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ARTICLE INFO ABSTRACT

Keywords: Managers of offshore wind farms make strategic decisions based on information about site wind speeds and
Satellite data significant wave heights (SWH) available from numerical weather predictions (NWP) or local in-situ measure-
Wind spe ‘ments. However, the coarse resolution with which such information are available, both in space and time, in-

Significant wave height
Wind energy production

Spatial uncertainty

Offshore wind farm management

troduces a high degree of uncertainty into the decision process which in turn may result in higher costs during
different stages of offshore wind farm life. The current work investigates how space-borne data descril
speeds and SWH might be used to quantify spatial uncertainties and support decisions during the design
operation of offshore wind sites. Results have revealed that due to high spatial variance of wind speed, the
estimated wind power can differ from that provided by an offshore met mast up to 11%. The methodology
proposed for SWH has shown how data collected from distinct satellites can be cfficiently interpolated (maximum
absolute error observed around 1 m) to generate high-resolute spatial information of sea water surface, regardless
of satellite trajectory distributions. The work has provided insights on how the propagation of measurement
uncertainty through the wind farm area can affect both management costs and wind energy production over the

plant life-cycle.

1. Introduction

Decisions made during the life-cycle of an offshore wind farm are based
on the data collected to characterize sea conditions. However, due to the
remote areas where offshore wind farms are placed, data collection adds
costs to a plant life-cycle during both the design and construction (e.g.
foundation selection, fatigue estimates), and operational (e.g. asset main-
tenance) phases. This leads to the use of information with a coarse spatial
resolution which is not ideal for describing spatial variations in sea condi-
tions within the portion of sea covered by a wind farm, i.e. typically around
10km?. Uncertainty in sea conditions results in the application of large
safety factors in the design of a wind farm (Hou et al., 2019), aswell asa loss
of available time windows to dispatch vessels during both the construction
stage and operational stage (Browell et al., 2016; Lacal-Ardntegui et al.,
2018), increasing the cost of energy for offshore wind.

and oceanography) studies quantify weather and sea conditions (e.g. wind,
‘waves, and water level). Metocean data combines in-situ measurements,
numerical simulations, and satellite observations and supports the devel-
opment and construction of offshore renewable projects, as well as their
oongoing activity and maintenance. Although general data can be freely
obtained within the public domain, offshore developments usually require
site-specific measurements. This represents a cost that adds to the overall
budget of an offshore renewable project. The need to combine three
different measurement sources is given by the fact that in-situ measure-
ments provide precise data for a spatially limited region. Numerical sim-
ulations, as well as data from satellite platforms, extend the spatial
coverage of the information available from buoys, but suffer from limited
spatial and temporal resolutions. Nevertheless, numerical models present
the advantage of performing future projections after being properly cali-
brated with in-situ observations. The dataset provided by combining the
i data sources is used to estimate statistics on the sea sur-

Information on wind speed and surface waves ly extracted
from large numerical forecast models, or local measurements collected
from instruments deployed for a specific time interval (e.g. buoy, LIDAR).
A particularly relevant source for such data is provided by metocean ser-
vices (Brownet al., 2018). Metocean (syllabic abbreviation of meteorology
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face and weather conditions characterising a site.

Freely-available numerical models of the ocean area available from
the ERA5 dataset collected for the public by the European Centre for
Medium-Range Weather Forecasts (ECMWF) (ECMWEF, 2020; Hersbach
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et al., 2018). For sea state forecasting in the UK, the Atlantic — European
North West Shelf operational model from Copernicus Marine Environ-
mental Monitoring System (North West Shelf Seas, CMEMS-NWS) pro-
vides ocean wave analysis and forecast on a regular grid at 0.017°
(Copernicus Marine Service, 2020a). Other data can be collected from
marine buoy and radars located on the shore facing the offshore wind
farm. In UK, the WaveNet database from the Centre for Environment,
Fisheries and Aquaculture Science (CEFAS) collects real-time data on sea
surface from a buoys network (CEFAS, 2020).

High-resolution data both in space and time is crucial to optimize the
different stages of an offshore wind farm and reduce the associated costs.
In particular, high temporal and spatial resolution wind speed values for
large portions of sea would reduce the sources required for site choice, as
well as driving the design of measurement campaigns, ultimately
improving the accuracy with which energy production is estimated, thus
the design of offshore plants, e.g. reduce safety factor values (Sempreviva
et al., 2008). On the other hand, precise information on the significant
wave height (SWH - measured in m), which is considered informative for
the sea surface state, will reduce costs during both construction and
operational phases, by improving the reliability in the forecast of win-
dows for the dispatch of vessels (Lacal-Ardntegui et al., 2018).

A precise f sea condition: ial during offshore

ind ing activities, si ion and mai can
reach up to 30% of the total cost (Maples et al., 2013; Seyr and Muskulus,
2019). However, the coarse spatial resolution with which such mea-
surements and numerical weather predictions (NWP) are available, i.e.
0.015-0.05° grid, makes it difficult to identify 3-h (roughly) windows for
maintenance activities, leaving 4% of the time windows available for
turbines maintenance unused (Browell et al.,, 2016). Because of such

in SWH are gener-
ally employed when suitable time-windows for

and optimization of and costs (Carroll et al.,
2016; Taylor and Jeon, 2018). apply di
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(Zecchetto, 2018). Such sensor measures variations on a surface by
sending an electromagnetic impulse and recording the returning signal.
Both the emitted and recorded signals can be polarized by adjusting the
electric field with a polarization perpendicular to the direction of wave

ion. The ization can be hori: H) or vertical (V) and
SAR according to the ion of receiving and
transmitting signals, i.e. VV, HH, VH, or HV (they can both be vertical or
horizontal, or one vertical and the other horizontal). After bouncing on
the surface, the emitted signal is scattered back to the sensor and its
strength is analysed using different polarizations to gain information
about the observed object/surface. In SAR imagery three surface scat-
tering mechanisms are considered, namely rough surface, volume, and
double bounce. Rough surface, e.g. bare ground and water surface, pre-
sents a strong scattering in VV polarization, therefore SAR sensors used to
examine sea surface adopt a VV polarization (Flores-Anderson et al.,
2019).

