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Abstract
We investigate the robustness and training dynamics of raw
waveform acoustic models for automatic speech recognition
(ASR). It is known that the first layer of such models learn a set
of filters, performing a form of time-frequency analysis. This
layer is liable to be under-trained owing to gradient vanishing,
which can negatively affect the network performance. Through
a set of experiments on TIMIT, Aurora-4 and WSJ datasets, we
investigate the training dynamics of the first layer by measur-
ing the evolution of its average frequency response over differ-
ent epochs. We demonstrate that the network efficiently learns
an optimal set of filters with a high spectral resolution and the
dynamics of the first layer highly correlates with the dynam-
ics of the cross entropy (CE) loss and word error rate (WER).
In addition, we study the robustness of raw waveform models
in both matched and mismatched conditions. The accuracy of
these models is found to be comparable to, or better than, their
MFCC-based counterparts in matched conditions and notably
improved by using a better alignment. The role of raw wave-
form normalisation was also examined and up to 4.3% absolute
WER reduction in mismatched conditions was achieved.
Index Terms: ASR, acoustic modelling, raw waveform, train-
ing dynamics, average frequency response

1. Introduction
Feature engineering has been an active research area in speech
processing. Hand-crafted features such as MFCC [1] and PLP
[2] have been designed to utilise knowledge of the human audi-
tory perception and speech production mechanisms, with con-
sideration of desirable modelling properties. In spite of their
general effectiveness, they are application-blind and discard in-
formation (such as the phase spectrum [3–7]) along a fixed
pipeline, without considering the final task objective.

Deep neural networks (DNNs) successfully tackle the pa-
rameterisation problem through implicitly and jointly learning
the front-end and back-end with the guidance of the objective
function optimiser. However, even if they manage to perfectly
process the input information, they cannot compensate for the
information lost during the extraction of input features.

A possible solution to this issue is to supply the network
with minimally processed or, ideally, raw data, minimising the
potential information loss. However, this is a challenging route
to take as the input space expands substantially, making training
highly demanding. Nevertheless, in light of the current power-
ful computing infrastructures and training techniques, there is a
growing body of work in which DNNs taking the raw waveform
as input, have been found to yield promising results in acoustic
modeling for ASR [8–19], which is our focus here.

In raw waveform models, as explained in Section 3, the first
layer is tasked with learning a set of optimal filters that perform
a quasi time-frequency analysis. However, due to its location
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in a deep structure, this layer is most susceptible to the vanish-
ing gradient phenomenon. The first issue which we investigate
here is to what extent gradient vanishing is problematic for the
first layer. What are the training dynamics of this layer, i.e. how
fast and how accurately does it evolve towards an optimal set of
filters? We investigate this through a set of oracle experiments
in controlled noisy conditions and show that the first layer of
a raw waveform model can effectively learn an optimal repre-
sentation, and efficiently filter out noisy subbands with a high
spectral resolution and at a reasonable speed.

Having shown that such models are discriminant enough
to accurately filter clean/noisy subbands, we investigate the ro-
bustness of raw waveform models in matched and mismatched
noisy conditions, and explore techniques to enhance their per-
formance. Experimental results on Aurora-4 [20] show that
such systems return comparable to better WER in matched con-
ditions w.r.t. their MFCC-based counterpart and employing bet-
ter alignment could notably improve their performance. We also
show that in mismatched conditions a proper normalisation can
significantly improve the performance.

2. Raw waveform modelling
Raw waveform acoustic modelling could be traced back to a
decade ago [21–24] and has attracted much attention over the
last five years. Palaz et al [8] investigated the usefulness of
raw waveform models on the TIMIT phone recognition task
and showed CNNs to have superior performance over fully-
connected networks. Later a similar CNN was tested on the
WSJ task [12], achieving comparable results to an MFCC-DNN
system. Moreover, transfer learning of the first layer between
TIMIT and WSJ tasks was explored. The robustness of this
system on Aurora-2 [25] connected-digit task in matched and
mismatched conditions has also been investigated [13].

