

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/149916

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/391335624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/149916
mailto:wrap@warwick.ac.uk

1

A Survey of Evolutionary Continuous Dynamic
Optimization Over Two Decades – Part A

Danial Yazdani, Member, IEEE, Ran Cheng, Member, IEEE, Donya Yazdani,
Jürgen Branke, Member, IEEE, Yaochu Jin, Fellow, IEEE, and Xin Yao, Fellow, IEEE,

Abstract—Many real-world optimization problems are dy-
namic. The field of dynamic optimization deals with such
problems where the search space changes over time. In this
two-part paper, we present a comprehensive survey of the re-
search in evolutionary dynamic optimization for single-objective
unconstrained continuous problems over the last two decades.
In Part A of this survey, we propose a new taxonomy for the
components of dynamic optimization algorithms, namely, con-
vergence detection, change detection, explicit archiving, diversity
control, and population division and management. In comparison
to the existing taxonomies, the proposed taxonomy covers some
additional important components, such as convergence detection
and computational resource allocation. Moreover, we significantly
expand and improve the classifications of diversity control
and multi-population methods, which are under-represented in
the existing taxonomies. We then provide detailed technical
descriptions and analysis of different components according to
the suggested taxonomy. Part B of this survey provides an in-
depth analysis of the most commonly used benchmark problems,
performance analysis methods, static optimization algorithms
used as the optimization components in the dynamic optimization
algorithms, and dynamic real-world applications. Finally, several
opportunities for future work are pointed out.

Index Terms—Unconstrained continuous dynamic optimiza-
tion, Evolutionary algorithms, Multi-population, Change detec-
tion, Response component, Taxonomy.

PA-I. INTRODUCTION

CHANGE is an unavoidable part of many optimization
problems, and adaptation is necessary to tackle them. To

solve an optimization problem in a dynamic environment, it
is important that the algorithm can efficiently find an optimal
solution and also track it over time after environment changes.
The ubiquity of dynamic optimization problems (DOPs) de-
mands extensive research into the design and development of
algorithms capable of dealing with environmental changes [1].

Inspired by biological evolution and natural self-organized
systems, evolutionary algorithms (EA) and swarm intelli-
gence (SI) methods have been vastly used for optimizing DOPs

Danial Yazdani, R. Cheng and X. Yao are with Guangdong Provincial
Key Laboratory of Brain-inspired Intelligent Computation, Department of
Computer Science and Engineering, Southern University of Science and
Technology, Shenzhen 518055, China (e-mails: danial.yazdani@gmail.com,
chengr@sustc.edu.cn, xiny@sustc.edu.cn). X. Yao is also with the CERCIA,
School of Computer Science, Birmingham B15 2TT, United Kingdom.

Donya Yazdani is with the Advanced Reasoning Group, Department of
Computer Science, Aberystwyth University, Aberystwyth, Ceredigion SY23
3DB, United Kingdom (email: d.yazdani@aber.ac.uk).

J. Branke is with the Operational Research and Management Sciences
Group in Warwick Business school, University of Warwick, Coventry CV4
7AL, United Kingdom (email: Juergen.Branke@wbs.ac.uk).

Y. Jin is with Department of Computer Science, University of Surrey, Guild-
ford, Surrey GU27XH, United Kingdom (email: yaochu.jin@surrey.ac.uk).

due to their natural capability in dealing with environmental
changes [2]. Indeed, both classes have been successfully
applied to DOPs with various environmental and dynamic
characteristics [1], [3]. However, one cannot directly apply
them to tackle DOPs as these methods are originally designed
for optimization in static environments and cannot cope with
the challenges of a DOP alone. Hence, they are usually
used together with some other components to form dynamic
optimization algorithms (DOAs). Solving DOPs using EAs
and SIs has been a hot research topic in the last two decades.
Figure PA-11 depicts the growth in the number of scientific
articles published in this field.

Several studies have reviewed various aspects of DOPs,
including surveys [1], [3]–[5], books [6]–[9], and Ph.D.
theses [10], [11]. Among the surveys, [4] (2005) briefly
reviews optimization in dynamic environments as a part of
uncertain environments. In this survey, components of DOAs
are classified into four main categories: generating diversity
after a change, maintaining diversity over time, using multi-
population, and memory based approaches (including implicit
and explicit memory). Cruz et al. [5] provided the first survey
focusing exclusively on DOPs. This survey uses the same
taxonomy introduced in [4]. In [1] (2012), for the first time,
DOP performance indicators is reviewed. This survey also
provides a brief review of the DOP benchmarks. Although this
survey uses the same taxonomy as in [4] to study DOAs, it
also considers three extra classes: prediction, change detection,
and self-adaptation. The latest DOP survey published in 2017
[3] focuses on SI methods adopted to tackle DOPs while also
briefly covers performance indicators, benchmark problems,
and real-world applications. This survey is mostly focused
on single-objective unconstrained DOPs with continuous and
discrete environments and gives a brief introduction to multi-
objective and constrained DOPs. It also uses the same taxon-
omy introduced in [4] to classify DOAs components, but it
further classifies multi-population DOAs into fixed, dynamic,
and adaptive numbers of subpopulations.

Several types of DOPs are investigated in the literature,
such as combinatorial DOPs [12], continuous DOPs [13],
multi-objective DOPs [14]–[16], and constrained DOPs [17].
In [1], [3]–[5] several types of DOPs including con-
strained/unconstrained, continuous/discrete, and single/multi-
objective, are covered together. Each of these areas has a
vast literature with specific challenges, methods, benchmark

1Labels of all sections, equations, tables, and figures in Part A and Part B
of this survey are prefixed with PA and PB, respectively.

2

Source: Scopus

2000 2005 2010 2015 2020

Year

0

50

100

150

200
N

u
m

b
e
r

o
f

D
o

c
u

m
e
n

ts

Fig. PA-1. Publication trend in evolutionary dynamic optimization over the
last two decades. This results show the number of documents containing
the relevant phrases to the evolutionary dynamic optimization in their title,
abstract, or index terms.

problems, and performance analysis metrics. Considering that
there is a trade-off between the comprehensiveness of a
review and the range of the topics covered, many important
details are missed. To address the need for more detailed
reviews, some surveys have narrowed their covered topics to
specific areas to provide more technical details. For example,
[18] covers the single class of self-adaptive approaches, [19]
reviews hyperheuristics for DOPs, [14] and [15] focus on
multi-objective DOPs, and [12] reviews combinatorial DOPs.
Following the same line of work, in this two-part survey, we
focus on single-objective unconstrained continuous DOPs. Be-
ing extremely popular, this class of DOPs has a large literature
with various methods, benchmark problems, and performance
analysis metrics with real-world applications. The designed
DOAs for this DOPs are shown to be easily extendable to
other important types of DOPs such as constrained DOPs [17]
and robust optimization over time (ROOT) [20].

In this two-part paper, we present a comprehensive survey
of the research in evolutionary single-objective unconstrained
continuous optimization2 over the last two decades. This
survey helps researchers to gain a bird’s eye view of the field
and to learn about its major trends, algorithms, benchmark
problems, performance analysis metrics, real-world applica-
tions, shortcomings, and potential future directions.

In the first part of this survey, we first describe different
classes of DOPs. Then, we propose a new comprehensive
taxonomy for the components of DOAs that are developed to
address DOPs’ challenges. The taxonomy poses the following
advantages in comparison to the existing ones:

• It covers some important components of DOAs which
were not included in the previous taxonomies, such as
convergence detection and resource allocation methods.

• The classification of diversity control methods is sig-
nificantly improved. Unlike the existing taxonomies, the
purpose of the diversity control methods, which is either
to address the global or local diversity loss issues, is taken
into consideration. In addition, the proposed taxonomy
covers some additional classes of diversity increasing
methods (which were ignored in the previous taxonomies)
that are triggered when some conditions are met.

2For brevity, we use the term DOPs to refer to this specific type of problems
from now on.

• The multi-population methods which are the most popular
and effective DOAs are fully classified in our taxonomy
by their population structure and the components used to
create and manage subpopulations.

We then provide in-depth technical descriptions of the de-
veloped components in DOAs according to the suggested
taxonomy.

In the second part of this survey [21], we first study baseline
functions and dynamics of DOP benchmarks separately. To
review the baseline functions, we classify them into basic
static functions, moving peaks, and the composition of basic
static functions. Then, we provide a review of the commonly
used performance indicators and plots that have been used
for analyzing and comparing the performance of DOAs. We
study the DOP performance indicators by classifying them into
two groups of fitness/error based and efficiency based ones.
Then, we study the static optimization algorithms (especially
EAs and SI methods) used as the optimization components
in DOAs. After providing a review of real-world applications
of DOAs, we conclude the survey by discussing some of
the current challenges, the gap between academic research
and real-world problems, and some potential future research
directions.

To identify the relevant papers for this survey, we con-
ducted a search using various publication search engines,
including ScienceDirect, IEEE Xplore, ACM Digital Li-
brary, Springer, CiteSeerX, Wiley, Taylor & Francis, Scopus,
Google Scholar, etc. For the search keywords, we used dif-
ferent combinations of terms such as <dynamic, uncertain,
time-varying, non-stationary>, <environment, optimization,
problem>, and <evolutionary algorithm, swarm intelligence
algorithm, metaheuristic>. Thereafter, we selected references
that match the scope of this survey which are published after
1999. More than 200 journal papers, book chapters, conference
papers, Ph.D. theses, and master’s dissertations have been
selected for our survey. Note that, all presented statistics in this
survey, such as pie-charts, are extracted from this collection.

The organization of this two-part paper is as follows:
Part A: Section (§) PA-II provides background information,

including problem definition and different types of DOPs.
§ PA-III describes the proposed taxonomy for the components
of DOAs. The first part of this survey is concluded in § PA-IV.

Part B: § PB-I provides an introduction to Part B of this
survey. The commonly used benchmark problems in the DOP
literature are reviewed in § PB-II. The performance indicators
and plots used for analyzing the performance of DOAs are
reviewed in § PB-III. The static optimization algorithms used
as the optimization components in DOAs are reviewed in
§ PB-IV. § PB-V reviews real-world DOPs. § PB-VI dis-
cusses the challenges of the field’s current status and provides
some potential future research directions. Finally, § PB-VII
concludes the second part of this survey.

PA-II. BACKGROUND

We start by describing a DOP. Without loss of generality,
an unconstrained single-objective DOP can be defined as:

F (~x) = f
(
~x, ~α(t)

)
, (PA-1)

3

where f is the objective function, ~x is a solution in the search
space, ~α is a vector of time-varying objective function control
parameters, and t ∈ [0, T] is the time index. In real-world
problems, ~α can be environmental parameters which change
over time, such as temperature, costs, workload, or available
resources. In DOP benchmarks, for example the moving peaks
benchmark (MPB) [22], [23], ~α includes the parameters of
peaks, such as width, height, and center position which all
change over time (see § PB-II-A1). ~α can also include other
time-variant environmental parameters like the domain of
variables, number of variables, and variable interactions [10],
[11].

Most existing works in the DOP literature consider the
DOPs whose environmental changes happen only in discrete
time, i.e., t ∈ {1, . . . , T}. For a DOP with T environmental
states, there is a sequence of T stationary environments:〈

f(~x, ~α(1)), f(~x, ~α(2)), . . . , f(~x, ~α(T))
〉
. (PA-2)

It is commonly assumed that there is a degree of similarity be-
tween the successive environments in (PA-2), i.e., the changes
are not highly severe. In cases where the environmental
changes are very severe, the information from the previous
environments are less useful [22]. In such circumstances, it
may be best to consider each environment as an independent
static optimization problem, and to reinitialize the optimization
algorithm after each environmental change. In this paper,
similar to the majority of DOP literature, we focus on the
DOPs whose dynamic is expressed with similarity between
environmental states as the case in many real-world optimiza-
tion problems [6], [10], [22].

DOPs can be categorized according to various charac-
teristics. In the literature, several classifications have been
introduced for DOPs [1], [24]–[29]. By properly classifying
DOPs and identifying their specific features and challenges, we
can apply appropriate DOAs for optimizing them. Moreover,
identifying the strengths and weaknesses of DOAs in solving
different classes of DOPs will help researchers to develop
more efficient DOAs. In the following of this section, we
describe some important classifications of DOPs based on
different criteria.

In [26], Eberhart and Shi classify DOPs according to
the changes in the position and fitness value of the global
optimum. They introduce three classes of DOPs where:
• The position of optimum remains unchanged while its

fitness value changes over time,
• The optimum position changes while its fitness value

remains unchanged, and
• Both position and fitness value of the optimum change

over time.
The first class is relatively easier for optimization methods
to solve since there is no need to track the optimum after
environmental changes. For both the second and third classes,
however, the algorithms need to track the optimum after
environmental changes. For the second class, if the optimum
fitness value is obtained, it can be used as a reference in future
environments to avoid immature convergence. Hence, it might
be less challenging than the third class where both position and

fitness value change over time. According to our readings, the
majority of the DOP literature focuses on the third class.

Another classification of DOPs is proposed by De Jong [27],
where the change severity, change frequency, and change
patterns have been taken into account. Inspired by the char-
acteristics of some real-world DOPs, De Jong’s classification
divides DOPs into four groups:
• DOPs with drifting landscapes: in these problems, change

severity of the environment is very gradual, but the
change frequency is high. This class reflects the real-
world DOPs whose environmental changes are caused by
aging equipment or minor changes in the quality of raw
materials.

• DOPs with significant morphological changes: in these
problems, the fitness of each region over the search
space can either increase or decrease after environmental
changes. Therefore, some low-quality regions from the
previous environment can become regions with high
fitness values and vice versa. Such problems are quite
challenging since the global optimum can appear in a
region that had a low quality in the previous environment.
Similar properties can be seen in ompetitive marketplaces
where the areas with the highest profit change due to
the change of demands and the competition level. Such
characteristics are simulated in moving peaks based DOP
benchmarks (see § PB-II-A1).

• Periodical DOPs: the environmental changes in these
DOPs show reappearing/cyclic patterns where the land-
scape visits a finite set of states repeatedly. This type
of DOPs’ dynamic is reflective of problems involving
repeating states such as seasonal changes (e.g., energy
consumption level over seasons) and hourly demand rate
changes (e.g., rush hours in the morning).