Sentinel-1A launched in April 2014, and it was the first satellite
‘mission of the European Space Agency (ESA) provided with a SAR im-
aging sensor. Two years later, the Sentinel 1-B mission was added to its
orbit to increase temporal coverage of maritime and land monitoring
(European Space Agency (ESA), 2020). In case of flat surfaces the inci-
dent angle of the signal is equal to that of the reflected one which is not
recorded by the sensor. On the other hand, in rough surfaces the signal
bounce back in all the directions and part of the returning signals reach
back the sensor antenna with strength and delay proportional to local
surface changes (Ulaby et al., 1982). In sea environment, the backscatter
of the signal generates the image which features represent the sea surface
signature associated to wind field conditions. Therefore, SAR images
collected from a satellite contain indirect information on wind speed and
direction. Based on this, different methods have been developed to
retrieve wind speed information from SAR imagery and generate
high-resolution maps for the wind field observed over the sea.

models calibrated using wind directions extracted from

which describe the probability of turbine failures (this being what in-
duces maintenance actions), these include Poisson processes, Weibull
and Gamma distributions (see Seyr and Muskulus, 2019 for a complete
review). Because of this, offshore wind farm projects deploy their own
instrumentation in the area to characterize the wind field, e.g scanning
LiDARs deployed on the coast facing the offshore wind farm area, or
floating LiDARs. Advances in analysis of remote satellite data has
revealed how the use of satellite platforms can provide high spatial res-
olution data to characterize the sea surface.

In this work, we focus on the important problem of characterising
spatial variations/variability of wind speeds and wave heights across an
offshore site, this being an important constituent factor within the wider
context of information driven decision making outlined above. In
particular, the aims of the work are: i) to use wind speed data retrieved
from satellite synthetic-aperture radar (SAR) imagery to assess uncer-
tainty in estimating wind power compared to standard measurement

(i.e. the standard technique provides a single
value over the wind farm area); ii) to propose a new methodology that
allows the generation of surface maps from along-track SWH measure-
‘ments extracted from satellite altimeters.

The paper is structured as follows. Section 2 presents a brief
description of the satellite products used for the analysis. Section 3 pre-
sents the methodology for both wind power computed from wind field
retrieved from SAR imagery, and SWH 2D maps generated from along-
track information from satellite altimeters. Results are presented in
Section 3. In section 4 the methodology proposed and its relevance for
offshore wind farms management is discussed. Finally, Section 5 sum-
marize the work and main findings.

2. Satellite products to characterize sea surface

SAR sensors have been found able to provide information on wind
spatial variability at high spatial resolution, even close to coastal areas

global numerical models, radar frequency, polarization, and incident
angle (e.g. Monaldo et al., 2016; Ahsbahs et al., 2017; Rana et al., 2019)
and Two-Dimensional Continuous Wavelet Transforms (e.g. Zecchetto,
2018) have been used to retrieve wind speed information from SAR
satellite imagery. The latter presents the advantage respect to geophys-
ical methods of not requiring external inputs to calibrate the parameters.

Further information on sea surface height, and in particular, signifi-
cant wave height (SWH), have become globally available since the
launch of satellite missions provided with altimeters. Missions include
Cryosat-2 (since 2010), SARAL/AltiKa (since 2013), Jason-2 (since
2008), Jason-3 (since 2016), Sentinel-3A (since 2016) and Sentinel-3B
(since 2018). The altimeter transmits microwave pulses toward the
Earth and records the signal reflected back. The time gap between the
emitted and received signal indicates the distance of the surface from the
satellite. Because the position of the satellite is known, thanks to a GPS
system, this is translated in surface height with respect to the referenced
ellipsoid (approximation of Earths surface). From the measurements
collected of sea surface, SWH is defined as the mean of the highest one-
third of all waves observed as

|-
SWH:N—/J‘XI:H“ [¢8)

where H is the wave height, i is the number of high waves (assuming
waves are ordered from highest wave height to lowest wave height), and
N is the total number of waves observed over a specific time period
(Holthuijsen, 2010). Data on SWH recorded from satellite altimeters are
considered a reliable source since they have been validated against buoys
and cross-validated with other satellite altimeters (Yang and Zhang,
2019). The Copernicus Marine service provides a globally distributed
dataset for SWH that combines along-track measurements from the
following satellites: Jason-3, Sentinel-34, Sentinel-3B, Cryosat-2 and
SARAL/AltiKa. Data from each mission are homogenized based on the
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Jason-3 mission and validated against marine buoys. The service gen-
erates nearreal time products, collecting available along-track mea-
surements, with each file covering a 3-h time window (Copernicus
Marine Service, 2020b).

3. Method
3.1. Wind field

Wind speed maps produced by the Wind Energy Department of the
‘Technical University of Denmark (DTU) (DTU Wind Energy, 2020) have
been used to i in wind speed and, wind
power within the study area. The wind field products provide wind speed
at 10 m above the sea surface as retrieved from SAR data provided by the
FEuropean Space Agency (ESA). For this analysis, we used the wind field
retrieved from the C-band SAR imagery of Sentinel 1 missions A and B for
the period January to March 2020. These maps have been produced with
aresolution of 0.009° x 0.006° (longitutide x latitude), and with the same
time resolution of Sentinel 1A and B. However, several satellite passages
can cover the study area increasing the frequency with which such wind
products are available. For the analysis a total of 31 SAR-derived prod-
ucts were collected. An example of the second level product available
from DTU Wind Energy is shown in Fig. 1. The area of interest, covering
the portion of sea of the wind farm, was extracted from the complete map
provided by DTU in order to obtain a detailed map of the wind field
within the wind farm. This product was then used to quantify the error
generated when assuming constant wind speed within the study area.
Furthermore, we estimated how such error in the measurements propa-
gates into the wind power in different areas of the wind farm.
The wind power, Py, was computed as (Leithead, 2007)

