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Trajectory Optimization of Contact-rich Motions
using Implicit Differential Dynamic Programming

Iordanis Chatzinikolaidis and Zhibin Li

Abstract—This paper presents a Differential Dynamic Pro-
gramming (DDP) approach for systems characterized by implicit
dynamics using sensitivity analysis, such as those modelled via
inverse dynamics, variational, and implicit integrators. It leads
to a more general formulation of DDP, enabling the use of the
faster recursive Newton-Euler inverse dynamics. We leverage the
implicit formulation for precise and exact contact modelling in
DDP, where we focus on two contributions: (1) contact dynamics
at the acceleration level; (2) formulation using an invertible
contact model in the forward pass and a closed-form solution
in the backward pass to improve the numerical resolution
of contacts. The performance of the proposed framework is
validated by comparing implicit versus explicit DDP for the swing-
up of a double pendulum, and by planning motions for two tasks
using a single leg model making multi-body contacts with the
environment: standing up from ground, where a priori contact
enumeration is challenging, and maintaining balance under an
external perturbation.

I. INTRODUCTION

Trajectory optimization (TO) has attracted increasing re-
search interest for motion planning and control of highly
dynamical, underactuated robots [1]. This is due to the potential
of generating complex motions in a high-level manner: A user
can design and specify a desired task using physical terms
with associated weights via a cost function, which can also
be automatically tuned [2], and a motion planner is able to
automatically generate a sequence of feasible motions [3].

This is particularly interesting for robotic systems that
require through-contact motion plans, i.e. plans that involve
multiple unspecified contact interactions. Physical contacts
are traditionally difficult to model and incorporate in motion
planning frameworks. Most approaches are multiphase, in
the sense that contact schedule patterns [4] or corresponding
timings are provided a priori, while contacts are desirable with
the end-effectors only. This leads to difficulties in practical
implementations because selection of locations and timings is
in general non-trivial, while restricting contacts to end-effectors
only limits the motion repertoire.

DDP—a prominent shooting TO methodology—is among
the most promising approaches for its efficiency in through-
contact motion planning. This is demonstrated by a multitude of
previous works that used DDP as backbone: From the simulated
results [5], to real-time applications for high-dimensional
legged robots [6], [7]. However, properly modelling contacts is
a considerable challenge; most DDP implementations resort to
approximations and simplifications requiring well-tuned contact
parameters. A fundamental reason is that contact phenomena
are canonically described implicitly.

Fig. 1. Complex multi-contact motions of a single leg robot computed by the
proposed framework in time-lapsed snapshots: dynamic standing up from the
ground (top), and balancing against an external perturbation (bottom).

The original DDP algorithm and its subsequent studies often
assume that the discrete-time systems considered are explicitly
defined. Thus, it relies only on the forward sensitivity of the
state’s evolution. Yet DDP can be readily applied to implicitly
defined dynamical systems [8] when combined with appropriate
sensitivity analysis. These are typically more challenging
because they require the solution of nonlinear equations.
However, they offer computational advantages, e.g. providing
stability even for stiff differential equations. Further, handling
implicitly defined systems allows more principled contact
modelling in DDP.

A. Contributions

In this work, we provide theoretical and algorithmic contri-
butions as:
• A sensitivity analysis approach for applying DDP to explicitly

and implicitly defined systems in a unified manner.
• Based on this, we propose an approach leveraging an

invertible model [9] for exact contact resolution in DDP.
• Results demonstrating the possibility of exploiting properties

of implicit integrators in DDP settings.
We benchmark our approach by applying it on implicitly

and explicitly defined models, and on two cases of multi-
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contact whole-body motion planning for a planar single-leg
robot that makes multi-body contacts: standing-up from ground
and balancing from an initial perturbation in a receding
horizon fashion (Fig. 1). Our approach is equally applicable
to models with large degrees of freedom and arbitrary contact
configurations, such as using multiple legs.

The remaining sections are organized as follows. Sec. II
discusses prior work on the DDP algorithm, and applications of
DDP for through-contact motion planning. Sec. III summarizes
DDP and how contacts are typically resolved in simulation. In
Sec. IV, we present our application of DDP and, in Sec. V,
how to utilize it for through-contact planning. Sec. VI provides
comparisons between explicit and implicit systems in the
context of DDP, and two motion planning studies for a single
leg standing up and balancing in multi-contact settings. We
summarize and conclude in Sec. VII.

