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ABSTRACT

Context. As observational evidence steadily accumulates, the nature of the Galactic bulge has proven to be rather complex: the struc-
tural, kinematic, and chemical analyses often lead to contradictory conclusions. The nature of the metal-rich bulge – and especially
of the metal-poor bulge – and their relation with other Galactic components, still need to be firmly defined on the basis of statistically
significant high-quality data samples.
Aims. We used the fourth internal data release of the Gaia-ESO survey to characterize the bulge metallicity distribution function
(MDF), magnesium abundance, spatial distribution, and correlation of these properties with kinematics. Moreover, the homogeneous
sampling of the different Galactic populations provided by the Gaia-ESO survey allowed us to perform a comparison between the
bulge, thin disk, and thick disk sequences in the [Mg/Fe] vs. [Fe/H] plane in order to constrain the extent of their eventual chemical
similarities.
Methods. We obtained spectroscopic data for ∼ 2500 red clump stars in 11 bulge fields, sampling the area −10◦ ≤ l ≤ +8◦ and
−10◦ ≤ b ≤ −4◦ from the fourth internal data release of the Gaia-ESO survey. A sample of ∼ 6300 disk stars was also selected for
comparison. Spectrophotometric distances computed via isochrone fitting allowed us to define a sample of stars likely located in the
bulge region.
Results. From a Gaussian mixture models (GMM) analysis, the bulge MDF is confirmed to be bimodal across the whole sampled area.
The relative ratio between the two modes of the MDF changes as a function of b, with metal-poor stars dominating at high latitudes.
The metal-rich stars exhibit bar-like kinematics and display a bimodality in their magnitude distribution, a feature which is tightly
associated with the X-shape bulge. They overlap with the metal-rich end of the thin disk sequence in the [Mg/Fe] vs. [Fe/H] plane.
On the other hand, metal-poor bulge stars have a more isotropic hot kinematics and do not participate in the X-shape bulge. Their Mg
enhancement level and general shape in the [Mg/Fe] vs. [Fe/H] plane is comparable to that of the thick disk sequence. The position
at which [Mg/Fe] starts to decrease with [Fe/H], called the “knee”, is observed in the metal-poor bulge at [Fe/H]knee = −0.37 ± 0.09,
being 0.06 dex higher than that of the thick disk. Although this difference is inside the error bars, it suggest a higher star formation
rate (SFR) for the bulge than for the thick disk. We estimate an upper limit for this difference of ∆[Fe/H]knee = 0.24 dex. Finally, we
present a chemical evolution model that suitably fits the whole bulge sequence by assuming a fast (< 1 Gyr) intense burst of stellar
formation that takes place at early epochs.
Conclusions. We associate metal-rich stars with the bar boxy/peanut bulge formed as the product of secular evolution of the early
thin disk. On the other hand, the metal-poor subpopulation might be the product of an early prompt dissipative collapse dominated
by massive stars. Nevertheless, our results do not allow us to firmly rule out the possibility that these stars come from the secular
evolution of the early thick disk. This is the first time that an analysis of the bulge MDF and α-abundances has been performed in a
large area on the basis of a homogeneous, fully spectroscopic analysis of high-resolution, high S/N data.

Key words. Galaxy: bulge, formation, abundances, stellar content – stars: abundances

? Based on data products from observations made with ESO Tele-
scopes at the La Silla Paranal Observatory under programme ID 188.B-
3002. These data products have been processed by the Cambridge
Astronomy Survey Unit (CASU) at the Institute of Astronomy, Uni-
versity of Cambridge, and by the FLAMES/UVES reduction team at
INAF/Osservatorio Astrofisico di Arcetri. These data have been ob-
tained from the Gaia-ESO Survey Data Archive, prepared and hosted
by the Wide Field Astronomy Unit, Institute for Astronomy, Univer-
sity of Edinburgh, which is funded by the UK Science and Technology
Facilities Council.

1. Introduction

The Galactic bulge is the Rosetta stone for our understanding
of galaxy formation and evolution. Being a major Galactic com-
ponent, comprising around a quarter of the Milky Way stellar
mass (Mbulge = 2.0 ± 0.3 × 1010M�, Valenti et al. 2016), and
covering around 500-600 square degrees in the sky, the Galac-
tic bulge provides us with the closest example of this kind of
frequent galactic structure. As a predominantly old stellar pop-
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ulation (Zoccali et al. 2003; Clarkson et al. 2008)1, it witnessed
the very early formation history of the Milky Way, and its stars
contain a detailed record of the past chemodynamical events that
shaped its current observable properties. This valuable informa-
tion can be read from photometric and/or spectroscopic obser-
vations of its resolved stellar populations. The star-by-star study
of its stellar content, together with the great degree of detail that
is possible to achieve with the current large aperture telescopes
and multiobject spectroscopy, have turned the bulge into an op-
portunity to perform near field cosmology in order to test any
envisaged scenario of galaxy formation.

Currently, there are two broad scenarios of bulge formation.
The first assumes an early prompt formation, whether through a
dissipative collapse of a primordial cloud contracting in a free-
fall time (Eggen et al. 1962) or through the accretion of sub-
structures, disk clumps, or external building blocks in a ΛCDM
context (Scannapieco & Tissera 2003; Immeli et al. 2004). The
predicted outcome of this process is a classical bulge, a centrally
concentrated spheroidal structure, predominantly made up of old
stars and dynamically sustained by isotropic random orbital mo-
tions. The second scenario conceives the bulge formation as the
product of secular internal evolution of the early disk over longer
timescales. In this case, dynamical instabilities of the early in-
ner disk lead to the formation of a bar, a structure which sub-
sequently undergoes vertical instabilities, buckling, and redis-
tributing disk angular momentum in the vertical direction. The
resulting structure – which has a characteristic boxy peanut (B/P)
or, in extreme cases, an X-shaped morphology – is commonly
called a pseudobulge.

In the last decade, the study of the Milky Way bulge has ex-
perienced a revolution, mainly driven by technical improvements
in instrumentation and telescope aperture, allowing the execu-
tion of several mid- and large-scale spectroscopic and photomet-
ric surveys of the central Galactic region. The complex picture
that has emerged from this very active research makes it evident
that the Galactic bulge can no longer be considered a simple ho-
mogeneous structure.

The Galactic bulge hosts a bar (e.g., de Vaucouleurs 1964;
Liszt & Burton 1980; Weiland et al. 1994), currently charac-
terized as a triaxial structure of ∼ 3.5 kpc in length flaring up
into an X-shape structure (Wegg & Gerhard 2013; Ness & Lang
2016). This configuration is predicted as an outcome of secular
disk evolution.

On the other hand, the metallicity distribution function
(MDF) study by Zoccali et al. (2008) demonstrated the exis-
tence of a vertical metallicity gradient along the bulge minor
axis in the range b = [−4 : −12]◦. This gradient, already sug-
gested by Minniti et al. (1995), was interpreted as the signature
of classical bulge formation. Using the same sample, Babusiaux
et al. (2010) showed that metal-rich stars present a vertex devi-
ation compatible with bar driven kinematics. Instead, the metal-
poor component exhibits isotropic kinematics, as expected for
a classical spheroid. The work of Hill et al. (2011) on Baade’s
window, revealed that these kinematical signatures can be cor-
related with a bimodal nature of the MDF, which is also found
in other fields (Uttenthaler et al. 2012; Rojas-Arriagada et al.
2014; Gonzalez et al. 2015; Zoccali et al. 2017). The work of
Ness et al. (2013a) challenged this picture from their analysis

1 Clarkson et al. (2011) studied the CMD of proper motion selected
bulge stars with HST photometry, and found that only ≤ 3.4% of the
bulge population can be younger than 5 Gyr. However, from the spec-
troscopic analysis of a sample of lensed bulge dwarfs, Bensby et al.
(2013) found that nearly 22% are younger than 5 Gyr.

of ∼ 10200 likely bulge stars from the ARGOS survey. In fact,
their MDFs from l = ±15◦ strips at b = −5◦, −7.5◦, −10◦ are
trimodal. They related the double red clump feature, a signature
of the B/P bulge, only with [Fe/H] ≥ −0.5 stars, and the verti-
cal metallicity gradient with a change in the relative size of the
metallicity components. The determination of the intrinsic shape
of the bulge metallicity distribution function is fundamental be-
cause its exact multimodal shape can be related with a number
of different bulge formation channels.

In this general context, attempts to conciliate morphological,
chemical, and kinematical evidence argue for a composite nature
of the bulge. Recent research seems to agree on the bar-driven
secular origin of the metal-rich bulge. Secular evolution through
disk instability is able to reproduce the chemical, morphological,
and kinematic properties displayed by bulge stars in this metal-
licity range. Instead, there is less consensus on the origin of the
metal-poor bulge. Its spatial distribution seems to be uncorre-
lated with the bar position, appearing as an extended, centrally
concentrated and possibly spheroidal component. This is sup-
ported by the distribution found for other tracers of metal-poor
old populations such as RR Lyrae stars (Pietrukowicz et al. 2012,
Dékány et al. 2013, Kunder et al. 2016, Gran et al. 2016, but see
also Pietrukowicz et al. 2015). On the chemical abundance side,
α-abundance ratios with respect to iron are systematically en-
hanced over its whole metallicity range.