Py=3pGAL, @

p is air density, A, is the area swept by the rotor, and U is the wind
velocity at hub height. The wind power is converted into the actual
power extracted from the turbine rotor by using the power coefficient C,
which accounts for turbine design. The value ranges between 0 and 0.5
(Leithead, 2007) and for this work was set equals to 0.4 to remain con-
servative. Since the current aim is to explore variability across a wind
farm, the specific value of G, will not impact overall findings. In practical
applications efficiency values would be supplied by the wind turbine
manufacturer.
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Because wind speed data extracted from SAR imagery referred to
the wind speed observed 10m above the sea surface, a preliminary
operation was needed to convert such value to wind speed at the hub
height. This can be done by recalling the well known logarithmic
profile characterising wind within the atmospheric boundary layer.
Under the is of stable i itions the ithmi
law for the vertical profile of wind velocity U(z) reads (Tennekes,
1973)

@Jm<1+i), [€))
w P

where  is the height above the ground, u is the friction velocity, x is the
von Karman constant equals to 0.41, and 2 is the surface roughness
length. In a turbulent regime, this latter quantity depends on the flow
field rather than the geometrical roughness of a surface (in this case sea
waves). (Charnock, 1955) proposed that for air above water surface the
non-dimensional relationship between the roughness length and the
friction velocity was constant and equals to 0.0144. Such relationship
allows the roughness length, z, to be estimated according to

“@

where a=0.0144 is the Charnock's constant (Charnock, 1955) and g is

ion due to gravity. B ituting equation (4) into equati
(3) we obtain an implicit function of u+ that can be solved once the height
z and the related velocity U(z) are known. Therefore, wind speed
observed at a specific height can be used to estimate the friction velocity,
which is the unknown of the obtained implicit function, and describes the
turbulent flow field (Schneiderhan et al., 2005; Badger et al., 2010).
Badger et al. (2010) adopted such technique, along with measurements
of wind speed collected up to 90m to extract the wind speed at 10m
above the sea surface and asses wind speed retrieved from SAR. In this
work, wind speed from wind SAR-derived maps is used to compute first
the friction velocity and then, trough equation (3) the wind speed at the
hub height, which for the wind turbines of Beatrice wind farm (case
study) is equals to 101 m.

The newly generated wind field obtained from the satellite second
level product, i.e. wind speed at hub height, was fed into equation (2) to
generate wind power maps. Such values were then compared with the
value of wind power estimated by assuming a constant wind velocity,
equals to wind field average, in the whole study area. Results were used

Fig. 1. Example of wind field map generated from
DTU Wind Energy (2020). The image shows the wind
speed 10 m above the sea surface as retrieved from the
SAR data collected from Sentinel 1A on the 28 of
January 2020 at 5:52 p.m. Scotland's outline is shown
for geographical reference. Image closeup highlights
the turbines constituting the offshore wind farm
Beatrice (Beatrice Offshore Wind Fa, 2020). This is
only an example of the satellite-derived product used
in the analysis, which high resolution version can be
found at DTU Wind Energy (2020).
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to quantify the error in using one value of wind speed during both design
and operational phases in a offshore wind farm lifetime.

3.2. Significant wave height

Data on significant wave height were collected from third level (L3)
satellite product available at the Copernicus Marine Service (Copernicus
Marine Service, 2020b). The service provides global ocean significant
wave height by processing near-real-time data from along-track altimeter
of several satellite missions including Jason-3, Sentinel-3A, Sentinel-3B,
Cryosat-2 and SARAL/AltiKa, Files are generated for a three-hour time
window and present one point every 7 km along the satellite trajectory.
The same service produces also fourth level (L4) products by merging
together all Significant Wave Height measurements available from the
level 3 product. The data is organised in 2° mesh covering the global
ocean. However, the coarse resolution of this latter L4 product did not
allow us to use it to describe changes in sea surface within a small area
such as that typically covered by an offshore wind farm. Therefore, the
SWH measurements available from the L3 product were interpolated to
generate a map of SWH for the area covered by the offshore wind farm.
‘The small portion of sea covered by the area of interested limited the
j i ilable for the i ion. For this reason, the
interpolation procedure focused on a more extensive area (in order to
include as many trajectories from different satellites as possible) to then
obtain the SWH values in the study area.

Because the methodology and the resolution of the grid chosen for the
interpolation could affect the quality of the results, different methodol-
ogies and grid resolutions were explored. In particular, three types of
interpolating methods were tested covering an increasing range of
complexity, including linear, nearest and cubic method. The linear and
cubic method respectively use a first and third degree polynomial to
interpolate data within the domain. The nearest method expands the
information from the cells carrying the data to their neighbours. The
analysis was performed using the data from the satellites passing through
the study area within a 24h window. The interpolated values obtained by
using different interpolating methods, and space and time resolutions
were then validated by using in-situ measurements recorded from a
marine buoy (see section 4.1).

amount of

4. Validation against in-situ measurements
4.1. Case study

‘The location of the offshore wind farm Beatrice was chosen for the
analysis. The Beatrice wind farm is Scotland's largest wind

Cleaner Environmental Systems 2 (2021) 100008

Aquaculture Science (Cefas) (WaveNet, 2020). Data on SWH, peak di-
rection, and sea temperature are collected from each buoy within the
network with a 30-min resolution.

First, the values extracted from the altimeter were directly compared
with those measured at the buoy at the same time (i.e. within a 15 min
interval). The difference between the SWH extracted from the altimeter,
SWHa:, and the SWH measured at the buoy, SWHsusy, was computed for
all the points along the track of the satellites passing through the study
area within the specified time window. The value of such a difference
was then related to the distance between the location where the altimeter
collected the measurement and the position of the buoy. Hereinafter we
will refer to this difference as altimeter-buoy difference. Second, the
interpolated value extracted at the buoy position, SWHiy, was compared
with that measured at the buoy and related to the minimum distance
observed during the 24h window between satellte trajectories and buoy
position. Because the interpolating procedure used all the data available
for the area in one day, the interpolated value extracted at the buoy
position was compared with the average, 25th percentile, and 75th
percentile of the measurements collected daily from the buoy. Herein-
after, such difference will be denoted as interpolate-buoy difference and
indicated, respectively, with the symbol Apean, Ass, Ags. Finally, the
interpolate-buoy difference was related to the percentage of area covered
by the smallest polygon containing all the trajectories observed during
the time window.