II. PRIOR WORK

A. Differential Dynamic Programming

DDP was originally introduced in [10]. Its main advantage
with respect to the Dynamic Programming algorithm [11]
is that it does not suffer from the curse of dimensionality
by sacrificing global optimality. Subsequently, a number of
improvements of DDP have been introduced. Recently, there
was a resurgence of interest due to its potential for efficient
planning for high-dimensional systems.

DDP is a second-order algorithm that exhibits quadratic
convergence similar to Newton’s methods [12]. Thus, it requires
second-order information, which can be computationally chal-
lenging for high-dimensional models. To resolve this, the iLQR
variant performs a Gauss-Newton approximation of the Hessian
based on first-order information only, albeit with superlinear
convergence [13].

The original DDP algorithm is concerned with unconstrained
discrete dynamical systems only. Control bounds can be
considered via a projected Newton quadratic programming
solver [14]. More general nonlinear inequality constraints via
an active-set method [15]. In robotics, it is common to consider
multiple tasks in a hierarchical fashion, which is possible to
do for DDP too [16]. In legged locomotion, the discontinuous
nature of contact phenomena has led to the development of
tailored approaches. For example, a pre-defined gait pattern
and centroidal dynamics model was considered in [17], and
more general hybrid systems in [18]. We underline that the
DDP framework presented next can incorporate the previous
approaches straightforwardly.

Finally, a brief discussion about the application of DDP for
implicitly defined systems from a Lie theoretic viewpoint is
given in [19]. Here, we present a more complete and deep
treatment, with extensive comparisons. Furthermore, our vector-
based formulation is much more familiar and common for
robotic systems applications.

B. Through-contact Motion Planning

Applications of DDP for motion planning and control
of legged robots have been very impressive. From simple,

approximate models up to whole-body models, DDP provides
a means for fast and even real-time solutions.

In [5], DDP is used to control a humanoid model. A diverse
set of behaviours is generated by simply changing weights
in the cost function through a graphical user interface. An
approximate solution for the contact dynamics is used, with a
contact model similar to the one that is used here. The implicit
formulation that we present next allows the consideration
of contacts in DDP without requiring approximations to the
contact model itself.

For quadruped robots, a diverse set of motions both in
simulation and in hardware is shown in [6]. To take into account
contacts, a nonlinear spring-damper model was used. Even
though tuning for each contact is done independently, spring-
damper models can be difficult to tune in practice and require
very small time steps. It is common for the optimizer to explore
states where the current model parameters are not valid, while
the small time steps translate into a large problem. Here, in the
forward pass, the model takes into account all possible contacts
in a centralized manner (through the coupling with the contact-
space inertia matrix), while independently solve for each
contact in the backward pass (by leveraging our implicit DDP
formulation and the model’s invertibility). Thus, performance is
similar to complementarity formulations with large time steps,
while we are capable to compute straightforwardly gradients
in the backward pass.

To eliminate the unrealistic effects of spring-damper models,
a hard contact model is used in [20]. Unfortunately, contact
impulses require the numerical solution of a quadratically
constrained quadratic program (QCQP), typical in time-stepping
approaches with unilateral and friction cone constraints, and
formulates the problem in a bilevel fashion. This complicates
the derivative computation due to the numerical nature of the
solution. We resolve this issue by leveraging the invertibility
of the contact model: in the forward pass, the QCQP is solved
with the associated constraints; in the backward pass, a closed-
form computation is used that avoids the bilevel formulation.
As a result, this does not pose issues with differentiation and
leads to a faster and simpler implementation, without the need
for backpropagation.

A multiple shooting variant is presented in [21], extending
the work in [22]. It allows easier initialization since both
state and control sequences can be used. Unfortunately, the
intermediate iterates of the algorithm are infeasible, meaning
that early stopping with a feasible trajectory, as in DDP, is not
possible. This is a necessary property in our case since the
through-contact motion planning approach that we present is
running in a receding horizon fashion. Furthermore, the contact
schedule is pre-defined in [21], while here contacts are activated
according to the natural dynamics of the system [23]. Finally,
friction cone constraints are neglected or can be taken into
account through penalization in the cost function, which can be
in practice difficult to tune and can lead to unrealistic solutions.
Due to the imposition of contacts as equality constraints,
attractive forces can arise at the solution, violating the unilateral
constraint. Our framework here utilizes full unilateral and

2



friction cone contact constraints without any approximation or
penalization.