Detailed comparisons between bulge and thick disk samples
in the [α/Fe] vs. [Fe/H] plane provide a direct way to try to un-
derstand the origin of the metal-poor bulge. Early attempts in
this direction (Zoccali et al. 2006; Lecureur et al. 2007; Ful-
bright et al. 2007) claimed that the bulge presents higher α-
enhancements relative to the thick disk. Meléndez et al. (2008)
and Alves-Brito et al. (2010) attributed this result to system-
atic effects arising from the comparison of giant and dwarf sam-
ples given their different temperature and gravity regimes. Their
homogeneous sample of bulge and local thick disk giants dis-
play chemical similarities, with similar trends in the [α/Fe] vs.
[Fe/H] plane, and presumably a comparable location of the so-
called “knee” in the sequences of both populations. Similarities
between the bulge and the thick disk have also been suggested
using dwarf stars (Bensby et al. 2013, 2014). The study of the
detailed chemical abundance patterns from statistically signifi-
cant homogeneously analyzed samples can shed light on the ini-
tial conditions, physical processes, and relative timescales char-
acterizing formation and evolution of the bulge and thick disk
populations.

All in all, the puzzle of bulge formation has many pieces,
and not all of them are currently in their definitive place. In
this paper, we provide new evidence on some of the issues dis-
cussed above. To this end, we made use of data coming from the
fourth internal data release of the Gaia-ESO survey (iDR4). The
Gaia-ESO survey is a large ongoing public spectroscopic survey
(300 nights from the end of 2011 to the end of 2016) targeting
∼ 105 stars distributed in all the main components of the Milky
Way: the halo, bulge, and the disk system (Gilmore et al. 2012).
The present study is an extension of our previous work (Rojas-
Arriagada et al. 2014), which was based on a subset of the fields
studied here and not including the analysis of individual abun-
dances. The structure of the paper is as follows. In Sect. 2 the
data are presented, the selection function of the Gaia ESO sur-
vey described, and the data processing outlined. In Sect. 3 we
present the method and the results obtained for stellar distances
and reddening determinations from an isochrone fitting proce-
dure. The bulge metallicity distribution function is presented in
Sect. 4, while the trends in the [Mg/Fe] vs. [Fe/H] and correla-
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Fig. 1. Position of the 11 bulge fields analyzed in the present study. The five red circles indicate the fields already examined in Rojas-Arriagada
et al. (2014) (Gaia-ESO survey iDR1), while the six green circles show the extra fields observed up to the iDR4. Each field is labeled according to
the name coding adopted throughout the paper and based on the Galactic coordinates. The background image corresponds to an extinction map of
the bulge region according to the Schlegel et al. (1998) prescription. The blue color density code saturates close to the plane where the extinction
is high. A horizontal dashed gray line indicates b = −7◦, used to divide the sample into fields close to and far from the plane.

tions with kinematics in Sect. 5. A search for chemical similari-
ties between the bulge and the thick disk is presented in Sect. 6.
A comparison with a chemical evolution model is presented in
Sect. 7. Finally, the discussion and our conclusions are drawn in
Sect. 8.

2. Data

In the present study, we made use of data coming from the fourth
internal data release of the Gaia-ESO survey. The Gaia-ESO sur-
vey consortium is based on working groups in charge of the dif-
ferent tasks, from target selection and observation to the deriva-
tion of the different fundamental parameters and abundances re-
quired to achieve the scientific goals of the survey. A general
description of the survey can be found in Gilmore et al. (2012),
while a description of the data processing flow is briefly outlined
below.

We work with a sample of 2320 red clump stars from obser-
vations collected up to the iDR4 of the Gaia-ESO survey. They
are distributed in 11 pointings toward the bulge region. The po-
sitions of the observed fields2 are illustrated in Fig. 1 overplot-
ted on top of an extinction map of the bulge region (using data
from the extinction maps of Schlegel et al. 1998). Five of the
fields were already observed during the first nine months of the
Gaia-ESO survey project, and released in the iDR1. They were
analyzed in a previous Gaia-ESO survey publication (Rojas-
Arriagada et al. 2014), although the α-abundances were not in-
cluded in iDR1. For comparison purposes, a sample of 228 red
giant branch (RGB) and red clump stars in Baade’s window was
adopted from Zoccali et al. (2008) and Hill et al. (2011). These
comparison stars were reobserved and analyzed in the same way
as the rest of the Gaia-ESO survey bulge targets, and added to

2 We refer to the fields throughout the paper by a name convention
using their Galactic longitude l and latitude b, and the p/m letter coding
the ± sign, to assemble their names. For example, the field at l = 7
b = −9 is named p7m9.

the main sample making a total of 2548 stars. In addition, a
set of spectroscopic benchmark stars were observed to calibrate
the computed spectroscopic parameters. Spectra were obtained
with the ESO/VLT/FLAMES facility (Pasquini et al. 2000) in
the MEDUSA mode of the GIRAFFE multi-object spectrograph.
Only the HR21 setup was employed (except for half of the stars
in the comparison sample, which were also observed with the
HR10 setup), providing a spectral coverage spanning from 8484
to 9001 Å with a resolving power of R ∼ 16200. The general
quality of the obtained spectra is quite good: the average signal-
to-noise ratio (S/N) is 290 and no spectrum has less than 80 per
resolution element.

2.1. Target selection

The targets were selected with a photometric selection function
specifically designed for the bulge portion of the Gaia-ESO sur-
vey. It made use of J and Ks photometry available from the Vista
Variables in the Via Lactea project (VVV; Minniti et al. 2010).
This selection is illustrated in Fig. 2. A generic color cut se-
lects stars with (J-Ks)0 > 0.38 mag, which is imposed on the
dereddened photometry in each field according to the values es-
timated from the reddening map of Gonzalez et al. (2011)3. This
cut, defining the left border of the selection box in Fig. 2, is blue
enough to allow metal-poor bulge stars to be included in the sam-
ple, but has the drawback of including a number of foreground
dwarf main-sequence stars. This sample contamination enters in
a variable proportion according to the field extinction. The latter
because the dwarf disk stars are distributed in the CMD mostly in
a vertical band at the blue side of the bulge RC. This blue plume
is on average less affected by the reddening than the bulge RC, so
that the difference in color between the two features depends on
the specific field extinction. In Fig. 2, the dwarf thin disk plume

3 These maps, derived from VVV and 2MASS photometric data,
are accessible at http://mill.astro.puc.cl/BEAM/calculator.
php.

Article number, page 3 of 18

http://mill.astro.puc.cl/BEAM/calculator.php
http://mill.astro.puc.cl/BEAM/calculator.php


A&A proofs: manuscript no. bulge_ges_idr4

Fig. 2. Gaia-ESO Survey bulge selection function. The background
Hess diagram depicts a generic CMD in the bulge region from VVV
photometry. Prominent sequences are labeled. A shaded white area in-
dicates the main selection function, with color and magnitude cuts of
(J-Ks)0 > 0.38 and 12.9 < J0 < 14.1, respectively. The green shaded
area indicates the magnitude extension implemented in fields where the
double red clump feature is visible. The whole spectroscopic sample
analyzed in the present study is displayed with black dots.

is visible at J − K0 ∼ 0.35 mag, while that corresponding to the
disk RC at J −K0 ∼ 0.65 mag. Since RC stars are good standard
candles, the RC sequence clumps in magnitude whenever these
stars clump spatially. This happens at J0 = 13.5 mag which, in
fact, corresponds to the mean apparent magnitude of a RC star
located in the Galactic bulge. On the other hand, a generic mag-
nitude cut selects stars with (12.9 < J0 < 14.1 mag. This 1.2
mag interval is in general large enough to select stars located in
the bulge RC peak of the field luminosity function, accounting
for the spatial distance spread of the bar and the change in mean
magnitude with longitude because of the bar position angle. In a
number of fields where a double RC is observed in the luminos-
ity function, the magnitude cut would not fit the entire magnitude
extension of the bar. In these cases, an extension of the magni-
tude limit was allowed to include up to 30% of the targets in an
extra 0.3 mag below the nominal cut.

The above selection function draws the main sample of 2320
RC stars. Instead, the sample of 228 comparison stars have se-
lection functions described in Zoccali et al. (2008) and Hill et al.
(2011).