Fig. 4 shows the data of SWH collected from the buoy for the time
period that goes from 1 January 2020 to 30 March 2020. The measure-
ments are organised in measurement distribution per day. Boxes show
measurements comprised between the 25th and 75th percentile, bars
show the remaining part of the distribution, circles represent the distri-
bution outliers, and the orange continuous line links the daily average of
the SWH measurements.

Table 1 summarizes the main characteristics of the different sources
used for the analysis. From, the table it is possible to notice that the
length of the time window explored in the work was determined by the
availability of the data from satellite altimeters which dataset dates back
to the 01 January 2020.

5. Results
5.1 Wind field and wind power
The wind field retrieved from Sentinel-1 SAR imagery was used to

estimate the error in power estimate when the wind is assumed to blow at
a constant speed in the whole area covered by the offshore wind farm

farm, it is located in the North Sea, approximately 13km from the
Caithness shore, North-East Scotland, precisely in the Moray Firth (see
Fig. 3). This site contains 84S-Gamesa turbines, with hub heights of
101m and rotor radii of 77m, which provides a total installed power
capacity of 588 MW, and covers an area of 131.4 km? (Beatrice Offshore
Wind Fa, 2020). The wind farm s fully operational since June 2019. The
analysis of wind speed and SWH was conducted on the minimum portion
of sea containing the offshore wind farm, which is represented in Fig. 3
with a yellow polygon labelled with the number “2”. The dashed line
describes the geographical limits of the wind farm. To allow a larger
number of satellite trajectories in the computation of the SWH, the study
area was extended to a larger portion of sea which extends from 57° to
60° latitude, and from -5° to 0° longitude (see the blue box in Fig. 3).

4.2. Marine buoy

In-situ SWH measured at a buoy located in the Moray Firth at
57°57°.99N, 3°19'.99W, was used to validate the satellite-derived SWH
(see Fig. 3). The buoy is within the extended area used for the interpo-
lation and belongs to the network of buoys distributed along the UK
coastline and managed by the Gentre for Environment Fisheries and

to the single in the farm provided by a classical
‘meteorological mast). An example of the results obtained are reported in
Fig. 6. The four panels of Fig. 6 are organised in a matrix where the
columns are ‘Value’ and ‘Error’, and the rows are the variables, i.e. ‘wind
speed’ and ‘wind power'. The average wind speed at hub height, i.e.
9.94m/s, computed from the wind field of Fig. 6a was used to estimate
the error in assuming constant the wind velocity when NWP are extended
to the whole wind farm (Fi ).

The wind field in Fig. 6a is then used to feed Equation (2) and esti-
mate changes in wind power and, thus, potential energy production
(Fig. 6). The wind power generated by the average wind speed is called
inferred wind power and it is reported on top of panel c. For the case
study the inferred wind power generated by a wind blowing at 9.94m/s
equals to 4.5 MW. The difference between this value and those associated
to the complete wind field (Fig. 6¢) is reported in Fig. 6d as a percentage.
Because wind power is proportional to wind speed cubed (see equation
(2)), the error in power (Fig. 6d) is three to five times higher than that for
wind speed itself.

Changes in wind speed from 10m above the sea surface to the hub
height were observed not to modify the spatial pattern of the wind flow
field, but its magnitude. The difference between the average minimum,
and maximum values for the study area for the two distributions (i.e. 10-
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Fig. 2. Along-track SWH measurements for the trajectories crossing box 1 in Fig. 3 during the 01 January 2020; a) the whole trajectories and b) the trajectories within
the study area (box 1 Fig. 3). In this example the satellites include Sentinel-3B, Cryosat-2 and SARAL/AltiKa both ascending and descending trajectories.

Fig. 3. Scotland's map showing the geographical position of the offshore wind
farm Beatrice (pink polygon with dashed contour). The blue (label 1) and yellow
(label 2) boxes indicate, respectively, the extended area used for the SWH
analysis and the minimum polygon containing the portion of sea covered by the
wind farm. The red dot indicates the marine buoy used to validate the results.
Figure closeup provides details on the wind farm geometry.
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Fig. 4. Daily distribution of the SWH measured at the buoy located in the Moray
Firth. The measurements are organised daily and the box represent the data
comprised between the 25th and 75th percentile of the entire

Table 1

Distinct Sources used in the analysis and related characteristics. In the columns
title Res means resolution. * The time resolution is that of SentinellA and B,
therefore the same imagery is available every 12 days. However, several satellite
passages can still cover the study area increasing the product frequency.

Source Space Res Time Res Interval
[lat; long] [since]
SAR-derived maps  0.009°; 0.006° * 2002
Satellite altimeter  7km (slongrack)  several times per day  01/01/2020
Marie buoy 30min 08/12/2019
2 re . o
1 X Veriance
M i H
2 i [ <. %
10 s, L. - e E
3 . 048
8 . . 5 oy a ]
6 A Y. 02
Y S S S

Fig. 5. Panels show the mean (black dot) and standard deviation (red triangle)
for the wind field observed within the study area in the months of January,
February, and March 2020.

distribution, respectively. These values show that, on average, the hub-
height speed distribution is the 10-m speed distribution which values
are shifted of a small amount, i.e. 2.4 m/s for the case study.

Finally, the 2D maps describing wind field can be described by the
statistics of the distribution of their values. By using the first two moments,
‘mean and standard deviation, of wind speed values collected in a specific
date, we can provide a synthetic description for the entire dataset. Fig. 5
shows the mean (square) and standard deviation (triangle) for the wind
speed observed 10 m above the sea surface. These statistics can be used to

distribution for a day. Bars are the remaining part of the distribution and circles
the outliers. The orange continuous line links the average value observed each
day. Data are freely available from WaveNet (2020).

meter and hub-height wind speed) was observed to be, respectively,
2.085m/s, and 2.63m/s; with an overall average difference around
2.45m/s. Also, the standard deviation computed for the two distribu-
tions showed very little differences with an average value around
053m/s and 0.42m/s for the hub-height and 10-m wind speed

describe the condition of the sea by an increase in wind speed
standard deviation to spatial changes in sea level. In addition, since wind
power is directly related to wind speed, such statistics provide also in-
formation on the behaviour of wind power mean and spatial variance.

