
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Deep 2D Convolutional Network for Waveform-Based Speech
Recognition

Citation for published version:
Oglic, D, Cvetkovic, Z, Bell, P & Renals, S 2020, A Deep 2D Convolutional Network for Waveform-Based
Speech Recognition. in Proceedings of Interspeech 2020. International Speech Communication
Association, pp. 1654-1658, Interspeech 2020, Virtual Conference, China, 25/10/20.
https://doi.org/10.21437/Interspeech.2020-1870

Digital Object Identifier (DOI):
10.21437/Interspeech.2020-1870

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of Interspeech 2020

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 17. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/391332838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.21437/Interspeech.2020-1870
https://doi.org/10.21437/Interspeech.2020-1870
https://www.research.ed.ac.uk/en/publications/4a397534-58ee-4c62-b503-b762fd7f805c


A Deep 2D Convolutional Network for Waveform-based Speech Recognition

Dino Oglic 1, Zoran Cvetkovic 1, Peter Bell 2, and Steve Renals 2

1 Department of Engineering, King’s College London, UK
2 Center for Speech Technology Research, University of Edinburgh, UK

{dino.oglic, zoran.cvetkovic}@kcl.ac.uk, {peter.bell, s.renals}@ed.ac.uk

Abstract
Due to limited computational resources, acoustic models of early
automatic speech recognition (ASR) systems were built in low-
dimensional feature spaces that incur considerable information
loss at the outset of the process. Several comparative studies of
automatic and human speech recognition suggest that this infor-
mation loss can adversely affect the robustness of ASR systems.
To mitigate that and allow for learning of robust models, we
propose a deep 2D convolutional network in the waveform do-
main. The first layer of the network decomposes waveforms into
frequency sub-bands, thereby representing them in a structured
high-dimensional space. This is achieved by means of a para-
metric convolutional block defined via cosine modulations of
compactly supported windows. The next layer embeds the wave-
form in an even higher-dimensional space of high-resolution
spectro-temporal patterns, implemented via a 2D convolutional
block. This is followed by a gradual compression phase that
selects most relevant spectro-temporal patterns using wide-pass
2D filtering. Our results show that the approach significantly out-
performs alternative waveform-based models on both noisy and
spontaneous conversational speech (24% and 11% relative error
reduction, respectively). Moreover, this study provides empirical
evidence that learning directly from the waveform domain could
be more effective than learning using hand-crafted features.
Index Terms: automatic speech recognition, parametric filters,
deep convolutional networks, raw speech, robustness.

1. Introduction
Scalable and effective acoustic models for speech recognition
are typically based on hand-crafted features designed accord-
ing to the physiology of human hearing and psychoacoustic
measurements [1, 2, 3]. The most effective and widely used fea-
ture extraction techniques employ band-pass filtering of signals
such as log Mel-filter bank values (FBANK) [4] and their decor-
related variant known as Mel frequency cepstral coefficients
(MFCC) [1, 5]. A potential shortcoming of these approaches is
the fact that the parameters specifying such a representation of
a raw speech frame are fixed a priori and not learned using the
available data. As a result, feature extraction might be discarding
information relevant to robustness, and moreover, is done inde-
pendently of model learning and it does not necessarily provide
an ideal inductive bias for the learning process.

An alternative to learning a discriminative model with stati-
cally extracted features is to learn these features automatically
as part of a neural architecture that takes raw speech as input. In
addition to having a more flexible inductive bias such a model
would be less susceptible to the information loss that is inherent
to waveform compression by means of a projection to a lower
dimensional feature space [6, 7]. In particular, a model operat-
ing directly in the waveform domain has a potential to exploit
local correlations within the signal that are typically discarded