• DOPs with abrupt changes: in these problems, the change
severity is usually huge and the similarity between suc-
cessive environments is very low. In real-world DOPs,
this type of dynamics is the result of cataclysmic events
such as failure(s) in a part(s) of the system.

Later, Duhain and Engelberth [25] classify DOPs based on
two levels of change severity and change frequency:
• Quasi-static: DOPs with low change severity and fre-

quency,
• Progressively: DOPs with low change severity and high

change frequency (similar to the drifting landscapes in
the De Jong’s classification),

• Abrupt: DOPs with high change severity and low change
frequency (note that in De Jong’s classification, abrupt
DOPs covers all problems with high change severity
while the change frequency is not considered), and

• Chaotic: DOPs with high change severity and frequency.
Among the above classes, chaotic DOPs are the most chal-
lenging. They make the tracking operation very difficult since
the new optimum can be far away from the previous and
the available computational resources in each environment are
very limited due to high change severity and frequency.

Besides the change severity and frequency, Branke and
Schmeck [24] also use some other criteria, such as predictabil-

4

ity, change visibility, and aspect of change for classifying
DOPs. For the predictable DOPs, some aspects of the problem
follow a regular pattern, so they can be learned and then
predicted. Periodical DOPs belong to this group of problems,
hence, an algorithm can predict the position of the next op-
timum according to the historical information [30]. Similarly,
in some DOPs where the optimum moves toward a fixed
(i.e., unchanging) direction (e.g., linear changes in [31], see
(PB-8)), the optimum trajectory is predictable. Another factor
that can be predicted in some DOPs is the moment of the
next environmental change. DOAs can learn these predictable
characteristics and use them to improve the performance. In
contrast, in unpredictable DOPs, the environmental changes do
not follow any specific spatial or temporal pattern (i.e., they
have random changes). Visibility of changes is another impor-
tant criterion to classify DOPs. In DOPs with visible changes,
the DOAs are informed about the occurrence of environmental
changes. However, DOAs have to detect the changes in DOPs
with invisible environmental changes. Another criterion to
classify DOPs is the aspects of changes, which indicates which
parts of the problem, such as dimension, objective function,
and/or constraints, change over time.

Homogeneity/heterogeneity of DOPs is another criterion for
classifying DOPs [10], [11], [29]. The heterogeneity of DOPs
can be investigated from different aspects. The following
DOPs can be considered as heterogeneous DOPs:
• DOPs whose different regions of the landscape change

with different levels of severity. For instance, where
some parts of the landscape change more severely than
others [11], or where some parts of the landscape remain
unchanged while the rest change [32].

• DOPs whose change severity changes over time.
• DOPs whose change frequency changes over time.
• Modular DOPs whose subfunctions have different charac-

teristics, for example different change severities, change
frequencies, and dimensions [11].

In heterogeneous DOPs, the problem characteristics can
change over time, or can be different from region to region
in the landscape. Consequently, tackling heterogeneous DOPs
can be challenging since the DOAs need to adapt to different
regions/environments with different characteristics over time.
If a DOP has none of the above properties, it is considered ho-
mogeneous. For example, a DOP with fixed change frequency
over time can be considered a homogeneous DOP (from this
specific aspect).

PA-III. TAXONOMY OF THE COMPONENTS OF DOAS

Tackling a DOP is challenging, especially if it has higher
change frequency and/or environmental change severity. On
the one hand, DOAs need to locate the optimal solution
quickly; on the other hand, they have to face environmental
changes and properly react to them. It becomes even more
challenging when only limited computational resources are
available between successive environmental changes. Gener-
ally, the response actions that a DOA should perform after a
change occurrence must address the following issues:
• Global diversity loss: this issue occurs due to the intrinsic

nature of EAs and SIs converging to promising regions.

In such circumstances, the exploration capability deteri-
orates considerably.

• Local diversity loss: during exploitation, individuals3

of a (sub-)population usually collapse to an optimum.
Consequently, even if the optimum shifts slightly after
an environmental change, the tracking capability can still
be hindered.

• Limited computational resources: usually, there are lim-
ited available computational resources, which in turn put
limitations on the number of fitness evaluations during
each environment. Thereby, controlling the usage of the
computational resources and avoiding wasting them are
essential.

• Outdated memory: after each environmental change, the
stored fitness values which were calculated based on the
previous environment, will become outdated. To address
this issue, all solutions whose fitness values have been
stored must be reevaluated in each new environment [1].

Generally, efficient DOAs are complex algorithms that use
several components to address the challenges of DOPs. In Fig-
ure PA-2, we depict a general taxonomy for the components
of DOAs by aggregating the existing taxonomies [1], [3]–
[5]. Considering the current status of the field, the existing
taxonomies suffers from the following shortcomings:
• Several important components of DOAs are not consid-

ered, such as convergence detection and resource alloca-
tion methods.

• The class of diversity control components is under-
represented. In particular, the components that increase
diversity are only limited to those which are triggered
after environmental changes. All the components used to
increase diversity when some specific conditions are met,
are ignored. The aim of the diversity control component
is not precise, i.e., it is not clear whether they have been
designed to address local or global diversity loss.

• Multi-population DOAs, as the most efficient and pop-
ular class of DOAs, have not been properly classified.
Classifying such complex algorithms only on the basis of
the number of subpopulations does not fully cover their
structural differences.

As the surveys are usually written based on taxonomies,
shortcomings of a taxonomy reflect on the whole survey.

In this section, we propose a taxonomy for the components
of DOAs, which addresses the aforementioned shortcomings
of the existing taxonomies. Figure PA-3 illustrates the pro-
posed taxonomy. According to this taxonomy, DOAs’ compo-
nents are classified into the following classes:
• Convergence detection: these components do not address

any challenges of DOPs directly. However, their impor-
tance relies in their application in many diversity control,
population division and management, and resource allo-
cation components.

• Change detection: many components of DOAs trigger an
explicit response to a change, thus requiring to know
when the environment has changed. In many real-world

3The term individual is used equivalently to a candidate solution in different
optimizers, e.g., particle in particle swarm optimization [33].

5

These classes are only covered in [3].

These classes are only covered in [1].

Components of DOAs

Diversity control

Multi-population

Memory

Prediction

Change detection

Self-adaptation

Implicit memory

Explicit memory

Generate diversity
after a change

Maintain diversity
throughout the run

Fixed number of
subpopulations

Dynamic number
of subpopulations

Adaptive number
of subpopulations

Reevaluation
based methods

Algorithm behavior
based methods

Fig. PA-2. Aggregation of all provided taxonomies of the components of
dynamic optimization algorithms (DOAs) in the existing surveys [1], [3]–[5].

problems such information is known, but if it is not
known, it has to be detected.

• Explicit archiving: the historical information obtained
from previous environments, especially the location of the
promising regions (optima), can be useful to accelerate
the tracking process in each new environment. Some
DOAs use explicit memory for archiving the historical
information.

• Diversity control: to design an efficient DOA, global and
local diversity loss issues must be addressed to maintain
the quality of exploration and exploitation.

• Population division and management: two different ap-
proaches have been used in DOAs to manage the popula-
tion, i.e., bi-population and multi-population. Moreover,
we further classify multi-population approaches accord-
ing to the used population clustering methodology, clus-
tering frequency, homogeneity of subpopulations, using
constant or variable values for subpopulation number and
population size, and computational resource allocation.

Note that unlike the illustrated taxonomy in Figure PA-2,
we do not consider any independent classes for implicit mem-
ory, self-adaptation, and prediction methods in our proposed
taxonomy due to the following reasons. First of all, the class of
implicit memory is outdated. It has been pointed out in [22]
(1999) that explicit memory is more efficient and easier to
understand than implicit memory, hence, these methods have
been rarely used in the state-of-the-art DOAs. Second, the
majority of the self-adaptive and prediction methods belong to
the other classes of components, such as diversity control. For
example, [34], [35] use self-adaptation and prediction methods
in their diversity control component.

In the following subsections, we review the indicated classes
of components in Figure PA-3.

A. Convergence detection
Convergence detection methods are used in different

decision-making processes in DOAs, e.g., to determine
whether a promising region has been found, whether the
exploitation has been carried out (convergence to a peak
summit), or whether the diversity has dropped. Although these
methods do not directly address any DOP challenges, they
are crucial to trigger some other components such as diver-
sity control, subpopulation management, and computational
resource allocation. These components start to work when a
convergence, either in a population or in a subpopulation, has
been detected. As can be seen in Figure PA-3, we classify
these components into three groups which are discussed in
the rest of this subsection.

1) Fitness monitoring: These convergence detection meth-
ods determine the convergence status of a population based on
the individuals’ fitness values. One commonly used method
to detect convergence of a population is to monitor the
fitness value of its best found position. It is decided that the
population has converged if the fitness value of its best found
position has not improved over the previous k iterations:{

Converged f(~g∗(i), ~α(t)) = f(~g∗(i−k), ~α(t))

Unconverged f(~g∗(i), ~α(t)) > f(~g∗(i−k), ~α(t))
,

(PA-3)

where ~g∗(i) is the best found position in the ith iteration. This
method is first introduced in [36] and then has been used in
several DOAs [37]–[41]. A considerable flaw is that it only can
detect convergence if the best found position has not improved.
If the best found position has improved only slightly, no
convergence will be detected. The proposed method in [42]
has addressed this shortcoming by modifying (PA-3) to:{

Converged f(~g∗(i), ~α(t))− f(~g∗(i−k), ~α(t)) ≤ ε
Unconverged f(~g∗(i), ~α(t))− f(~g∗(i−k), ~α(t)) > ε

,

(PA-4)

where ε is a positive constant. Note that (PA-3) is a special
case of (PA-4) where ε = 0. In [43], it is proposed that
if an entire population have not improved at least l times
during a predefined number of iterations, then the population
is considered as converged. In [44], it is assumed that a
population has converged if the standard deviation of the
fitness values of its individuals is less than a threshold.

2) Spatial size monitoring: Another way to decide upon
convergence status of a population is to use its spatial size.
To this end, if the spatial size of a population is less than a
predefined threshold, then there is a convergence. Note that
in some works, the spatial size is denoted as diversity, radius,
or size of a population. In the following of this subsection,
we describe some commonly used methods to calculate the
spatial size of a population.

In [13], the spatial size of a population a is calculated by:

sa = max
d∈{1,··· ,D}

(
max
i,j∈a

|xi,d − xj,d|
)
, (PA-5)

6

Components of Dynamic Optimization Algorithms

§PA-III-A: Convergence
detection

§PA-III-A1:
Fitness monitoring

§PA-III-A2: Spatial
size monitoring

§PA-III-A3: Others/hybrid

§PA-III-B: Change
detection

§PA-III-B1: Reevaluation
based methods

§PA-III-B2:
Fitness monitoring

based methods

§PA-III-C: Explicit
archiving

§PA-III-D:
Diversity control

§PA-III-D1: Global
diversity control

§PA-III-D1a: Randomizing redundant
subpopulations/individuals

§PA-III-D1b: Randomization
after environmental changes

§PA-III-D1c: Randomizing
converged subpopulations

§PA-III-D1d: Maintaining
global diversity over time

§PA-III-D1e: Others

§PA-III-D2: Local
diversity control

§PA-III-D2a Maintaining
local diversity all the time

§PA-III-D2b: Increasing local diversity
after environmental changes

Randomization
in a limited area

Prediction

§PA-III-E: Population
division and
management

§PA-III-E1: Bi-population

§PA-III-E2:
Multi-population

§PA-III-E2a: Population
clustering methodology

By dividing the
search space

By index

By position and
fitness values

§PA-III-E2b:
Clustering frequency

Highly frequent

At some specific
point(s) of time

§PA-III-E2c:
Subpopulation
homogeneity

Homogeneous

Heterogeneous §PA-III-E2d: Population
size and number
of subpopulation

Both fixed

Both varying

Fixed population size,
and varying number
of subpopulations

§PA-III-E2e:
Computational

resource allocation

Subpopulation
size control

Performance based
subpopulation selection

Using a local search
operator around the
best found position

Deactivating converged
subpopulationsRound Robin/Parallel

Fig. PA-3. Taxonomy of the components of dynamic optimization algorithms.

where D is the number of dimensions, and xi,d is the dth
dimension of the ith individual. In fact, (PA-5) calculates the
spatial size as the largest distance, along any axis, between
any two individuals of a population. In [45], the spatial size
of the population a is calculated as the maximum Euclidean
distance between its best individual and other members, which
is formulated as:

sa = max
i∈a
‖~g∗ − ~xi‖, (PA-6)

where ~g∗ is the best found position (e.g., Gbest in PSO [46]
or the best individual in DE [47]). In [48], the spatial size of
the population a is calculated as the largest Euclidean distance
between its individuals, which is formulated as:

sa = max
i,j∈a

‖~xi − ~xj‖. (PA-7)

This method has also been used in [48]–[50]. In [51], the
spatial size of a population is calculated in a similar way to
(PA-7), but the infinity norm distance replaces the Euclidean
distance. Li and Yang [52] propose to determine the spatial

size of the population a as the average Euclidean distance of
all individuals to the center of the population:

sa =
1

na

∑
i∈a
‖~ca − ~xi‖, (PA-8)

where na is the number of individuals in the population a,
and ~ca is its center position, which is the average position
of all members (

∑
i∈a ~xi

na
). This method has also been used

in several DOAs, including [53]–[55]. In [56], the spatial
size of a population is calculated similar to (PA-8), but the
center position is replaced by the best found position in the
population.

3) Other/hybrid: There are some other proposed methods
that do not fall into the above classes. In [57], a similar method
to (PA-4) is used, but instead of monitoring the progress of
the best found position based on its fitness values, its position
is monitored. In this method, if ‖~g∗(i)−~g∗(i−k)‖ is less than a
threshold, then the subpopulation is considered as converged.
Nasiri and Meybodi [58] use a hybrid method for convergence
detection by monitoring both fitness and relocation distance
of the best found position. It is assumed that a population

7

has converged if its best found position has not improved or
relocated during the last k iterations (according to two different
thresholds).