III. PRELIMINARIES

A. Summary of Differential Dynamic Programming

DDP is concerned with the optimization of a performance
criterion for an unconstrained discrete-time dynamical sys-
tem [10], [5]. This can be expressed as

min
ui

lf (xN ) +
∑N−1

i=0
li(xi, ui) (1a)

s.t. x′ = f(x, u). (1b)

Here, li is an additive cost at time step i and lf is the final
cost, xi and ui are the state and control, N is the length of
the horizon, while ·′ denotes the quantity at the next time step,
e.g. the next state in our context.

According to the principle of optimality, (1) can be expressed
via the value function, which is the total cost at a given state
once we apply the optimal control sequence. The principle
of optimality makes the computation of the value function
iterative, and at a state x is given by

V (x) = min
u
l(x, u) + V ′(x′) = min

u
l(x, u) + V ′(f(x, u)).

Since finding the global minimum is challenging, DDP per-
forms a quadratic approximation of the value function and
subsequently improves the control sequence {ui} locally. If
we define the Q-function as

Q(x, u) = l(x, u) + V ′(x′), (2)

a quadratic approximation about the current point (xi, ui) is

Q(x, u) ≈ Q(xi, ui) +Qx(xi, ui)δx+Qu(xi, ui)δu

+ 1
2

[
δx
δu

]T [
Qxx(xi, ui) Qxu(xi, ui)
Qux(xi, ui) Quu(xi, ui)

] [
δx
δu

]
(3)

while δx = x − xi and δu = u − ui are state and input
perturbations. The terms in (3) are computed by expanding
and matching same terms in Eq. (2) as

Qx = lx + V ′x′fx

Qu = lu + V ′x′fu

Qxx = lxx + fTx V
′
x′x′fx + V

′

x′fxx

Qxu = lxu + fTx V
′
x′x′fu + V

′

x′fxu

Quu = luu + fTu V
′
x′x′fu + V

′

x′fuu.

(4)

Backward pass: The optimal control change δu∗ is given
by minimizing the unconstrained quadratic equation (3) as

δu∗ = argmin
u

Q(x, u)− ui = −Q−1uuQTu︸ ︷︷ ︸
k

−Q−1uuQux︸ ︷︷ ︸
K

δx (5)

The quadratic approximation of the value function at the current
time step in (3) becomes

δV = V (x)−Q(xi, ui) =
1
2Quk (6a)

Vx = Qx +QuK (6b)
Vxx = Qxx +QxuK, (6c)

with boundary values V Nx = lNx and V Nxx = lNxx.

Forward pass: Once the feedforward and feedback terms ki
and Ki for each time step are computed, we perform a forward
pass to compute the updated control sequence as

x̂0 = x0 (7a)
ûi = ui + δu∗ = ui + k +K(x̂i − xi) (7b)

x̂i+1 = f(x̂i, ûi) (7c)

for i ∈ [0, N − 1]. In practice, regularization and line search
are necessary, as explained in [5].

B. Simulation With Contacts

We summarize a typical simulation pipeline in the presence
of contacts [24]. Contact resolution is usually done in the
velocity–impulse level but our DDP is formulated at the
acceleration–force level, which will be elaborated later.

The dynamics of a mechanical system are given by

M(q)v̇ +H(q, v) = Sτ + JT (q)f, (8)

where M the mass matrix, H the vector of nonlinear forces,
S a selection matrix that maps actuated joint torques τ to
generalized coordinates, while J denotes the concatenated
Jacobian of the contacts, and f the corresponding forces’
concatenation. We simplify notation by dropping explicit
dependence on quantities.

In time-stepping approaches, e.g. [9], [24], Eq. (8) is
discretized using a forward Euler approximation to obtain

Mi (vi+1 − vi) = h(Sτi −Hi) + JTi λi,

where h is the time step size and λi corresponds to the
concatenation of the contact impulses at time step i. These are
projected in contact space

Ji (vi+1 − vi) = JiM
−1
i

[
h(Sτi −Hi) + JTi λi

]
,

which can also be expressed as

c+ = Aλ+ b+ c−, (9)

with c+ = Jivi+1, c− = Jivi, b = hJiM
−1
i (Sτi −Hi), and

A = JiM
−1
i JTi .

