings presumably due to different skin fold thicknesses and follow-up
numbers used. Meyer et al. [50], following a cohort of 89 offspring, showed that cord leptin
was negatively associated with total fat mass (calculated using skinfold thicknesses) at 3
and 5 years of age (3 years: β: −0.02, 95% CI: −0.04, −0.00, p = 0.03; 5 years: β: −0.03, 95%
CI: −0.06, −0.00, p = 0.03). The association was not observed when fat mass was assessed
by MRI at 5 years in a subgroup of 33 children (visceral adipose tissue: β: 0.26, 95% CI:
−1.71, 2.23, p = 0.78; subcutaneous adipose tissue: β: −0.13, 95% CI: −9.20, 8.94, p = 0.97).
Two other studies revealed no associations with fat mass at 4 (SSF derived) and 7 years
(DXA derived) of age (Table 2) [43,45].

3.6. Adiponectin and Neonatal Adiposity at Birth

Pooled effect of the nine studies [30,32–34,40–42,51] (n = 869) revealed a weak positive
correlation between cord blood adiponectin and neonatal fat mass (random effects model;
r = 0.201; 95% CI: 0.125, 0.277; Figure 3). Four studies (n = 450) reported mean adiponectin
levels with a pooled mean adiponectin at birth of 25.6 µg/mL (95% CI: 16.5, 24.76). Again,
a high level of heterogeneity was observed (I2 = 99.77%, p < 0.001) [33,34,51,52].
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3.7. Adiponectin and Adiposity in Early Childhood

The studies included presented mixed results regarding the relationship of cord blood
adiponectin with weight gain and adiposity in different age groups. Meta-analysis was
not possible, and the study results are summarized in Table 3. Teague et al. [32] (n = 52),
showed a positive correlation of high molecular weight adiponectin (HMWA) with both
weight gain (r = 0.40, p = 0.003) and adiposity (r = 0.32, p = 0.02) at 1 month of age.
In contrast, cord adiponectin negatively predicted adiposity (r = −0.38, p < 0.05) in 36
African American infants at 3 months of age [49].
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Table 3. Cord blood adiponectin and adiposity in early childhood.

Study (Sample Size) Adiposity Measure
Studied Adjustments Results p-Value

Teague, 2015 [32]
(n = 52) % FM at 1 month Diabetic status, sex, age

in days r = 0.32 p = 0.02

Schneider, 2017 [49]
(n = 36)

FM (g) at 2 weeks and
conditional change from

2 weeks to 3 months

2 weeks: gestational age,
age at measurement, FFM
3 months: above + 2 weeks

measurement and time
between measurements

2 weeks:
r = 0.45

3 months:
r = −0.38

p < 0.001
p < 0.05

Mantzoros, 2009 [44]
(n = 588)

SS + TR (mm) and SS/TR
(mm) at 3 years of age

(regression per 10 µg/mL
of adiponectin)

Maternal education,
pre-pregnancy BMI, weight

gain, gestational age,
paternal BMI, sex, ethnicity,

breast feeding

B-Coef (95% CI):
0.42 (−0.11, 0.95) for SS + TR

2.01 (0.09, 3.93) for SS/TR

p = 0.12
p = 0.04

Meyer, 2017 [51]
(n = 90)

% FM at 3 and 5 years
VAT (cm3) and SAT(cm3)

at 5 years

Maternal BMI, gestational
weight gain, pregnancy

duration, sex, breast
feeding

B-Coef (95% CI)
% FM at 3: 0.21 (0.06, 0.35_

% FM at 5: 0.08 (−0.10, 0.27)
VAT: 1.57 (−2.20, 5.34)

SAT: 7.22 (−10.17, 24.62)

p < 0.05
p = 0.36
p = 0.39
p = 0.40

BMI: body mass index, FM: fat mass, FFM: fat free mass, SS: subscapular, TR: triceps, VAT: visceral adipose tissue, SAT: subcutaneous
adipose tissue.