Tuske et al [9] compared raw waveform features with tra-
ditional features in an LVCSR task (50 hours) with a DNN-
based acoustic model. MFCCs outperformed other features,
with a 10% absolute WER reduction compared to raw wave-
form features, but use of ReLU non-linearity and 5-fold more
data (250 hours) reduced the gap to 2.4%. They also interpreted
the first DNN layer weights as impulse responses and demon-
strated their resemblance to auditory filters. In later work the
first two layers were replaced with a CNN [14], and the max-
pooling layer was substituted by a time-convolutional layer with
low-pass filters that extract envelopes at various sampling rates,
returning a multi-resolutional representation [17].

Sainath et al [10, 26] deployed a CLDNN architecture for
raw waveform modelling: a cascade of CNN, LSTM and fully-
connected DNN architectures to leverage their complementary
modeling capacities. It was trained with about 2000 hours
speech and was the first system to outperform its log-filterbank
based counterpart. They employed this structure for beamform-
ing in a multi-channel scenario, similar to [11], which utilised
raw-waveform models for joint acoustic modelling and beam-
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forming. They also showed that stacking raw-waveform and
log-filterbank could provide further WER reduction [10].

Ghahremani et al [15] used a TDNN along with a network-
in-network [27] architecture for raw waveform modeling and
investigated the usefulness of i-vector for speaker adaptation.

Zhu et al [16] performed multi-scale acoustic modeling
by inserting the raw waveform into three parallel branches of
CNNs with 1ms, 4ms and 40ms filter lengths, with the aim of
feeding higher layers with a representation with both high tem-
poral and spectral resolutions. Von Platen et al [28] gained a
similar advantage through the use of multiple (three) streams of
information created through decomposing the speech signal into
different frame lengths (multi-span) around each frame centre.

The above cited work uses conventional CNNs, which are a
set of non-parametric FIR filters with L free parameters, where
L is the filter length in samples (taps). In another line of re-
search, CNN filters are assumed to be parametric, resulting in
filters characterised by many fewer parameters that learn faster
and are trainable with less data, at the cost of a lower modelling
capacity. Assuming the first layer learns a quasi filterbank, not
necessarily an abstract representation, any collection of band-
pass filters seems to be sufficient.

Examples of parametric CNNs include TD-Filterbanks [18,
29] and SincNet [19,30] where each (bandpass) filter is modeled
by a Gabor waveletor Sinc function, respectively, and is charac-
terised by only centre frequency and bandwidth. We recently
extended this idea to a more generalised modulated Kernel-
based CNNs and investigated Sinc2Net, GammaNet and Gauss-
Net in which the filters take triangular, Gammatone and Gaus-
sian shapes, respectively [31]. Fainberg et al [32] studied the
possibility of speaker adaptation via retraining the Sinc layer
parameters and promising results were achieved.

3. Analysis the Dynamics of the First Layer
In raw waveform models, the first layer aims to learn an optimal
set of filters which perform a quasi time-frequency analysis. It
should ideally propagate through the task-relevant information
and filter out nuisance aspects of the input. However, due to the
vanishing gradient phenomenon, the error-correcting signal that
the first layer receives is weaker than higher layers. This may
lead to poor and/or slow training and suboptimal filters.

To scrutinise this issue, we begin by studying the learning
dynamics of the first layer through a set of oracle experiments in
a controlled noisy variant of the TIMIT [33] phone recognition
task. Signals are contaminated by an additive white Gaussian
noise with 0 dB SNR passed through a cascade of two band-
pass filters with the following passbands: 1.2 kHz to 1.6 kHz
and 1.8 kHz to 2.1 kHz. Fig. 1(g) shows the spectrogram of a
typical noisy signal. We placed the two noisy subbands close
to each other, leaving a narrow clean subband in between, to
evaluate the spectral resolution of the first layer.