Different contact models pose different conditions on what
constraints accompany Eq. (9). In this work, the contact model
defined in [9] is used because it is convex and analytically
invertible. It penalizes movement in contact space by solving
the following QCQP during the forward dynamics

min
λ

1
2λ

T (A+R)λ+ λT (b+ c− + c∗)

s.t. λ ∈
{
λ | λn(k) ≥ 0, ‖λt(k)‖ ≤ µkλn(k) , ∀k

}
,

(10)

where
[
λt(k) λn(k)

]T
are the tangential and normal compo-

nents for the single contact impulse λk, R is a positive definite
matrix that makes the solution unique and invertible, and c∗ is
a Baumgarte stabilization reference.

The inverse dynamics is well-defined and for a diagonal R
we obtain an independent problem per contact

min
λ

1
2λ

TRλ+ λT (c+ + c∗).

s.t. λ ∈
{
λ | λn(k) ≥ 0, ‖λt(k)‖ ≤ µkλn(k) , ∀k

}
.

(11)
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IV. IMPLICIT DDP

Our point of departure from the original DPP algorithm is
the dynamics in (1b). Instead of the explicit dynamics, we
assume dynamics of the form

g(x′, x, u) = 0. (12)

This will allow us to apply DDP for systems expressed via
inverse dynamics, implicit or variational integrators, etc. Our
focus will be contact dynamics, but we return to this later.

The goal is to compute the derivatives for the quadratic
approximation of the Q-function (4). Terms related to the
running cost li are trivial and will be omitted. Thus, we focus
on the first and second-order sensitivity of the next step value
function. A treatment of sensitivity analysis in the context of
Newton methods can be found in [25].

A. First-Order Sensitivity Analysis

The first-order sensitivity of the value function in (2) is

V ′x = ∂V ′

∂x = ∂V ′

∂x′
∂x′

∂x = V ′x′
∂x′

∂x .

Here, V ′x is the sensitivity of the next step value function
with respect to the current state, while V ′x′ is the sensitivity
of the next step value function with respect to the next state;
connected by the previous equation. Based on (12) we have

dg
dx = gx′

∂x′

∂x + gx = 0⇒ ∂x′

∂x = −g−1x′ gx, (13)

where it is assumed that for any x and u, x′ can be computed
so that (12) is satisfied. Combining the previous two equations
gives

V ′x = −V ′x′g−1x′ gx.

In practice, a faster computation can be achieved using the
adjoint method [26] by computing first the quantity s by

sT = V ′x′g
−1
x′ ⇒ V ′x′

T = gTx′s

and then

V ′x = −sT gx. (14a)

If we confine ourselves in a first-order analysis only this is
computationally advantageous [26], but the computation of ∂x′

∂x
in (13) is required for the second-order expansion. By a similar
reasoning, V ′u is computed as

V ′u = −sT gu, (14b)

which concludes our first-order analysis.
We now have all the ingredients for the first-order approxi-

mation of the Q-function. For example, the Qx term in (4) is
given by

Qx = lx − sT gx.

B. Second-Order Sensitivity Analysis

The second-order approximation of the value function is

V ′xx = ∂x′

∂x

T
V ′x′x′

∂x′

∂x + V ′x′
∂2x′

∂x2 .

The term ∂2x′

∂x2 constitutes a third-order tensor. We use matrix
notation for the contractions but assume that their computation
is clear from the context. It is computed as

d2g
dx2 = 0⇒ ∂2x′

∂x2 = g−1x′
(
∂x′

∂x

T
gx′x′

∂x′

∂x + ∂x′

∂x

T
gx′x

+ gxx′
∂x′

∂x + gxx

)
.