Mantzoros et al. [44] (n = 588) showed that cord blood adiponectin was not associated
with total fat mass (SS + TR thickness) at 6 months (β: 0.42, 95% CI: −0.11, 0.95, p = 0.12)
but positively with central adiposity (SS/TR thickness) at 3 years of age (β: 2.01, 95% CI:
0.09, 3.93, p = 0.04). Similarly, Meyer et al. [51], examining both total and HMWA, noted a
positive association with % fat mass at 3 years of age (β: 0.04, 95% CI: 0.00, 0.08, p = 0.04)
but not at 5 years (β: 0.02, 95% CI: −0.04, 0.08, p = 0.5; Table 3).

3.8. Publication Bias

Publication bias was assessed via a funnel plot only for the leptin group, as the
minimum requirement for ten studies per meta-analysis was not met in the adiponectin
group. Application of the Egger’s test did not reveal any asymmetry of the funnel plot,
indicating no evidence of publication bias (Figure 4).
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4. Discussion

We observed three key findings in this systematic review and meta-analysis. First,
cord leptin and adiponectin levels were positively associated with adiposity at birth.
The association was stronger for leptin than for adiponectin. Second, the association
between leptin with adiposity was inverse in early childhood. Third, adiponectin appears
to be positively associated with adiposity in early childhood, although the data for this
are limited.

4.1. Leptin and Adiposity

Maternal leptin cannot cross the placenta due to its high molecular weight, and it is
not related to cord blood levels [20]. Cord leptin is primarily derived from fetal adipose
tissue although it can also come from the placenta. While the majority of placental leptin
drains into the maternal circulation, small amounts enter the fetal circulation [54]. Leptin
levels are higher in the umbilical artery compared to that in the umbilical vein [55]. Fetal
leptin is detectable at as early as 18 weeks of gestation, with levels rising as pregnancy
progresses, in concordance with fetal fat accumulation [56]. In addition, the presence of
leptin mRNA and leptin receptors in various fetal tissues implies its role as a growth factor
during intrauterine development. All these findings support that cord leptin is a good
marker of adiposity at birth.

Our analysis revealed that cord leptin levels are inversely related to adiposity at 3 years
of age [39,44,45,50], but this was not seen at 4 and 7 years [43,45]. Chaoimh et al. [36] noted
that cord leptin is inversely associated with adiposity gain from birth to 2 months of age,
by an objective adiposity measure, ADP. In our study, pooled mean leptin level at birth
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was 9.1 ng/mL (n = 2242). Although, there is no reference range for cord blood leptin
levels, Karakosta et al. [57] observed a mean leptin value of 7.7 ng/mL in a cohort of 398
healthy, full term neonates born in Greece. Taken together, it appears that children born
with higher leptin levels, develop a “compensatory behavior” driven by the anorexigenic
effect of leptin in early postnatal life, which lasts up to 3 years of age. In order to maintain
a positive energy balance and enhance vital organ development, leptin’s full metabolic
effect is not exerted before the second postnatal week [58]. The above observation could
potentially explain the positive association between cord leptin and adiposity during the
first weeks of life, as described by Schneider et al. [49] and Teague et al. [32].

The above conclusion is also supported by evidence from animal studies. Leptin plays
an important role in brain development. The human hypothalamus develops predomi-
nantly during the prenatal period [59]. The arcuate nucleus (ARC), the major site for energy
regulation, develops after 34 weeks of gestation, but further changes take place in the early
postnatal life. Independent of fat mass accretion, a leptin surge happens in the immediate
postnatal period, which is critical for the development of projections from the ARC to
paraventricular hypothalamic nuclei [60]. Ob/ob mice have impaired projections, an effect
which can be reversed by early life leptin administration, whereas leptin administration in
adulthood has no effect, implying a tight window for leptin’s neurotrophic action [61].

