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Abstract

Background: Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, is one of the primary causes of
morbidity and mortality in Atlantic salmon aquaculture, particularly in Chile. Host resistance is a heritable trait, and
functional genomic studies have highlighted genes and pathways important in the response of salmon to the
bacteria. However, the functional mechanisms underpinning genetic resistance are not yet well understood. In the
current study, a large population of salmon pre-smolts were challenged with P. salmonis, with mortality levels
recorded and samples taken for genotyping. In parallel, head kidney and liver samples were taken from animals of
the same population with high and low genomic breeding values for resistance, and used for RNA-Sequencing to
compare their transcriptome profile both pre and post infection.

Results: A significant and moderate heritability (h2 = 0.43) was shown for the trait of binary survival. Genome-wide
association analyses using 38 K imputed SNP genotypes across 2265 animals highlighted that resistance is a
polygenic trait. Several thousand genes were identified as differentially expressed between controls and infected
samples, and enriched pathways related to the host immune response were highlighted. In addition, several
networks with significant correlation with SRS resistance breeding values were identified, suggesting their
involvement in mediating genetic resistance. These included apoptosis, cytoskeletal organisation, and the
inflammasome.

Conclusions: While resistance to SRS is a polygenic trait, this study has highlighted several relevant networks and
genes that are likely to play a role in mediating genetic resistance. These genes may be future targets for functional
studies, including genome editing, to further elucidate their role underpinning genetic variation in host resistance.
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Background
Finfish aquaculture is a fast-growing industry with a
worldwide production of 54.3 million tonnes during
2018, corresponding to an estimated value of USD 139.7
billion [1]. Atlantic salmon (Salmo salar) comprises
4.5% of global finfish trade, and demand for salmon has
grown steadily since 2010 [1]. However, the expansion
of salmon aquaculture has been associated with a con-
current increase in the occurrence and impact of infec-
tious diseases, which can cause major welfare and
production challenges. One of the most serious of these
diseases is Salmon Rickettsial Syndrome (SRS), caused
by the Gram-negative bacterium Piscirickettsia salmonis,
which can cause severe morbidity and mortality in sal-
monid species. SRS is particularly problematic for sal-
mon aquaculture in Chile, the world’s second largest
producer, and is responsible for 47.5% of the mortality
due to infectious diseases and 10.9% of the total mortal-
ity in Atlantic salmon production [2]. The morbidity and
mortality caused by SRS occur at the seawater stage,
where economic losses in relation to biomass are high-
est. The direct losses through mortality are exacerbated
by indirect losses through reduced growth rates and pre-
mature harvests [3]. SRS has also been reported in other
salmon-producing countries such as Norway, Ireland,
Canada and Scotland [4–8]. Several strategies for SRS
control have been developed, such as vaccination, antibi-
otics and biosecurity measures, however, they have
shown only partial efficacy under field conditions [3].
Development of novel strategies to control SRS requires
improved knowledge of the genetic and functional as-
pects of P. salmonis host-pathogen interaction, such as
the process of entry into host cells, intracellular replica-
tion, virulence mechanisms, and genetic variation in host
response [3].
A promising avenue to mitigate the impact of SRS in

Atlantic salmon aquaculture is to improve SRS disease
resistance traits through selective breeding. This is pos-
sible due to naturally occurring genetic variation (herit-
ability) for disease resistance, which has been observed
in other infectious diseases impacting farmed popula-
tions of farmed salmonids [9–11]. Significant additive
genetic variation for resistance to SRS has been found in
various farmed populations, with family mortality levels
ranging from 5 to 82% and heritability estimates from
0.11 to 0.41 [12, 13]. The genetic architecture of resist-
ance to SRS has been studied using genome-wide associ-
ation studies (GWAS) in populations of different
salmonid species, suggesting that SRS resistance is a
polygenic trait [14, 16]. For such traits, genomic selec-
tion has been shown to be effective in increasing accur-
acy of breeding value prediction in commercial
aquaculture breeding programmes [17, 18]. In the case
of SRS resistance, the use of genomic information was

shown to improve prediction accuracy by up to 30%
compared to pedigree approaches [19].
While selective breeding and genomic selection for im-