In some DOAs, the criteria for determining the conver-
gence status is defined based on the optimization component’s
parameters. In [59], a local search operator is used as the
optimization component, and it is assumed that it has con-
verged if the value of its step size parameter is less than
a threshold. In the PSO based DOA in [42], it is assumed
that a subpopulation has converged if the velocity values of
all particles of a subpopulation in all dimensions lie inside a
predefined range [−L,L].

4) Discussion on convergence detection: We have classified
the convergence detection methods into two main classes of
fitness and spatial size based methods. One main issue of the
fitness based methods is that they are error-prone, i.e., they can
wrongly decide an unconverged population is converged and
vice versa. The convergence detection methods in (PA-3) and
(PA-4) are less reliable since they only focus on the best found
position which cannot represent the convergence status of a
population accurately. Among the fitness based methods, the
proposed method in [44] is more accurate as it considers the
standard deviation of all individuals’ fitness values. However,
this method is not accurate in the regions with low gradients.
In comparison to fitness based methods, the spatial size based
methods are more accurate as they evaluate the convergence
status of the population based on the positions of individuals.
However, these methods are more computationally complex.

Overall, despite the importance of the convergence detection
methods, they have rarely been investigated in the DOP
literature. Up to now, there has been little study that compares
different convergence detection methods or analyzes their
effectiveness in different scenarios.

B. Change detection

The majority of DOAs are change-dependent with some
components triggered after environmental changes, to pro-
vide necessary reactions such as addressing the outdated
memory issue by reevaluating all solutions. Effectiveness of
these DOAs relies on immediate reactions after environmental
changes. Change detection components are suitable for DOAs
that are designed for optimizing the DOPs with apparent
or detectable environmental changes, which is the case in
many real-world problems. We classify the change detection
methods into reevaluation based and fitness monitoring based
ones.

1) Reevaluation based change detection methods: The most
commonly used methods to detect environmental changes are
reevaluation based. In these methods, a number of solutions,
called detectors, are reevaluated frequently (usually in every
iteration), and if the obtained fitness values are different from
the previous values, an environmental change is detected. The
reevaluation based methods are first introduced by Branke
in [22], where solutions in an archive are reevaluated in each
iteration. Different versions of reevaluation based methods are
used in the DOP literature where the detectors are chosen
differently. Some suggest to take a fixed solution as the

detector [60], or the best found position [61]. Others suggest
to use a predefined number of randomly chosen individuals’
positions [62], the best found position of each subpopula-
tion [63], some randomly initialized solutions (not from the
population) [64], and some randomly initialized solutions plus
some randomly chosen individuals from the population [65].

2) Fitness monitoring based change detection methods:
These methods try to detect environmental changes by moni-
toring the evaluated fitness values. In [61], the fitness values of
the best and the second best individuals are monitored, and if
both have not changed over a predefined number of iterations,
it is assumed that a change has happened. In [58], the average
of all evaluated fitness values from the last environmental
change is monitored. If this value is becoming worse for
a predefined number of fitness evaluations, the algorithm
reevaluates a single detector to make sure an environmental
change has happened. Observing the average fitness values is
also used in [66], where if these values fluctuate considerably,
it is assumed that an environmental change has happened.

3) Discussion on change detection: In many real-world
DOPs, the occurrence of environmental changes is obvious,
and algorithms are informed about them [10]. For example,
the arrival of new orders, fault in a part of the system, change
in temperature, change in the number of resources, and change
in costs, are detected by sensors, operators, and agents, which
inform the DOAs. Consequently, designing reaction based
DOAs without any change detection component is reasonable.

Existing change detection methods by monitoring the be-
haviors of the evaluated fitness values over time are not proper
methods as they are error-prone [2], [67]. These methods can
miss an environmental change or detect a false one. On the
one hand, detecting a false environmental change will result
in an unnecessary reaction, which is costly and leads to a per-
formance drop. On the other hand, missing an environmental
change can significantly deteriorate the performance of DOAs
since they cannot react to an unidentified change.

Unlike the fitness monitoring based components that do not
need any additional fitness evaluation, the reevaluation meth-
ods consume computational resources by frequently reeval-
uating the detectors. However, they are more accurate and
reliable. It is shown in [67] that the reevaluation methods are
capable of performing robust 100% detection if a sufficient
number of detectors are used. However, it should be mentioned
that using too many detectors is prohibitively costly as they
consume a considerable amount of computational resources.

Environmental changes in continuous DOPs can be detected
easily when the change is global. In such a circumstance,
reevaluating a single solution can accurately detect environ-
mental changes [11], [42]. However, if only some parts of
the environment change, detecting change becomes more chal-
lenging. Therefore, in DOPs with local environmental changes,
using small numbers of detectors for change detection would
be error-prone. It is shown in [32] that the rate of successful
change detection deteriorates when the overall size of the
affected regions in the environmental changes decreases. Con-
sequently, to tackle DOPs with local environmental changes,
algorithms must use larger numbers of detectors. To this end,
the best found position of each subpopulation can be used as

8

the detector [13]. Therefore, if the local environmental changes
happen in the covered areas by the DOA, the change can be
detected.

A few DOAs are change-independent [32], [53], [68], i.e.,
their components and structures are not designed to react to
environmental changes. This class of DOAs are suitable for
the DOPs whose environmental changes are hard or impos-
sible to detect. The structure and procedures of these DOAs
are independent of any knowledge about the environmental
changes.

C. Explicit archiving

Assuming there are some similarities between successive
environments [6], it is common in DOAs to use the obtained
information from previous environments to accelerate the
process of discovering the optimum in the new environment.
In DOAs, this information usually contains the location(s) of
promising region(s), i.e., peak(s) in the fitness landscapes. This
information is passed between consecutive environments and is
often updated during each environment. To use historical infor-
mation, DOAs usually use three main components: promising
regions coverage, implicit memory [22], and explicit archiving
(also called explicit memory). Promising regions coverage
components try to keep a number of individuals around the
discovered promising regions in the previous environments.
These components are related to the population structure of
the DOAs which will be reviewed in § PA-III-E. Some DOAs
use implicit memory, such as diploidy methods [22], to use
historical information. In this survey, we do not cover these
methods as they have been rarely used in the last two decades
to solve continuous DOPs. Finally, a number of DOAs use
the explicit archiving components to store the locations of
the discovered promising regions. The archived solutions are
retrieved and injected into the population at some predefined
points of time, which are usually right after environmental
changes. Consequently, there will be some individuals around
the previously discovered promising regions in order to ac-
celerate the optimum tracking process. In the following of
this subsection, we review the explicit archiving components
from three different perspectives: a) what solutions to store
and when, b) what solutions to delete and when, and c) what
solutions to retrieve and when.

a) What solutions to store and when: In [69], a bi-
population DOA, which consists of an explorer subpopulation
and an exploiter subpopulation, is introduced. These subpop-
ulations collaborate through an archive. When the explorer
has converged, it sends its best found position to the archive.
In [70], a multi-population method is introduced where the
best found position by each subpopulation is sent to the
archive at the end of each environment. In [71], the best found
position of each subpopulation is sent to the archive once
it has converged. This approach has been applied in some
subsequent works such as [55], [72], [73]. In [74], the best
found positions by subpopulations are sent to the archive after
each environmental change.

In [59], an archiving method is proposed for single-
population DOAs. In this method, when the optimization

component has converged, its computational budget has been
consumed, or an environmental change has happened, the best
found solution is sent to the archive. Another archiving method
for single-population methods is proposed in [75] where the
best found position by the population is sent to the explicit
archive when it has converged, or after environmental changes.

b) What solutions to delete and when: Usually, an
archive has a finite capacity, hence, several methods have
been designed to remove solutions if the archive is full.
The replacement methods are designed based on: age of the
archived solutions, distance between archived solutions or
between archived solutions and a newly arrived solution, and
comparing the fitness of the archived solutions and a newly
arrived solution.

In [76], an aging based method is introduced where the
oldest archived solution is replaced by the new one. In [77], a
fitness based method is used where the worst archived solution
is replaced by the new one. In [78], if there is an archived
solution whose Euclidean distance to the new solution is less
than a threshold, it will be replaced by it. Otherwise, if there is
no close existing archived solution, the oldest solution can be
replaced by the new entry based on a predefined probability.
In [75], three different conditional replacement methods are
designed, where the oldest, closest, or worst archived solution
is replaced by a better new solution. In [55], [74], in the first
step, archived solutions that are similar to the newly arrived
solution (i.e., they are closer than a threshold), are determined.
Then, if there are any similar archived solutions, the fitness
of the worst one is compared to that of the new entry and
it will be replaced if it is worse. Otherwise, if there is no
similar archived solution, then the new entry is compared
with the worst archived solution based on fitness and will
replace the worst archived solution if it is better. In a simpler
approach [79], the new solution is added to the archive in
the first step, then the inferior of the two closest solutions is
removed.

To efficiently manage the archive, some methods have
been introduced to remove outdated and redundant solutions.
Since the promising regions usually move after environmental
changes, it is necessary to replace their previous archived
positions with the updated ones. In [69], to update the outdated
archived positions of the promising regions, when two solu-
tions are closer than a threshold, the inferior one is removed.
This idea is based on the assumption that each promising
region’s successive positions are relatively close. In [73], if the
new entry solution is closer than a threshold to an archived
solution, the old solution will be replaced by the new one
(even if the archive is not full). In [80], similar solutions are
not permitted in the archive, and if two solutions are closer
than a threshold, the older one is removed. In [59], a new
solution is added to the archive if it is better than the closest
archived solution; otherwise, it will be discarded.

c) What solutions to retrieve and when: Usually, after
environmental changes, the archived solutions are used to
locate some individuals around the previously discovered
promising regions. In [70], each individual is randomized
around a solution from the archive which is chosen randomly
with a predefined probability. In the introduced bi-population

9

DOA in [69], two methods for using archived solutions are
designed:
• Archive-based resetting: all solutions in the archive are

reevaluated and the best one is passed to the exploiter
subpopulation if it is better than the exploiter’s best found
position.

• Archive-based migrants: all solutions in the archive are
copied into the worst individuals of the exploiter subpop-
ulation.

In [76], archived solutions participate in the selection process
of the parents for crossover in the EA. In the multi-population
DOA proposed in [78], there are also two suggested methods
for using the archived solutions:
• A predefined number (n) of the best archived solutions

are distributed almost uniformly among all m subpopu-
lations and replace their worst individuals.

• A clustering procedure is performed on the archived
solutions, and the n best cluster heads (the best solution
in a cluster) are distributed almost uniformly among all m
subpopulations and replace their worst individuals. The
applied clustering method is originally designed to divide
the population into subpopulations in [81]. In this method,
the number of clusters is determined adaptively according
to the distribution of solutions.

1) Discussion on the explicit archiving: In this subsection,
we have reviewed how historical information is used in some
DOAs using explicit archiving components. As pointed out
in [22], using explicit archiving is suitable only for a class of
DOPs where the optimum returns to a previous location, or
previous environments reappear periodically. To tackle such
DOPs, using archived historical information will make the
DOAs to switch to the global optimum in the new environment
instantaneously [1]. Furthermore, if the movement of the
promising regions or peaks can be predicted, the archived
solutions can be used as the training dataset for the prediction
methods [35], [82].

However, using an explicit archive is questionable for
solving DOPs whose environmental changes are random (i.e.,
unpredictable) [6]. In fact, efficient management of an explicit
archive is a complex task. In addition to managing full
memories and removal of redundant solutions, the archived
solutions will be outdated after each environmental change.
As a consequence, each archived solution, which represents a
location of a promising region, must be updated by performing
exploitation. This exploitation process can be performed by
injecting archived solutions into the population and updating
them by removing older similar (close) solutions [69], [78],
or by performing independent local search on the archived
solutions after each environmental change [37], [83], [84]. In
some multi-population DOAs, after discovering a converged
subpopulation, its best found position is archived, then the
subpopulation is either randomized to search for undiscovered
promising regions, or removed to avoid wasting computational
resources [55], [72], [73]. However, the explicit archiving
components can be replaced by a simple deactivation method
where the converged subpopulations are deactivated until the
next environmental change [42], [49]. Then, the DOA will use

promising regions coverage approach instead of the explicit
archiving. The effectiveness and simplicity of passing the lo-
cations of the discovered promising regions by covering them
with individuals/subpopulations, make them popular among
researchers. Based on our readings, the number of DOAs that
use the individuals/subpopulations to cover promising regions
is around four times larger than the number of those using the
explicit archives.

D. Diversity control

Diversity loss is one of the most critical challenges of DOPs
and one of the main reasons behind the inefficiency of static
optimization algorithms in solving DOPs, because converged
populations are incapable of efficiently searching for the new
optimum after an environmental change. In this survey, we
classify the components that have been designed to address
the diversity loss into two main groups according to whether
they address local diversity loss or global diversity loss. On
the one hand, the methods that address global diversity loss,
try to increase global diversity across the search space in order
to improve the exploration capability of DOAs. On the other
hand, the methods that address local diversity loss increase the
exploitation capability.

1) Global diversity control: Maintaining global diversity
across the search space or increasing it when necessary is
vital for DOAs. Multi-population methods address the global
diversity loss issue by using several subpopulations over
the search space. However, they are in need of some other
components to control the subpopulations in order to cover
the search space efficiently. In addition, even multi-population
methods cannot cover the whole search space. This results
in some parts of search space to remain uncovered which
potentially contain the new global optimum. Hence, multi-
population methods will also end up using some additional
components to control global diversity systematically. As can
be seen in Figure PA-3, in this survey, we classify applied
components for addressing the global diversity loss issue into
five groups, which are described in the following of this part.

a) Randomizing redundant subpopulations/individuals:
Using one subpopulation with a reasonable number of indi-
viduals is usually enough to cover a promising region and
tracking it. Therefore, using more than one subpopulation or
using a large number of individuals often deteriorates the
performance of the DOAs. One reason behind this is the
global diversity dropping as a result of concentrating several
subpopulations (or many individuals) in the same promis-
ing regions, which causes an overcrowding issue. Besides,
these redundant subpopulations and individuals waste valuable
computational resources. To handle this issue, DOAs usually
randomize redundant subpopulations/individuals to increase
the global diversity. In the following of this part, these methods
are described.