By combining the last two equations we have that

V ′xx = ∂x′

∂x

T
V ′x′x′

∂x′

∂x − s
T
(
∂x′

∂x

T
gx′x′

∂x′

∂x

+ ∂x′

∂x

T
gx′x + gxx′

∂x′

∂x + gxx

)
. (15a)

For the remaining two terms in (4), a similar reasoning can
be used to compute them as

V ′xu = ∂x′

∂x

T
V ′x′x′

∂x′

∂u − s
T
(
∂x′

∂x

T
gx′x′

∂x′

∂u

+ ∂x′

∂x

T
gx′u + gxx′

∂x′

∂u + gxu

)
, (15b)

V ′uu = ∂x′

∂u

T
V ′x′x′

∂x′

∂u − s
T
(
∂x′

∂u

T
gx′x′

∂x′

∂u

+ ∂x′

∂u

T
gx′u + gux′

∂x′

∂u + guu

)
. (15c)

This concludes the second-order sensitivity analysis. We can
now compute all terms in (4). The rest of the DDP algorithm
is implemented without changes.

It is worth pointing out that for the explicit dynamics (1b)
we have that g(x′, x, u) = f(x, u) − x′ = 0, gx′ = −I , and
gx = fx. Thus, V ′x = V ′x′fx as in (4). The same verification
can be performed for the rest of the quantities.

C. Gauss-Newton Approximation

Especially for robot models with many degrees of freedom,
computing the tensor terms (15) can be prohibitive expensive.
Fortunately, it is possible to do a Gauss-Newton approximation
of the Hessian—equivalent to iLQR—by ignoring them. Thus,
the second-order sensitivity terms of the value function in an
iLQR setting become

V ′xx = ∂x′

∂x

T
V ′x′x′

∂x′

∂x (16a)

V ′xu = ∂x′

∂x

T
V ′x′x′

∂x′

∂u (16b)

V ′uu = ∂x′

∂u

T
V ′x′x′

∂x′

∂u . (16c)

V. ACCELERATION-LEVEL CONTACT DYNAMICS

We describe here a contact resolution framework at the
acceleration level rather than the commonly used velocity level.
This way, we avoid the necessary first-order discretization of the
dynamics. Other assumptions are not required about the robot’s
model (such as the assumption about a constant Jacobian in (9)
that is inherent in the velocity-impulse formulations), without
increasing the computation complexity. As such, we consider it
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a superior choice. It is also the default choice in MuJoCo [27],
which is a state-of-the-art robotics simulator.

Starting from the continuous time dynamics (8), we multiply
both sides by JM−1 and add J̇v, which gives

Jv̇ + J̇v︸ ︷︷ ︸
α+

= JM−1JT︸ ︷︷ ︸
A

f + JM−1(Sτ −H) + J̇v︸ ︷︷ ︸
α−

. (17)

We can interpret this equation as follows: α− is the uncon-
strained acceleration in contact space in the absence of any
contacts, which is corrected by the term Af to result in the
actual acceleration α+ that satisfies the contact constraints.

As already explained, the contact model that we utilize was
proposed in [9]. It computes the necessary contact forces by
solving the following convex optimization problem that tries
to minimize accelerations in contact space

min
f

1
2f

T (A+R)f + fT (α− − α∗)

s.t. f ∈
{
f | fn(k) ≥ 0, ‖ft(k)‖ ≤ µkfn(k) , ∀k

}
,

(18)

which is the equivalent to (10) for accelerations.
While the bias accelerations α∗ can be in a general

Baumgarte stabilization form, a choice that works reasonably
good across models is

α∗ = J̇v − 1
h2φ(q)− 1

hJv, (19)

with φ(q) the gap distance, positive when bodies are separate.
The first term is used to cancel the same term in α+ and
α− and simplify computations. The second and third term are
obtained by a Taylor expansion of the gap distance function
and ignoring third and higher-order terms.

In the forward pass, the above optimization problem is solved
for the contact forces using a standard Projected Gauss–Siedel
solver [24]. Though in principle this can be implemented in
the backward pass, the computation of the gradients becomes
more complicated since we have to differentiate a numeric
solution. Even with automatic differentiation, the quality of the
gradients can suffer. Instead, a diagonal approximation of the
system is assumed and an approximate solution to the contact
forces is computed [5]. The implicit formulation avoids this
issue and the exact solution for the contact forces is given in
a closed form.

By utilizing the implicit framework and the invertibility of
the model, problem (11) is expressed in acceleration space

min
f

1
2f

TRf + fT (α+ − α∗)

s.t. f ∈
{
f | fn(k) ≥ 0, ‖ft(k)‖ ≤ µkfn(k) , ∀k

}
.