proved resistance to SRS can be performed without
knowledge of the mechanisms underlying genetic resist-
ance, understanding these mechanisms is a major goal
for aquaculture research [20]. Such information can
yield novel disease treatment and mitigation options, in-
cluding possible targets for vaccination and therapeu-
tants. Furthermore, knowledge of functional genes and
polymorphisms can be applied in functionally-enriched
genomic selection, which can further improve prediction
accuracy relative to the use of anonymous markers [21].
Finally, putative causative genes and variants can be tar-
geted by CRISPR/Cas genome editing, initially to con-
firm their role, and ultimately to edit broodstock to
carry resistant variants pending a suitable regulatory en-
vironment [20].
P. salmonis infects and replicated in salmonid macro-

phages, and stimulates a significant innate immune re-
sponse together with an oxidative defence response [22,
23]. The host response to infection in Atlantic salmon
has been assessed in a number of studies using microar-
rays and RNA-Sequencing. Their findings suggest that P.
salmonis modulates the pro-inflammatory cytokine re-
sponse, the iron deprivation system and the cytoskeletal
reorganization, and interferes with protein transporta-
tion and vesicle trafficking to evade immune response,
increase persistence and aid replication [24, 25]. This
may reflect a strategy of the bacteria to evade the adap-
tive immune response and modify cell-autonomous im-
munity [24]. However, while gene expression differences
between families with different levels of resistance have
been examined using microarrays [25], the functional
mechanisms underpinning genetic variation in resistance
to SRS remain poorly understood.
Therefore, the aims of this study were i) to evaluate

the genetic architecture of SRS resistance in a large At-
lantic salmon population from a commercial breeding
programme, ii) to improve our understanding of the mo-
lecular basis of host response, and iii) to discover func-
tional genes and pathways contributing to host genetic
resistance to SRS.

Results
Genetics of resistance to SRS
A large-scale P. salmonis injection challenge was per-
formed on a population of salmon pre-smolts from a
commercial breeding programme with fish distributed
evenly across three tanks. The challenge was terminated
after 47 days, and there were a total of 756 mortalities
and 1509 survivors, corresponding to an average mortal-
ity rate of 33%. The challenged fish started to die 17 days
post-challenge, and mortality rate was consistent across
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the three tanks (Fig. 1a). The estimated heritability of
mortality as measured on the binary scale was 0.43 ±
0.04.
The genome-wide association analysis revealed a poly-

genic architecture for the trait of resistance to SRS, al-
though a few SNPs reached the suggestive level of
significance [p-value < 2.18 × 10− 5] (Fig. 1b). These SNPs
were situated on chromosomes 1, 2, 12 and 27, indica-
tive of putative QTL on these chromosomes. However,
no single SNP explained more than 1% of the genetic
variation in resistance to SRS.

Transcriptomic response to SRS infection
To examine the transcriptomic response to infection, 48
fish were euthanized and sampled pre-challenge, 3 days
post-challenge and 9 days post-challenge from the same
tank (total n = 144). Head kidney and liver samples were
obtained from each animal and stored in RNAlater at
4 °C for 24 h, and then at − 20 °C until RNA extraction.
A total of 133 samples were then selected for RNA se-
quencing (74 liver and 59 head kidney samples; Supple-
mentary file 1) based on (i) high and low Estimated
breeding values (EBVs) for resistance to SRS, and (ii)
RNA quality. An average of ~ 40M reads per sample
were produced using RNA Sequencing of the head kid-
ney and liver samples collected at 3 and 9 days post-
challenge. Hierarchical clustering of all the samples
using gene expression data clustered head kidney and
liver separately, as expected (Fig. 2a). Principal Compo-
nent Analysis was performed in each tissue separately to
assess the sample clustering within tissue. Liver samples
showed a clear separation between controls and the 9
days post infection samples, with the samples from 3
days post infection falling in between and showing a sig-
nificant overlap with the other two groups (Fig. 2b). In
the case of head kidney, the infected samples clustered

separately from controls, but a clear separation between
3 and 9 days post infections was not observed (Fig. 2c).
Differential expression analyses between controls and

infected samples highlighted a very large number of differ-
entially expressed genes (10 K to 20 K per comparison,
False Discovery Rate - FDR p-value < 0.05), which was ex-
pected considering the high statistical power associated
with the large sample size in this experiment. To facilitate
downstream analyses and interpretation, only genes with
FDR p-value < 0.001, normalized mean expression > 10
reads, and absolute log2FC > 1 were retained for down-
stream analyses. This resulted in 2000 to 7000 differen-
tially expressed genes in each comparison, with a
moderate overlap between time points, especially in head
kidney (Fig. 3, Supplementary file 2). Several innate im-
mune genes had altered expression in response to SRS, in-
cluding interleukins, tumor necrosis factor related genes,
caspases and interferon genes (Fig. 4).
Between 15 and 55 KEGG pathways were enriched for