Branke [85] proposes the first method for removing re-
dundant subpopulations/individuals. In this DOA, which is
called Self Organizing Scouts (SOS), a multi-population ap-
proach is used where there is a parent subpopulation (ex-
plorer) and several child subpopulations (exploiters). The

10

child subpopulations are responsible for covering and tracking
the promising regions which have been discovered by the
parent subpopulation. If any parent’s individuals lie inside
a child subpopulation’s search region, its individuals will
be randomized. Moreover, if the best individual of a child
subpopulation lies inside the search region of another child
subpopulation, its individuals will be randomized and rejoin
the parent subpopulation. The aforementioned randomization
processes in SOS prevent overcrowding and maintain global
diversity.

In [63], if the Euclidean distance between two subpopula-
tions’ best found positions (e.g., Gbest in PSO) becomes less
than a predefined radius rexcl, then the subpopulation with
better best found position is kept and the other one will be
randomized. This method that acts based on the Euclidean dis-
tance between subpopulations’ best found positions, is known
as exclusion method and is used in many DOAs [70], [86]–
[88]. Parameter rexcl is defined differently in the literature.
In [63], rexcl is defined as a constant value. In [13], the value
of rexcl is calculated according to the number of peaks, the
search range, and the number of dimensions. However, the
number of peaks is usually not known due to the black-box
assumption of the problems. Later on, in [89], the number of
peaks is replaced by the number of discovered peaks. In [90],
individuals are clustered using fuzzy c-mean [91], where the
number of clusters is set to the number of subpopulations.
Then, for each cluster, the minimum distance to other clusters
is calculated. The average of these distances is used for
setting rexcl. Authors claim that doing so, the environment
conditions (the current peaks’ parameters) and the distribution
of individuals are considered for rexcl setting.

A modified version of the exclusion method is proposed
in [92]. In this version, if two subpopulations enter the
mutual exclusion area of each other, before randomizing the
inferior one, the midpoint between their best found positions
is obtained. If the fitness of the midpoint is worse than both
best found positions, neither should be re-initialized, because
the subpopulations are likely residing on two peaks whose
distance to each other is less than rexcl. This method has been
further modified in [93], where in addition to the midpoint,
two points close to each of the best found positions of the
involved subpopulations are also taken into consideration. If
the fitness of at least one of the three points is less than the best
found positions, neither is re-initialized. Otherwise, the inferior
subpopulation will be re-initialized. Kordestani et al. [94] use
a new method for randomizing the redundant subpopulations
to increase the global diversity. After exclusion detection, the
individuals of the inferior subpopulation are re-initialized one
by one. After randomizing an individual, its distance to all
subpopulations’ best found positions are calculated. The re-
initialized individual is accepted if it does not reside in the
exclusion area of any other subpopulations.

In [95], a multi-population DOA, denoted as speciation
based DOA, is proposed that uses a radius based clustering
method to decide on subpopulations. The clustering is carried
out every iteration. In this method, when two subpopulations
reside on the same peak, they will get closer by converging
to the peak summit. Afterward, the individuals of the inferior

subpopulation will join the superior one once they enter its
clustering radius. Thereafter, if the number of individuals in
a subpopulation is more than a predefined threshold, the re-
dundant inferior individuals are randomized across the search
space. Note that merging subpopulations and randomizing
redundant individuals to avoid overcrowding is usually used
in the clustering based multi-population DOAs in which the
clustering process is carried out frequently (usually in every
iteration) [81], [95], [96]. This method is modified in [97],
where it uses another threshold for the minimum number
of randomized individuals. In this DOA, if the number of
randomized redundant individuals is less than the minimum
number, individuals are removed one by one from the inferior
subpopulations to reach that number.

In [98]–[100], the search space is divided into hypercubes
using cellular automata (CA) [101]. To maintain the global
diversity, when the number of individuals in a cell (hypercube)
passes a threshold, the worst individuals are randomized.

b) Randomization after environmental change: In many
environmental change reaction based DOAs, the global di-
versity is increased after each environmental change. The
proposed single-population DOA in [102] increases the global
diversity after environmental changes using a random immi-
gration method. In the bi-population DOA in [22], the ex-
plorer subpopulation is re-initialized after each environmental
change. Randomizing a predefined portion of the popula-
tion of a single-population DOA after each environmental
change is introduced in [61]. Karimi et al. [103] propose a
single-population method with varying population size N ∈
[Nmin, Nmax]. The global diversity is increased by inserting
Nmax − N random individuals across the search space after
each environmental change.

For some multi-population DOAs, global diversity is in-
creased by randomizing some inferior subpopulations or infe-
rior individuals in each subpopulation after each environmental
change. In [52], the best individual of each subpopulation is
kept, and the rest are randomized across the search space.
Afterward, the clustering procedure is run to form new sub-
populations. In [104], a predefined percentage of the inferior
individuals in each subpopulation are randomized across the
search space. In [105], randomizing the inferior of similar
individuals, which are the ones whose distance is less than
a threshold, is used to increase the global diversity. In [79],
the individuals of each subpopulation whose fitness values are
less than the median of the fitness values in the subpopulation,
are randomized. In [106], subpopulations are divided into two
groups of better and worse subpopulations. The individuals of
the subpopulation in the worse group are randomized across
the search space. After that, the randomized individuals are
clustered to form new subpopulations.

Another group of DOAs that increases the global diversity
after environmental changes are the ones that use an explicit
archive to store the locations of the discovered promising
regions (see § PA-III-C). In [71], the archived solutions
are copied into some individuals, and the rest of them are
randomized across the search space. In [107], a predefined
number of individuals of each subpopulation are replaced
with better archived solutions, and the rest are randomized

11

across the search space, which results in increasing the global
diversity.

c) Randomizing converged subpopulations: One com-
monly used method in many DOAs is to randomize converged
subpopulations (see § PA-III-A for convergence detection
methods) to improve the global diversity and exploration
capability. In multi-population DOAs with an adaptive number
of subpopulations [11], there is usually a free (non-converged)
subpopulation. Once the free subpopulation has converged to
a promising region (e.g., a peak), it creates a subpopulation
to continue exploitation on the discovered promising region.
Then, the free subpopulation will be randomized across the
search space to search for uncovered promising regions. There-
fore, the number of subpopulations adapts to the number of
discovered peaks in these DOAs. This type of multi-population
approach is introduced by Blackwell [87], and has been used
in many DOAs [42], [51], [108], [109].

In some explicit archiving based DOAs (see § PA-III-C),
when a subpopulation has converged, it sends its best found
position to the archive, then it will be randomized [72], [110],
[111]. In [43], the converged non-best subpopulations are
randomized. In this method, the subpopulation with the best
found position among all subpopulations is not randomized.
Consequently, this subpopulation continues performing the
exploitation around the best found position while the other
converged subpopulations are randomized to increase the
exploration capability of the DOA.

The anti-convergence method is introduced by Blackwell
and Branke [13], which increases the global diversity when all
subpopulations have converged. In such a situation, the sub-
population with the worst best found position is randomized.
By performing the anti-convergence mechanism, the DOA
sacrifices coverage of the discovered promising region with the
worst fitness in the current environment to increase the global
diversity. This method has been used in several DOAs [45],
[112], [113].

d) Maintaining global diversity over time: Another way
to address the global diversity loss issue is to use some
optimization components that maintain a high degree of global
diversity over time. Consequently, in DOAs that use such
optimization components, the challenge of global diversity loss
is addressed automatically [114]–[117]. For example, Crowd-
ing DE (CDE) [118] has been used in several DOAs, such
as [40], [73], [110], [119]. In the aforementioned DOAs, CDE
is responsible for locating the promising regions, exploration,
and maintaining the global diversity.

e) Other methods: Various methods have been used in
DOAs that cannot fit into the above classes. Moreover, these
methods have rarely been used in DOAs, so we have not
provided separate classes for them.

In a group of DOAs, some aging based methods are used for
randomizing individuals/subpopulations. In [70], if the age of a
non-best individual is more than a threshold, it is randomized
with a given probability. In addition, if the age of the best
individual exceeds another threshold, the subpopulation will be
randomized with another given probability. An aging method
is used in [120], where the number of iterations that an
individual used to be the best b or worst w in its subpopulation

is counted. When b reaches a threshold, the subpopulation
containing the individual gets randomized. Furthermore, if w
reaches another threshold, the individual is randomized.

In [55], when the spatial size of a subpopulation decreases,
its number of individuals is adaptively decreased (until a mini-
mum threshold is reached) since fewer individuals are enough
to perform exploitation. Then, after every predefined number
of fitness evaluations, the algorithm performs a procedure for
increasing the global diversity using the removed individuals.

In some DOAs, the global diversity is increased when
some specific conditions are met [121]. These methods are
usually used in the DOAs that are change-independent. In [32],
when the ratio between the remained individuals to the initial
value of the overall number of individuals becomes less
than a threshold, a re-diversification process is performed.
In this process, all the best found positions by converged
subpopulations are kept, and the rest of the individuals are
randomized. Removing redundant individuals in the population
is performed by other components of the DOA. A similar
approach is applied in [68], but with different conditions. In
this method, a time period parameter δ is defined. If the ratio
of the difference between the number of subpopulations in
the current fitness evaluation FE and FE − δ is less than
a threshold, the algorithm will perform a diversity increasing
process. This condition is changed in [53] to the moment when
the average radius of non-stagnating subpopulations is less
than a predefined percentage of the search range.

2) Local diversity control: When a (sub)population has
converged to an optimum position (i.e. peak summit), its
individuals are extremely close to each other. Consequently,
after an environmental change, when the optimum position
has changed, the population will be incapable of tracking it. To
counteract this issue, the following methods have been defined.

a) Maintaining local diversity over time: Maintaining
the local diversity inside each subpopulation at a predefined
level is a common approach to address the local diversity
loss. One way to maintain local diversity is the collision
avoidance [63]. In this method, charged individuals are used
whose update rules include an acceleration part to avoid
collision and to create repulsion between individuals. In [122],
a disperse method is proposed which calculates the distance
between all individuals and the best found position. Afterward,
a predefined fraction of the closer individuals update their
positions in the opposite direction.

In [63], so-called quantum individuals are generated uni-
formly at random in a hyperball whose center is the best found
position by a subpopulation. The radius of the hyperball is
defined with a parameter rcloud. If a quantum position is better
than the best found position (in terms of fitness value), the
quantum position is copied to the best found position. Using
quantum individuals alongside the standard individuals of an
optimization component is used in several DOAs to maintain
the local diversity of each subpopulation over time [13], [45],
[48], [120]. Brownian individuals [53], [55], [86], [88] are
similar to quantum ones, but a Gaussian distribution is used
to generate positions.

Another method to maintain local diversity of subpopula-
tions is to add noise to the position of the individuals in each

12

iteration. In [86], an entropic model is used where a Gaussian
step is added to individuals every iteration. In [100], a random
factor is added to the velocity update rule of PSO, which
results in maintaining the local diversity.

Another way suggested in the literature is to first allow the
local diversity to decrease upto a threshold, then increasing it.
Consequently, the local diversity of each subpopulation will
remain in a predefined range. In [45], [96], when the local
diversity of a subpopulation becomes less than a threshold, half
of the neutral individuals turn into quantum ones to increase
the local diversity.

b) Increasing local diversity after environmental
changes: Some DOAs allow the subpopulations to continue
converging to the optima to increase their exploitation
capability. Then, after each environmental change, local
diversity of subpopulations is increased to address the local
diversity loss. We classify these components into the ones
that randomize the individuals in a limited area and the ones
that locate the individuals according to a predicted optimum
position.

Randomization in a limited area: In [89], quantum in-
dividuals are used for a limited number of iterations after
each environmental change to increase the local diversity
of subpopulations. Hashemi and Meybodi [99] suggest to
turn half of the standard individuals to quantum ones for
a predefined number of iterations after each environmental
change. In [123], a predefined number of the worst individuals
of each subpopulation are randomized around the best found
position with Gaussian distribution. The individuals of each
subpopulation are randomized around its best found position
with uniform distribution in [42], [90]. In [93], [111], a random
number generated with normal distribution is added to the
positions of all individuals. In [109], the individuals of each
subpopulation are relocated around the best found position
using a chaotic mapping method. Woldesenbet and Yen [76]
propose to use a variable relocation method for adapting
converged individuals in the new environment based on the
estimated change severity.

Prediction: In [35], [82], a component is developed
to predict the next position of the optimum by learning
the correlations between successive environments. After each
environmental change, some individuals are located on/around
the predicted position of the optimum to accelerate the tracking
process. This prediction component can be considered as a
local diversity increasing method that systematically increases
the local diversity of each subpopulation toward a predicted
optimum position. Such methods are effective in the DOPs
which are predictable, such as those whose local optima
(peaks) movements are correlated with their previous move-
ments.

3) Discussion on diversity control: An efficient DOA must
address both global and local diversity loss. To address the
global diversity loss, DOAs usually use more than one method.
Many DOAs, especially the multi-population ones, use meth-
ods that randomize the redundant subpopulations/individuals
(see § PA-III-D1a). The reason is that these methods not only
increase global diversity, but they also prevent wastage of the
computational resources by avoiding overcrowding situations.

A considerable portion of these methods are exclusion ones,
which guarantee that each promising region or peak is covered
by not more than one subpopulation. However, a shortcoming
of the exclusion methods is that they usually cannot distinguish
two subpopulations on the same peak from two subpopulations
on two peaks that are very close. Some works such as [92],
[93] try to address this issue by using midpoints.

Randomizations across the search space after environmental
changes are usually suitable for single and bi-population DOAs
to increase their global diversity. However, in multi-population
DOAs, the global diversity is usually maintained by randomiz-
ing redundant subpopulations/individuals and some converged
sub-populations. To further increase the global diversity, some
multi-population DOAs use also post environmental change
randomizations across the search space, such as [104], [106].
A consequence of using randomizations across the search
space after environmental changes for multi-population DOAs
is that some subpopulations may lose track of the promising
regions that they are covering. More specifically, these sub-
populations may migrate to better promising regions that can
be covered by other subpopulations.