5.2. Small scale variations in SWH

Fig. 7a) shows the distribution of the altimeter-buoy difference values
observed in each date for the three months analysed. Boxes include
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Fig. 6. Wind speed at hub height within the

Wind speed
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study area obtained from the wind field
retrieved from Sentinel-1A SAR image (panel
a). Panel ¢) shows the energy power associ-
ated to the flow field in panel a). The inferred
power is the energy power computed by
using the average wind speed value observed
from the wind field at hub height. The Error
column (panels b and d) presents the error
when the velocity speed is assumed constant
within the area, both for the b) wind speed
and d) energy power. The error was esti-
mated assuming the constant value equal to
the average speed observed within the study
area,

Error (%]

Error [%]

values within the 25th and 75th percentile, the bars are the remaining
values, and the circles represent the distribution of outliers. Most of the
observed dates have quite stretched distributions covering a measuring
gap between 3 and 5m. There are also few dates presenting a narrow
distribution (e.g. the values between the 25th and 75th percentile show a
difference around 1m), such as 22 January; 2, 12, 14, 28 February; and
15, 20, 25 March. Additional information on the reliability of the mea-
surements from the altimeter can be obtained by relating the values of
Fig. 7a) to the distance between the point of the sea surface were the
measurement was taken, and the position of the buoy. Results are pre-
sented in Fig. 7b). The scatter plots present the altimeter-buoy difference
extracted along the track for each satellite and are grouped in dates. From
Fig. 7b) we can observe that there is not a clear relationship between

istril variance and average di f the satellite from the buoy.
Indeed, for the aforementioned dates characterised by a small variance,
the measurements spread between Okm and 200km from the buoy.
Although the graphs show an overall trend where the gap between the
two measurements becomes bigger the further we move from the buoy, it
is not possible to establish a clear relationship between measurement
‘precision and distance from the buoy. Nevertheless, within a 50 km range
distance, almost all the measurements (only one pass during the 22™ of
March 2020 shows an increasing trend) show satellite measurements
close to the in-situ one, with differences between them ranging from
~0.3mto 0.5m.

To extend the observation from the satellite to a wider area, along-
track measurements from the altimeter were interpolated over the
domain represented by polygon “1” in Fig. 3, and data were organised in
aregular grid. An le of the i ion results is reported in
Fig. 8 for the three different interpolating methods, using the along-track
data of the satellites passing through the study area on the 01 January
2020, which trajectories are reported in Fig. 2. The three panels of Fig. 8
are represented from left to right, with increasing complexity in the
method used for data interpolation. By considering the same mesh res-
olution for the three methods, the cubic interpolation of the altimeter
measurements provided the most detailed map for SWH. Nevertheless,
the comparison of the interpolated value extracted at the buoy location

and the SWH values measured at the buoy identified the nearest method
as the best interpolating method for our purpose. Fig. 9 reports the results
of this analysis conducted for all the 28 dates for which measurements
from the altimeter were available within the three months observed
(different colours in Fig. 9). For the nearest method, 7 of the dates ana-
lysed are aligned along the agreement line (continuous line), 13 dates are
within the 30% interval (dashed lines), and in 8 dates the measurements
from the altimeter overestimated those from the buoy of more than 30%.
Therefore, for the 71.4% of the dates observed the value recorded from
the altimeter differed from the measurements collected in the whole day
at the buoy, i.e. values comprise between the 25th and 75th percentile of
the measurement distribution (horizontal lines in Fig. 9), of a quantity
less or equal to 30%. On the other hand, for the linear method, only in
two dates the interpolated values are close to the agreement line, and for
8 dates they are within the 30% interval. For this method, in the majority
of the dates analysed, i.e. 18 dates (64%), the interpolation over-
estimated the measured value at the buoy by more than 30%. Finally,
even worse results were obtained by interpolating the measurements
from the altimeter with a cubic relationship. In this case, 2 dates lay on
the agreement line, 7 are included within the 30% interval of confidence,
and for the remaining dates, i.e. 19 (69%), the satellite altimeter over-
estimated the SWH by more than 30% of its value.

Because results from the interpolation procedure can be affected by
the size of the mesh used, different grid resolutions with decreasing mesh
size were explored. The sensitivity analysis revealed no changes in
interpolation results when the ratio between number of cells along the y
(latitude) and x (longitude) direction is kept to 1. Nevertheless,
increasing this ratio showed good results, providing interpolation values
close to those observed at the buoy. The analysis was performed for the
three different methods for a set of cell ratios ranging from 0.5 to 2.5, and
the mean error estimated as the mean of the interpolation-buoy differ-
ence observed during the three months was computed. Fig. 10a shows the
result of the sensitivity analysis conducted. The three curves collecting
the mean error of the interpolate-buoy difference for each of the cell
ratios explored present an upward opening with a minimum error value
reached when the cell ratio is equal to 1.5, 1.7, and 1.8, respectively for
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Fig. 7. Panels show a) the distribution of the difference between SWH values measured from the altimeter and those measured from the buoy observed during a 24-h
window. b) The same values from a) are organized according to the distance between the point measured by the altimeter and the buoy position. Boxes in a) indicate
the portion of the distribution comprises between the 25th and 75th percentile, bars the remaining part of the distribution, and circles are the outliers. Plots show the
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Fig. 8. Results of the interpolation of the along track measurements by using three different interpolating methods: linear, nearest, and cubic. Plots are obtained by
using the data recorded on the 01 January 2020 by the altimeter of different satellites which trajectories are presented in Fig. 2.
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for the three months. The horizontal line indicates the data comprises between the 25th and 75th percentile of the daily distribution of the measurements collected
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a) b)

Fig. 10. Mean interpolate-buoy difference

cellsratio = 1.0 observed in the study period of three months. a)

cells ratio = 0.5

o nearest 4 linear  ®

S

SWHinterp [M]
~

mean error [m]

cells ratio = 1.5

The error plotted against the ratio between the
number of cells used along latitude and longitude
for the interpolation, for the three different
methods used: nearest (blue circle), linear (yellow
triangle), and cubic (green square). b) Results
from the nearest method. Comparison between
the interpolated value extracted at the buoy po-
sition and the average value of the measurements
collected at the buoy on the same date for the

cells ratio = 2.0

mean error [m]

»

SWHipterp [M]

three months for some values of the cells ratio.
The horizontal line indicates the data comprises
between the 25th and 75th percentile of the daily
distribution of the measurements collected from
the buoy.