differentially expressed genes in the four comparisons
(Fig. 5, Supplementary file 3). Generally, immune path-
ways such as cytokine-cytokine receptor interactions,
apoptosis, and Toll-like receptor signaling showed en-
richment for gene upregulation in both organs, albeit
more strongly in head kidney than liver at 3dpi. TNF
signaling and bacterial invasion of epithelial cells were
only enriched for upregulated genes in head kidney,
while evidence for Staphylococcus aureus infection and
phagosome upregulation was liver-specific. Energy me-
tabolism pathways showed evidence for downregulation
in both organs, including glycolysis / gluconeogenesis or
fatty acid degradation (Fig. 5).

Signatures of resistance to SRS
SRS resistance breeding values for all the RNA-Seq ani-
mals were estimated according to the linear mixed

Fig. 1 SRS disease challenge survival data and genome-wide association analysis. a Percentage of survival in the population throughout the
duration of the challenge in each of 3 tanks, and b Manhattan plot showing the p-values of the GWAS for each SNP, the red line represents the
Bonferroni corrected significance threshold and the blue line the suggestive significance threshold (1 / number of SNPs)
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model described in the methods. To investigate the asso-
ciation between gene expression and resistance to SRS, a
network correlation analysis was performed. Head kid-
ney and liver transcriptomes clustered into 31 and 22
putative gene networks respectively, with each network
containing between 25 and 7000 genes. The correlation
between the SRS resistance EBVs at each time point and
average network gene expression (Supplementary Fig-
ure 1) revealed significant associations for 7 and 2 gene
networks in head kidney and liver, respectively (|r| >
0.45, p < 0.001; Supplementary file 4), suggesting that
these networks may play a functional role in defining
host resistance to SRS. KEGG enrichment analysis of the
gene networks associated with resistance revealed genes
involved in the apoptotic processes, such as BCL2L1,
ITP3 and BNIP3, in the Cytoskeletal reorganization
pathway such as SPTB, and in Bacterial invasion and
Intracellular trafficking such as CBL and RAB9A (Fig. 6).

Discussion
Improving our understanding of the functional basis
of genetic resistance and host response to SRS in
Atlantic salmon is valuable for the development of
new strategies of disease control. To this end, this
large-scale study has provided further evidence for
significant heritability of host resistance to SRS, and
suggested that the genetic architecture of resistance

Fig. 3 Venn diagram showing the number of differentially expressed
genes following P. salmonis infection. The number of differentially
expressed genes between 3 dpi and 9 dpi samples and controls in both
head kidney and liver are shown. The Venn diagram shows the number
of unique differentially expressed genes for each comparison and the
genes overlapping across the four comparisons

Fig. 2 Sample clustering based on RNA-Sequencing data from liver and head kidney samples. a Hierarchical clustering of all samples, and b
principal component analyses of the liver samples and c of the head kidney samples

Moraleda et al. BMC Genomics          (2021) 22:156 Page 4 of 13



is polygenic in nature. Furthermore, RNA-
Sequencing of liver and head kidney samples from
SRS-challenged salmon pre-smolts highlighted a
large-scale up-regulation of immune pathways and
down-regulation of energy metabolic pathways com-
pared to controls.

Resistance to SRS in the population studied herein had
a moderate level of genetic control, with a heritability es-
timate of 0.43 (binary survival). This estimate is towards
the upper limit of those reported in previous studies for
Atlantic salmon, which ranged between 0.11 and 0.41
[12, 26, 27], and is also similar to those reported for

Fig. 4 Volcano plots of RNA-Seq data comparing control vs SRS infected samples. Each point in the plots represents a gene, with its log2 fold
change in the x-axis and its –log10 p-value in the y-axis. Positive fold change means upregulated in infected samples. Genes are classified in 4
categories depending on their FC and FDR corrected p-value: i) grey = p-value > 0.01 and log2 fold change between − 0.5 and 0.5; ii) green = p-value >
0.01 and log2 fold change < − 0.5 or > 0.5; iii) blue = p-value < 0.01 and log2 fold change between − 0.5 and 0.5; and iv) red = p-value < 0.01 and log2
fold change < − 0.5 or > 0.5)