(20)

For the computation of α+ as given by (17), the joint
acceleration v̇ is required. In the classical DDP algorithm this
is not available, since we only have access to the current state q
and v, and the acceleration is computed after the contact forces.
In the implicit form, since we have additionally available the
next state x′, the computation of the acceleration is possible.
Thus, we can compute each contact force in closed form as

fi = Pµ{−R−1(α+ − α∗)}. (21)

Algorithm 1: Forward pass with contacts.
Input: x, ki, Ki, R, and µk,∀k.
Output: x′ and f .

1 Compute A+R and α− − α∗ based on Eqs. (17)
and (19).

2 Solve Eq. (18) for the contact forces f .
3 Solve Eq. (12) together with (7b) for the next state x′.

Algorithm 2: Backward pass with contacts.
Input: x′, x, u, R, and µk,∀k.
Output: ki and Ki.

1 Compute α+, α∗, and f from Eqs. (17), (19) and (21).
2 Differentiate Eq. (12) using the computed contact forces

f to obtain the required expansion terms of g.
3 Compute the value function terms in (14) and (15).
4 Compute the Q-function terms in Eq. (4).
5 Compute the gains ki and Ki in Eq. (5), and the current

value function terms in (6) for the next step i− 1.

Pµ projects contact forces to the cone with coefficient µ [24].
After the computation of the contact forces, we can enforce

the implicit dynamics Eq. (12) either using a forward or inverse
dynamics formulation. Given the available information, the
computation of inverse dynamics is cheaper and numerically
superior [28]. Furthermore, this decoupling between the forward
and backward pass allows us to avoid the rootfinding problem
during the forward, that would be necessary for a fully implicit
implementation. Having to solve the rootfinding problem in
the forward pass increases the computation time of the implicit
formulation. We summarize the DDP computations subject to
contacts in Algos. 1 and 2.

VI. RESULTS

A. Implementation Details

For the computation of the rigid-body dynamics, the Julia
library RigidBodyDynamics.jl is used [29]. Computa-
tion of first-, second- and third-order tensors is done using
forward-mode automatic differentiation [30].

We begin by performing multiple comparisons between
implicit and explicit DDP formulations for a double pendulum
swing-up task. Next, we present two problems that require
multi-contact motion planning: A single leg that is required a)
to stand up from the ground, and b) to balance from an initial
random state.

B. Aggregate Double Pendulum Swing-up

For the double pendulum swing-up task, we generate 100
random trials (that is, with random initial state) and we specify
an objective that includes a desired upright posture at the end of
a T = 5s horizon, with a time step of 10ms, while penalizing
joint torques at intermediate states. Additionally, joint limits

The accompanying code is available at github.com/ichatzinikolaidis/iDDP
and the video at youtu.be/w8oOPqo6oC0.
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Fig. 2. Aggregate results for the total trajectory cost of each variant.

are modelled using unilateral forces at the joints. Only the
unilateral constraint is imposed (forces push the joint away
from the limit), while friction is not required.

We compare four variants of the methods presented in this
work:

• Implicit iLQR with backward Euler dynamics.
• Implicit DDP with backward Euler dynamics.
• Explicit iLQR with forward Euler dynamics.
• Explicit DDP with forward Euler dynamics.

For every random initialization, the four variants are executed
until convergence (or until an upper iteration limit is reached)
and the number of iterations and total cost of the trajectory is
logged. Aggregate box plot results for the cost and the number
of iterations are shown in Figs. 2 and 3, respectively.

From the comparison, the implicit formulations result in
considerably fewer iterations than the explicit counterparts.
Both median, minimum and maximum values, and the rest
of the statistical properties in Fig. 3 are improved with an
implicit formulation regarding the number of iterations. As
expected, the trade-off for this is the larger in general cost of the
resulting trajectory in Fig. 2. This can be partially explained by
the fact that since the explicit formulations perform on average
more iterations, they are capable to fine-tune the resulting
trajectory more. But given the considerable fewer iterations
for the implicit formulations, this aspect is more important in
terms of the overall performance.