2.2. Radial velocities, stellar parameters, and individual
abundances

Radial velocities are measured by the Gaia-ESO survey with
a dedicated pipeline by cross-correlation against real and syn-
thetic spectra (Koposov et al., in prep). In our sample, veloc-
ity uncertainties are lower than 0.4 km s−1 . The determination
and compilation of a recommended set of atmospheric parame-
ters and elemental abundances is performed by the Gaia-ESO
survey working group 10 (WG10) for all the F-, G-, and K-
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Fig. 3. HR diagram of the bulge sample stars for which iron determina-
tions from FeI lines are available (2292 out of 2548 stars). Stars selected
with the Gaia-ESO photometric selection function are indicated as full
circles color-coded by metallicity. The subset of RC and RGB compar-
ison stars are indicated by black crosses. Two dashed gray lines mark
log g =1.5 and 3.5 dex.
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Fig. 4. Color magnitude diagram of the whole spectroscopic sample.
Stars with log(g) > 3.5 are marked as open brown circles, while those
with log(g) < 3.5 as filled orange circles. The comparison sample of RC
and RGB stars (all with log(g) < 3.5) are indicated by black crosses.

type stars observed with GIRAFFE. A detailed description of
the process will be published in Recio-Blanco et al. (in prep).
In short, the individual spectra are analyzed using three inde-
pendent approaches: Spectroscopy Made Easy (SME; Valenti &
Piskunov 1996), FERRE (Allende Prieto et al. 2006), and MA-
TISSE (Recio-Blanco et al. 2006). This is performed in a model-
driven way by comparing the observed spectra against synthetic
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Table 1. Characterization of the observed fields. Signal-to-noise ratios
are the field average. E(J-K)G11 corresponds to the reddening as com-
puted from the extinction maps of Gonzalez et al. (2011) in a box of 30
arcmin per side centered in the respective (l, b) coordinates. E(J-K) f it
values are those estimated in Sect. 3 from isochrone fitting. Finally,
NG/Nfld provides the ratio between giant (log(g) < 3.5) and the total
number of stars per field.

Field l b SN E(J-K)G11 E(J-K) f it NG/Nfld
name
p1m4 1.00 -3.97 364 0.26 0.20 359/369
p0m6 0.18 -6.03 254 0.14 0.17 180/204
m1m10 -0.74 -9.45 340 0.03 0.06 131/187
p7m9 6.85 -8.87 244 0.10 0.11 200/221
m10m8 -9.78 -8.09 347 0.03 0.08 234/310
m4m5 -3.72 -5.18 192 0.19 0.18 89/94
m6m6 -6.57 -6.18 168 0.13 0.13 189/206
p0m8 0.03 -8.06 310 0.06 0.07 81/98
p2m9 1.71 -9.22 362 0.08 0.08 81/105
p8m6 7.63 -5.86 250 0.22 0.20 284/302
p6m9 6.01 -9.62 279 0.09 0.08 159/196

templates, whether interpolated from a dense grid or computed
on the fly. In this way Teff , log g , [M/H], and [α/Fe] are deter-
mined by the three nodes. A set of spectroscopic benchmark stars
(Jofré et al. 2015) is analyzed in the same way. For each node, the
differences between the calculated and the nominal fundamental
parameters are estimated for the set of benchmark stars. Using
these values, the node results for a given program star are bias
corrected into the astrophysical scale given by the benchmark
stars, and then combined in average to produce a unique set of
atmospheric parameters while reducing the random errors of in-
dividual determinations. The corresponding errors are computed
as the node-to-node dispersion in order to properly account for
large node-to-node discrepancy in low-quality parametrization.
They constitute the recommended set of model-driven, multi-
method fundamental parameters by the Gaia-ESO survey con-
sortium.

This set of parameters, the Gaia-ESO survey linelist used to
compute the synthetic spectra in the previous step (Heiter et al.
2015), and the MARCS model atmospheres (Gustafsson et al.
2008), are adopted to determine the elemental abundances of α-
and iron-peak elements (including the iron and magnesium abun-
dances used in this work) using SME and an automated spectral
synthesis method (Mikolaitis et al. 2014). The results from the
two methods compare well, and only small bias corrections are
needed. The final abundances for each element are calculated as
the average of the two individual determinations, while errors
are taken proportional to the absolute difference between them.
Finally, abundances relative to the Sun are derived by adopting
the solar composition of Grevesse et al. (2007). They constitute
the recommended set of abundances by the Gaia-ESO survey
consortium.

It is worth highlighting here that, contrary to the Gaia-ESO
survey iDR1 (used in our previous bulge study Rojas-Arriagada
et al. 2014), the procedure described above includes three im-
provements: (1) the use of three codes instead of one to com-
pute the fundamental parameters, thus providing final results
with smaller statistical, and hopefully, systematic errors; (2) the
availability of elemental abundances which enable us to perform
a more detailed analysis than that presented in Rojas-Arriagada
et al. (2014); and (3) a more robust calibration of both the stellar
parameters and abundances thanks to a larger sample of observed
benchmarks.

Although the present sample contains a number of fields al-
ready studied from the iDR1, the fundamental parameters and
abundances adopted here come from the iDR4, as is true for the
rest of the sample.

In Fig. 3, we display the Hertzsprung-Russell (HR) diagram,
using the fundamental parameters of bulge stars for which the
iron determinations from FeI lines are available (almost all of
which also have Mg measurements). We can verify the general
good quality of the stellar parametrization because the main HR
features, main sequence, turn-off and red clump are clearly dis-
tinguishable. It is also apparent that the nature of the Gaia-ESO
survey selection function leads, as anticipated, to a sample with
some contamination from dwarf main-sequence stars. We select
stars with log(g) < 3.5 (and log(g) > 1.5 to avoid giants for
which stellar parametrization could suffer from modeling uncer-
tainties) as our RC bulge sample. The dichotomy between the
RC and dwarf stars is explicitly shown in the CMD diagram in
Fig. 4. The figure clearly shows that the dwarf contaminants are
preferentially located on the blue side of the CMD toward the
locus where the blue plume of disk dwarf stars is visible in a
general bulge field CMD (cf. Fig. 2). A small number of dwarf
stars are visible at (J-Ks)0 & 0.65. They correspond to a fraction
of the stars with log(g) values that are slightly higher than the
cut at log(g) = 3.5 dex. Although they could correspond to RC
members according to their colors, we adopt their spectroscopic
classification. This good general correspondence between stars
in the HR and CMD diagrams constitutes a sanity check on the
internal consistency of the stellar parametrization.

In the following we made use of the giant/RC sample de-
fined above. It contains mostly RC with a contribution of RGB
stars, and is composed of 1987 stars (including stars from the
comparison sample).

3. Distance and reddening estimations

We calculated individual line-of-sight spectrophotometric dis-
tances and reddenings for the whole sample with available FeI
measurements (2273 stars). The adopted procedure made use
of the fundamental parameters Teff ; log g ; [Fe/H] (from FeI
lines); and VISTA J, H, and Ks photometry and associated er-
rors to compute simultaneously the most likely line-of-sight dis-
tance and reddening by isochrone fitting with a set of PARSEC
isochrones4. The general approach, rather similar to other meth-
ods in the literature (e.g., Zwitter et al. 2010; Ruchti et al. 2011;
Kordopatis et al. 2011), is outlined below.

1. We consider a set of isochrones spanning ages from 1 to
13 Gyr in steps of 1 Gyr and metallicities from −2.2 to +0.5
dex in steps of 0.1 dex. In practice, for a given age and metal-
licity, each isochrone consists of a sequence of model stars
with increasing mass located along a track in the Teff vs.
log g plane from the main-sequence to the AGB. Each model
star is characterized by theoretical values of the absolute
magnitudes MJ , MH , and MKs . On the other hand, an ob-
served star is characterized by a vector containing a set of
fundamental parameters and observed passband magnitudes
{Teff, log(g), [Fe/H], J,H,Ks}, together with their associated
errors. Given the three fundamental parameters Teff , log g ,
and [Fe/H], a star can be placed in the isochrone Teff -log g -
[Fe/H] space.

2. We compute the distance from this observed star to the whole
set of model stars considering all the isochrones. To this end,

4 Available at http://stev.oapd.inaf.it/cgi-bin/cmd
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Fig. 5. Distribution of Galactocentric radial distances of RC (blue bars)
and dwarf (green profile) stars. A shaded yellow area highlight the spa-
tial cut (RGC < 3.5 kpc) adopted to define our bulge working sample. A
vertical dashed gray line indicates the solar Galactocentric radius.

we adopt the metric

d(a.m) =
[Teff ∗ − Teff(a,m)]2

σ2
Teff ∗

+

[
log(g)∗ − log(g)(a,m)

]2

σ2
log(g) ∗

+
[[Fe/H]∗ − [Fe/H](a,m)]2

σ2
[Fe/H] ∗

,

where Teff(a,m), log(g)(a,m), and [Fe/H](a,m) are the fun-
damental parameters, depending on the age a and mass m,
characterizing the isochrone model stars. The quantities with
a star subscript stand for the fundamental parameters and er-
rors (σTeff ∗, σlog(g) ∗) of the observed star.

3. Using this metric, we compute weights associated with the
match of the observed star with each point of the isochrone
collection

W(a,m) = PmPIMF

[
e−d(a,m)

]
.

This weight is composed of three factors:
a. Pm accounts for the evolutionary speed of the model stars

along the isochrone. The isochrones are constructed in
order to roughly distribute their model stars uniformly
along them. This means that a simple unweighted statis-
tic using all the model stars will lead to overweight short
evolutionary stages and not long-lived ones. A way to
correct for this effect is to include a weight Pm propor-
tional to the ∆m between contiguous model stars in or-
der to assign more weight to the long-lived evolutionary
stages where a randomly selected star is more likely to
be;

b. PIMF accounts for the fact that, given a stellar popula-
tion, the number of stars per mass interval dN/dm is not
uniform. In fact, this distribution is given by the initial
mass function (IMF)5;

5 In practice, we made use of the PARSEC isochrone quantity int_IMF,
which is the cumulative integral of the IMF along the isochrone. In fact,
following Girardi et al. (2000), we assume that “the difference between
any two values is proportional to the number of stars located in the
corresponding mass interval”.

c. The third factor is an exponential weight associated with
the distance of the observed star with respect to each
model star, given the adopted metric. We can use the
weights W(a,m) to compute any kind of weighted statis-
tics.