Fig. 5 KEGG pathways enriched for genes showing significant differential expression between SRS infected and control samples. Heatmap
showing the fold enrichment of selected KEGG pathways showing significant up- (positive values) or down-regulation (negative) in response to SRS
infection. The number in brackets at the end of each pathway represents the number of differentially expressed genes assigned to the pathways which
show statistically significant enrichment
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resistance to SRS in rainbow trout (ranging between
0.38 and 0.54) [13, 28], but somewhat higher to the
values found in coho salmon (ranging between 0.16 to
0.31) [29, 30]. The genetic variation in resistance to SRS
appears to be polygenic in nature, without any signifi-
cant major QTL, and suggestive QTLs on only four
chromosomes. This polygenic architecture was also re-
ported in previous studies [14, 16]. Chromosomes 1 and
12 have also been found harbouring genomic regions as-
sociated with resistance to SRS in previous studies car-
ried out in a different Atlantic salmon population,
raising the possibility the QTL are the same [14, 15].
The putative QTL found herein on chromosomes 2 and
27 identified here differ from previous studies, which
can be explained by differences in disease challenge con-
ditions (discussed below), different genetic background
between populations and the polygenic nature of the
trait. The use of whole-genome resequencing could also
result in the discovery of additional QTL not in linkage
disequilibrium with the genetic markers used in these
studies. Nonetheless, the moderate heritability and poly-
genic architecture of resistance to SRS in Atlantic sal-
mon make this trait an ideal candidate for genomic
selection in salmon breeding programmes, which has
proved to be an efficient method to select for resistance
to SRS and other diseases with a polygenic background
in salmon [19, 31−34]. However, it should be noted that
the intraperitoneal injection model used for SRS

challenges could have significant impact on the inter-
pretation of the trait of genetic resistance. The route of
entry for P. salmonis is via epithelial tissues (skin and
gills) [35], and the pattern of infection observed in intra-
peritoneal injections differs from that of cohabitation in-
fections [36], which is consistent with the barrier of
epithelial tissues against bacterial infections [37]. The in-
traperitoneal injection bypasses this, and therefore it is
to be expected that only part of the mechanisms of gen-
etic resistance are being captured. For this reason,
benchmarking genetic resistance measured in the labora-
tory injection challenge with mortality levels observed in
the field is an important consideration [38].
SRS infected animals showed major transcriptional dif-

ferences compared to uninfected controls in both the
head kidney and the liver, involving the differential ex-
pression of thousands of genes, similarly to previous
studies that also reported a significant gene expression
modulation in liver and head kidney in response to SRS
[25, 39, 40]. Two factors may have contributed to the
large number of significant differentially expressed genes
in this study, the large sample size (over 30 samples per
comparison) and the use of time zero controls. This ex-
perimental design (with lack of time-matched controls)
means that we may have captured not only the response
to the bacteria, but also the response to the intraperito-
neal injection and associated stress. Therefore, the re-
sults are likely to correspond to the response to SRS,

Fig. 6 Correlation between gene expression and breeding values for resistance to SRS. Correlation between the expression of 6 genes of interest
(normalized read counts) and the estimated breeding values (EBVs) for resistance to SRS. The six genes are Bcl-2-like protein 1 (BCL2L1), Ion
transport peptide 3 (ITP3), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), Spectrin beta chain (SPTB), E3 ubiquitin-protein
ligase CBL (CBL), and Ras-related protein Rab-9a (RAB9A)
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and the consistency of the results with previous know-
ledge on SRS infection and other intracellular bacteria
support this. Several important innate immune response
pathways were up-regulated in both organs, such as
Apoptosis, NOD-like receptor signalling, NF-kappa B
signalling and Bacterial invasion of epithelial cells (Fig. 5).
Likewise, several energy metabolism pathways are down-
regulated in response to the infection, probably as a re-
sult of diversion of cellular resources towards immune
response, as has been suggested in previous studies of
macrophage cell lines response to P. salmonis infection
[22]. The integration of the transcriptomic response to
infection and the gene network analysis to identify signa-
tures of resistance to SRS allowed us to identify four key
biological processes that seem to be important for the
outcome of the infection: i) cytoskeleton reorganization,
ii) apoptosis, iii) bacterial invasion and intracellular traf-
ficking, and iii) the inflammasome.