As mentioned in § PA-III-D1c, Some DOAs randomize
converged subpopulations. One such group of DOAs are those
whose number of subpopulations is adapted to the number of
discovered promising regions [42], [87]. In these algorithms,
a free subpopulation(s) is used as the explorer and once it
has converged, the DOA assumes that a promising region has
been discovered. Thereafter, a tracker/exploiter subpopulation
is generated in the area, and the free subpopulation will be
randomized. This type of DOA is one of the most efficient
optimization algorithms in the DOP field [11]. In some DOAs
where the converged subpopulation is randomized without
creating an exploiter subpopulation or storing the position
in an archive, the DOA will lose track of the discovered
promising region. This also happens in the DOAs that use the
anti-convergence method where the algorithm will lose track
of the current worst discovered region, which can contain the
global optimum after environmental changes.

The DOAs that use optimization components which pre-
serve a high degree of global diversity are not very efficient
because a considerable amount of computational resources are
wasted for performing movements that result in maintaining
the global diversity. This can be also observed in DOAs that
try to maintain local diversity of their subpopulations over
time. In these methods, a significant amount of computational
resources are used to maintain local diversity [1]. The methods
that increase local diversity after environmental changes are
more effective since they consume considerably less compu-
tational resources. However, these methods cannot be used for
DOPs whose environmental changes are undetectable [32].

One crucial matter in using the methods that address the
local diversity loss, is degree of the local diversity that should
be preserved or increased in each subpopulation. On the one
hand, if the local diversity is maintained/increased too high,
the exploitation capability will deteriorate. On the other hand,
if the local diversity is very low, the tracking speed will
deteriorate. One suggestion is to maintain/increase the local
diversity based on the shift severity values (i.e., the peak

13

relocation length). In [20], [51], the shift severity of each
peak is estimated by calculating the distances between the
best found positions by each tracker subpopulation at the end
of successive environments.

E. Population division and management

We classify the main population division and management
components applied in DOAs into two main classes: bi-
population and multi-population. The number of subpopula-
tions in bi-population DOAs is fixed and cannot be changed
unless the structure of the algorithm is modified. However,
the number of subpopulations in multi-population DOAs is a
variable that can be set by either user or internal procedures of
the DOAs. Note that the single-population DOAs use the de-
fault population structure of the static optimization algorithm.
Therefore, we do not consider them in this section since they
do not use any specific population division and management
approach to tackle DOPs. Single-population DOAs usually
try to tackle DOPs using other components such as diversity
control [124] and explicit archive [59], [75].

1) Bi-population DOAs: Bi-population DOAs use two sub-
populations where one is usually used for exploration, and the
other is responsible for exploitation. In [22], subpopulations
communicate through an explicit archive. The explorer sub-
population is responsible for discovering promising regions
and storing them in the archive. The exploiter subpopulation
is responsible for using fit old solutions from the archive
and performing exploitation around the best found position.
Therefore, using the explicit archive, this DOA is capable
of using historical information of the discovered promising
regions to accelerate tracking process. This framework has also
been applied in [83].

Another way to use historical information of the discovered
promising regions is to cover multiple promising regions
using some optimization components that are designed to
maintain global diversity and locate multiple optima, such as
CDE [118]. CDE has originally been designed for detecting
multiple peaks in static multimodal optimization. These type
of optimization components are usually used as the explorer
subpopulation in bi-population DOAs. CDE is used in sev-
eral DOAs [40], [110], [119] to locate and cover multiple
promising regions. After each environmental change, CDE’s
individuals are reevaluated and its current best found position
is sent to an exploiter subpopulation. In [114], a modified
PSO is used which acts similar to CDE in locating multiple
promising regions. Similar approaches have been used with
other optimization algorithms [115]–[117].

2) Multi-population DOAs: Multi-population DOAs are the
most effective and flexible methods to tackle DOPs [1], [125].
These DOAs use several subpopulations where the number
of subpopulations is a parameter that can be set by either
the user or adaptively. As discussed in § PA-III-C1, multi-
population DOAs are the most suitable and popular methods
to pass the historical information of the discovered promising
regions to each new environment by covering them using
individuals/subpopulations. In the following of this part, we
review the multi-population methods from various aspects.

a) Population clustering methodologies: In the DOP
literature, different clustering methods have been used to
divide the main population into subpopulations. The most
commonly used clustering methods can be classified based on
index, search space dividing, and individuals’ positions/fitness.
In each cluster, the optimization process is usually done
independently from other clusters. To this end, the position
of each individual is updated according to its position and
those in the same cluster. In other words, the attractors in
each cluster are chosen form its individuals.

By Index: In this commonly used method, the individuals
of each subpopulation are clustered according to their indices.
For example, if ten individuals are supposed to form two
subpopulations, then the individuals with indices 1−5 form the
first subpopulation and the ones with indices 6− 10 form the
second. Such a population division approach does not add any
computational burden to DOAs. However, it does not consider
the attributes of individuals. This population division approach
was first introduced by Blackwell and Branke [63], and has
been used by many DOAs [1]. Note that the subpopulation
membership for individuals in these DOAs is usually fixed
over time.

Dividing search space: In this approach, the search space
is divided into hypercubes. Then, either the individuals in
each hypercube or some neighbor hypercubes, form a sub-
population. These methods have been introduced by Hashemi
and Meybodi [98], where the search space is divided into
hypercubes, which are cells of a CA [101]. The information
of the individuals in each hypercube is stored in the memory
of the corresponding cell. In each cell, the local attractor is
defined as the best individual in the cell and its neighbor cells.
This method has been used in several DOAs [99], [100], [126].

By position and fitness values: In some multi-population
DOAs, the population is divided into subpopulations using
clustering methods that work based on the position and fitness
value of individuals. In some of these clustering methods, only
the individuals’ positions are considered. K-means and fuzzy
c-means, which are two popular data clustering methods, are
utilized in some DOAs for clustering individuals based on
their positions [71], [73]. In these methods, the number of
subpopulations is an input parameter of the clustering method.

In [32], [68], [127], a clustering method is used with an
upper bound threshold for the maximum number of individuals
nmax in each subpopulation/cluster. In the beginning, each
individual forms a cluster, and the Euclidean distances between
all pairs of clusters, which are individuals in this step, are
calculated. Thereafter, the clustering method finds the closest
clusters whose accumulative number of individuals is not
more than nmax and merges them. After merging two closest
clusters, the distances between all clusters are updated. Note
that the distance between two clusters is the Euclidean distance
between their two closest individuals. The aforementioned
steps are repeated until there will be no cluster with only
one individual. In the clustering method in [53], similar to
the aforementioned method, each individual forms a cluster in
the beginning. After that, the closest clusters are merged until
the sum of intra-cluster distances becomes less than the sum
of inter-cluster distances [128].

14

Some clustering methods take the fitness values of individ-
uals into account as well [38], [81], [84]. In these methods,
some better individuals usually become cluster heads. In [95],
a clustering method is used that considers the position of the
individuals and their fitness ranks. This method works based
on a predefined radius rs. In the first step, all individuals are
sorted based on their fitness values and form a sorted list of L.
There is a set of cluster heads (seeds) S and a set of members
M , which are both empty in the beginning. The best individual
in L is assigned as the first cluster head, hence is removed
from L and is added to S. The main procedure after this step
is that if the Euclidean distance between the best individual in
L and all the cluster heads in S is not less than rs, then this
individual is removed form L and added to S. Otherwise, it
will be added to M and removed from L. This procedure is
repeated until L = ∅. Thereafter, individuals in M are assigned
to the best cluster head in S whose Euclidean distance is less
than rs.

In [129], the population is clustered using a nearest better
clustering method, which works based on graphs. First, the
Euclidean distances between all individuals are calculated.
Then, each individual is connected to its nearest better (i.e.,
with better fitness value) individual, which creates a spanning
tree. Afterward, the average of all edges ē in the tree is
calculated, and the edges whose lengths are larger than ē · θ
are removed, where θ is a positive adaptive parameter that is
defined according to the current iteration and the maximum
iteration. The remaining connected individuals belong to the
same subpopulation.

In the clustering method in [38], [84], [130], all individuals
are listed in a list L. Then, the best individual in L and its
m− 1 nearest individuals are chosen as a subpopulation with
the size m, and then all will be removed from L. This process
is repeated until L becomes empty.

Here, we focus on the most significant clustering methods
applied in the literature. Some other clustering methods used
in the literature to form subpopulations based on the position
and fitness value of the individuals can be found in [37], [41],
[55], [76], [131].

b) Clustering frequency: Multi-population DOAs can be
categorized according to how frequent they perform clustering.
It can be highly frequent, or only at some specific point(s) in
time. In the DOAs with index based clustering, usually, the
population is either divided at the beginning of optimization or
when a subpopulation is generated. In either case, there will be
no change during optimization [13], [89], hence the individual
memberships in subpopulations are permanent. In DOAs that
use clustering methods based on the positions, distances, ranks,
and/or fitness values, the individuals are either re-clustered
every iteration [81] or at some specific points in time, which
is usually after environmental changes [127]. In the DOAs
that divide the search space into hypercubes, the search space
is initially divided into hypercubes that will not change later.
However, the individual memberships will change over time
by moving from one hypercube to another one. Therefore,
these DOAs do not perform any clustering, but the lists of
individuals in different hypercubes are updated every iteration.

c) Homogeneity of subpopulations: In some multi-
population DOAs, subpopulations are homogeneous, i.e., the
optimization component and its parameter settings (e.g., indi-
vidual numbers), and the role of subpopulations are identical.
Some multi-population DOAs with index-based clustering use
homogeneous subpopulations [13], [86]. In addition, multi-
population DOAs that use clustering methods in which the
number of individuals is predefined as an input parameter,
have homogeneous subpopulations [38], [84], [130]. Another
group of DOAs use heterogeneous subpopulations, where the
optimization component or the parameter settings of subpop-
ulations are determined based on their specific tasks/roles.
In [42], the free subpopulation is responsible for performing
exploration that has a different parameter setting compared
to the exploiter subpopulations. In [132], a fast evolutionary
programming is used for locating promising regions and
performing exploration, while PSO subpopulations are used
to exploit and track the discovered promising regions (i.e., it
uses two different optimization components).

d) Population size and number of subpopulations: The
population size and the number of subpopulations in a DOA
can be fixed or variable depending to the used components
and the population structure. Among multi-population DOAs,
the ones with fixed population size and the number of sub-
populations are the most inflexible. One main reason is that
they cannot adapt the number of subpopulations to the number
of discovered promising regions in the search space. The
proposed framework in [13] uses a fixed number of subpopu-
lations with fixed individual memberships in subpopulations.
As a result, the overall size of the population is fixed. In this
group of DOAs [48], [86], [94], the performance is dependent
to the defined number of subpopulations, which needs to be
tuned for different DOPs.

In most DOAs that use the clustering methods based on
individuals’ attributes (e.g., position and fitness value), the
population size is fixed [37], [56], [72], [81], [127]. How-
ever, according to the clustering method, their number of
subpopulations can vary over time. Usually, DOAs that use a
clustering method whose input parameters include the number
of subpopulations or the subpopulation size, have a fixed
population size and number of subpopulations. Otherwise, the
number of subpopulations changes over time according to the
distribution of individuals [32], [37], [56], [81], [127]. DOAs
whose overall population size is fixed but their number of
subpopulations can vary, are more flexible than the DOAs
with fixed population size and subpopulation number. Note
that this flexibility is limited since there are usually thresholds
for the minimum and maximum numbers of individuals in each
subpopulation.

Finally, DOAs with varying population size and the num-
ber of subpopulations are the most flexible multi-population
DOAs. In these DOAs, such numbers are usually adapted to
the number of discovered promising regions. On the one hand,
these DOAs use smaller populations and fewer subpopulations
when the DOPs consist of few promising regions. On the other
hand, they produce more individuals and subpopulations when
there are many promising regions in the search space. Besides,
they can adapt these numbers during optimization where the

15

number of promising regions in the search space changes
over time. Some of these DOAs use an adaptive number
of subpopulations, homogeneous subpopulations, and index-
based clustering, which are introduced in [87]. Li et al. [53],
[68] propose DOAs with varying numbers of subpopulations
and individuals, which use position based clustering.

e) Computational resource allocation: Computational
resource allocation methods are one of the main components of
multi-population DOAs. The aim of these methods is to mon-
itor and manage the consumption of computational resources
by different subpopulations. In the proposed taxonomy, these
methods are classified into five groups which are reviewed in
the following of this part.

Round Robin/Parallel: In many multi-population DOAs,
the computational resources are allocated equally to different
subpopulations. Therefore, depending on the DOA implemen-
tation, the subpopulations are either run in a parallel or con-
current manner using the classic Round Robin method. Using
this method, in each iteration of the DOA, the optimization
process of each subpopulation is run for one internal iteration.
Generally, the uniform allocation of computational resources is
not usually an effective approach as the role of subpopulations,
their task achievements, and their priorities are not taken into
consideration.

Deactivating converged subpopulations: In some DOAs,
to avoid wasting computational resources due to unnecessary
exploitation, the subpopulations that have converged to the
local optimum are deactivated until the next environment.
Kamosi et al. have proposed the idea of deactivation in [49],
which was originally inspired by the removal of converged
subpopulations in [52] to avoid over-exploitation. This idea
has been used in several DOAs [104], [113], [133]. In [42],
the best subpopulation is not involved in the deactivation
method since its output directly affects the output of the
DOA. Therefore, this subpopulation continues to perform
exploitation to improve the quality of the best found solution
in each environment.

Using a local search operator around the best found
position: As stated before, the effectiveness of exploitation
around the best found position directly affects the performance
of the DOA. Considering this, in some DOAs, additional
computational resources are allocated to the best subpopula-
tion in order to strengthen the local search around the best
found position. To this end, these DOAs use a local search
operator on the best found position (among all subpopulations)
in each iteration. This idea was first introduced by Rezazadeh
et al. [106] and has been used in many DOAs [50], [72], [115].

Performance based subpopulation selection: In some
DOAs, the computational resources are allocated to the sub-
populations with higher performance. The performance of
a subpopulation can be defined in different ways. In [88],
a subpopulation’s performance is determined according to
the fitness value of its best found position. A predefined
number of superior subpopulations use the whole computa-
tional resources for a certain period after each environmental
change, while the remaining inferior subpopulations remain
deactivated during this period.