4. We calculate for a given observed star the likely values of
its absolute magnitudes MJ , MH , and MK from the set of
isochrones.

5. We compute the line-of-sight reddening by comparing the
theoretical color with the observed color E(J − K) = (Jobs −

Kobs) − (MJ − MK).
6. Finally, from these values, by considering the observed pho-

tometry J, H, Ks and the estimated reddening, we compute
the distance modulus and then line-of-sight distances.

We computed distances and reddening values (field averages
are quoted in Col. 6 in Table 1) for the whole bulge sample with
available [Fe/H] values. Typical internal errors in distance are
about 25-30%. Using the (l,b) star positions, we also compute the
Galactocentric Cartesian coordinates XGC , YGC , and ZGC , and the

cylindrical Galactocentric radial distance RGC =

√
X2

GC + Y2
GC .

The distribution of the latter is shown in Fig. 5, separately for
the giant and dwarf portions of our sample. We can see how the
stars we found to be foreground dwarf contaminants based on
their log g values are in fact located mainly at 7-8 kpc, in the
solar neighborhood. On the other hand, the presumed RC bulge
stars are found in a narrow distribution with a peak at ∼ 1.5 kpc.
We did not expect this maximum to be at RGC = 0 kpc given that
most of our fields are several degrees apart from the Galactic
plane. The shape of the RGC distribution led us to introduce a
radial distance cut, defining a working sample of likely bulge
stars. To this end, we adopted the criterion RGC ≤ 3.5 pc. This
restriction was applied to the giant sample already defined from
their log g values. The resulting working sample is composed of
1583 stars.

4. Metallicity distribution function

We studied the shape of the MDF from our working sample
of likely bulge stars, excluding the comparison stars because
their different selection function might bias the MDF toward
high metallicity. As a first glimpse of the bulge MDF, we split
the sample into two groups of fields which are close to or far
from the plane. They are a combination of fields located at
b > −7◦ and b < −7◦, respectively (the horizontal dashed
gray line in Fig. 1). In this way, each half contains a similar
number of fields. While it is true that this exercise can blur
specific MDF field-to-field variations, it allowed us to increase
the number statistics to investigate the general characteristics
of the bulge MDF. The two subsamples are displayed in the
upper and middle panels of Fig. 6. Two things are immedi-
ately apparent. First, the MDFs present a clear bimodal distri-
bution with a narrow metal-rich component peaking at super-
solar metallicities and another broader and metal-poor com-
ponent peaking at [Fe/H] ≈ −0.4/ − 0.5 dex (in agreement
with Hill et al. 2011 and Gonzalez et al. 2015, but in contrast
with the trimodal MDF of Ness et al. 2013a). Second, the rela-
tive proportion of stars comprising the two peaks changes with
Galactic latitude. In fact, the size of the metal-rich component
decreases with respect to the metal-poor one while going far
from the Galactic plane. Broadly speaking, our metal-poor and
metal-rich MDF components encompass the metallicity ranges
−1.0 ≤ [Fe/H] ≤ 0.0 dex and 0.0 ≤ [Fe/H] ≤ 1.0 dex. The in-
cidence of stars with [Fe/H] < −1.0 dex is low (1.7% of our
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Fig. 6. Upper panel: Combined MDF of fields located close to the
Galactic plane (b > −7◦). Middle panel: Combined MDF of fields lo-
cated far from the Galactic plane (b < −7◦). The individual GMM com-
ponents are drawn with black dashed lines, while their combined profile
as a solid gray line. Lower panel: MDF of stars classified as dwarfs ac-
cording to their log g values. In all panels, the total number of stars is
indicated in parentheses.

sample), and given its small number we do not attempt here a
detailed analysis of its properties. Accounting for our distance
cut to select likely bulge members, these stars might be a com-
bination of halo passing-by stars and the metal-poor tail of the
endemic bulge population.

To quantify these facts, as we did in Rojas-Arriagada et al.
(2014), we performed a Gaussian mixture models (GMM) de-
composition6 on the two MDFs. In both cases, the Akaike infor-
mation criterion, used for model selection, gave preference to a
two-component solution with a high relative probability. Close
to the plane, the narrow metal-rich component (σ = 0.16 dex)
encompasses 36% of the probability density of the model, while
the broader metal-poor component (σ = 0.33 dex) the remain-
ing 64%. On the other hand, far from the plane, the metal-rich
(σ = 0.35 dex) and metal-poor (σ = 0.29 dex) components ac-
count for 30% and 70% of the relative weights, respectively.

As a qualitative comparison, in the lower panel of Fig. 6 we
display the MDF of the sources classified as dwarfs according
to their log g values, which are mostly solar neighborhood mem-
bers (Fig. 5). Their distribution resembles what it is observed in
the solar neighborhood, for example by the Geneva-Copenhagen
survey (e.g., Casagrande et al. 2011). It is clear that these stars
have a MDF with a significantly different shape with respect to
the bulge sample. Their MDF has a long tail toward low metal-
licity (partially due to the contribution of the local thick disk)
and a sharp decline toward [Fe/H] = 0.4 dex. The distribution
presents a strong peak at solar metallicity, precisely at the locus
where the dip in the bimodality of the bulge MDF is located.

6 See Ness et al. (2013a) and Rojas-Arriagada et al. (2016) for a math-
ematical description of the procedure and its application to the analysis
of chemical distributions of stellar populations.

The individual MDFs of the 11 bulge fields analyzed in this
work are shown in Fig. 7. Individual GMM decompositions were
attempted in each field (parameters of the best GMM fits in Ta-
ble A.1). In agreement with Fig. 6, the preferred GMM model
has two components, except in two fields (p0m8 and p2m9)
where the lower number of stars prevents the GMM from giving
strong statistic assessments. When comparing MDF decomposi-
tions between strips that are at a similar latitude (rows in Fig. 7),
a decline in the number of metal-rich stars in favor of metal-poor
stars with increasing distance from the Galactic plane is visible
(as seen also in Zoccali et al. 2008; Ness et al. 2013a). On the
other hand, while comparing fields at similar latitude, those lo-
cated at positive longitudes tend to have a more enhanced metal-
rich component. This asymmetry with respect to the minor axis
was already characterized in the photometric metallicity map of
Gonzalez et al. (2013). As described there, it is just a perspec-
tive effect due to the bar position angle; at positive longitudes the
line of sight intersects the bar at shorter distance from the plane
than at negative longitudes. This means that at positive longi-
tude our lines of sight sample regions with higher dominance
of metal-rich stars than at the symmetric fields at negative lon-
gitude; consequently, the relative size of the metal-rich peak is
higher, as observed in Fig. 7.

4.1. Quantification of metallicity gradients

From the GMM profiles, we first determined the metallicity at
which the peaks of the two populations are located in each field
(with the exception of p0m8 and p2m9). Then we computed
metallicity gradients with l and b independently for the two
populations. We also computed mean field metallicity gradients
with l and b. For both metal-rich and metal-poor populations,
we found negligible gradients with l but noticeable variations
with b (gradients of −0.18 dex/kpc and −0.31 dex/kpc, respec-
tively). A gradient of −0.24 dex/kpc was found for the variation
of the mean field metallicity with b. These values were com-
puted by assuming all the fields centers projected on a plane at
8 kpc (to be consistent with other studies and to allow compar-
ison). Our results are compatible with the presence of internal
vertical gradients in both metallicity populations, with the gra-
dient of the metal-poor fraction being ∼ 60 percent higher than
that displayed by the metal-rich stars. In this sense, the global
metallicity gradients, traditionally measured from the mean field
metallicity variations with b, can be interpreted as the interplay
of two effects: the variation of the relative proportion in which
both populations contribute to the global field MDF plus the
presence of internal gradients in both components. As a refer-
ence, if we compute the vertical gradient in similar fashion, but
using the results for fields at b = −4◦,−6◦,−12◦ from Zoccali
et al. (2008), we find a gradient of −0.24 dex/kpc, in excellent
agreement with the value we derived from our fields. Also, the
photometric metallicity map of Gonzalez et al. (2013) indicates
a vertical gradient of −0.28 dex/kpc, again in agreement with the
global gradient reported here.

4.2. Spatial distribution of the subcomponents

In Fig. 8 we display the generalized histograms of the VVV
Ks (reddening corrected) magnitude distributions of fields where
the double RC feature is present according to the density maps
of Wegg & Gerhard (2013). The upper and lower panels show
the magnitude distributions of metal-rich and metal-poor stars
in each field. From the comparison of the two sets of profiles,
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Fig. 7. Metallicity distribution functions of the 11 bulge fields. Blue filled histograms stand for the individual distributions; the number of stars is
given in parentheses. An independent GMM decomposition in each field is indicated by black dashed lines (individual modes) and a red solid line
(composite profile). The distribution of the fields in the panels approximately indicates their positions in (l,b) (cf. Fig. 1).