Cytoskeleton reorganization
Genes and pathways related to cytoskeleton
reorganization featured heavily in the lists of differen-
tial expression genes in response to infection. The
cytoskeleton plays an active role in the innate im-
mune response: cytoskeletal activation is involved in
pathogen detection, phagocytosis, cell-cell signalling,
cell migration, and secretion [41]. Furthermore, major
disruptions in actin components have been described
during the infection process of intracellular bacteria
such as Legionella pneumophila, Coxiella burnetii and
Listeria monocytogenes [42−45]. Similarly, P. salmonis
modulates the cytoskeleton by inducing actin
depolymerization [46], which results in cytoskeletal
reorganization [24]. This is consistent with our re-
sults, where several cytoskeleton associated genes
showed high correlation with estimated breeding
values for resistance. A notable example is the Rho-
associated coiled-coil kinase 1 (ROCK1; r = 0.27), a
serine/threonine kinase downstream effector of the
Rho family, described as an essential regulator of
actin cytoskeleton [47]. ROCK kinases participate in
the bacterial invasion of Coxiella burnetii in human
cells, and the use of ROCK inhibitors during infection
hampered the bacterial internalization process [48].
Furthermore, genes highly correlated with SRS sus-
ceptibility such as SPTB (r = − 0.57) and SEPTIN3
(r = − 0.42) are cytoskeleton constituents that partici-
pate in protein linking (SPTB [49];) and GTP-binding
(SEPTIN3 [50];), respectively. This high correlation of
these genes with susceptibility may be explained by
the availability of actin in these structures, which is a
target for modulation by the bacterium during cyto-
skeletal depolymerisation, and therefore disrupting

this modulation of the cytoskeleton may be a strategy
to increase resistance to SRS.

Apoptosis and cell survival promotion
Apoptosis is a programed cell-death mechanism essen-
tial to development and maintenance of homeostasis
[51]; but induction of apoptosis has also been observed
during bacterial and viral infection, hampering microbial
replication and dissemination [52]. Intracellular bacteria
actively modulate cellular apoptosis to enable their repli-
cation within the cells [53]. Previous studies suggest that
P. salmonis modulates the apoptotic process of the host
as a strategy to ensure intracellular survival [24, 54]. In
line with this, apoptotic genes and pathways were heavily
modulated during SRS infection in the current study.
Furthermore, the expression of two different inhibitors
of apoptosis, BCL2L1 (r = − 0.21) and ITP3 (r = − 0.25),
was negatively correlated with resistance to SRS.
BCL2L1 inhibits caspase-1 activation by interfering with
NLRP1 oligomerization, a key component of the inflam-
masome immune response [55], and ITP3 has an anti-
apoptotic effect in mammalians cancer cells [56]. In con-
trast, apoptosis promoting genes, such as BNIP3 (r =
0.16) [57, 58] and Bim (BCL2L11 r = 0.18) [59], were
positively correlated with genetic resistance. These find-
ings support the hypothesis that apoptosis is initiated as
a host strategy to mitigate pathogen dissemination,
which is subverted by SRS to promote cell survival and
bacterial replication.

Bacterial invasion and intracellular trafficking
The intracellular environment provides diverse advan-
tages to pathogens, for example protection against
humoral and complement-mediated host defence mech-
anisms, and availability of nutrients and direct access to
metabolic pathways to modulate in their favour. In order
to stablish an intracellular infection, pathogens utilise a
wide range of mechanisms for internalization and sur-
vival [60]. Once inside host cells, P. salmonis is capable
of establishing intracellular infections, and replicate in
macrophages within cytoplasmic vacuole-like structures
[61]. In P. salmonis, this is facilitated by a virulence fac-
tor that encodes a type-four secretion system (T4SS)
[22, 62]. The Dot/Icm T4SS allows bacteria to translo-
cate proteins into host cells, and manipulate host path-
ways [63]. In P. salmonis, this may involve modulation
of the host cell intracellular trafficking, leading to dis-
rupted phagosome-lysosome pathogen clearance [62].
Interestingly, in this study key genes participating in
intracellular trafficking such as RAB1B (r = 0.24) and
RAB9A (r = 0.10) are positively correlated with genetic
resistance to SRS. RAB1B is a Rab protein modulated by
Legionella pneumophila Dot/Icm T4SS effectors to re-
cruit endoplasmic reticulum-derived vesicles to stablish
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bacterial replication vacuoles [64]. Conversely, RAB9A is
involved in the transport between endosome vesicles
and the trans Golgi network [65], and is interrupted by
Salmonella enterica SifA effector to attenuate the lyso-
somal activity in Salmonella containing vacuoles (SCV)
[66]. In the current study a strong negative correlation
was found between the gene CBL (r = − 0.33) and resist-
ance to SRS, suggesting that P. salmonis virulence fac-
tors may target this gene to facilitate bacterial
internalization. Furthermore, E3 ubiquitin-protein ligase
CBL-like isoform X1 (CBL) was found in chromosome
2, located in the most significant QTL region for resist-
ance to P. salmonis infection. Interestingly, Listeria
monocytogenes, another intracellular bacteria, expresses
surface proteins to modulate host proteins like Met and
CBL and hijack the clathrin-dependent endocytosis
process [67], and previous studies indicate that P. salmo-
nis internalization process is mediated by clathrin endo-
cytosis [46].