when computing Mel-filter bank values [8], as well as the infor-
mation contained in a sequence of waveform samples without
interruptions by frame boundaries characteristic of spectrograms
and non-adaptive feature extraction techniques based on frame-
based discrete Fourier transforms [9]. As a result of the latter,
phonetic events on the boundaries of short frames are typically
poorly described by filterbank features. While there are many
benefits of operating directly in the waveform domain there are
also some challenges in extracting the information from these
high dimensional and highly correlated inputs. In particular, one
of the issues recognized in early acoustic models based on raw
waveforms is that for a given phonetic unit such inputs are char-
acterized by a large number of variations in the form of phase
shifts and temporal distortions [2, 10]. Thus, an effective neural
architecture needs to be able to automatically extract features
that are invariant to small phase shifts and distortions. Another
difficulty in operating with speech waveforms is the high dimen-
sionality of the input space, which requires a large number of
parameters [9] and prolonged training time.

A desirable property of an effective representation is invari-
ance to nuisance transformations such as translations [11] and
stability to actions of small diffeomorphisms that distort/warp
signals [12, 13]. To learn a representation robust to such per-
turbations of a signal is arguably one of the most important
unresolved problems in speech recognition. The empirical ef-
fectiveness of state-of-the-art convolutional neural networks can
be to a large extent attributed to their ability to encode invari-
ance to local translations via convolutional weight sharing and
pooling operators [11, 14]. More specifically, due to their lo-
cal connectivity patterns convolutional layers are well suited
to model local correlations, as well as translations in spectro-
temporal waveform decompositions, that can occur as a result
of different speaking styles, variations between speakers, addi-
tive noise, channel degradation, etc. This type of inductive bias
has also been used previously to achieve phase invariance in
waveform-based models [8, 10, 15].

We propose a deep 2D convolutional architecture for learn-
ing an effective acoustic model directly in the waveform domain.
The main idea is to first increase the dimension of the instance
space in a structured manner, embedding redundancies into the
waveform representation such that it could withstand a signifi-
cant amount of additive noise and distortion without significant
overlaps between different phonetic units [7, 16, 17]. To ex-
pand the information present in a waveform signal and allow
more flexible feature extraction, we rely on a family of band-
pass filters (Section 2) that are defined via cosine modulations
of compactly supported Parzen windows. This is a parametric
convolutional block that splits a waveform frame into frequency
sub-bands and embeds it into a high dimensional but structured
space. The dimension of the embedding is further increased
(e.g., by a factor of 200 compared to the input frame) by means
of a non-parametric 2D convolutional layer. This is followed
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Figure 1: The figure describes the architectures for PARZNETS with 1D and 2D convolutional operators. This is supplemented with an
illustration of Parzen convolutional block (the leftmost panel) that decomposes a raw speech frame into frequency sub-bands.

by a gradual compression phase that extracts a low-resolution
spectro-temporal decomposition by means of standard wide-pass
2D convolutional filtering. In our empirical analysis (Section 3),
we show that the network consistently outperforms feedforward
models based on non-adaptive feature extraction techniques, as
well as state-of-the-art models based on raw speech. This is
done on speech recognition benchmark datasets having different
properties. In particular, the network: i) does not overfit and
outperforms all the feedforward architectures on a small TIMIT
dataset, ii) learns a noise robust representation on AURORA4 and
outperforms state-of-the-art very deep convolutional networks
for statically extracted features [18, 19], iii) outperforms recently
proposed architectures for raw speech [20, 21] and performs on
par with a state-of-the-art FBANK/MFCC based TDNN [2] model
on AMI (conversational speech, without i-vectors and data aug-
mentation). Thus, the empirical contributions provide the first
comprehensive evidence for the effectiveness of learning arti-
ficial neural networks directly from waveform, as opposed to
building them on top of statically extracted features.