SWHbuoy [m]

nearest, linear, and cubic method. However, the more precise method
resulted to be the nearest one, with a minimum mean error of 0.37 m.
Panels of Fig. 10b show how the comparison between the interpolated
values, SWHiuerp and those measured at the buoy, SWHyy, changes by

SWHpuoy [m]

seems clear that the quality of the interpolation cannot be associated to

the proximity of the measurements used for the interpolation to the buoy,

nor to the distribution, i.c. spatial coverage of the satellite trajectories.
Data reported in Figs. 11 and 12 are summarized in Table 2. The table

varying the cell ratio for the latter method, i.. the nearest.
within the range 1.8-2.0, the cubic method presented errors lower than
those obtained by adopting the nearest one, with a minimum mean error
of 0.46 m (see Fig. 10a). Hereinafter, the analysis will be carried out by
using the nearest method with a grid presenting 750 and 500 cells,
respectively, in the vertical and longitudinal direction (latitude, longi-
tude); thus a cells ratio equals to 1.5. Under such conditions, the gener-
ated map for SWH shows a resolution of 0.004° lat and 0.01° long.

Tig. 9 shows that in some dates the interpolation performs better than
others. To explore the reason behind this we observed the minimum
distance between the satellite trajectories and the buoy, as well as the
portion of study area covered by all the trajectories. A graphical repre-
sentation is reported in Fig. 11 for all the dates collected. The continuous
lines and shadowed areas represent, i i j i

includes i on the i difference (i.e. Ameans s,
and Ays), the minimum distance observed from the buoy, and the spatial
coverage of the study area from the satellite trajectories.

To better understand why for some dates the interpolating procedure
performed better than others, the profile for the SWH extracted from each
satellite was compared with that observed during the same 24-h window
from the buoy. The analysis was performed for three dates, the 1st, 6th,
and 22nd of January 2020. Results are reported in Fig. 13. These dates
were chosen since they showed, respectively, low values for minimum
distance from the buoy and high values for Az, high values for minimum
distance from the buoy and high values for Agys, low values for minimum
distance from the buoy and low values for Agys, as it is shown in Fig. 13a.
In Fig. 13a, labels indicate the date, while circles and vertical lines

and the portion of study area covered. Fig. 12 reports the interpolate-
buoy difference against the minimum distance from satellite altimeter
and buoy observed during the day (Fig. 12a), and the spatial coverage of
the traj ies (Fig. 12b). Parti e i b difference
was computed as difference between the interpolated value extracted at
the buoy position and the mean, 25th percentile, and 75th percentile
value of the daily distribution of the measurements collected at the buoy,
and respectively indicated as Apegn, Azs, and Ags. From the latter plot, it

represent, buoy difference obtained by using
the mean daily value recorded at the buoy, the 25th and 75th percentile of
the daily distribution of the measurements at the buoy. The SWH profiles
recorded at the buoy (dashed black line) and the along-track values used
for the interpolation (continuous coloured line) are reported for the
different dates in the panels b, ¢, and d of Fig. 13. Here the close ups present
the spatial distribution of satellite trajectories and buoy.

The profiles recorded from the altimeters during the 1st of January
2020 (Fig. 13b) show a SWH ranging from 0.98 m to 5.39 m. Moreover,
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Fig. 11. Satellite trajectories (continuous line) and their spatial coverage (light blue polygon) for each date analysed. Black circles represent the position of the buoy.
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Fig. 12. The interpolated-buoy difference s plot
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against a) the minimum distance of the measurements
extracted from the satellite altimeter from the buoy,
and b) the distribution of the trajectories as portion of
the study area included within all the trajectories. The
plot present the interpolate-buoy difference computed

as the interpolated value extracted at the buoy and the
+ mean (circle), the 25th percentile (vertical line lower
extreme), and the 75th percentile (vertical line upper
extreme) of the daily distribution of the measurements
collected at the buoy. The horizontal grey line in-

Colours refer to different months, with blue, yellow,

+| dicates the perfect match between the two sources.
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and green being associated to January, February, and
March, respectively.

-1.0

Min distance from buoy [km]

the information on the SWH extracted from the altimeter combined with
the spatial distribution of the trajectories reported in the closeup of
Fig. 13b revealed significant spatial changes in SWH. Trajectories 1,2,3,
and 4 are i SARAL/AltiKa i SARAL/AltiKa

ing), Cryosat-2 ing), and B ing)
‘Therefore, the upper part of the study area, i.e. first measurements in the
profiles 3 and 4, and last measurements in the profile 1, presents high
values of SWH around 5.5 m, while the lower part of the study area is
characterised by SHW values between 0.98 m and 3.58 m. As aresults the
interpolation provides a value of SWH which is 1m higher than the
average values of 1.41 m measured at the buoy during the day (25th
percentile = 1.3 m, 75th percentile = 1.53 m). Analogously, in day 6™ of
January 2020 the SWH recorded from the altimeters showed high