Inflammasome
Another interesting result was the large number of genes
differentially expressed in response to infection involved
in the inflammasome. The inflammasome is an intracel-
lular sensing system activated by a broad range of micro-
organisms that has a pivotal role in the innate immune
response to infection [68]. Activation of the inflamma-
some initiates a signalling cascade that culminates in
caspase-1 expression and maturation of the proinflam-
matory cytokine IL-1β [69]. Numerous studies suggest
that genes participating in the inflammasome assembly
may be conserved in teleost fish [70, 71]. Moreover, gene
activation of inflammasome associated components such
as NLRP1, ASC and caspase-1 has been described in re-
sponse to bacterial infection in zebrafish (Danio rerio)
and turbot (Scophthalmus maximus) [72, 73]. In the
current study, genes involved in the activation of the
inflammasome had higher expression on average in re-
sistant fish, suggesting that overexpression of this path-
way could be protective during SRS infection. The
expression of NLRP1, a sensor that initiates the inflam-
masome response, is significantly positively correlated
with genetic resistance (r = 0.20). NLRP1 is a NOD-like
receptor (NLR) that detects pathogen molecules and
triggers the activation of effector caspases (caspases 1, 4,
5 and 11) [72]. Similarly, NLRC3 is another component
of the inflammasome positively correlated with resist-
ance (r = 0.31). While in humans it has been described
as an inhibitor of the innate immune response through
the inhibition of NF-kB activity [71], in teleosts NLRC3
expression is significantly increased in mucosal tissue
after exposure to bacteria, implying an involvement in
the early immune response [74, 75]. In contrast, NLRP12
(r = − 0.4774) is a regulator of inflammation which acts

as a suppressor of pro-inflammatory cytokines interfer-
ing with the NF-kB pathway [76], and therefore its nega-
tive correlation with genetic resistance suggests that the
activation of the inflammasome pathway is beneficial in
response to SRS. In summary, these findings suggest that
the activation of the inflammasome pathway is import-
ant for a successful immune response against
P.salmonis.

Conclusions
This study highlights a significant genetic component to
SRS resistance in Atlantic salmon, underpinned by a
polygenic architecture. The RNA-Sequencing compari-
son of control and infected fish identified a major signa-
ture of host response evident in both head kidney and
liver tissues. When comparing this response between in-
dividual fish of high and low resistance breeding values,
several interesting gene expression networks were identi-
fied that correlate with genetic resistance. These include
genes related to cytoskeleton, apoptosis and cell survival,
bacterial invasion/intracellular trafficking, and the
inflammasome. Considering the scale and complexity of
the transcriptomic response observed in salmon chal-
lenged with P. salmonis, and the lack of any significant
QTL associated with host resistance, the potential mech-
anisms leading to genetic resistance are likely to be het-
erogeneous and vary across different families and
individuals. However, the pathways and genes
highlighted by this study are potential candidates for
functional studies, and downstream applications in sal-
mon production. For example, strategies to increase re-
sistance to the bacteria can focus on disrupting its
modulation of cellular homeostasis (i.e. cytoskeleton or
apoptosis) or on boosting the immune processes that
prevent or restrain the infection (i.e. inflammasome).
Such strategies may include CRISPR/Cas knockout or
modulation in cell line models, or ultimately in vivo to
interrogate the impact of perturbation of the identified
genes on genetic resistance.