2. Parznets
In speech recognition, band-pass filtering of signals is tradition-
ally performed by weighted averaging of power spectra [5, 13],
computed over segments of fixed duration. Alternatively, the sig-
nal can be convolved by a filter directly in the time-domain. Mo-
tivated by this, we design the first layer in our architecture to em-
ulate this operation via a parametric time-domain convolutional
operator. To that end, we consider a family of differentiable
band-pass filters based on cosine modulations of compactly sup-
ported Parzen windows [22]. In particular, our empirical analysis
employs squared Epanechnikov window function [23]

kγ (t) =

{ (
1− γt2

)2 |t| ≤ 1/√γ
0 otherwise ,

where γ is a parameter controlling the window width. To allow
for flexible placement of the center/modulation frequency, we
rely on cosine modulation. Thus, Parzen filters are defined with
only two differentiable parameters, η controlling the modulation
frequency and γ controlling the filter bandwidth, i.e.,

φη,γ (t) = cos (2πηt) · kγ (t) . (1)

As the filters are real-valued, the corresponding convolutions are
simpler to implement compared to their complex-valued counter-
parts with exponentially modulated windows [24]. As illustrated

in Figure 1 (the leftmost panel), for each filter configuration
{(ηi, γi)}Bi=1, we use Eq. (1) to generate a one dimensional filter
with maximum length given by the number of samples in 25 ms
of speech; filters with shorter support are symmetrically padded
with zeros. In comparison to wavelet filters [25], the Parzen
convolutional block offers additional flexibility by allowing in-
dependent control over bandwidth and modulation frequency.
The outputs of parametric convolutions are concatenated into a
spectro-temporal decomposition of a signal and then passed to a
max pooling operator, followed by layer normalization [26].

The motivation behind the Parzen block is to embed the
signal into a structured high dimensional space where, we hy-
pothesize, phonetic units will be easier to separate. Moreover,
by increasing the dimension of the space further via a 2D non-
parametric convolutional layer (Figure 1, PARZNETS 2D, CONV∗)
we aim to embed redundancies into the representation such that
it could withstand signal corruption, while still keeping separa-
bility between phonetic units. At the output of such a CONV∗

block the dimension of the embedding is increased by a factor
of 200 compared to the input frame size. The outputs of that
non-parametric embedding block are then passed to a sequence
of double convolutional blocks that perform further band-pass fil-
tering and compression of the signal by different max pooling op-
erators. The convolutional blocks generate a set of automatically
extracted features, which are then passed to a multi-layer per-
ceptron with 4 hidden layers. We rely on the RELU non-linearity
throughout the network as it has recently been established that
such networks can be made robust under `p perturbations [27].

The main challenge for a neural architecture with 2D con-
volutions (Figure 1, PARZNETS 2D) that takes high dimensional
input, is to design an effective compression operator. The dimen-
sions of the time and frequency axes of the sub-band decomposi-
tion differ significantly and one cannot take identical compres-
sion factors across them. The rationale behind the initial con-
volutional filter size over time comes from dynamic DELTA and
DELTA-DELTA features [28], typically combined with FBANK
and MFCC coefficients, that are essentially realized by applying
5-tap wide convolutional operators. We initially adhere to that
filter configuration over the time-domain and employ the 11-tap
wide filter over frequency bands in the first 2D convolutional
layer, i.e., filter size 11 × 5. Following this, we switch to a
compression regime using the double convolution block with
5× 5 filters (Figure 1, CONV-CONV), combined with max pool-
ing compression 1 × 3, that retains all frequency components.
At this stage the number of frequency bands and time samples

1655



are approximately of the same scale and we combine another
block of double convolutions with max pooling compression
operator of size 2× 3, starting to compress over the frequency
domain, too. The resulting spectro-temporal decomposition is
of low resolution and we can employ convolutions with filter
size 3× 3, known for performing well in computer vision and
speech recognition at such resolutions [18]. After the first such
double convolution block we compress with a factor of 2 × 3
and then finally after another such block with a factor of 2× 2.
The resulting automatically extracted features are then passed to
a multi-layer perceptron with 4 hidden layers.