Table 2. Line-of-sight Galactocentric radial velocities of stars located
in the bright and faint peaks of the metal-rich magnitude distribution.
Units are in km s−1 .

VGC bright VGC faint
p0m6 Mean −37.7 ± 17.9 12.0 ± 19.6

σ 91.1 ± 12.6 94.0 ± 13.9
Number 26 33

p0m8 Mean 6.0 ± 21.6 18.5 ± 18.1
σ 52.9 ± 15.3 51.1 ± 12.8
Number 6 8

p2m9 Mean −35.7 ± 27.5 −18.0 ± 18.7
σ 61.4 ± 19.4 52.8 ± 13.2
Number 5 8

m1m10 Mean −10.2 ± 14.7 −33.6 ± 13.1
σ 54.5 ± 10.3 49.1 ± 9.3
Number 14 14

it is clear that an enhanced bimodality is drawn by the metal-
rich stars. The difference in magnitude between the two peaks
changes from field to field, being smaller closer to the plane,
thus tracing the distance between the near and far arms of the X-
shape bulge. On the other hand, metal-poor stars present nearly
flat magnitude distributions, with some tendency, especially in
the outermost fields, to have a peak at faint magnitudes. This oc-
curs because the volume observed is bigger at greater distances,
due to the cone effect.
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Fig. 8. Double RC in the magnitude distribution of bulge stars as a func-
tion of metallicity. Upper panel: Generalized histograms (Gaussian ker-
nel of 0.09 mag) of the extinction corrected K magnitude for stars with
[Fe/H] & +0.1 dex. Lower panel: Generalized histograms (Gaussian
kernel of 0.09 mag) of the extinction corrected Ks magnitudes for stars
with [Fe/H] . +0.1 dex. The same color-coding is used to identify the
different fields in both panels.

It has been suggested that an enhanced bimodality for metal-
rich stars can arise or be inflated by stellar evolutionary effects
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Fig. 9. Sample distribution in the [Mg/Fe] vs. [Mg/Fe] plane. Upper right panel: Whole working sample (gray points). A fiducial median profile
and 1σ dispersion band is constructed over several metallicity bins. Remaining panels: Individual field distributions (green points) and fiducial
profile and dispersion band of the whole working sample (red line and shaded area). The number of stars is given in parentheses. The order of the
panels approximately indicates the positions of fields in the (l,b) plane.

(Nataf et al. 2014). The RGB is redder than the RC, but both
become bluer with decreasing metallicity. This implies that the
relative contamination of the RC sample with RGB members can
increase as a function of metallicity given a color cut in the sur-
vey selection function. From a PARSEC isochrone of 10 Gyr and
[Fe/H] = −1.5 dex (so at the metal-poor end of the bulge MDF),
the RC lies at J − K = 0.40 mag, redder than the GES color cut
at J − K = 0.38 mag. Consequently, our sample should be free
of this potential bias. On the other hand, the ratio of RC relative
to RGB stars is an increasing function of metallicity, meaning
that for example a sample with [M/H] ∼ −1.3 dex should be
1.75 times larger than one at [M/H] ∼ 0.4 dex to display fea-
tures with the same statistical significance. In the combined set
of stars from the p0m6, p0m8, p2m9, and m1m10 fields, the ra-
tio between stars with metallicity lower and higher than solar is
1.65, which ensures that this bias source might not be relevant in
our case. A third potential bias comes from a metallicity depen-
dence of the magnitude and the strength of the red giant branch
bump. These factors can conspire to increase the signal of the
faint magnitude peak at high metallicity. While it is true than
the exact modeling of the impact of this effect is complicated, it
should just increase the difference between the peaks, and does
not necessarily invalidate the qualitative presence of two peaks
in the magnitude distribution.

In line with previous studies in the literature (De Propris et al.
2011; Uttenthaler et al. 2012; Vásquez et al. 2013), we attempt
to characterize the stream motions in the X-shape bulge by com-
paring the line-of-sight radial velocities of stars around the peaks
of the metal-rich magnitude distribution. Given the size of our
sample, this exercise may suffer from low number statistics, as

evidenced by the relative size of the error bars. The results for the
four studied fields are in Table 2. With the exception of p0m6,
there are no statistically significant differences in velocity for
the bright and faint groups of metal-rich stars. These results are
in agreement with previous works for p0m8 (De Propris et al.
2011) and m1m10 (Uttenthaler et al. 2012). The structure of the
X-shape bulge is complex; it is composed of the superposition
of several stable family orbits. Radial velocity measurements on
a larger number of fields might help us to unravel the nature and
spatial distribution of these orbit streams.

The above analysis reinforces the bimodal nature of the MDF
throughout the bulge area sampled by our fields. In the follow-
ing, we aim to further characterize the MDF metallicity groups
by including α-abundances and kinematics into the analysis.

5. Bulge trends in the [Mg/Fe] vs. [Fe/H] plane

Beyond the study of the MDF, the availability of elemental abun-
dances from high-resolution spectroscopy provides us with an
important tool to understand the bulge nature. In fact, the trends
displayed by stars of any stellar population in the [α/Fe] vs.
[Fe/H] plane encode important information regarding its IMF
and the star formation history. This is particularly critical in
Galactic bulge studies as it has been used in attempts to associate
the bulge with other Galactic components, in particular with the
thick disk (e.g., Zoccali et al. 2006; Fulbright et al. 2007; Alves-
Brito et al. 2010; Bensby et al. 2013).

The Gaia-ESO survey iDR4 provides abundances for several
species. We focus here on the distribution in the [Mg/Fe] vs.
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[Fe/H] plane. We adopted magnesium because its abundance de-
termination seems to be less affected by errors in stellar param-
eters and because its spectral lines are more clearly defined in
the GIRAFFE HR21 setup domain than those of the other avail-
able α-elements (Mikolaitis et al. 2014). Moreover, like oxygen,
magnesium is expected to be produced exclusively by SN II ex-
plosions, while other alphas have more than one nucleosynthesis
channel.

In Fig. 9, we display the [Mg/Fe] vs. [Fe/H] distribution of
our working sample in the different fields. Here we include in
p1m4 the comparison RGB and RC stars discarded while study-
ing the MDF (since here we are interested in the trends and not
in the density distribution). The upper right panel of Fig. 9 shows
the whole sample, together with a median profile and 1σ disper-
sion band calculated over several small bins in metallicity. This
fiducial trend, is then overplotted on the individual field distribu-
tions in the remaining panels. The different field samples com-
pare well with the fiducial trend; there are no strong deviations
throughout the bulge region.

Moreover, Fig. 9, shows that in every field the curve tends to
flatten at metallicity lower than ∼ −0.4 dex. This is an expected
feature from the time-delay model, according to which the α-
enhancement levels start to strongly decline with [Fe/H] after
the maximum of the rate of supernovae Ia explosions is reached.
This produces a knee in the [α/Fe] vs. [Fe/H] trend whose loca-
tion provides constraints on the formation timescale estimate of
the stellar system. In Fig. 10, we present the whole bulge work-
ing sample, together with a best fit bilinear model. The model
used to fit the data consists of two linear trends sharing a com-
mon point, i.e., the knee, and leaves the other parameters free.
The fit is performed in the range −1.5 ≤ [Fe/H] ≤ +0.1, cover-
ing the metallicity range of the metal-poor bulge component. The
fit is performed by means of a χ2 minimization, and errors are
taken into account by performing 1000 Monte Carlo samplings
from the individual errors in [Mg/Fe]. We can see in Fig. 10 that
given the size of the sample and the data dispersion in [Mg/Fe],
we cannot constrain the knee position better than ∼ 0.1 dex, with
the resulting value being [Fe/H]knee = −0.37 ± 0.09 dex.

The median trend of our bulge stars in the [Mg/Fe] vs. [Fe/H]
plane compares well with the distribution of inner disk stars in
the [α/Fe] vs. [Fe/H] plane presented in Hayden et al. (2015)
(their Fig. 4, leftmost panels for 3 < RGC < 5 kpc). In both
cases, the sequence starts from the locus of high-α metal-poor
stars and ends in that of low-α metal-rich ones. In the case of
disk stars, as seen by APOGEE, a vertical step in the sequence is
visible at [Fe/H] ∼ −0.1 dex, which is not evident in our bulge
sample. Except for this, a general similarity between the stel-
lar distribution of bulge and disk(s) samples in the α-abundance
vs. metallicity plane can be suggested. Nevertheless, a more de-
tailed quantitative comparison is not possible here since there is
no guarantee that both surveys are in the same abundance scale.
A set of common stars to cross-calibrate them is needed and
awaited.