Thus, raised leptin levels at birth may adversely program the hypothalamus (via an
impaired leptin surge), with effects becoming evident after the third year of life. The initial
inverse correlation between cord leptin and adiposity may be due to the anorexigenic effect
of leptin, followed by leptin resistance, resulting in hyperphagia and increased adiposity.
In the present systematic review, Meyer et al. [50] and Boeke et al. [45] used direct measures
of adiposity (MRI, DXA) to assess the association between cord leptin and adiposity beyond
the third year of life. Both studies demonstrated a trend for cord leptin to inversely predict
adiposity at 3 years of life, which was converted to a positive association by the ages of
5 and 7. Boeke et al. [45] also highlighted that serum leptin at 3 years of age positively
predicts adiposity at 7 years of age, results consistent with leptin resistance.

4.2. Adiponectin and Adiposity

Adiponectin levels increase by 20-fold from midgestation to term [62]. Cord levels
are not related to maternal adiponectin [24,63] and placental production is not yet con-
firmed [25,64]. Sivan et al. [27] showed that cord blood adiponectin levels were similar
to those four days postpartum, confirming independent fetal production. The inverse
correlation between adipose tissue and adiponectin observed in the adult population is
not present during the early stages of life. Evidence suggests that the shift from positive to
negative correlation between adiponectin and fat mass occurs around school-entry age [65].
Multiple sites of adiponectin expression other than adipose tissue during fetal life [28],
such as brown adipose tissue [66], the subcutaneous-to-visceral fat ratio of neonates [67],
and the inhibition of adiponectin expression from inflammatory cytokines produced by
hypertrophic adult adipocytes [68] could potentially explain the different metabolic profile
between neonatal and adult life.

The predictive capacity of cord adiponectin for the development of future adiposity
remains unclear. Small sample size, different methods to measure adiponectin (ELISA,
RIA), and different multimeric forms examined may contribute to the inconsistent results.
Simpson et al. [69] recently reviewed the association between adiponectin and adiposity at
9 and 17 years of age. Results showed no correlation with adiposity at 9 years and a positive
correlation at 17 years with a very small effect size (β: 0.02, 95% CI: 0.00, 0.03, p < 0.05).
Major limitations of the study were the big loss to follow-up and the small percentage of
children with obesity (sample not representative of most populations), which could have
potentially attenuated any associations.
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4.3. Strengths and Weakness

To our knowledge, our systematic review and meta-analysis is the first to assess the
correlation of cord blood adipocytokines with adiposity at different time points. However,
while it had reasonable sample size to assess the independent associations of leptin and
adiponectin with adiposity at birth, it did not have adequate sample size for early childhood.
In addition, as this review included observational cohorts and cross sectional studies,
these associations do not prove causality. We also acknowledge that in the majority of
the studies fat mass was derived from the sum of skinfolds and not by direct measures
of adiposity, which would have minimized intra- and inter-subject variability. Studies
investigating the relationship between ELISA- and RIA-based methods are rare, therefore,
the assays used to measure adipocytokines may have contributed to the variability of
the results. Finally, studies adjusted their results for different confounding variables.
Maternal body mass index (BMI) was considered in all studies, whereas only half of
the included studies [29,36,37,40,43–45,49,53] controlled for smoking during pregnancy,
a factor inversely related to cord blood adipocytokines as well as birth size.

5. Conclusions

The present systematic review and meta-analysis reveals positive associations be-
tween cord blood leptin, adiponectin, and body fat at birth. However, cord blood leptin
inversely predicts adiposity in early childhood, around 3 years of age, suggesting the early
development of leptin resistance, although data for this are limited. In order to understand
the origins of obesity and metabolic diseases, we need to investigate the trajectory of
body composition (not just by weight) in early childhood and its relationship with key
metabolic factors. Body weight, BMI, and skinfold measurements do not reflect fat mass
(FM) precisely and are prone to inter- and intra-observer variation. However, objective
measures of adiposity are cumbersome and not widely available. Biochemical markers in
cord blood such as leptin are easy to measure and are potentially useful for risk stratifi-
cation of children at birth for obesity and other related cardiometabolic disorders in later
life. This could help in targeted, individualized prevention strategies to be implemented
from birth/early childhood. Additional studies on the long-term effects of leptin and
adiponectin at birth are required to confirm our findings on the predictive value on future
adverse cardiometabolic risk and to understand the potential underlying mechanisms.
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