A possible reason behind this is the integrator’s properties.
Implicit Euler is an A-stable method suitable even for stiff
systems. As such, it usually exhibits energy decrease—instead
of the common increase in explicit methods—that makes the
whole formulation more stable.

C. Single Double Pendulum Swing-up

1) Cost per iteration and timings: We evaluate the cost per
iteration for one double pendulum swing-up and compare 6
different formulations (each with a DDP and iLQR variant):
(i) Forward Euler dynamics in the forward and backward

passes.
(ii) Forward Euler dynamics in the forward pass, and forward

Euler inverse dynamics in the backward pass.
(iii)Backward Euler dynamics in the forward and backward

passes.
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Fig. 3. Aggregate results for the total number of iterations of each variant.

We use the same duration and time step as in the previous
case but with a different cost function, without joint limits, and
initialize at the stable equilibrium. The results are shown in
Fig. 4. Formulation (i) corresponds to a classical iLQR/DDP
with explicit dynamics. Formulation (ii) is enabled by the
presented framework. The computation of the Jacobian and
tensor terms is based on the automatic differentiation of the
inverse dynamics. Since (ii) is equivalent to (i), the solutions
by the two approaches are exactly the same and are plotted
together in Fig. 4. Differences are found in the computation
time, as reported next. Formulation (iii) is implicit in both
passes, enabled by the presented framework.

In terms of computation, formulations (i) and (ii) with iLQR
require 126 iterations, while with DDP require 55 iterations.
In terms of timings, the mean time of each iteration for (i)
with iLQR is 5.87ms and with DDP 29.91ms. For (ii) with
iLQR is 5.03ms and with DDP 28.49ms. While the differences
are not significant for such a low-dimensional model, these
can become starker for robot models with larger degrees of
freedom. For (iii), 75 iterations for iLQR and 40 iterations with
DDP. The mean computation time of each iterations with iLQR
is 7.19ms and with DDP 72.22ms. The increased computation
is due to the solution of a nonlinear system of equations in
the forward pass.

2) Effect of time step size: We focus now on the effect of
the time step size to the solution of the problem. We solve
the same problem as before for multiple time step selections
and report the number of iterations required until convergence.
Since formulations (i) and (ii) are equivalent, we focus the
comparison on (i) and (iii). We solve them using iLQR but
similar conclusions could be drawn if DDP was used.

The results are shown on Table I. For small time steps, the
two formulations are essentially equivalent and, thus, require
the same number of iterations. As the time step increases, the
influence of the integrator’s damping in (iii) becomes more
apparent. This results in a desirable decrease in the number
of iterations for convergence. The motions are included in the
accompanying video. For larger time steps, the accuracy of
both first-order integrators worsens significantly.
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Fig. 4. Cost per iteration for the different formulations.

TABLE I
EFFECT OF TIME STEP ON NO. OF ITERATIONS UNTIL CONVERGENCE

Time step 10−4 10−3 10−2

(i) / (ii) 56 68 126
(iii) 56 66 75

D. Multi-contact Stand-up

Next, we consider a planar 3 degree-of-freedom single leg of
a humanoid robot and the task now is to stand-up upright from
the ground. The model can make multiple contacts with the
terrain using all the bodies of its structure, but self-collisions
are inactive. We pre-define a number of possible contact points
but we do not prescribe the contact activation pattern. Adding a
contact detection mechanism and avoiding the pre-specification
of contacts is another possibility, as typically done in simulation
engines.

The cost function of the problem is defined as

J = wqf ||qf −qg||2+wvf ||vf ||2+
∑

i
(wτ ||τi||2+wv||vi||2).

A penalization of the velocity and joint torque is applied
throughout the trajectory, while a goal state is defined in the
final cost term. The motion duration is T = 4s with a time step
of 10ms; this is a relatively large time step for contacts, but
our aim here is to output an approximate contact-rich motion
plan. Given this plan as input, it is possible to post-process it
to increase the quality.

The friction coefficient is selected as µ = 0.7. Parameter R
is initialized with a value of 1 for all components. While in
principle it can take arbitrary values, we can test the validity
from a numerical viewpoint as follows [27]: We run the forward
and backward pass separately and compare the computed
forces. The two solutions should match according to the desired
numerical precision.