We measure the sensitivity of the first layer to different
frequency bins through computing the average frequency re-
sponse (AFR) of the learned filters. The evolution of the AFR
over different epochs reflects the first layer’s learning dynamics
during training. Such an oracle experiment paves the way for
measuring the optimality of the learned filters, speed of learn-
ing and the degree to which the vanishing gradient is problem-
atic. For a better understanding and visualisation of the first
layer’s training dynamics, we have studied both conventional
non-parametric CNNs and parametric SincNet raw waveform
models. DNNs were trained using PyTorch-Kaldi [34–36] with
a default configuration (more details in Section 4).

Figure 1: Training dynamics of the first layer of CNN and Sinc-
Net. Frequency response of the learned filters (blue) along with
average (red) after epoch 1: (a) CNN, (b) SincNet; after epoch
20 (c) CNN, (d) SincNet. AFR at different epochs (e) CNN, (f)
SincNet. (g) spectrogram of a training data. (h) AFR dynamics
for CNN and SincNet, from epoch 1 to 20.

3.1. Simulation results

Fig. 1 illustrates the AFR of the first layer at different epochs.
At the end of epoch 1, the CNN has not yet distinguished the
clean and noisy subbands (Fig. 1(a)) whereas the SincNet has
approximately found not only the noisy subbands but also the
clean narrow subband in between (Fig. 1(b)). This is not sur-
prising given the number of parameters of each model. As seen
in Fig. 1(c) and (d), after 20 epochs both models have an opti-
mal frequency response for the given task. The CNN shows a
better spectral resolution (sharper transitions) due to its higher
number of parameters and consequently modelling capacity.

Fig. 1(e) and (f) depict the training dynamics between
epoch 1 and epoch 20. As seen, after about 10 epochs both
raw waveform models reach a reliable estimation of clean/noisy
subbands, and more epochs further fine tune the frequency re-
sponse. This illustrates that gradient vanishing – at least as far
as learning the filterbank is concerned – does not limit the learn-
ing capabilities of the first layer and can be safely neglected.

3.2. Effect of activation function on training dynamics

Fig. 2 (a) and (b) show the training dynamics (shaded area be-
tween epoch 1 to 20) in both clean (normal TIMIT) and the
aforementioned noisy scenario when applying ReLU, Tanh and
Sigmoid activation functions. As seen, the shaded area for
ReLU is the smallest and for Sigmoid it is noticeably larger.
This implies that ReLU contributes towards a faster learning,
which could be attributed to sparsity [37,38]. Also note that the
shaded area for the clean training is smaller than the noisy one.

How correlated are the convergence at the first layer and
the overall performance of the system? To investigate this, the
phone error rate (PER) for each system vs epoch was plotted
in Fig. 2(c) and (d). As seen, the convergence trends for learn-
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Figure 2: Training dynamics (epoch 1 to 20 (solid line)) of the
first layer in clean and noisy conditions for different activation
functions (ReLU, Tanh and Sigmoid): (a) CNN, (b) SincNet.
Corresponding PER vs epoch: (c) CNN, (d) SincNet.

ing the filters at the first layer and the performance curve (the
knee point) are similar. For example, when using ReLU, PER
convergence occurs around the tenth epoch (Fig. 2 (c) and (d)),
coinciding with the epoch at which the filter learning process
gets very close to the optimal AFR (Fig. 1(e) and (f)).

3.3. Effect of database on training dynamics

To explore the data effect on training dynamics, we first com-
pute the AFR evolution (epochs 1 to 20) for TIMIT as well as
the clean and multi-style training data of Aurora-4 [20]. As
seen in Fig. 3(a) and (b), the AFR for both TIMIT and Aurora-4
(clean) is similar, but the training dynamics (shaded area) for
Aurora-4 is narrower. This is owing to the fact that at the end
of epoch one, the network has seen more data (almost 5.4 hours
for TIMIT versus 14 hours for Aurora-4) and therefore is in a
more stable position, evolving less in later epochs.