Materials and methods
Experimental design
Two thousand two hundred-sixty-five Atlantic salmon
pre-smolts (average weight 135 ± 47 g) from 96 full sib-
ling families from the breeding population of AquaIn-
novo (Salmones Chaicas, Xth Region, Chile) were
experimentally challenged with Piscirickettsia salmonis
(strain LF-89) in 3 × 7 m3 tanks. Fish had been vacci-
nated for Flavobacterium, IPNV (Alpha Ject Flavo +
IPN) and ISAV (Alpha Ject Micro 1-ISA), and prior to
the challenge animals were tested for ISAV, IPNV, Reni-
bacterium salmoninarum, Flavobacterium psycrophilum
and Mycoplasma by (q) PCR, and for bacterial contimi-
nation by culture in TSA, TSA + salt, and Piscirickettsia
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salmonis agar at 18 °C and 35 °C. Fish were intraperito-
neally injected with 0.2 mL of a 1/2030 dilution of P. sal-
monis. This dose was expected to cause a population-
level mortality of close to 50%, based on a pre-challenge
of 300 fish from the same families challenged with dif-
ferent doses of the bacteria. The main challenge was ter-
minated when daily mortality returned to baseline levels
(i.e. negligible mortality), which occurred 47 days after
the start of the challenge. Caudal fin clips were taken
from all mortality and survivor fish for future DNA ex-
traction and genotyping.
For RNA sequencing, 48 fish were sampled pre-

challenge, 3 days post-challenge and 9 days post-
challenge from the same tank, for a total of 144 fish.
Head kidney and liver samples were obtained from each
animal and stored in RNAlater at 4 °C for 24 h, and then
at − 20 °C until RNA extraction.

Genotyping and imputation
DNA was extracted from the fin clips of the challenged fish
using a commercial kit (Wizard Genomic DNA Purification
Kit, Promega), following the manufacturer’s instructions.
All samples where genotyped with a panel of 968 SNPs
(Supplementary file 5) chosen as a subset of the SNPs from
a medium density SNP array [77] using Kompetitive Allele
Specific PCR (KASP) assays (LGC Ltd., UK). A population
containing full-siblings of the challenged animals had previ-
ously been genotyped with a SNP panel of 45,818 SNPs
(n = 1056, [77]; Supplementary file 5), and the experimental
population was imputed to ~ 46 K SNPs using FImpute
v.2.2 [78]. This strategy was selected due to its cost-
effectiveness compared with high-density genotyping or
whole-genome resequencing. Imputation accuracy was esti-
mated by 10-fold cross validation, masking all SNPs except
the 968 SNP panel for 10% of the 1056 genotyped full-sibs,
and then assessing the correlation between the true geno-
types and the imputed genotypes for the remainder of the
SNPs. All imputed SNPs showing imputation accuracy
below 80% were discarded. The average imputation accur-
acy for the 39,416 SNPs retained (Supplementary file 5)
was of 95%. Further details about the low-density SNP
panel and imputation methods can be found in Robledo
et al. (2019) [79]. The imputed genotypes were then filtered
and removed according to the following criteria: SNP call-
rate < 0.9, individual call-rate < 0.9, FDR rate for high indi-
vidual heterozygosity < 0.05, identity-by-state > 0.95 (both
individuals removed), Hardy-Weinberg equilibrium p-value
< 10− 6, minor allele frequency < 0.01. After filtering 38,028
markers and 2345 fish remained for the downstream
analyses.

Estimation of genetic parameters
The phenotype of resistance to SRS was measured as
binary survival, recording mortalities as 0 and survivors

as 1. Genetic parameters for SRS resistance were esti-
mated using the genomic relationship matrix (G-matrix)
to model the additive genetic relationship between ani-
mals in ASReml 4.1 [80] using he following linear mixed
model:

y ¼ uþ Xbþ Zaþ e

where y is a vector of observed phenotypes, μ is the
overall mean of phenotype records, b is the vector of
fixed effects which includes tank as factor and weight at
the start of the challenge as covariate, a is a vector of
additive genetic effects distributed as ~N (0,Gσ2a) where
σ2a is the additive (genetic) variance, G is the genomic
relationship matrix. X and Z are the corresponding inci-
dence matrices for fixed and additive effects, respect-
ively, and e is a vector of residuals. The identity-by-state
genomic relationship matrix (G) was calculated using
the GenABEL R package (“gkins” function [81];) kinship
matrix [82], multiplied by two and inverted.

Single-SNP genome-wide association study
The single-SNP GWAS was performed using the GenA-
BEL R package [81] by applying the mmscore function
[83], which accounts for the relatedness between individ-
uals applied through the GenABEL [81] genomic kinship
matrix [82]. Significance thresholds were calculated
using a Bonferroni correction where genome-wide sig-
nificance was defined as 0.05 divided by number of SNPs
[84] and suggestive as 1 / number SNPs.