In addition to evaluating PARZNETS 2D neural architecture
relative to state-of-the-art baselines for waveform-based speech
recognition, we also consider its merits relative to a convolutional
architecture based on 1D convolutions (Figure 1, PARZNETS 1D).

3. Experiments
We evaluate PARZNETS on three different benchmark datasets:
TIMIT [29], AURORA4 [30], and AMI [31]. The goal of the first
experiment on TIMIT is to demonstrate that architectures based
on raw speech, such as PARZNETS do not require large training
datasets to outperform models based on non-adaptive features.
In the second experiment on AURORA4, we aim to show that
PARZNETS can learn a noise robust representation of waveform
signals. In the third experiment on AMI, we demonstrate that
PARZNETS generalize to learning from conversational speech
and outperform state-of-the-art raw waveform based approaches.

In all of our experiments, we train a context dependent
model based on frame labels (i.e., HMM state ids) generated
using a triphone model from Kaldi [32] with 25 ms frames and
10 ms stride between the successive frames. The data splits
(training/development/evaluation) are identical to the ones from
the corresponding Kaldi recipes. In the preprocessing step, we
assign the Kaldi frame label to a 200 ms long segment of raw
speech centered at the original Kaldi frame. The Parzen convo-
lution block is initialized by taking the modulation frequencies
to be equidistant in mel-scale. The bands of filters are initialized
as in FBANK features. For convolutional and dense blocks in
our network, we employ the Xavier initialization scheme [33]
with magnitude 0.005. While the convolutional blocks are ini-
tialized with the factor type in, the dense blocks use the avg type.
The feature extraction layers (i.e., Parzen and convolutional pa-
rameters) are updated using the RMSPROP optimizer with initial
learning rate set to 0.0008. The multi-layer perceptron blocks
are updated using stochastic gradient descent with initial learn-
ing rate set to 0.08. A similar combination of optimizers (all
network parameters are optimized jointly) was used in [21]. Af-
ter the relative validation error falls below 0.1%, we decrease
the learning rates by a factor of 2. We use the minibatch size of
512 samples and terminate the training process after 25 epochs.

3.1. TIMIT

To be consistent with our baselines (neural architectures for
raw speech) on TIMIT, we generate frame labels (1 912 HMM
state ids) using the DNN triphone model and decoding config-
uration from [21]. Table 1 summarizes our results relative to
state-of-the-art feedforward architectures on this relatively small
dataset. A comparison to previously reported results for raw
speech baselines shows that our PARZNETS 2D architecture with
two dimensional convolutions performs the best on average and
appears not to overfit on this small dataset, despite being a rather
deep architecture. Moreover, this is the first neural architec-

ARCHITECTURE AVG MIN

A. RAW SPEECH

PARZNETS 1D 17.2 17.1
PARZNETS 2D 16.6 16.3
SINCNET [21, 34] 17.5 17.2
SINC2NET [35] - 16.9
RAW SPEECH CNN [34] 18.3 18.1
END-TO-END CNN [24] - 18.0

B. STANDARD FEATURES

MFCC-MLP 18.1 17.8
FMLLR-MLP 16.9 16.7
M-DSS I & II + CNN & MLP [36] - 17.4

Table 1: The phoneme error rates obtained on the test set of
TIMIT with various input features and neural architectures.

ture for raw speech that outperforms significantly feedforward
models paired with standard statically extracted features. Note
that lower phone error rates have been observed on TIMIT us-
ing recurrent networks [37] (LI-GRU: 15.8%; LI-GRU-FMLLR:
14.8%), and using 960 hours of LIBRISPEECH for unsupervised
pretraining [38] (VQ-WAV2VEC+BERT: 11.4%).