In [92], the performance of each subpopulation is defined
based on two factors: 1) the improvement of subpopulation’s
best found position in the last iteration that it was active, and
2) the difference between the fitness of the subpopulation’s
best found position and the worst of the best found position
among all subpopulations. In each iteration, after determining
the performance of subpopulations, the subpopulation with
the highest performance is run. This subpopulation continues
running until its performance drops below that of another
subpopulation. The primary goal of this resource allocation
method is to run subpopulations that are residing on the best
promising regions (peaks) earlier in each environment. This
method has been improved in [36], where a penalty value is
incorporated with the performance measuring of each subpop-
ulation. The penalty value is deducted from the performance
value of a subpopulation when there is no improvement in its
best found position in the previous iterations.

In [134], the performance of each subpopulation is defined
according to its success rate and the fitness of its best found
position. In this method, the success rate is the number
of improved individuals in the last iteration divided by the
subpopulation size. In each iteration, the subpopulation with
the highest performance is chosen to be run.

Subpopulation size control: Controlling the number of
individuals in subpopulations (i.e., size of a subpopulation)
is another way to manage computational resource consump-
tion. Note that these methods are different from those multi-
population DOAs with varying subpopulation size as a result
of clustering. Herein, each subpopulation size is determined
according to the fitness of its best found position, where better
subpopulations will have larger numbers of individuals and
vice versa. Assigning more individuals to more promising
regions is a way to allocate more computational resources
to strengthen the exploitation around such regions. This idea
is first introduced by Branke [85], where larger numbers of
individuals are assigned to more promising regions. In [74],
[88], more individuals are assigned to the better subpopula-
tions using a migration approach. In this approach, individuals
are removed from the inferior subpopulations and added into
the superior ones. Removing unnecessary individuals around
promising regions is another way to prevent computational
resource wastage. In all reviewed methods in § PA-III-D1a,
where the redundant individuals/subpopulations are random-
ized, the main goal is to increase the global diversity. However,
if the redundant individuals/subpopulations are removed in-
stead of being randomized, the main aim of the method will be
more efficient computational resource allocation [42], [127].

3) Discussion on population division and management:
In this part, we have reviewed DOAs according to the pop-
ulation division and management components they adopt.
Multi-population DOAs outperform single and bi-population
approaches [1], [11] since their structure is more flexible for
addressing diversity loss using the diversity control compo-
nents. In addition, they are quick in reacting to environmental
changes and tracking the global optimum as they usually are
capable of covering multiple promising regions.

Different clustering methods used in the literature to form
subpopulations were reviewed in § PA-III-E2a. Except for the

16

search space division approaches, other clustering methods are
commonly used in designing DOAs. Each class of clustering
methods has its own strength and weak points. For example,
the index-based clustering approaches are easy to implement
and without additional computational load. However, they
do not consider the attributes of individuals, such as their
positions. On the other hand, the clustering methods that
consider such attributes are computationally heavy as they
need to calculate several Euclidean distances. These methods
need some input parameters, such as the number of subpopula-
tions, maximum subpopulation size, or subpopulation radius,
which affect their flexibility and performance. For example,
the clustering methods that use a radius to identify clusters
(e.g., [81]) are less flexible as the value of radius needs to be
tuned for different problems. Similarly, clustering methods that
need the number of clusters as their input are less flexible since
the number of subpopulations is fixed and needs to be tuned
for different problems. Up to now, although many clustering
methods have been used in the literature to form subpopula-
tions, there has been little study that investigates, analyzes,
and compares the effect of different clustering methods on the
performance of DOAs.

Among multi-population DOAs, those with varying popu-
lation size and the number of subpopulations are the most
efficient [53], [89]. In these DOAs, such numbers are usu-
ally adapted to the number of discovered promising regions.
However, these DOAs are challenged in DOPs with large
number of promising regions since generating large numbers
of subpopulations and individuals slowdowns the optimization
process.

Computational resource allocation methods are one of the
most important components of multi-population DOAs. Their
role becomes even more important under specific circum-
stances, such as when there is a large number of subpopu-
lations or when the environmental change frequency is high.
Despite the importance of these methods, little attention has
been given in designing systematic methods which consider
several factors including problem characteristics (such as the
number of discovered promising regions and change fre-
quency), the role of subpopulations, and the task achievements
of subpopulations.

F. Discussion on the proposed taxonomy

In this section, we have reviewed the components used
for designing DOAs in the literature. We defined these com-
ponents according to the classification provided in the pro-
posed taxonomy shown in Figure PA-3. In this taxonomy, we
have covered some important classes of components called
convergence detection and computational resource allocation
that have not been considered in previous taxonomies. In
addition, for the first time, we have classified the components
used for managing subpopulations in multi-population DOAs.
We also have improved the classification of diversity control
components by considering some of their characteristics, such
as their area of effect, which was never considered before.
Components of each class have some specific strengths and
weaknesses, hence they can show different effectiveness for

different DOPs. However, the compatibility of different com-
ponents with each other, and their effectiveness in overcoming
challenges of different types of DOPs have rarely been studied
in the literature.

We started by reviewing the convergence detection com-
ponents which are mostly used by multi-population DOAs.
We have classified these components into two main classes of
fitness and spatial size monitoring methods. Both classes may
generally detect false convergence; however, the spatial size
monitoring methods are more accurate and reliable. Note that
spatial size monitoring methods are computationally complex
as they usually calculate many distances. Usually, some other
components and procedures of DOAs are triggered once a
subpopulation has converged, such as creating a new subpop-
ulation, increasing diversity, and archiving a position in an
explicit archive.

We then studied the change detection components by clas-
sifying them into reevaluation and fitness monitoring based
methods. According to our readings, fitness monitoring based
methods are more error-prone in detecting environmental
changes in comparison to reevaluation based methods. How-
ever, depending on the considered DOPs’ characteristics,
reevaluation based methods may need a larger number of
detectors,, which results in consuming a lot of computational
resources (i.e., fitness evaluations). For example, in a DOP
with a large search space (e.g., high dimensional DOPs and/or
the ones with vast search domains) and local environmen-
tal changes (i.e., some parts of the landscape involve with
changes), we will need a large number of detectors across the
search space to accurately detect changes.

Many real-world problems involve noise [4]. In noisy DOPs,
we cannot directly use reevaluation based change detection
components, because the noise changes the fitness values
of detectors over time. To adapt these components to noisy
environments, we can compare the intensity of the detectors’
fitness fluctuations with the estimated amount of disturbance
caused by noise. Therefore, these components become capable
of detecting environmental changes which are more severe
than noise. However, if the noise intensity differs over the
landscape or if it changes over time, reevaluation based
methods will become significantly deficient. In such circum-
stances, it might be a generally better idea to use change-
independent DOAs whose components are not triggered by
the environmental changes [32], [53], [135]. Finally, it is
worth mentioning that using change detection components is
unnecessary in many real-world DOPs since the DOAs get
informed about the environmental changes.

Another important class of components studied in this
survey is explicit archiving. These components are suitable
for reappearing/cyclic DOPs where the optimum returns to
a previous position or previous environments reappear pe-
riodically. Using explicit archiving components, DOAs will
be capable of archiving historical information and reusing
them for accelerating the tracking process. In addition to
reappearing/cyclic DOPs, explicit archiving components can
be used for DOPs where the optimum trajectory is predictable.
In such DOPs, stored solutions in the archive(s) can be used
as the training dataset for prediction methods to estimate the

17

next position of the optimum, the direction of changes, or the
expected area that will contain the optimum [35], [82]. Note
that explicit archiving components are not useful for solving
unpredictable DOPs [6].

This survey has further classified the diversity control com-
ponents based on their area of effect which can be either a
limited area (i.e., local diversity) or across the search space
(i.e., global diversity). On the one hand, the local diversity
control components are suitable for circumstances where the
optimum relocates slightly after environmental changes. In
such circumstances, increasing/maintaining the local diversity
of a (sub-)population according to the expected optimum’s
relocation length, ameliorates the tracking performance. In
other words, increasing/maintaining local diversity improves
the exploitation capability of a (sub-)population after environ-
mental changes. On the other hand, if the optimum position
can appear/relocate in/to far away or uncover regions of the
search space, DOAs need to increase/maintain their global
diversity to improve their exploration capability. Therefore,
to perform efficient exploitation and exploration after envi-
ronmental changes, both local and global diversity control
components should be used in the structure of the DOAs.

As reviewed in § PA-III-D, some global and local diver-
sity increasing components are triggered after environmental
changes. These components are effective for tackling DOPs
with detectable/visible environmental changes [1]. However,
they cannot be used in DOPs with undetectable environmental
changes [32], [135]. These diversity control components are
also not suitable for DOPs with very high change frequencies,
such as progressive and drifting DOPs that almost continu-
ously change over time (see § PA-II). In such DOPs, the
frequent increase of diversity prevents the algorithm from
converging.

We then have reviewed the population division and manage-
ment components used to create and manage subpopulations in
multi-population DOAs. Population division and management
components provide a better framework to apply diversity
control rather than the single-population methods. Using diver-
sity control components, multi-population DOAs are usually
capable of covering multiple moving promising regions. Ac-
cording to our readings, most developed DOAs, especially in
the last decade, apply multi-population approaches. It should
be mentioned that the popularity of multi-population methods
can be related to the popularity of moving peaks based DOP
benchmarks (see § PB-II). In fact, our investigations indicate
that the majority of the multi-population DOAs are somehow
tailored to tackle these types of DOPs. As the effectiveness
of most multi-population DOAs has not been investigated in
solving real-world DOPs (see § PB-V), their performance in
realistic applications is not entirely clear.

Finally, we have reviewed computational resource allocation
components that are mostly used to manage computational
resource consumption of subpopulations in multi-population
DOAs. Any multi-population DOA uses at least the simplest
type of this component: Round Robin. For DOPs with suffi-
cient computational resources in each environment (e.g., the
ones with low change frequencies), using Round Robin seems
enough. Such DOPs have an adequate amount of computa-

tional resources in each environment, hence subpopulations
can fulfill their tasks (such as tracking optimum) in each
environment by using simple Round Robin. On the other
hand, in DOPs where there is a limited amount of available
computational resources for each environment (e.g., DOPs
with higher change frequencies or larger environments), using
more advanced computational resource allocation components
can considerably improve the performance of DOAs [11].

In the following of this subsection, we will discuss how
to generally develop a DOA by assembling the components
illustrated in Figure PA-3. Note that the following discussion
is derived from our investigations on the most popular and
efficient DOAs in the field.

To develop a DOA, first, we need to decide on the
population structure and choose the population division and
management components. Currently, multi-population DOAs
are the most popular approaches in the field. As discussed
in § PA-III-E3, multi-population components with adaptive
number of subpopulations and overall population size are the
most flexible and efficient methods [53], [89].

We then must choose a resource allocation component (see
§ PA-III-E2e). In the simplest form, the classic Round Robin
method is used. In cases where the available computational
resources in each environment is limited, e.g., when the
number of subpopulations is large (due to a large number
of promising regions/peaks) and/or the change frequency is
high, other computational resource allocation methods should
be used. For example, in [42], the DOA uses the deactiva-
tion component for converged subpopulations, and the Round
Robin method for active subpopulations. This DOA also uses
the local search operator component around the best found
position. Thus, it benefits from three computational resource
allocation components simultaneously.

All DOAs need diversity control components to im-
prove/maintain their exploration and exploitation capabilities
after environmental changes. Unless a DOP’s environmental
changes are undetectable or its environment continuously
changes over time, the components that increase the local
diversity after environmental changes (see § PA-III-D2b)
are good options. For the global diversity control compo-
nent of a multi-population DOA, we should use a com-
ponent that randomizes redundant subpopulations/individuals
(see § PA-III-D1a). Usually, using components that random-
ize the converged subpopulations and redundant subpopula-
tions/individuals can address global diversity loss (i.e., im-
prove/maintain exploration capability) adequately [42], [89].

In case we use any diversity control and population divi-
sion and management components that are triggered after a
subpopulation convergence, we should also add a convergence
detection component. In addition to the components that are
triggered after environmental changes, DOAs need to reeval-
uate their candidate solutions after environmental changes to
address the outdated memory issue. Consequently, a change
detection component is needed unless the DOA is informed
about the environmental changes. In cases of DOPs with
undetectable environmental changes, we cannot use any com-
ponent that is triggered by environmental changes. To address
the outdated memory issue in DOAs which are designed for

18

such DOPs, candidate solutions are frequently reevaluated over
time [32]. Another type of DOPs which need us to add some
additional components to the DOA, are predictable DOPs.
For improving the performance of DOAs in solving such
DOPs, we usually use explicit archiving components to benefit
from the historical information. Finally, a static optimization
algorithm, such as PSO or DE, is embedded into the DOA
framework as the optimization component (see § PB-IV).

Choosing a proper set of components to build a DOA for
tackling a specific DOP can be done by trying different combi-
nations of components and analyzing their performance using
different performance indicators (see § PB-III-A). However,
one main issue is that the characteristics of DOPs such as
change frequency, change severity, largeness (based on the
domain of variables or number of dimensions), predictability,
and change detectability may change over time in some
heterogeneous DOPs. Therefore, selecting a proper set of com-
ponents for all environments of such DOPs may be impossible.
One way to address this challenge is to use hyperheuristic
approaches [19], [136], [137], where the algorithm tries to
choose the most proper set of components according to the
current performance of the DOA.

PA-IV. CONCLUSION

In this two-part survey, we provide a review of the research
done in the field of single-objective unconstrained continu-
ous dynamic optimization problems (DOPs) in the last two
decades. Our main aim is to help researchers to gain an overall
perspective of the current status of the field. In the first part
of this survey, we studied dynamic optimization algorithms
(DOAs). To tackle a DOP, DOAs should continually find
and track the changing optimum while handling the specific
challenges posed by the problem. An efficient DOA is usually
a complex algorithm which is constructed by assembling sev-
eral components. The complexity of these algorithms makes
them hard-to-understand. To improve the understandability of
the structure of DOAs, we have proposed a comprehensive
taxonomy which identifies and classifies the components of
DOAs. Based on the proposed taxonomy, we then provided
an in-depth technical description of each class of components.

In Part B of this survey, we review the DOP benchmarks,
the performance indicators and plots used for analyzing and
comparing the performance of DOAs, the static optimization
algorithms used as the optimization components in DOAs, and
applications of DOAs for the real-world problems. Part B is
concluded by a discussion on the potential future directions in
the field.