RNA extraction and sequencing
For all the 288 head kidney and liver samples, a standard
TRI Reagent RNA extraction protocol was followed.
Briefly, approximately 50 mg of tissue was homogenized
in 1 ml of TRI Reagent (Sigma, St. Louis, MO) by shak-
ing using 1.4 mm silica beads, then 100 μl of 1-bromo-3-
chloropropane (BCP) was added for phase separation.
This was followed by precipitation with 500 μl of isopro-
panol and posterior washes with 65–75% ethanol. The
RNA was then resuspended in RNAse-free water and
treated with Turbo DNAse (Ambion). Samples were
then cleaned up using Qiagen RNeasy Mini kit columns
and their integrity was checked on Agilent 2200 Bioana-
lyzer (Agilent Technologies, USA). A total of 133 sam-
ples were selected for RNA sequencing (74 liver and 59
head kidney samples; Supplementary file 5) based on
their EBVs for resistance to SRS and RNA quality.
Thereafter, the Illumina Truseq mRNA stranded RNA-
Seq Library Prep Kit protocol was followed directly. Li-
braries were checked for quality and quantified using the
Bioanalyzer 2100 (Agilent), before being sequenced on
16 lanes of the Illumina Hiseq 4000 instrument using 75
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base paired-end sequencing at Edinburgh Genomics,
UK. Raw reads have been deposited in NCBI’s Sequence
Read Archive (SRA) under BioProject accession number
PRJNA669807.

Read mapping
The quality of the sequencing output was assessed using
FastQC v.0.11.5 (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). Quality filtering and removal of
residual adaptor sequences was conducted on read pairs
using Trimmomatic v.0.38 [85]. Specifically, Illumina
specific adaptors were clipped from the reads, leading
and trailing bases with a Phred score less than 20 were
removed and the read trimmed if the sliding window
average Phred score over four bases was less than 20.
Only reads where both pairs were longer than 36 bp
post-filtering were retained. Trimmed reads were then
pseudoaligned against the Atlantic salmon reference
transcriptome (ICSASG_v2 Annotation Release 100 [86];
) using kallisto v0.44.0 [87].

Differential expression
Transcript level expression was imported into R v3.6
[88] and summarised to the gene level using the R/txim-
port v1.10.1 [89]. Gene count data were used to estimate
differential gene expression using the Bioconductor
package DESeq2 v.3.4 [90]. Briefly, size factors were cal-
culated for each sample using the ‘median of ratios’
method and count data was normalized to account for
differences in library depth. Next, gene-wise dispersion
estimates were fitted to the mean intensity using a para-
metric model and reduced towards the expected disper-
sion values. Finally a negative binomial model was fitted
for each gene and the significance of the coefficients was
assessed using the Wald test. The Benjamini-Hochberg
false discovery rate (FDR) multiple test correction was
applied, and transcripts with FDR < 0.001, normalized
mean read counts > 10 and absolute log2 fold change
values (FC) > 1 were considered differentially expressed
genes. Hierarchical clustering and principal component
analyses were performed to visually identify outlier sam-
ples, which were then removed from the analyses. The R
packages “pheatmap”, “PCAtools” and “EnhancedVol-
cano” were used to plot heatmaps, PCAs and volcano
plots, respectively. Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) enrichment analyses were carried out
using KOBAS v3.0.3 [91]. Briefly, salmon genes were an-
notated against KEGG protein database [92] to deter-
mine KEGG Orthology (KO). KEGG enrichment for
differentially expressed gene lists was tested by compari-
son to the whole set of expressed genes in the corre-
sponding tissue using Fisher’s Exact Test (genes with
mean normalized count values > 10). KEGG pathways
with ≥5 DE genes assigned and showing a Benjamini-

Hochberg FDR corrected p-value < 0.05 were considered
enriched for differential expression.

Network correlation analysis
Network correlation analyses were performed in R v3.6
[88] using the WGCNA package v1.69 [93]. Read counts
after variance stabilizing transformation in DESeq2 [90]
were used as measure of gene expression. Co-expression
networks were then built using a power of 10, and clus-
ters of genes were grouped into different color modules,
allowing a minimum of 25 genes per module. Correl-
ation between network summary profiles and external
traits was quantified, and network trait associations
showing |r| > 0.45 and p < 0.001 were considered signifi-
cant. Thereafter, Kegg enrichment analyses were per-
formed for the significantly associated networks using
KOBAS 3.0.3 [91] as described above.
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