25 50 -] 100 20 40
Covera

60 80 100

ge [%]

variability with values ranging from 2.7 m to 4.92m (see Fig. 13¢). As
trajectories 1 and 2 in the closeup represent respectively Jason-3

ing) and Sentinel ing), also in this date the upper
part of the study area was characterized by higher SWH compare to the
lower part. Nevertheless, when comparing with the profiles of Fig. 13b
(profiles 1 and 2), they show a similar behaviour, with profile 1 reaching
smaller values in the second part. The reduced spatial variability in SWH
within the study area may be the explanation to the difference of 0.45 m
between the interpolated value and the average SWH value of 1.15m
recorded at the buoy for the day (25th percentile=0.98m, 75th
percentile = 1.33 m). Finally, we explore the values recorded by the al-
timeters for the date 22 January 2020 that presented a difference of
0.16m between the interpolated value and the average SWH of 0.69
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Table 2

Interpolate-buoy difference, A, minimum distance observed from the buoy, dir,
spatial coverage of the study area from the satellite trajectories, Coverage, and
number of used for the i ion. The i dif-
ference was computed as difference between the interpolated value extracted at
the buoy position and the mean, 25th percentile, and 75th percentile value of the
daily distribution of the measurements collected at the buoy. Respectively,
indicated as Apean, Az, and Ays.
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statistics of the SWH values recorded from satellite altimeters, and
wind speed spatial standard deviation for the area 1. In doing so, we
reasonably assumed that the wind speed can be used as proxy for the
SWH, i.e. high wind speed generates high SWH and vice versa. Stan-
dard deviation of wind speed was computed from the distribution of
the wind field extracted from the second level products presented in
the method. Fig. 14 a,b show that there is no relationship between the
. fs

Date Dos Bz Ammn  dun  Coverage  Measurements
ml  fml (ml (kml (%] [number]

o1/01/ 009 032 020 472 5402 128
2020

05/01/ 008 051 030 4851 1358 76
2020

06/01/ 059 024 042 10363 3442 107
2020

15/01/ 002 044 020 4983 3675 89
2020

17/01/ 009 056 032 8648 4921 71
2020

22/01/ 007 003 003 553 1321 6
2020

24/01/ 075 058 066  8L60 2678 67
2020

25/01/ 045 102 076 4680 s5L14 127
2020

26/01/ 005 011 003 4117 2073 80
202

02/02/ 104 076 088 9241 2890 9
2020

05/02/ 005 024 015 219 3395 73
2020

12/02/ 131 097 111 12432 770 100
2020

14/02/ 033 015 008 3078 Sl46 127
202

18/02/ 029 004 017 8010 120 79
2020

20/02/ 119 032 078 8494 3481 74
2020

22/02/ ~007 054 025 7587 2135 83
2020

24/02/ 027 067 019 560 5539 155
2020

28/02/ 026 029 004 5734 2797 89
2020

02/03/ 044 029 036 590 2427 75
2020

05/03/ 028 006 015 5120 SLe8 128
2020

12/03/ 046 017 014 563 3476 55
2020

15/03/ 041 002 022 5023 5471 163
2020

18/03/ 017 042 026 3098 1092 44
2020

20/03/ 097 069 085 11126 1230 93
2020

22/03/ 002 018 009 485 3312 &
2020

25/03/ 085 037 065 5154 3676 89
2020

26/03/ 069 063 065 672 2758 66
2020

measured at the buoy (25th percentile=0.65m, 75th percentile =
0.69m). In this latter case the two traj ies (1 - Jason-3 i

difference and the distribution of along-track
values from the altimeter from the same date. On the other hand,
good estimates of the SWH were observed when the wind field was
characterised by minor spatial changes, i.e. low standard deviation
values (Fig. 14c). Conversely, high interpolation-buoy differences
happened closed to dates characterised by high spatial variability, i.e.
high variance. Unfortunately, the gap between dates for which wind
speed data and altimeters data were available does not allow a more
precise comparison.

6. Discussion

Results have shown how the use of second level products from SAR
satellites and data from altimeters can be used to easily quantify spatial
uncertainty in wind power and SWH predictions. High resolution infor-
mation, e.g. 10 m, can be extracted for wind speed and SWH, respectively
from wind field maps retrieved from SAR imagery and sea surface maps
obtained by i k satellite In partic-
ular, the method proposed to generate 2D maps of SWH for the study area
has showed that high accuracy results can be obtained also with few
trajectories, i.e. low number of along-track measurements. Such wind
speed and SWH products will generate information that can contribute to
reduce costs during design and operation stages of an offshore wind farm
life time.

6.1, The use of wind speed products to inform the site choice and design of
offshore wind farms

Quantification of temporal and spatial uncertainty in local wind speed
values will increase cost efficiency in offshore wind farm management.
Statistical forecasts generated as ensembles of several results from
deterministic NWP have been found to be a valid method to asses tem-
poral uncertainty in weather forecasts and on-site measurements
(Sweeney et al., 2020). This approach has been shown to be relevant also
for short-term forecasting, which provides the measurements used to
predict wind ion or design mai ions (Gilbert et al.,
2020). have used values on wind energy production extracted from
existing turbines to compute the covariance between coupled of wind
turbines within a wind farm. The covariance was used to modify a
Gaussian distribution such that to have a probability distribution ac-
counting for spatial structures existing between turbines. The probabi-
listic values were used to modify production values estimated from
deterministic weather forecasts. Results have revealed how such method
can reduce di between forecast i byup
to 5% compare to deterministic ones (Gilbert et al., 2020). Other
‘methods such as Artificial Neural Networks (ANN), used trained artificial
networks to link SAR imagery to sea state characteristics (Torres et al.,
2012; Tapoglou and Dorrell, 2020).

We estimate the spatial variations in power compared to assuming a
single value of wind to characterize the wind field within the portion of
sea occupied by an offshore wind farm as typically done when adopting
the NWP as outlined above. To do this we introduced few simplifying

and 2 - Sentinel-3A descending) present a similar profile with the overall
SWH ranging between 0.55 m and 2.49 m. In addition, both the altime-
ters recorded values close to 0.55 m in the lower part of the study area
where the buoy was located.