3.2. AURORA4

AURORA4 is a standard benchmark for noisy speech with signal
corruptions due to convolutional and additive noise, different
microphones, and the mismatch between training and test sam-
ples. We focus here on multi-condition training and show that
the proposed architecture outperforms all previously evaluated
feedforward architectures, irrespective of the input domain (raw
speech or standard features). To be consistent with the baselines,
we generate alignments using both GMM and DNN triphone mod-
els (3 408 and 2 016 HMM state ids, respectively). Table 2 sum-
marizes our results relative to relevant baselines on this dataset.
In comparison to state-of-the-art convolutional model [18] based
on non-adaptive FBANK features (VDCNN with two dimensional
convolutions), our approach does statistically significantly better
(the Wilcoxon test with 95% confidence). Recently, a novel type
of multi-octave convolution [19] has been proposed for FBANK
features and our empirical results show that PARZNETS 2D with
simple two dimensional convolutions performs on par with that
much more complex architecture. We also compare to the SINC-
NET architecture (state-of-the-art for raw speech) and our results
demonstrate that we statistically significantly outperform this
approach using both GMM and DNN alignments. Moreover, the
considered PARZNETS architectures also outperform multi-layer
perceptrons (MLP) with FMLLR and MFCC features.

3.3. AMI

AMI-IHM is a conversational speech dataset with approximately
78 hours of speech, recorded using individual headset micro-
phones. We generated alignments using the Kaldi recipe config-
ured with 3 984 HMM state ids. Table 3 summarizes our result
relative to relevant baselines on this dataset.

We compared PARZNETS with two recently published raw
waveform approaches for this task: multi-span raw waveform
models [20] and SINCNET [39], and show that PARZNETS ob-
tains over 10% relative improvement in WER compared to these
methods. Moreover, we also compare to deep time-delay net-
works [40] based on FBANK/MFCC features (considered to be
state-of-the-art feedforward model on this dataset) and show that
the proposed architecture with two dimensional convolutions
performs on par with that approach. We note here that we have
not used any data augmentation or i-vectors in our experiments,
both techniques which could be used with our approach. More-
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TEST SET

DNN ALIGNMENTS GMM ALIGNMENTS

RAW SPEECH RAW SPEECH STANDARD FEATURES

PARZNETS 1D PARZNETS 2D SINCNET PARZNETS 1D PARZNETS 2D SINCNET MFCC-MLP FMLLR-MLP VD10CNN2D [18] M-OCT CNN [19]

A1 2.52 2.32 3.12 2.80 3.01 3.42 4.28 3.34 3.27 2.32

B2−7 4.61 4.38 5.97 4.80 4.74 6.33 7.44 6.27 5.61 4.73

C8 5.06 4.30 5.68 5.14 4.99 6.13 8.73 5.74 5.32 4.24

D9−14 14.78 12.73 16.58 14.41 13.15 16.99 18.71 16.04 13.52 13.57

AVG1−14 8.85 7.80 10.29 8.80 8.24 10.68 12.14 10.21 8.81 8.31

Table 2: The word error rates (%) obtained on different test sets of AURORA4 with various input features and neural architectures.

over, GPU memory limitations meant that our experiments were
performed with a modest number of channels applied to the high
dimensional raw waveform inputs (see Figure 1) and we antic-
ipate that the results could be further improved with increased
number of parameters (i.e., CONV channels). Finally we note
that our experiments were conducted using a cross entropy (CE)
loss function. Experiments using a sequence discriminative ap-
proach (LF-MMI) indicate that the WERs could be further lowered
– Povey et al [41] indicated that using LF-MMI in place of CE
can reduce the error rate by about 10% relative on this task, and
more recently a regularised LF-MMI training with significant data
augmentation (6x) resulted in a WER of 18.0% on this task [42].
Our future work will explore sequence discriminative training
for PARZNETS.

ARCHITECTURE DEV EVAL

A. RAW SPEECH

PARZNETS 1D 25.5 26.6
PARZNETS 2D 24.9 26.0
SINCNET [39] 28.0 30.2
MULTI-SPAN-DNN [20] 27.2 29.3

B. STANDARD FEATURES

FBANK-MLP [20] 28.3 31.1
FMLLR-MLP 26.0 27.1
TDNN [40] 25.3 26.0

Table 3: The word error rates obtained on dev and eval/test sets
of AMI-IHM with various input features and neural architectures.