The shaded area for Aurora-4 is proportional to the com-
plexity of the training data. As Fig. 3 (c) and (d) show, for the
CNN the shaded area for multi-style training (noisy speech) is
wider than for clean training. Recall that similar trend was ob-
served for TIMIT in Fig. 2 (a) and (b). Such a trend reaffirms
the fact that for learning from more complex data, more epochs
are needed. For SincNet, the shaded area is narrower as each
filter has only two parameters to learn which in turn, constrains
the hypothesis space and consequently the training dynamics.

To further investigate the dynamics of the first layer, we
trained a similar system using WSJ [39] with 81 hours of
speech. Furthermore, we computed the mean square error be-
tween the AFR at each epoch and the AFR of the last epoch1,
calling it AFR-Error. Now, we wish to measure the correlation
between the dynamics of the AFR-Error with other performance
metrics such as cross-entropy (CE) loss and WER. As illustrated
in Fig. 4, the knee point and dynamics of the AFR-Error (epoch
5) is very similar to those of the CE loss and WER (epoch 7).
Furthermore, Table 1 quantitatively shows that the correlation
of the AFR-Error dynamics with the CE and WER is very high.

1Assuming AFR of the last epoch is the optimal frequency response.

Figure 3: Training dynamics of the first layer in TIMIT and
Aurora-4 tasks. Training dynamics in clean condition: (a) CNN,
(b) SincNet. Training dynamics for Aurora-4 in clean and multi-
style training modes: (c) CNN, (d) SincNet.

Table 1: Correlation of the AFR-Error with other measures.

CE-Train CE-Dev WER-Dev WER-Eval

Corr 0.99 0.94 0.88 0.95

4. ASR Experiments
4.1. Experimental Setup
In all experiments we have used CNNs, trained using PyTorch-
Kaldi [34, 35] with default settings (without monophone regu-
larisation), including layer normalisation [40], batch normali-
sation [41] and dropout [42]. Experiments were carried out on
WSJ and Aurora-4 in both clean and multi-style training modes.
Alignments were taken from the respective Kaldi recipes [36].
The Aurora-4 test set consists of four subsets: A (clean speech),
B (additive noise), C (channel mismatch) and D (additive noise
and channel mismatch). Ave in Fig. 5 and Table 3 is computed
as follows: (A + 6B + C + 6D)/14. Symbols ∗ and † indi-
cate the features are dimension-wise mean-variance normalised
(MVN) at the utterance (*) and speaker (†) levels, respectively.

4.2. Results and Discussion

Fig. 5 (a) shows the results for clean training on Aurora-4 with
a high degree of mismatch. In this case MFCC features clearly
outperform the raw waveform models and log-mel filterbank
(FBank) with average (Ave) WER of 13.8% (after MVN at
utterance level). Superiority of MFCC is owing to the infor-
mation loss along its pipeline which is the highest and could
minimise mismatch. In this scenario, a proper normalisation
is highly beneficial for all features. Also, SincNet clearly sur-
passes CNN-Raw, in contrast to the multi-style training (Fig. 5
(b)) where the gap is marginal. Recall that in CNN-Raw each
filter is characterised with many more free parameters, making
it vulnerable to overfitting. This shortcoming increases the sys-
tem’s vulnerability when the mismatch level is high.

Fig. 5 (b) illustrates the recognition results for multi-style
training. As seen, the gap between the MFCC system and the
raw-waveform model is substantially lower and, in fact, raw
waveform models outperform their MFCC-based counterparts,
although still lagging behind FBank feature with an average
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Figure 4: Dynamics of the first layer of a CNN-Raw model
trained on WSJ. (a) AFR at different epochs; (b) Dynamics of
AFR-Error, CE-Loss-Train (SI284) and CE-Loss-Dev (Dev93);
(c) Dynamics of AFR-Error, WER-Dev and WER-Eval (Eval92).