To generalise the above results, the interpolate-buoy difference
computed for the entire time period was plotted together with the

i.e. 10 m wind speed up to hub height for an assumed
turbine type such that to assign the parameters required for power
estimation according to equation (2). Indeed, rather than provide pre-
cise values for wind power, the aim was to provide evidences of the
potential of the use of wind speed satellite products to generate a priori
values that can support decision making during site selection and design
stages.
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Fig. 13. Pancl a shows the relationship between
the interpolate-buoy difference and the minimum
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distance of the satellite trajectories from the buoy.
Labels indicate the date, circles and vertical lines
represent, respectively, the interpolated-buoy
difference obtained by using the mean daily
value recorded at the buoy, the 25th and 75th
percentile of the daily distribution of the mea-
surements at the buoy. Panels b, ¢, d show the
SWH profile extracted from the buoy measure-
ments (dashed black line) and along-track mea-
surements for the different satellites used for the
interpolation ~ (continuous ~coloured lines),
respectively for the dates 6, 22, and 24 January
2020. Close ups represent the spatial distribution
of satellite trajectories and buoy. Black arrows
indicate the direction the measurements for SWH
were taken, ie satellite ascending/descending
trajectory.
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Fig. 14. Interpolate-buoy difference computed as the interpolated value extracted at the buoy and the mean (circle), the 25th percentile (vertical line lower extreme),
and the 75th percentile (vertical line upper extreme) of the daily distribution of the measurements collected at the buoy ploted against the ) mean of SWH, b)
standard deviation of SWH, and ¢) standard deviation of wind speed (red triangles).

comparing results with real energy production values. It is here antici-
pated, however, that exact values are difficult to obtain since they
represent sensitive industrial information.

‘The future development of this work will require a detail analysis of
the uncertainties associated to the choice of the power coefficient C, in
equation (2) and adjustments in wind speed which will be conducted by
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6.2. The use of SWH products to support decisions during construction and
operation stages of offshore wind farms life time

Comparison of interpolating data with local measurements recorded
at a marine buoy has revealed a strong influence of interpolating mesh
resolution on data results, with mean error ranging from 3 m to 0.4 m by
varying cells dimensions and interpolating method used. In particular, it
‘was found that a cell ratio of 1.5 and 1.8 provided the minimum observed
error for nearest and cubic method, respectively (Fig. 10). However,
cubic method generates higher spatial resolute maps and for manage-
ment purposes it may be worth loosing 0.1 m precision on the average
SWH and increase information on its spatial distribution (see Fig. 8).

Quality of the results from interpolations seems to be more related to
the disturbances on water surface induced by wind than spatial distri-
bution of satellite trajectories or overall distance of the along-track
measurements from the buoy (see comparisons on Fig. 12). Results are
in agreement with observations on spatial variability of concurrent
measurements between buoys (Barrett et al., 2009). In their analysis
(Barrett et al., 2009), did not find any relationship between average SWH
difference and buoy spatial distance, although they highlight an
increasing spatial variability in measurements when distance increases.
The present analysis further extends such observations by adding tem-
poral inty to spatial ing results from

and the value extracted at the
buoy position with the mean, 25th percentile, and 75th percentile of the
distribution of daily SWH measurements.

‘When the sea surface is homogeneous, results have shown that the
interpolation provides more reliable results for SWH than in the case
where the sea surface shows high spatial changes within the study area.
Because different trajectories are related to different time during the time
interval considered, it is reasonable to assume that this is due to a storm
that has heavily modified the sea surface. Indeed, in absence of storms
the sea surface may appear quite homogeneous for a long range distance,
with waves characterized by long wave lengths and low energy propa-
gating through the sea. On the other hand, close to a storm event, sea
level can change rapidly in time according to the storm trajectory,
inducing high spatial changes within 24-h time window. Under this
considerations, it is reasonable to associate both spatial changes and
error in the interpolated values to the spatial variability, i.e. standard
deviation, of wind speed. Fig. 14 shows the comparison between wind
spatial speed standard deviation and the interpolate-buoy difference.
High values of difference can be associated to high values of standard
deviation and vice versa. However, the limited amount of dates available,
and the difficulty to collect data from the same dates limited the quality
of the analysis and prevent a definite trend to be recognized. Collection of
more data should be sought in the future to further investigate the
inferred relationship.

7. Conclusions

We propose an innovative use of second level satellite products to
quantify the uncertainty associated to wind speed and wave height
measurements which adds costs during the life cycle of offshore wind
farms. The method was intentionally kept at the minimum level of
complexity such that it can be easily performed, and only requires open
source satellite data.

‘We showed how detailed maps on wind field freely available can be
used to quantify the error in wind power production for each section of
the offshore plant domain by assigning a reference value, e.g. wind
product estimated by using a local measurement or from the value of
wind speed available from large weather forecast modelling.

A new method was proposed to spatially distribute along-track
measurements from satellite altimeters over the domain of interest.
‘The method consists in collecting all the trajectories available within a
24-h time window and interpolate all the measurements over a regular
grid. A sensitivity analysis conducted on grid cells resolution have
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identify the existing of a specific ratio between cells in the y and x di-
rection that minimize the error in interpolated values.

Results have revealed that the overall accuracy of the SWH values
generated is not affected by spatial distribution of satellite trajectories
within the study area, nor the distance of the along-track measurements
from a specific point on the sea surface. There seems to exist a rela-
tionship with spatial changes in wind speed, i.e standard deviation,
which appears reasonable to associate to sea storms. However, due to the
limited dat ilable and the lack of for wind
speed and SWH such influence could only be inferred from results
interpretation.

We argued that spatial distribution resulting from the proposed
‘method can be combined with NWP and on-site measurements to prop-
agate spatial uncertainty. Particularly, wind speed products will increase
the efficiency in selecting the best site and design the layout of a wind
farm. While, data on SWH will be used directly or to inform costs and
stochastic modelling, to increase reliability in the choice of windows
available to dispatch vessels. This will ultimately reduce costs during
construction and operation phases of offshore wind farms life cycles.

Finally, the rapid increase in the frequency with which satellite data
are available will increase the accuracy in estimating spatial changes in
sea surface conditions within offshore wind farms (Medina-Lopez et al.,
2020), further improving the efficiency of the method proposed in
reducing lifetime costs for offshore wind farms.
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