Based on the conclusions drawn in Sect. 4 regarding the bi-
modal nature of the bulge MDF, we split the sample into metal-
rich and metal-poor stars. To this end, we adopted the limits
[Fe/H] = +0.15 and +0.10 dex for the fields close to (b > 7◦) and
far from (b < 7◦) the plane, respectively. In Fig. 11, we display
the Galactocentric velocity dispersion7 trends of the fields color-
coded according to their Galactic latitude (for a comparison of
line of sight distance distributions with simulations, see Williams

7 Galactocentric velocity conceptually corresponds to the line-of-sight
radial velocity that would be observed by an stationary observer at the

−1.5 −1.0 −0.5 0.0 0.5

[Fe/H] (dex)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

[M
g/

Fe
](

de
x)

[Fe/H]knee = −0.37± 0.09 dex

All fields (960/1579)

Fig. 10. Determination of the bulge knee position in the [Mg/Fe] vs.
[Fe/H] plane. The whole working sample is indicated by black dots. A
bilinear model, fitted to the metal-poor bulge data (shaded blue area), is
shown with red solid lines. The number of stars included in the fit, and
the resulting knee position and error bar, are quoted in the figure. An
orange error bar marks the knee position and error.
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Fig. 11. Velocity dispersion of metal-rich vs. metal-poor stars in each
field. Points belonging to the same field are connected by a line which
is color-coded according to b.

et al. 2016). Given that the individual radial velocity uncertain-
ties are small compared with the field dispersions, the error in the
velocity dispersion can be taken as σ/

√
2N. The bulge metal-

poor components appear to be kinematically hot throughout the
whole sampled area, with values around σVGC = 100km s−1.
Instead, the metal-rich components present velocity dispersions
higher close to the plane, and decrease systematically with b.

To see these results more in perspective, we display in Fig. 12
the [Mg/Fe] vs. [Fe/H] distributions of fields close to and far
from the plane. Each subsample is split into small areas, color-
coded according to their velocity dispersion. On average, metal-
rich and metal-poor parcels are kinematically homogeneous in
inner fields, while for the outer ones the metal-rich end is kine-
matically colder. It is worth noting that, according to this figure,
there is no evidence of kinematic variations with [Mg/Fe] at fixed
metallicity.

Sun’s position. It is calculated as

VGC = VHC + 220 sin(l) cos(b)
+ 16.5 [sin(b) sin(25 + cos(b) cos(25) cos(l − 53)]).
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Fig. 12. Velocity dispersion distribution in the [Mg/Fe] vs. [Fe/H] plane.
The sample is divided into small parcels inside which velocity disper-
sions are calculated. They are color-coded as indicated by the colorbars.
Two gray dashed lines indicate in each panel the Sun’s position for ref-
erence. Upper panel: Fields close to the plane with b > −7. Lower
panel: Fields far from the plane with b < −7. The number of stars is
given in parentheses.

Figures 11 and 12 show that the metal-poor bulge compo-
nent seems to be more kinematically homogeneous than the
metal-rich one in the surveyed area. We attempt to test in de-
tail the kinematics of the metal-poor stars by using all of them
to construct the velocity dispersion profile displayed in Fig. 13.
A 1σ error band is displayed as a shaded area. An interesting
trend is clearly visible: the velocity dispersion increases and
then decreases symmetrically around [Fe/H] ∼ −0.4 dex, which
– curiously – is roughly the metallicity where the [Mg/Fe] vs.
[Fe/H] knee is located. This is illustrated by the dashed gray
line and shaded area depicting the knee’s metallicity position
and error. This behavior is different from that displayed, over the
same metallicity range, by ARGOS data (cf. Ness et al. 2013b,
their Fig. 7; −0.8 ≤ [Fe/H] ≤ 0.0 dex). In this sense, it is not
fully clear whether the velocity dispersion of metal-poor bulge
stars increases steadily as a function of decreasing metallicity
or presents a more complex behavior, such as that suggested by
Fig. 13. We expect to be able to tackle this issue with the next
internal data release of the Gaia-ESO survey as its larger spatial
sampling will allow us to compare trends with enough statistics
at different small regions in (l, b). It is important to fully char-
acterize this behavior since it might provide an important ob-
servational constraint, and an interesting fact to be explained by
chemodynamical numerical models of Milky Way formation.

6. Chemical similarities between the thick disk and
the bulge

A major part of the Gaia-ESO survey pointings are devoted to
characterizing the disk populations. We take advantage of this
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Fig. 13. Velocity dispersion vs. metallicity profile of the metal-poor
bulge. A running median with bin size of 170 data points is used to
construct the curve displayed as a green solid line. A 1σ error band
around the mean is given by the green shaded area. The metallicity and
error of the bulge knee in the [Mg/Fe] vs. [Fe/H] plane are indicated by
a vertical dashed line and gray shaded area.
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Fig. 14. Iron and magnesium abundances derived from the analysis of
the setup combination HR10+HR21 and HR21-only, are compared for
114 of the 228 bulge comparison stars presented in Sect. 2, which were
observed in both setups.

sample to chemically compare the disk(s) and the bulge on the
basis of a large homogeneous sample.

The disk samples of Gaia-ESO survey are observed with both
the HR10 and HR21 GIRAFFE setups. A careful fundamental
parameter homogenization, based on benchmark stars, ensures
compatibility between the parameters and elemental abundances
derived from the HR10+HR21 setup combination (disk) and the
HR21 alone (bulge). In Fig. 14 we display the comparison of
HR10+HR21 and HR21 iron and magnesium abundances de-
rived for a sample of 144 bulge stars (half of the comparison
sample presented in Sect. 2). A very good agreement between
the two sets of measurements is visible.

From the whole disk sample, we selected stars satisfying
S/N ≥ 45, ∆Tteff ≤ 150 K, ∆ log(g) ≤ 0.23 dex, ∆[M/H] ≤
0.20 dex, ∆[Fe/H] ≤ 0.1 dex, and ∆[Mg/H] ≤ 0.08 dex. In this
way, we defined a clean disk sample composed of 6313 stars. A
separation of thin and thick disk stars in the [Mg/Fe] vs. [Fe/H]
plane was performed by following the dip in [Mg/Fe] distribu-
tion in several narrow metallicity bins. The separated subsamples
are shown in Fig. 15.

As a first qualitative comparison between the disks and the
bulge in the [Mg/Fe] vs. [Fe/H] plane, we constructed median
curves and dispersion bands for the thin and thick disk se-
quences. We overplotted the resulting profiles on top of the bulge
sample distribution in Fig. 16. We can see that bulge and thick
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Fig. 16. Bulge sample (black dots), mean trend (solid lines), and 1σ and
2σ dispersion bands (shaded areas) for the thin (green) and thick (red)
disk profiles in the [Mg/Fe] vs. [Fe/H] plane.

disk stars have comparable [Mg/Fe] enhancement levels over
the whole metallicity range spanned in common. Nevertheless,
a larger dispersion in [Mg/Fe] of bulge stars relative to the thick
disk is apparent along the whole metallicity range. Although this
can be a real feature that reveals differences in chemical evolu-
tion between the two populations, we cannot rule out the pos-
sibility that this effect is the result of the lack of spectral infor-
mation available from the HR21 setup for the bulge compared
to the HR10+HR21 available for the thick disk sample. On the
other hand, the thin disk sequence runs under the bulge one and
matches it at [Fe/H] > 0.1 dex. In this way, a chemical simi-
larity between the metal-poor bulge and the thick disk, and be-
tween the metal-rich bulge and the thin disk are apparent. This
has the important implication that if we want to explain the bulge
as the product of secular evolution, we have to include both the
thin disk and the thick disk to properly account for the chemical
properties of the bulge sequence (in line with the recent claim
of Di Matteo et al. 2015). Current suggestions (Shen et al. 2010;
Martinez-Valpuesta & Gerhard 2013) include just the thin disk,
which is not consistent with the chemical evidence presented
here.

We attempt to make more detailed assessments of the chemi-
cal similarity between the bulge and the thick disk by comparing
the metallicity location of the knee in the two sequences. Unlike
previous attempts in this direction, our thick disk sample spans a
broader extent in Galactocentric radii, with a significant number
of stars observed down to 4 kpc. We selected stars with |ZGC | ≤ 3
kpc to ensure a nearly homogeneous distribution of ZGC along
the sampled radial range.

We split the thick disk sample in five radial portions of ap-
proximately the same number of stars in order to probe potential
radial variations of the knee position. As we did for the bulge
sample, we fit a bilinear model to the thick disk sequence in each
radial bin. We use stars in the range −1.0 ≤ [Fe/H] ≤ +0.1 dex
to avoid the undersampled metal-poor end and the region where
the thin and thick disk sequence separation is more uncertain
(i.e., around solar metallicity). The results for the five radial bins
are displayed in panels a-e of Fig. 17. The metallicity at which
the knee is located, and the respective error from 1000 Monte
Carlo samplings on the individual [Mg/Fe] errors, are quoted in
each panel. We can see that, accounting for the error bars, the
position of the thick disk knee does not change through the sam-
pled radial region. This is explicitly shown in panel f, where –
except for the last distance bin (with lower number statistics) –
the different [Fe/H]knee measurements are consistent with being
flat with respect to RGC . A radial decrease in the knee metallic-
ity position with RGC would imply an inside-out formation for
the thick disk, which would conflict with the observed absence
of a radial metallicity gradient (Mikolaitis et al. 2014). Instead,
the constant [Fe/H]knee we found here might imply a formation
given by a single star burst in an initially well-mixed media.