Table 2: WSJ WER for different front-ends.

MFCC† FBank† CNN-Raw Sinc-Raw

Dev93 10.4 9.1 8.6 8.5
Eval92 6.8 5.9 5.1 5.0

WER of 9.2% (after MVN at utterance level). Note that while
for clean training mode the MVN* was beneficial, in the multi-
style case, its influence is marginal for raw waveform models,
contrary to classic features.

Fig. 5 also depicts the training dynamics (WER vs epoch)
of the MFCC system along with raw waveform models. As
seen, for clean-training mode, the network converges quickly
while for multi-style training it requires more iterations. This
is in harmony with Fig. 3(c) where the shaded area was wider
for multi-style data. It could be justified considering the fact
that distilling information from a mixture of clean speech and
noise (additive and channel) in the multi-style mode is more
challenging than learning the subword units from clean signals.

Table 2, shows the WER of the classic features vs raw
waveform for WSJ. As seen, the raw waveform noticeably out-
performs the FBank and MFCC. Why does raw waveform out-
perform FBank here, while in Aurora-4 FBank results in a lower
WER? One explanation could be the fact that raw waveform
models demand more training data: 14 hours for Aurora-4 vs 81
hours for WSJ. However, if the amount of training data was the
only decisive factor, then why does raw waveform (with similar
architectures) outperform the classic features for smaller task
such as TIMIT, as shown in Table 2 in [31]?

4.3. Importance of Alignment

For Aurora-4 in multi-style mode, the training data is noisy.
Compared with clean-training mode, the noisy data could in-
duce some level of uncertainty in the learnt model and its out-

Figure 5: Effect of MFCC and raw waveform normalisation on
average WER for Aurora-4. Training mode: (a) clean, (b) multi.

Table 3: Aurora-4 WER for multi-style training mode when
alignments are taken from model trained in clean mode.

Feature A B C D Ave

CNN-MFCC∗ 3.5 6.1 4.6 8.3 6.7
CNN-FBank∗ 3.0 5.2 3.3 6.4 5.4

CNN-Raw 2.7 4.4 4.0 6.4 5.1
SincNet-Raw 2.9 4.6 3.9 6.7 5.3

put. When doing alignment with such model to get the training
labels, the labels are likely to be noisier, giving rise to teacher
error. This error further affects the raw waveform models as
they operate in a feature space with remarkably higher dimen-
sion. If this hypothesis is true, then deploying a better alignment
should be more beneficial to the raw waveform models.

Generally, a system with a better WER, does not necessarily
supply a better alignment. To get a reliably better alignment, we
take advantage of a special property of the Aurora-4: the noisy
signals are generated by synthetically adding noise; hence, the
alignment of the clean signals and their noisy version is ex-
actly the same. Therefore, we compute the alignment for the
clean signals using a model trained only on clean data and use
that alignment for training the DNN in multi-style mode using
the noisy counterpart of the clean signals. As seen in Table 3,
by doing so, the raw waveform clearly outperforms the classic
features. It substantiate our hypothesis and shows that the raw
waveform models are more sensitive to the teacher error.

5. Conclusion
The first layer of the raw waveform models performs a quasi
time-frequency analysis. However, owing to its location as the
first layer in a deep structure, and the vanishing gradient phe-
nomenon, it is susceptible to under-training. We demonstrated
that the first layer of a raw waveform model efficiently learns
optimal filters and can pass or block clean or noisy subbands
with high spectral resolution. Moreover, it was shown that the
dynamics of the first layer is highly correlated with the evolu-
tion of the performance measures such as CE loss and WER
over time. We also investigated the robustness of the raw wave-
form models in matched and mismatched conditions. In mis-
matched conditions we observed a performance gap with the
MFCC-based system, which was noticeably reduced through
feature normalisation. In matched conditions, comparable or
better results was achieved and using a better alignment notably
improved the performance. Studying the dynamics of the first
layer jointly with higher layers is recommended for future work.
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