REFERENCES

[1] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic optimiza-
tion: A survey of the state of the art,” Swarm Evol. Comput., vol. 6,
pp. 1 – 24, 2012.

[2] T. T. Nguyen and X. Yao, “Continuous dynamic constrained optimiza-
tion—the challenges,” IEEE Trans. Evol. Comput., vol. 16, no. 6, pp.
769–786, 2012.

[3] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelli-
gence for dynamic optimization: Algorithms and applications,” Swarm
Evol. Comput., vol. 33, pp. 1 – 17, 2017.

[4] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments-a survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp.
303–317, 2005.

[5] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic
environments: a survey on problems, methods and measures,” Soft
Comput., vol. 15, no. 7, pp. 1427–1448, 2011.

[6] J. Branke, Evolutionary optimization in dynamic environments.
Springer Science & Business Media, 2012, vol. 3.

[7] S. Yang and X. Yao, Eds., Evolutionary Computation for Dynamic
Optimization Problems. Springer-Verlag Berlin Heidelberg, 2013, vol.
490.

[8] E. Alba, A. Nakib, and P. Siarry, Eds., Metaheuristics for dynamic
optimization. Springer-Verlag Berlin Heidelberg, 2013.

[9] R. W. Morrison, Designing evolutionary algorithms for dynamic envi-
ronments. Springer Science & Business Media, 2013.

[10] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, University of Birmingham, 2011.

[11] D. Yazdani, “Particle swarm optimization for dynamically changing
environments with particular focus on scalability and switching cost,”
Ph.D. dissertation, Liverpool John Moores University, Liverpool, UK,
2018.

[12] S. Yang, Y. Jiang, and T. T. Nguyen, “Metaheuristics for dynamic
combinatorial optimization problems,” IMA Journal of Management
Mathematics, vol. 24, no. 4, pp. 451–480, 2013.

[13] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 459–472, 2006.

[14] C. Raquel and X. Yao, “Dynamic multi-objective optimization: a
survey of the state-of-the-art,” in Evolutionary computation for dynamic
optimization problems. Springer, 2013, pp. 85–106.

[15] R. Azzouz, S. Bechikh, and L. B. Said, “Dynamic multi-objective opti-
mization using evolutionary algorithms: a survey,” in Recent advances
in evolutionary multi-objective optimization. Springer, 2017, pp. 31–
70.

[16] R. Azzouz, “Evolutionary approaches for dynamic multi-objective
optimization,” Ph.D. dissertation, Computer Science Department, Uni-
versity of Tunis, 2017.

[17] C. Bu, W. Luo, and L. Yue, “Continuous dynamic constrained optimiza-
tion with ensemble of locating and tracking feasible regions strategies,”
IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 14–33, 2016.

[18] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Self-adaptation
in dynamic environments– a survey and open issues,” International
Journal of Bio-Inspired Computation, vol. 8, no. 1, pp. 1–13, 2016.

[19] T. Macias-Escobar, B. Dorronsoro, L. Cruz-Reyes, N. Rangel-Valdez,
and C. Gómez-Santillán, “A survey of hyper-heuristics for dynamic
optimization problems,” in Intuitionistic and Type-2 Fuzzy Logic
Enhancements in Neural and Optimization Algorithms: Theory and
Applications. Springer, 2020, pp. 463–477.

[20] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over
time by learning problem space characteristics,” IEEE Trans. Evol.
Comput., vol. 23, no. 1, pp. 143–155, 2018.

[21] D. Yazdani, R. Cheng, D. Yazdani, J. Branke, Y. Jin, and X. Yao,
“A survey of evolutionary continuous dynamic optimization over two
decades – part B,” IEEE Transactions on Evolutionary Computation,
2021.

[22] J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in IEEE Congr. Evol. Comput., vol. 3. IEEE,
1999, pp. 1875–1882.

[23] D. Yazdani, M. N. Omidvar, R. Cheng, J. Branke, T. T. Nguyen, and
X. Yao, “Benchmarking continuous dynamic optimization: Survey and
generalized test suite,” IEEE Trans. Cybern., pp. 1 – 14, 2020.

[24] J. Branke and H. Schmeck, “Designing evolutionary algorithms for
dynamic optimization problems,” in Advances in Evolutionary Com-
puting, A. Ghosh and S. Tsutsui, Eds. Springer Natural Computing
Series, 2003, pp. 239–262.

[25] J. G. O. L. Duhain, “Particle swarm optimisation in dynamically chang-
ing environments - an empirical study,” Master’s thesis, University of
Pretoria, Pretoria, South Africa, 2012.

[26] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems
with particle swarms,” in IEEE Congr. Evol. Comput., vol. 1. IEEE,
2001, pp. 94–100.

[27] K. De Jong, “Evolving in a changing world,” in International Sympo-
sium on Methodologies for Intelligent Systems. Springer, 1999, pp.
512–519.

[28] J. G. O. L. Duhain and A. P. Engelbrecht, “Towards a more complete
classification system for dynamically changing environments,” in IEEE
Congr. Evol. Comput. IEEE, 2012, pp. 1–8.

19

[29] K. Weicker, “Performance measures for dynamic environments,” in
International Conference on Parallel Problem Solving from Nature.
Springer, 2002, pp. 64–73.

[30] B. Nasiri, M. Meybodi, and M. Ebadzadeh, “History-driven particle
swarm optimization in dynamic and uncertain environments,” Neuro-
computing, vol. 172, pp. 356 – 370, 2016.

[31] P. Angeline, “Tracking extrema in dynamic environments,” in Evolu-
tionary Programming VI, P. Angeline et al., Ed. Springer Lecture
Notes in Computer Science, 1997, vol. 1213, pp. 335–345.

[32] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Trans.
Evol. Comput., vol. 16, no. 4, pp. 556–577, 2012.

[33] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of ICNN’95-International Conference on Neural Networks,
vol. 4. IEEE, 1995, pp. 1942–1948.

[34] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Self-adaptive,
multipopulation differential evolution in dynamic environments,” Soft
Comput., vol. 17, no. 10, pp. 1861–1881, 2013.

[35] X. Liu, Z. Zhan, and J. Zhang, “Neural network for change direction
prediction in dynamic optimization,” IEEE Access, vol. 6, pp. 72 649–
72 662, 2018.

[36] M. C. du Plessis and A. P. Engelbrecht, “Differential evolution for
dynamic environments with unknown numbers of optima,” Journal of
Global Optimization, vol. 55, no. 1, pp. 73–99, 2013.

[37] W. Zhang, W. Zhang, G. G. Yen, and H. Jing, “A cluster-based clonal
selection algorithm for optimization in dynamic environment,” Swarm
Evol. Comput., vol. 50, p. 100454, 2019.

[38] W. Luo, R. Yi, B. Yang, and P. Xu, “Surrogate-assisted evolutionary
framework for data-driven dynamic optimization,” IEEE Trans. Emerg.
Topics Comput. Intell., vol. 3, no. 2, pp. 137–150, 2019.

[39] J. K. Kordestani, H. A. Firouzjaee, and M. Reza Meybodi, “An adaptive
bi-flight cuckoo search with variable nests for continuous dynamic
optimization problems,” Applied Intelligence, vol. 48, no. 1, pp. 97–
117, 2017.

[40] J. K. Kordestani, A. Rezvanian, and M. R. Meybodi, “Cdepso: a
bi-population hybrid approach for dynamic optimization problems,”
Applied Intelligence, vol. 40, no. 4, pp. 682–694, 2014.

[41] W. Luo, J. Sun, C. Bu, and H. Liang, “Species-based particle swarm
optimizer enhanced by memory for dynamic optimization,” Appl. Soft
Comput., vol. 47, pp. 130 – 140, 2016.

[42] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Appl. Soft Comput., vol. 13,
no. 4, pp. 2144–2158, 2013.

[43] D. Bose, S. Biswas, S. Kundu, and S. Das, “A strategy pool adaptive
artificial bee colony algorithm for dynamic environment through multi-
population approach,” in Swarm, Evolutionary, and Memetic Comput-
ing, B. K. Panigrahi et al., Ed. Springer Berlin Heidelberg, 2012, pp.
611–619.

[44] T. T. Nguyen, I. Jenkinson, and Z. Yang, “Solving dynamic optimisa-
tion problems by combining evolutionary algorithms with kd-tree,” in
Conference on Soft Computing and Pattern Recognition. IEEE, 2013,
pp. 247–252.

[45] X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation
and adaptation in a dynamic environment,” in Genet. Evol. Comput.
Conf. ACM, 2006, pp. 51–58.

[46] M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for
single objective continuous space problems: a review,” pp. 1–54, 2017.

[47] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
2010.

[48] K. Trojanowski, “Properties of quantum particles in multi-swarms for
dynamic optimization,” Fundamenta Informaticae, vol. 95, no. 2-3, pp.
349–380, 2009.

[49] M. Kamosi, A. B. Hashemi, and M. R. Meybodi, “A hibernating multi-
swarm optimization algorithm for dynamic environments,” in Nature
and Biologically Inspired Computing. IEEE, 2010, pp. 363–369.

[50] A. Sepas-Moghaddam, A. Arabshahi, D. Yazdani, and M. M. Dehshibi,
“A novel hybrid algorithm for optimization in multimodal dynamic
environments,” in Int. Conf. Hybrid Intell. Syst. IEEE, 2012, pp.
143–148.

[51] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Trans. Evol. Comput., vol. 24, no. 1, pp. 1–15, 2019.

[52] C. Li and S. Yang, “A clustering particle swarm optimizer for dynamic
optimization,” in IEEE Congr. Evol. Comput. IEEE, 2009, pp. 439–
446.

[53] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An
adaptive multipopulation framework for locating and tracking multiple
optima,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590–605, 2016.

[54] R. Liaw and C. Ting, “Incorporating fitness inheritance and k-nearest
neighbors for evolutionary dynamic optimization,” in IEEE Congr.
Evol. Comput. IEEE, July 2018, pp. 1–8.

[55] X. Luo, Z. Wang, R. Guan, Z. Zhan, and Y. Gao, “A distributed multiple
populations framework for evolutionary algorithm in solving dynamic
optimization problems,” IEEE Access, vol. 7, pp. 44 372–44 390, 2019.

[56] W. Luo, J. Sun, C. Bu, and R. Yi, “Identifying species for particle
swarm optimization under dynamic environments,” in Symposium Se-
ries on Computational Intelligence (SSCI). IEEE, 2018, pp. 1921–
1928.

[57] D. Yazdani, M. R. Akbarzadeh-Totonchi, B. Nasiri, and M. R. Mey-
bodi, “A new artificial fish swarm algorithm for dynamic optimization
problems,” in IEEE Congr. Evol. Comput. IEEE, 2012, pp. 1–8.

[58] B. Nasiri and M. R. Meybodi, “History-driven firefly algorithm for
optimisation in dynamic and uncertain environments,” International
Journal of Bio-Inspired Computation, vol. 8, no. 5, pp. 326–339, 2016.

[59] M. Mavrovouniotis, F. Neri, and S. Yang, “An adaptive local search
algorithm for real-valued dynamic optimization,” in IEEE Congr. Evol.
Comput. IEEE, 2015, pp. 1388–1395.

[60] A. Carlisle and G. Dozier, “Adapting particle swarm optimization
to dynamic environments,” in International conference on Artificial
Intelligence, 2000, pp. 429–434.

[61] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization:
detection and response to dynamic systems,” in IEEE Congr. Evol.
Comput., vol. 2. IEEE, 2002, pp. 1666–1670.

[62] A. Carlisle and G. Dozler, “Tracking changing extrema with adaptive
particle swarm optimizer,” in World Automation Congress, vol. 13.
IEEE, 2002, pp. 265–270.

[63] T. Blackwell and J. Branke, “Multi-swarm optimization in dynamic
environments,” in Applications of Evolutionary Computing, G. R. Raidl
et al., Ed. Lecture Notes in Computer Science, 2004, vol. 3005, pp.
489–500.

[64] W. Du and B. Li, “Multi-strategy ensemble particle swarm optimization
for dynamic optimization,” Inf. Sci., vol. 178, no. 15, pp. 3096 – 3109,
2008.

[65] A. Meier and O. Kramer, “Prediction with recurrent neural networks
in evolutionary dynamic optimization,” in Applications of Evolutionary
Computation, K. Sim and P. Kaufmann, Eds. Springer International
Publishing, 2018, pp. 848–863.

[66] B. Niu, Q. Liu, and J. Wang, “Bacterial foraging optimization with
memory and clone schemes for dynamic environments,” in Advances
in Swarm Intelligence, Y. Tan et al., Ed. Springer International
Publishing, 2019, pp. 352–360.

[67] H. Richter, “Detecting change in dynamic fitness landscapes,” in IEEE
Congr. Evol. Comput. IEEE, 2009, pp. 1613–1620.

[68] C. Li, S. Yang, and M. Yang, “An adaptive multi-swarm optimizer for
dynamic optimization problems,” Evol. Comput., vol. 22, no. 4, pp.
559–594, 2014.

[69] H. Wang, D. Wang, and S. Yang, “Triggered memory-based swarm op-
timization in dynamic environments,” in Applications of Evolutionary
Computing, M. Giacobini, Ed. Springer Berlin Heidelberg, 2007, pp.
637–646.

[70] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,
“Dynamic optimization using self-adaptive differential evolution,” in
IEEE Congr. Evol. Comput. IEEE, 2009, pp. 415–422.

[71] U. Halder, D. Maity, P. Dasgupta, and S. Das, “Self-adaptive cluster-
based differential evolution with an external archive for dynamic opti-
mization problems,” in Swarm, Evolutionary, and Memetic Computing,
B. K. Panigrahi et al., Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 19–26.

[72] H. Wang, S. Yang, W. Ip, and D. Wang, “A memetic particle swarm op-
timisation algorithm for dynamic multi-modal optimisation problems,”
International Journal of Systems Science, vol. 43, no. 7, pp. 1268–
1283, 2012.

[73] R. Mukherjee, G. R. Patra, R. Kundu, and S. Das, “Cluster-based
differential evolution with crowding archive for niching in dynamic
environments,” Inf. Sci., vol. 267, pp. 58 – 82, 2014.