A similar shape of the thick disk trend in the [α/Fe] vs.
[Fe/H] plane for all RGC has been also qualitatively suggested
by the APOGEE data (Nidever et al. 2014; Hayden et al. 2015).
As already mentioned, a quantitative detailed comparison be-
tween the GES and APOGEE results is not possible because of
the unavailability of a set of common stars for cross-calibrating
their abundance scales. The trends of low- and high-α stars dis-
played in Fig. 17 and those of Hayden et al. (2015) (the middle
and lower rows of their Fig. 4) are comparable: the two disk
sequences intersect each other at solar metallicity. In the inner
distance bins, rather than a single sequence of disk stars, as sug-
gested in Hayden et al. (2015), both sequences are visible in GES
data but with a lack of metal-poor thin disk stars. This is expected
if those stars constitute a different outer disk population, as has
recently been suggested (Haywood et al. 2013; Rojas-Arriagada
et al. 2016).

Given the radial constancy of [Fe/H]knee of thick disk stars,
we attempt to increase the accuracy of its determination by per-
forming a bilinear fit on the whole thick disk sample (mean
Galactocentric radius RGC = 7.1 kpc). We obtained a value of
[Fe/H]knee = −0.43 ± 0.02 dex, which we can consider as rep-
resentative of the whole thick disk (panel g). In panel h, we dis-
play a fit performed just considering RC thick disk stars. The
resulting [Fe/H]knee = −0.44 ± 0.04 dex is in agreement with the
figure derived from the whole sample. This demonstrates that no
systematics are likely to be introduced in our analysis by using
results coming from the combination of dwarf and giant stars.

Finally, we compare the metallicity knee position of the thick
disk and bulge sequences. A difference of ∆[Fe/H] = 0.06 dex
is found. This difference is relatively small with respect to the
size of the error bars of both determinations (0.02 and 0.09 dex,
respectively). Unfortunately, the uncertainty levels of our abun-
dance measurements prevents us from making a strong assess-
ment on the statistical significance of a null difference. However,
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Fig. 17. [Mg/Fe] vs. [Fe/H] distribution of disk stars in several radial distance bins with |ZGC | ≤ 3 kpc. Gray and black points indicate thin and
thick disk stars. A shaded area highlights the metallicity range used to perform a bilinear model fit of the thick disk sequence. The number of
thick disk stars used to perform the fit is indicated in parentheses. The best fit model in each radial bin is displayed with red lines. The [Fe/H]
location of the knee, together with its error bar, is quoted in each panel and is indicated by an orange error bar. Panels a-e: Subsamples in several
Galactocentric radial bins, as indicated in each panel. Panel f: [Fe/H] position of the knee as a function of Galactocentric distance. Box length and
height depicts the size of the radial bin and the error bar of the measurement. Panel g: Whole thick disk sample, grouping together all the stars in
the panels a-e. Panel h: Subsample of RC stars in a radial range where the mean |ZGC | is approximately constant with RGC .

assuming the plausible scenario of a nonzero difference, it would
have an upper limit of ∆[Fe/H]knee = 0.24 dex, considering its
95% confidence interval.

In summary, we found evidence of a constant SFR with
Galactocentric distance for the thick disk formation. In addition,
a chemical similarity between the bulge and the thick disk is
suggested by the data. A fine-tuned compatibility between the
detailed properties of the two sequences is beyond the statisti-
cal resolution of the present sample. Nevertheless, some caution
should be taken when considering the facts exposed here; al-
though similar enhancement levels are found for the two popu-
lations, indicating a similar IMF, the bulge exhibits a larger dis-
persion in [Mg/Fe] around the mean, a result that needs to be

confirmed with a more homogeneous data set. And similarly, al-
though the knee metallicity positions of the two sequences are
comparable within the errors, a plausible difference as large as
0.24 dex suggests a difference in the characteristic SFR of the
two populations, i.e., the bulge formed on a shorter timescale
than the thick disk.

7. Comparison with a chemical evolution model

The modeling of observational data by means of chemical evo-
lution models provides an interesting opportunity to put con-
straints on the formation timescale of a stellar system. We at-
tempt here to constrain the bulge formation timescale by adopt-
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Fig. 18. Comparison between the bulge data (black dots) and the pre-
dicted sequence (red line) from the chemical evolution model. The line
changes from solid to dashed to emphasize that the model parameters
are adjusted to fit the metal-poor bulge MDF component. Main panel:
Evolution in time of the modeled quantities indicated by the scale at the
top of the panel. A normalized χ2 between the model and data is quoted.
Small panel: Residuals between the data and the model.

ing a model for a bulge formed at early epochs from the dissi-
pative collapse of a cloud accompanied by a strong burst of star
formation. To this end, we adopted the model of Grieco et al.
(2012). In this work, two bursts of star formation are invoked to
model the metal-rich and metal-poor modes of the bulge MDF.
We adopt here the model corresponding to the metal-poor bulge.
The model assumes a gas infall law given by

(
dσgas

dt

)
infall

= A(r)Xie−t/Tinf , (1)

where Xi is the abundance of a generic chemical element i in
the infall gas, whose chemical composition is assumed to be pri-
mordial or slightly enhanced from the halo formation; Tinf is the
infall timescale, fixed by reproducing present day abundances
(MDF), SFR, and stellar mass; and A(r) is a parameter fixed by
reproducing the current average total bulge surface mass den-
sity. The parametrization of the star formation rate is adopted as
a Schmidt-Kennicutt law:

ψ(t) = νσk
gas (2)

with k the law index and ν the star formation efficiency (i.e., the
star formation rate per unit mass of gas). The model includes a
Salpeter IMF, constant in space and time, which allows the MDF
of the metal-poor bulge population to be correctly reproduced.
The set of yields are adopted from Romano et al. (2010).

We ran several models, adjusting the parameters to better re-
produce the data. Our best model is displayed in Fig. 18, where
it is compared to the whole bulge working sample. This model
assumes a short timescale for the gas infall Tinf = 0.1 Gyr and a
very efficient star formation, with k = 1 and ν = 25 Gyr−1.

The main characteristics of the bulge sequence (enhance-
ment levels, qualitative location of the knee) are well reproduced
by this model. We can see that, for [Fe/H] ≥ −1.5 dex, the pre-
dicted [Mg/Fe] abundance ratio steadily decreases with metal-
licity. This behavior increases from [Fe/H] & −0.4 dex, which is

comparable with the observed locus of the knee, as determined in
Sect. 5. The overall formation timescale, as read from the upper
axis of Fig. 18, indicates a rather rapid chemical enrichment of
the bulge taking place on a timescale of 0.5-0.7 Gyr. Such a short
timescale is compatible with a monolithic assembly of the metal-
poor bulge. It is worth noting that the model formally shows a
continuous enrichment of the gas up to super-solar metallicity.
However, the number fraction of such super-solar stars is low
compared to populations with lower metallicities. Thus, from
the point of view of the chemical evolution model, it is not ex-
cluded that the bulge contains a fraction of metal-rich old stars
born in situ. In this sense, metal-rich bulge stars might consti-
tute a composite population of stars formed in situ plus a larger
fraction of stars with disk origin currently located in this region
as the product of secular bar-driven dynamics. This might be
compatible with the relatively flat or even bimodal age distribu-
tion of metal-rich bulge stars, as suggested from the analysis of
microlensed dwarfs (Bensby et al. 2013) and APOGEE giants
(Schultheis et al. 2017), respectively.

8. Discussion

In this work, we have made use of the fourth internal data re-
lease of the Gaia-ESO Survey to perform a fully spectroscopic
analysis of the bulge in the perspective of other Galactic com-
ponents. The evidence presented here leads us to consider the
Galactic bulge as a composite structure, due to the coexistence
of two main stellar populations.

From a Gaussian mixture models analysis, the bulge MDF
appears as a bimodal distribution comprising a narrow super-
solar metal-rich component and a broad metal-poor component.
This bimodal nature is verified in all the individual fields, except
in those limited by small number statistics. The relative propor-
tion of stars belonging to each of the two populations changes,
with metal-poor stars dominating far from the Galactic plane.
The line-of-sight Galactocentric velocity dispersion correlates
with metallicity, further stressing the likely different nature of
the two populations. Metal-poor stars display a high-velocity
dispersion around 100 km s−1 and nearly independent of (l, b).
Instead, metal-rich stars present a more complex behavior; the
stars close to the plane are as kinematically hot as the bulge
and decrease systematically with b toward disk values. An ad-
ditional correlation with metallicity appears when considering
the bimodal nature of the bulge RC magnitude distribution. In
the fields where this feature is visible, the distinction between
the magnitude peaks is enhanced if just metal-rich stars are con-
sidered, while metal-poor ones display flatter distributions.

This bimodality contrasts with the trimodal ARGOS MDFs
found by Ness et al. (2013a). Their distributions are derived from
a larger sample of stars (∼ 10200), grouped together in three
l = ±15◦ latitude strips. If the metal-rich and metal-poor bulge
populations have some intrinsic gradients with spatial location,
like those reported here, a MDF assembled from fields spanning
a large region might have components slightly smeared out in
metallicity, thus displaying a more complex MDF. Upon com-
pletion of the next GES releases, including a larger number of
observed fields, we will be able to test this possibility further. In
addition, the ARGOS analysis (based on data of lower resolution
and mean S/N than our GES data) is not fully spectroscopic since
it made use of photometric constraints to estimate fundamental
parameters and metallicity. A number of recent studies exam-
ining specific locations in the bulge region (Uttenthaler et al.
2012; Gonzalez et al. 2015; Schultheis et al. 2017) find a bimodal
MDF. Instead, ARGOS MDFs are trimodal even in individual
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fields, where the sample size is comparable to that of the above-
mentioned studies. In this sense, as discussed in Schultheis et al.
(2017), it might be a possibility that the trimodal nature of the
ARGOS MDFs is a feature that arises from their parametriza-
tion and the spatial distribution of their fields rather than as an
effect of larger number statistics.