4. Discussion
In previous work on raw waveform based speech recognition,
it has been observed that such models can outperform non-
adaptive feature extraction techniques in the multi-microphone
setting [8, 10, 43]. Another common finding was that in the sin-
gle microphone setting with more than 2 000 hours of training
data, neural architectures with raw speech inputs are on par or
sometimes even better than models based on FBANK, MFCC, or
FMLLR features. To the best of our knowledge, there has not
been a comprehensive empirical study showing that learning
directly from the waveform domain can be more effective than
learning with statically extracted features across different envi-
ronments (small training datasets, noisy data, mismatch between
train and test sets, spontaneous conversational speech).

In the majority of previously considered architectures there
is typically a single convolutional layer with 1D convolutions,
designed to emulate log filterbank magnitude features [8, 15].
Sainath et al. [10] propose an architecture which takes raw wave-
form inputs and applies time-domain followed by frequency-
domain one dimensional convolutions, designed to extract band-
pass features from the waveform. The extracted features are then
passed to a sequence of long short-term memory (LSTM) blocks
that capture the sequential relations between the inputs. The
architecture requires more than 2 000 hours of training data to
match the performance of neural architectures with non-adaptive
features. Similarly, Zhu et al. [44] combine two convolutional
layers with recurrent blocks in end-to-end training, requiring

more than 2 400 hours of training data for state-of-the-art results.
Ghahremani et al. [2] proposed a feedforward architecture based
on convolutional feature extraction layer, with the outputs of
that block passed to a TDNN. The empirical evidence indicates
that the approach is competitive with MFCC-based architectures
on large datasets. The model has not been evaluated on noisy
speech and it is unclear how well it generalizes on small datasets.

PARZNETS are based on parametric convolutions: perhaps
the most prominent related work is the SINCNET architec-
ture [21], which is considered to be the state-of-the-art for raw
waveform speech recognition at the moment. The architecture
employs three 1D convolutional layers on top of a paramet-
ric convolution block. A related architecture is SINC2NET that
links a parametric convolution block to an MLP [35]. Recently,
complex-valued parametric filters have been used to initialize a
complex non-parametric convolution block in a deep convolu-
tional network for end-to-end speech recognition [24, 45, 46].
The architecture relies on 1D convolutions with a large number
of channels and requires 1 000 epochs for convergence [24]. In
comparison to [24], we demonstrate that our 2D architecture gen-
eralizes better on the small TIMIT dataset. For our experiments,
we have picked the SINCNET architecture (code available online)
as a representative baseline from this class and showed that the
proposed architectures outperform it across different datasets.

Recently, an approach based on concatenation of multiple
convolutional blocks was proposed [20], in which convolutional
blocks capture different contexts in time and learn band-pass fil-
ters that are more expressive than classic Mel-filterbanks which
operate on a single fixed context. The approach has been eval-
uated on both noisy and conversational speech. In our exper-
iments, we have compared to this baseline and demonstrated
statistically significant improvement on the AMI dataset.

5. Conclusion
We have proposed deep 2D convolutional networks – PARZNETS
– for robust speech recognition in the waveform domain and
demonstrated generalization across different settings. Our em-
pirical results demonstrate that the PARZNETS 2D architecture
consistently outperforms alternative feedforward models on both
noisy and conversational speech. To the best of our knowledge,
this is the first comprehensive empirical study showing that learn-
ing directly from the waveform domain can be more effective
than learning using statically extracted band-pass features. A
more elaborate analysis of the architecture in terms of selecting
a good number of channels in convolutional layers has been
hindered by the limited capacity of our GPU devices. However,
even the network with modest number of channels across con-
volutional layers has managed to either outperform or match
state-of-the-art feedforward models on the considered datasets.
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