The main difficulty is that the problem exhibits a number
of contact possibilities. Thus, mode enumeration can be very
challenging. Notice also how delicate heel balance emerges
while reaching the upright configuration. Our trajectory opti-
mization framework is capable of outputting a locally optimal
motion plan. Even though a zero torque initial solution is used
here, its quality greatly affects the quality of the computed
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Fig. 5. Trajectory cost at each run of the receding horizon formulation.

motion. Finally, by changing the terms in the cost function, it
is possible to obtain different solutions, e.g. more conservative
but with higher torque cost.

The resulting motion can be found in the accompanying
video. There is an initial explosive and dynamic motion at about
1s. Such a motion would be in practice difficult to track. Yet
being able to compute such a complex motion from high-level
input only demonstrates the power of DDP-based approaches.
There are a couple of ways to mitigate that: an obvious approach
is to increase the torque, position, and velocity penalizations
accordingly. Another option is to include terms that penalize
the rate of the commanded torques. Finally, a more principled
approach is to penalize high-frequency components of the
signals involved [31].

E. Multi-contact Balancing

Using the same model as before, the state now is randomly
initialized in the air. The task is to keep the initial posture
with zero velocity, i.e. to balance. In contrast to the previous
case, this problem is formulated in a receding horizon fashion.
A fixed number of 15 iterations for DDP is pre-specified;
this makes real-time iterations of the algorithm possible. The
horizon length is T = 0.5s, with the simulation running at
200Hz, while our framework runs at 20Hz. The structure of
the cost function remains the same as before, albeit the weight
regarding the final velocity is increased to bias more towards
a static final configuration.

The computed motion naturally performs a series of jumps
to dissipate kinetic energy and come to a complete stop. The
underactuated foot tilting emerged as the outcome of optimiza-
tion without the need for programming explicit controllers as in
[32]. Compared to the case in the previous section, the receding
horizon formulation is capable of producing better motions
in general. This is because the constant updates allow it to
escape iterations with a very small cost decrease, which can be
common in the fixed horizon optimization of the previous case.
If a bad initialization is specified or the horizon and frequency
are not chosen properly, the receding horizon formulation can
be trapped too. The selection of these parameters depends on
the desired task and the initial state.

Finally, a semi-log plot of the total trajectory cost at the
beginning and at the end of each DDP step is shown in Fig. 5.
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We notice that in about 20 runs a successful balancing motion
is computed. Afterwards, each run rapidly converges to this
motion. The reason why the cost is increased at the beginning of
each run is because the horizon moves; the predicted trajectory
for the new segment at the end of the previous horizon is that
the robot will essentially fall, which incurs a large cost. Further,
during the initial runs, the motion is highly unstable and a
suitable balancing motion is not discovered yet. Thus, the total
trajectory cost varies greatly between consecutive runs.

VII. CONCLUSION

This work presented an application of DDP suited for
systems with implicitly defined dynamics that can handle
dynamical interactions, with a particular focus on through-
contact motion planning. This allowed extending the original
DDP to a larger class of dynamics models, e.g. models
based on inverse dynamics. We described how to use the
implicit formulation for accurate contact resolution in the
DDP framework without requiring approximations of contact
dynamics. The proposed method is exact and straightforward to
implement, utilizing a closed-form solution for quality gradient
computations. We demonstrated its properties in a number of
cases: comparisons of implicit and explicit dynamics for a
double pendulum, and two case studies for a single leg model
that required challenging multi-contact motion plans.

While the original DDP provides both feedforward and
feedback gains that guarantee a level of robustness against
small perturbations, we noticed that the computed motion plans
can sometimes fail if the conditions of the problem change
slightly. Though one can introduce robustness as part of the
trajectory optimization modelling, we believe that running the
framework in a receding horizon fashion is more appropriate
and promising. Thus, the motion plans should be updated online
to withstand unexpected perturbations.

It is worth noting that DDP simulates the dynamics of
the system and activates a contact point if appropriate. Thus,
contacts are taken into account according to the system’s
natural dynamics [23], which may lead to abrupt motions [5].
Being a shooting method for unconstrained systems, DDP is
limited in terms of active search for potential contacts. Further
improvements can be made by combinatorial planning and
exploration, where transcription-based methods demonstrated
better capabilities and flexibility [33], [34], although requiring
additional and non-negligible computation cost in practice.
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