Two different origins can be proposed for the stars belonging
to the metal-rich and metal-poor MDF components. Metal-rich
RC stars participate in the B/P bulge, present bar-like kinemat-
ics, and are chemically comparable to metal-rich thin disk stars.
We associate them, in agreement with the literature, with a popu-
lation formed by the classical mechanism of secular evolution of
the disk via bar formation and buckling into an X-shape structure
(Combes & Sanders 1981; Raha et al. 1991; Athanassoula 2005;
Martinez-Valpuesta et al. 2006). An internal vertical metallic-
ity gradient, like the one reported here, is predicted by N-body
simulations of secular bulge formation as an effect of the map-
ping in the vertical direction of horizontal (Martinez-Valpuesta
& Gerhard 2013) or vertical (Bekki & Tsujimoto 2011) metallic-
ity gradients initially present in the disk, or a combination of the
two (Di Matteo et al. 2015). Thin disk stars in the bulge region
can explain the presence of young stars (Bensby et al. 2013), and
also the existence of the thin star forming inner disk in the bulge
traced by classical Cepheids identified from VVV photometry
(Dékány et al. 2015).

On the other hand, metal-poor RC stars do not participate in
the B/P bulge, dominate in number density far from the plane,
and display isotropic kinematics. These stars might be associ-
ated with a classical spheroid component formed at early times
from the dissipative collapse of a primordial cloud accompanied
by a strong burst of stellar formation. A radial internal metal-
licity gradient, like the one reported here, and a high-velocity
dispersion are expected features from a dissipative collapse. The
enhanced levels of α-elements and the metallicity at which the
knee of the sequence in the [Mg/Fe] vs. [Fe/H] plane takes place
are both interpreted here with a chemical evolution model as sig-
natures of a fast chemical evolution (t ≤ 1 Gyr), dominated by
massive stars and characterized by a high star formation effi-
ciency. Shen et al. (2010) suitably reproduced the bulge rota-
tion and dispersion curves from the BRAVA project with an N-
body simulation which limits the mass contribution of a possible
dissipative collapse-made bulge to be less than 8%. This sce-
nario is incompatible with our results. The mean proportion of
stars belonging to each of the MDF components is weighted to-
ward metal-poor stars. Although our data set may not be fully
adequate to make strong assessments on the mass contribution
of both populations to the global bulge mass budget (the sam-
ple is not large enough and there is not enough spatial cover-
age, especially in the inner bulge), the data clearly hints at a
bulge composed of a similar fraction of metal-poor and metal-
rich stars. Moreover, from the observed mass-metallicity rela-
tion for galactic spheroids (Gallazzi et al. 2005), a system with
mean metallicity around [Fe/H] = −0.4 dex, as our metal-poor
component is, should have a mass of ∼ 1010 M�, which is com-
parable to the total bulge mass as estimated from observations
(Valenti et al. 2016). Furthermore, RR Lyrae stars, as tracers of
metal-poor old stellar populations, have been shown to display
an axisymmetric spatial distribution, uncorrelated with the bar
position angle (Dékány et al. 2013; Gran et al. 2016), and a high-
velocity dispersion of around 130 km s−1 (Gratton 1987; Kunder
et al. 2016). However, this is still under debate; a recent analy-
sis of OGLE data suggests that the RR Lyrae distribution might
be elongated with a pivot angle comparable to that of the main
bar (Pietrukowicz et al. 2015). The fact that metal-poor bulge

stars present cylindrical rotation has been taken as an argument
for their secular origin (Ness et al. 2013b). However, recent N-
body simulations have shown that an initially nonrotating clas-
sical bulge can spin-up into a bar-like structure by absorbing a
significant fraction of the disk angular momenta emitted by the
bar during its secular evolution (Saha et al. 2012). In this way,
the classical bulge will become photometrically and kinemati-
cally indistinguishable from the B/P bulge. In the case of a mas-
sive initial classical bulge, its central parts might be less affected
(Saha et al. 2016), providing a kinematic relic to be exploited by
spectroscopic observations of the inner-bulge.

Despite the above discussion, the comparable α-
enhancement levels, along with the similar position of the
knee of the bulge and thick disk sequences, argues for a possible
common origin, or at least for a similar chemodynamical
evolution of these populations. Moreover, it has been shown
that it is possible to reproduce general kinematic and chemical
bulge patterns from N-body models explaining its formation
as the product of thin+thick disk evolution (Di Matteo et al.
2015). For the knee, we found a small difference of 0.06 dex
and an upper limit of 0.24 dex. In the same vein, although
similar α-enhancement levels are found for the bulge and the
thick disk, there is an indication of a larger dispersion in the
bulge than in the thick disk. Moreover, enhancement differences
in r- and s-process elemental abundances have been proposed
as evidence of different formation timescales between the two
structures (Johnson et al. 2012; Van der Swaelmen et al. 2016).
Unfortunately, current efforts in this direction are based on the
comparison of bulge giants and local dwarf samples, which
might suffer from systematics given the different temperature
and gravity regimes of the samples. All things considered, the
origin and nature of the metal-poor bulge remains to be firmly
defined on the basis of larger data sets and further detailed
modeling.

The composite nature of galaxy bulges has been pointed out
by several authors, from a theoretical point of view (Samland &
Gerhard 2003; Athanassoula 2005; Obreja et al. 2013; Fiacconi
et al. 2015) and from observational evidence in external galaxies
(Gadotti 2009; Nowak et al. 2010; Williams et al. 2011; Erwin
et al. 2015; Fisher & Drory 2016). Rather than an eccentricity
of nature, the presence of composite bulges, with two or more
structure types (disk, pseudobulge, classical bulge) coexisting in
the same galaxy, appears as a common outcome of galaxy for-
mation and evolution.

If we assume that the differences in the knee position and
[Mg/Fe] dispersion between the bulge and thick disk sequences
are real, we can draw a general picture of the bulge formation by
interpreting the observational evidence in terms of two different
formation episodes. On the one hand, the old bulge population
that formed in situ is the product of a fast dissipative collapse
in the early epochs of Milky Way evolution. As characterized
by a strong SFR, the chemical enrichment of the gas may have
reached super-solar metallicities before gas exhaustion, with the
majority of stars produced around [Fe/H] = −0.5 dex. On the
other hand, metal-rich stars in the X-shaped bulge are, as pointed
out in the literature, the product of the secular evolution of the
early inner disk. In this sense, the main epoch of chemical en-
richment in the inner Galaxy occurred early, before the forma-
tion of the B/P bulge. A small fraction of the metal-rich stars,
endemic to the central regions of the Galaxy, might be old, be-
ing currently outnumbered by stars with their origin in the early
disk.

A semantic issue is then raised. In fact, we legitimately call
“bulge” all stellar populations currently present in the central
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kiloparsecs of the Milky Way regardless of their origin and spe-
cific evolutionary histories.

The Gaia-ESO survey multi-method, model-driven, fully
spectroscopic analysis of high-resolution high-S/N data provides
a homogeneous self-consistent account of the main Galactic
components. Using this exquisite data set, this is the first time
that the bulge MDF has been characterized in a large spatial area,
in individual fields, from a fully spectroscopic analysis. This
is also the first attempt to compare the metallicity position of
the bulge and thick disk knee based on a statistically significant
sample of homogeneously analyzed stars. All in all, a composite
picture of the Galactic bulge can be unambiguously established,
with all the presented evidence pointing to the presence of two
main components currently coexisting in the central regions of
the Milky Way.
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Appendix A: GMM output parameters

Individual GMM decompositions were performed on the 11
bulge fields studied in this paper. All except two MDFs were
found to be better explained by a model consisting of two Gaus-
sians, according to the Akaike Information Criterion. In Table.
A.1, we present the set of parameters characterizing these opti-
mal models for comparison with future studies.
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Table A.1. Parameters of the best GMM model for each field where two components were found. The subscripts “MP” and “MR” refer to the
metal-poor and metal-rich Gaussian components, respectively.

Field [Fe/H]MP σMP WeightMP [Fe/H]MR σMR WeightMR
name
m4m5 -0.09 0.36 0.65 0.51 0.13 0.35
p1m4 -0.33 0.31 0.64 0.43 0.15 0.36
m6m6 -0.30 0.27 0.60 0.40 0.20 0.40
p0m6 -0.27 0.31 0.64 0.49 0.15 0.36
p8m6 -0.25 0.35 0.63 0.44 0.15 0.37
m10m8 -0.40 0.29 0.78 0.33 0.17 0.22
p7m9 -0.44 0.25 0.49 0.30 0.23 0.51
m1m10 -0.44 0.26 0.68 0.39 0.19 0.32
p6m10 -0.43 0.26 0.70 0.38 0.20 0.30
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