[74] W. Wu, D. Xie, and L. Liu, “Heterogeneous differential evolution
with memory enhanced brownian and quantum individuals for dynamic
optimization problems,” International Journal of Pattern Recognition
and Artificial Intelligence, vol. 32, no. 02, p. 1859003, 2018.

[75] Y. Bravo, G. Luque, and E. Alba, “Global memory schemes for
dynamic optimization,” Natural Computing, vol. 15, no. 2, pp. 319–
333, 2015.

20

[76] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm
with variable relocation,” IEEE Trans. Evol. Comput., vol. 13, no. 3,
pp. 500–513, 2009.

[77] A. M. Turky and S. Abdullah, “A multi-population harmony search
algorithm with external archive for dynamic optimization problems,”
Inf. Sci., vol. 272, pp. 84 – 95, 2014.

[78] T. Zhu, W. Luo, and L. Yue, “Combining multipopulation evolutionary
algorithms with memory for dynamic optimization problems,” in IEEE
Congr. Evol. Comput. IEEE, 2014, pp. 2047–2054.

[79] R. Vafashoar and M. R. Meybodi, “A multi-population differential evo-
lution algorithm based on cellular learning automata and evolutionary
context information for optimization in dynamic environments,” Appl.
Soft Comput., p. 106009, 2019.

[80] H. Nakano, M. Kojima, and A. Miyauchi, “An artificial bee colony
algorithm with a memory scheme for dynamic optimization problems,”
in IEEE Congr. Evol. Comput. IEEE, 2015, pp. 2657–2663.

[81] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Trans. Evol.
Comput., vol. 10, no. 4, pp. 440–458, 2006.

[82] X. Liu, Z. Zhan, T. Gu, S. Kwong, Z. Lu, H. B. Duh, and J. Zhang,
“Neural network-based information transfer for dynamic optimization,”
IEEE Transactions on Neural Networks and Learning Systems, pp. 1–
14, 2019.

[83] W. Zhang, M. Zhang, W. Zhang, Y. Meng, and H. Wu, “Innate-adaptive
response and memory based artificial immune system for dynamic
optimization,” International Journal of Performability Engineering,
vol. 14, no. 9, p. 2048, 2018.

[84] X.-F. Liu, Y.-R. Zhou, X. Yu, and Y. Lin, “Dual-archive-based particle
swarm optimization for dynamic optimization,” Appl. Soft Comput., p.
105876, 2019.

[85] J. Branke, T. Kaussler, C. Schmidt, and H. Schmeck, “A multi-
population approach to dynamic optimization problems,” in Evolution-
ary Design and Manufacture. Springer, 2000, pp. 299–307.

[86] R. Mendes and A. S. Mohais, “DynDE: a differential evolution for
dynamic optimization problems,” in IEEE Congr. Evol. Comput., vol. 3.
IEEE, 2005, pp. 2808–2815.

[87] T. Blackwell, Particle Swarm Optimization in Dynamic Environments.
Springer Berlin Heidelberg, 2007, pp. 29–49.

[88] M. C. du Plessis and A. P. Engelbrecht, “Improved differential evo-
lution for dynamic optimization problems,” in IEEE Congr. Evol.
Comput. IEEE, 2008, pp. 229–234.

[89] T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic
optimization problems,” in Swarm Intelligence: Introduction and Ap-
plications, C. Blum and D. Merkle, Eds. Springer Lecture Notes in
Computer Science, 2008, pp. 193–217.

[90] I. Rezazadeh, M. R. Meybodi, and A. Naebi, “Adaptive particle swarm
optimization algorithm in dynamic environments,” in Computational
Intelligence, Modelling and Simulation. IEEE, 2011, pp. 74–79.

[91] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, vol. 10, no. 2-3, pp.
191–203, 1984.

[92] M. C. du Plessis and A. P. Engelbrecht, “Using competitive population
evaluation in a differential evolution algorithm for dynamic environ-
ments,” European Journal of Operational Research, vol. 218, no. 1,
pp. 7–20, 2012.

[93] L. Xiao and X. Zuo, “Multi-depso: A de and pso based hybrid
algorithm in dynamic environments,” in IEEE Congr. Evol. Comput.
IEEE, 2012, pp. 1–7.

[94] J. K. Kordestani, M. R. Meybodi, and A. M. Rahmani, “A note on
the exclusion operator in multi-swarm pso algorithms for dynamic
environments,” Connection Science, pp. 1–25, 2019.

[95] D. Parrott and Xiaodong Li, “A particle swarm model for tracking
multiple peaks in a dynamic environment using speciation,” in IEEE
Congr. Evol. Comput., vol. 1. IEEE, 2004, pp. 98–103.

[96] S. Bird and X. Li, “Using regression to improve local convergence,”
in IEEE Congr. Evol. Comput. IEEE, 2007, pp. 592–599.

[97] W. Luo, X. Lin, T. Zhu, and P. Xu, “A clonal selection algorithm
for dynamic multimodal function optimization,” Swarm Evol. Comput.,
vol. 50, p. 100459, 2019.

[98] A. B. Hashemi and M. R. Meybodi, “Cellular pso: A pso for dynamic
environments,” in Advances in Computation and Intelligence, Z. Cai
et al., Ed. Springer Berlin Heidelberg, 2009, pp. 422–433.

[99] A. B. Hashemi and M. R. Meybodi, “A multi-role cellular pso for
dynamic environments,” in International CSI Computer Conference.
IEEE, 2009, pp. 412–417.

[100] A. Sharifi, V. Noroozi, M. Bashiri, A. B. Hashemi, and M. R. Meybodi,
“Two phased cellular pso: A new collaborative cellular algorithm for
optimization in dynamic environments,” in IEEE Congr. Evol. Comput.
IEEE, 2012, pp. 1–8.

[101] J. Kari, “Theory of cellular automata: A survey,” Theoretical Computer
Science, vol. 334, no. 1, pp. 3 – 33, 2005.

[102] K. Trojanowski and Z. Michalewicz, “Searching for optima in non-
stationary environments,” in IEEE Congr. Evol. Comput., vol. 3, 1999,
pp. 1843–1850.

[103] J. Karimi, H. Nobahari, and S. Pourtakdoust, “A new hybrid approach
for dynamic continuous optimization problems,” Appl. Soft Comput.,
vol. 12, no. 3, pp. 1158 – 1167, 2012.

[104] P. Novoa-Hernández, D. A. Pelta, and C. C. Corona, Improvement
Strategies for Multi-swarm PSO in Dynamic Environments. Springer
Berlin Heidelberg, 2010, pp. 371–383.

[105] S. K. Nseef, S. Abdullah, A. Turky, and G. Kendall, “An adaptive multi-
population artificial bee colony algorithm for dynamic optimisation
problems,” Knowledge-Based Systems, vol. 104, pp. 14 – 23, 2016.

[106] I. Rezazadeh, M. R. Meybodi, and A. Naebi, “Particle swarm optimiza-
tion algorithm in dynamic environments: Adapting inertia weight and
clustering particles,” in European Symposium on Computer Modeling
and Simulation. IEEE, 2011, pp. 76–82.

[107] X. Zuo and L. Xiao, “A de and pso based hybrid algorithm for dynamic
optimization problems,” Soft Comput., vol. 18, no. 7, pp. 1405–1424,
2013.

[108] F. B. Ozsoydan and A. Baykasoglu, “A multi-population firefly algo-
rithm for dynamic optimization problems,” in Conference on Evolving
and Adaptive Intelligent Systems. IEEE, 2015, pp. 1–7.

[109] L. Shen, L. Xu, R. Wei, and L. Cao, “Multi-swarm optimization with
chaotic mapping for dynamic optimization problems,” in 2015 8th
International Symposium on Computational Intelligence and Design
(ISCID), vol. 2. IEEE, 2015, pp. 132–137.

[110] R. I. Lung and D. Dumitrescu, “A collaborative model for tracking
optima in dynamic environments,” in IEEE Congr. Evol. Comput.
IEEE, 2007, pp. 564–567.

[111] S. Biswas, D. Bose, and S. Kundu, “A clustering particle based
artificial bee colony algorithm for dynamic environment,” in Swarm,
Evolutionary, and Memetic Computing, B. K. Panigrahi et al., Ed.
Springer Berlin Heidelberg, 2012, pp. 151–159.

[112] P. Novoa, D. A. Pelta, C. Cruz, and I. G. del Amo, “Controlling particle
trajectories in a multi-swarm approach for dynamic optimization prob-
lems,” in Methods and Models in Artificial and Natural Computation.
A Homage to Professor Mira’s Scientific Legacy, J. Mira et al., Ed.
Springer Berlin Heidelberg, 2009, pp. 285–294.

[113] I. G. del Amo, D. A. Pelta, and J. R. González, “Using heuristic rules to
enhance a multiswarm pso for dynamic environments,” in IEEE Congr.
Evol. Comput. IEEE, 2010, pp. 1–8.

[114] X. Zheng and H. Liu, “A different topology multi-swarm pso in
dynamic environment,” in International Symposium on IT in Medicine
Education, vol. 1. IEEE, 2009, pp. 790–795.

[115] B. Nasiri and M. R. Meybodi, “Speciation based firefly algorithm for
optimization in dynamic environments,” Int. J. Artif. Intell., vol. 8, no.
S12, pp. 118–132, 2012.

[116] S. Abdullah, S. K. Nseef, and A. Turky, “An interleaved artificial
bee colony algorithm for dynamic optimisation problems,” Connection
Science, vol. 30, no. 3, pp. 272–284, 2017.

[117] A. Turky, S. Abdullah, and A. Dawod, “A dual-population multi oper-
ators harmony search algorithm for dynamic optimization problems,”
Computers & Industrial Engineering, vol. 117, pp. 19 – 28, 2018.

[118] R. Thomsen, “Multimodal optimization using crowding-based differ-
ential evolution,” in IEEE Congr. Evol. Comput., vol. 2. IEEE, 2004,
pp. 1382–1389.

[119] R. I. Lung and D. Dumitrescu, “Evolutionary swarm cooperative
optimization in dynamic environments,” Natural Computing, vol. 9,
no. 1, pp. 83–94, 2010.

[120] S. Das, A. Mandal, and R. Mukherjee, “An adaptive differential
evolution algorithm for global optimization in dynamic environments,”
IEEE Trans. Cybern., vol. 44, no. 6, pp. 966–978, 2014.

[121] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments,” in International Conference on Genetic Algo-
rithms. Morgan Kaufmann Publishers Inc., 1993, pp. 523–530.

[122] C. Hu, X. Wu, Y. Wang, and F. Xie, “Multi-swarm particle swarm
optimizer with cauchy mutation for dynamic optimization problems,” in
Advances in Computation and Intelligence, Z. Cai et al., Ed. Springer
Berlin Heidelberg, 2009, pp. 443–453.

21

[123] P. Novoa-Hernández, C. C. Corona, and D. A. Pelta, “Efficient multi-
swarm pso algorithms for dynamic environments,” Memetic Computing,
vol. 3, no. 3, pp. 163–174, Aug 2011.

[124] J. K. Kordestani, A. Rezvanian, and M. R. Meybodi, “An efficient
oscillating inertia weight of particle swarm optimisation for tracking
optima in dynamic environments,” Journal of Experimental & Theo-
retical Artificial Intelligence, vol. 28, no. 1-2, pp. 137–149, 2015.

[125] C. Li, T. T. Nguyen, M. Yang, S. Yang, and S. Zeng, “Multi-population
methods in unconstrained continuous dynamic environments: The chal-
lenges,” Inf. Sci., vol. 296, pp. 95 – 118, 2015.

[126] V. Noroozi, A. B. Hashemi, and M. R. Meybodi, “Cellularde: A cellular
based differential evolution for dynamic optimization problems,” in
Adaptive and Natural Computing Algorithms, A. Dobnikar et al., Ed.
Springer Berlin Heidelberg, 2011, pp. 340–349.

[127] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Trans.
Evol. Comput., vol. 14, no. 6, pp. 959–974, 2010.

[128] C. D. Manning, P. Raghavan, and H. Schutze, Introduction to Infor-
mation Retrieval. Cambridge University Press, 2008.

[129] W. Luo, B. Yang, C. Bu, and X. Lin, “A hybrid particle swarm
optimization for high-dimensional dynamic optimization,” in Simulated
Evolution and Learning, Y. Shi et al., Ed. Cham: Springer International
Publishing, 2017, pp. 981–993.

[130] S. Kundu, D. Basu, and S. S. Chaudhuri, “Multipopulation-based
differential evolution with speciation-based response to dynamic en-
vironments,” in Swarm, Evolutionary, and Memetic Computing, B. K.
Panigrahi et al., Ed. Springer International Publishing, 2013, pp. 222–
235.

[131] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A novel particle
swarm optimization algorithm with adaptive inertia weight,” Appl. Soft
Comput., vol. 11, no. 4, pp. 3658 – 3670, 2011.

[132] C. Li and S. Yang, “Fast multi-swarm optimization for dynamic
optimization problems,” in International Conference on Natural Com-
putation, vol. 7. IEEE, 2008, pp. 624–628.

[133] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. Meybodi, and
M. Akbarzadeh-Totonchi, “mNAFSA: a novel approach for optimiza-
tion in dynamic environments with global changes,” Swarm Evol.
Comput., vol. 18, pp. 38 – 53, 2014.

[134] J. K. Kordestani, A. E. Ranginkaman, M. R. Meybodi, and P. Novoa-
Hernández, “A novel framework for improving multi-population algo-
rithms for dynamic optimization problems: A scheduling approach,”
Swarm Evol. Comput., vol. 44, pp. 788 – 805, 2019.

[135] C. Li, S. Yang, and M. Yang, “Maintaining diversity by clustering in
dynamic environments,” in IEEE Congr. Evol. Comput. IEEE, 2012,
pp. 1–8.

[136] B. Kiraz, A. Ş. Etaner-Uyar, and E. Özcan, “Selection hyper-heuristics
in dynamic environments,” Journal of the Operational Research Soci-
ety, vol. 64, no. 12, pp. 1753–1769, 2013.

[137] S. A. van der Stockt and A. P. Engelbrecht, “Analysis of selection
hyper-heuristics for population-based meta-heuristics in real-valued
dynamic optimization,” Swarm Evol. Comput., vol. 43, pp. 127–146,
2018.

